

000 CARPRT: CLASS-AWARE ZERO-SHOT PROMPT 001 REWEIGHTING FOR VISION-LANGUAGE MODELS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 008 ABSTRACT 009

010 Pre-trained *vision-language models* (VLMs) enable zero-shot image classification
011 by computing the similarity score between an image and textual descriptions,
012 typically formed by inserting a class label (e.g., “cat”) into a prompt (e.g., “a photo
013 of a”). Existing studies have shown that the score between a given image-class pair
014 is highly sensitive to the choice of prompt, and they proposed a scheme using a
015 *weighting vector* to reassemble scores regarding different prompts. We observe
016 that these studies assign the *same* weighting vector across all classes, by implicitly
017 assuming the conditional independence of classes and weights, which, however,
018 often does not hold in practice. For instance, a prompt like “an aerial view of” might
019 be apt for “airport” but ill-suited for “apple”. To address this, we propose *class-
020 aware zero-shot prompt reweighting* (CARPRT), a scoring scheme that adjusts the
021 weighting vector for each class by capturing the class-specific relevance of different
022 prompts in a *training-free* manner. For each class and every available prompt, it
023 first identifies the maximum image-text relevance score using that prompt-class pair
024 across the dataset. These maximum scores are then normalized to estimate class-
025 specific weights that reflect how effectively a prompt represents different semantic
026 labels. Evaluations on standard fine-grained image classification benchmarks show
027 that CARPRT outperforms existing class-independent reweighting, confirming that
028 modeling prompt-class dependency is crucial for effective zero-shot prediction and
029 even broader VLM-based application settings that rely on prompt ensembling.
030

031 1 INTRODUCTION 032

033 *Vision-language models* (VLMs) have transformed how machine learning models interpret visual
034 content by jointly leveraging visual and textual modalities. Models like CLIP (Radford et al., 2021)
035 and DeCLIP (Li et al., 2022) enable *zero-shot image classification* by computing similarity scores
036 between image and textual descriptions of class labels, then predicting the label with the highest
037 score. By forming textual descriptions of labels (e.g., “*a photo of a [label]*”), this approach—known
038 as *prompting*—removes the need for task-specific training to recognize visual concepts.
039

040 However, these models’ *zero-shot performance* is sensitive to the precise wording of prompts, as
041 subtle phrasing changes can significantly alter the perceived relevance of visual features, leading to
042 different similarity scores and classification outcomes (Radford et al., 2021). Identifying phrasings
043 that remain effective across diverse visual concepts is challenging and often yields inconsistent
044 results across datasets (Allingham et al., 2023). This sensitivity means that manually crafting optimal
045 prompts for each class or dataset, while helpful for performance, becomes laborious and unreliable
046 in large-scale settings. Recent work has explored using *large language models* (LLMs) to generate
047 richer class descriptions, but this introduces heavy computational overhead, reducing the efficiency
048 that makes zero-shot methods attractive in the first place.

049 This paper focuses on a more prevalent question: improving zero-shot classification when only
050 a *fixed* set of *predefined prompts* and *unlabeled images* are available at inference, which requires
051 methods that leverage only the inference data to *optimize prompt utilization*. A common strategy is
052 *prompt ensembling*, which averages embeddings of multiple prompts to produce more stable class
053 representations (Radford et al., 2021). However, this approach assumes equal prompt contributions—a
simplification that harms downstream performance when semantically misaligned templates are
included. Allingham et al. (2023) advanced this concept by automatically determining prompt-specific

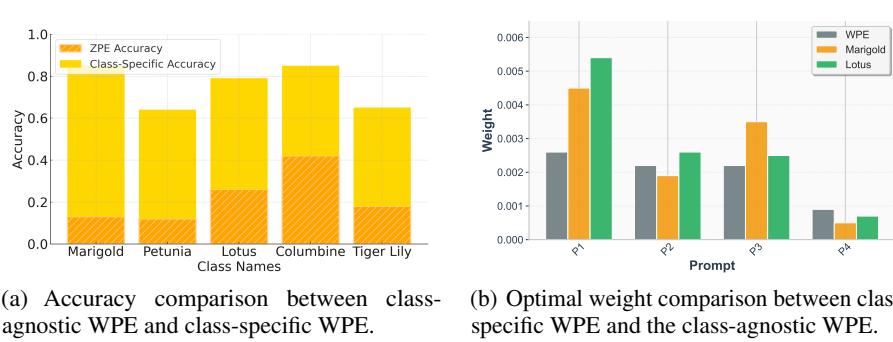


Figure 1: Empirical motivation for class-specific weighting on Flower102 (Nilsback & Zisserman, 2008). We showcase the results of five classes by shifting from class-agnostic WPE to class-specific WPE (using ground-truth labels), and the estimated optimal weights under two weighting schemes, confirming that optimal prompt weights are class-dependent.

weights using unlabeled data, depending on how compatible each prompt is with the downstream task. This method achieves results comparable to manually selected templates. Still, while such methods vary weights across prompts, they assign *the same weight across all classes* to each prompt.

We argue that this class-agnostic reweighting is suboptimal. Intuitively, different semantic classes vary in their affinity to different prompts. For example, a prompt like “*This is a photo of a [label], a type of fruit*” is more relevant to class “strawberry,” but ill-suited for class “lamb”, which would better match “*This is a photo of a [label], a type of animal*” instead. This implies that optimal prompt utilization may require class-specific considerations. To validate this intuition, we conduct controlled proof-of-concept experiments on the Flower102 dataset (Nilsback & Zisserman, 2008) (Figure 1). By applying Weighted Prompt Ensembling (WPE) (Allingham et al., 2023) *independently* to images of each class (thus simulating “perfect” class-specific knowledge for weight estimation), we observe consistent accuracy gains compared to global WPE that estimates a single set of class-agnostic weights (Figure 1(a)). Moreover, the optimal prompt weights vary substantially across classes¹ (Figure 1(b)), rather than being globally shared.

We further study this observation theoretically and present a probabilistic framework (Section 3) to clarify the underlying mechanism of prompt ensembling. We show that class-agnostic weighting schemes, such as WPE, indeed implicitly assume conditional independence between the class label and the prompt weights given an image. This assumption, however, may not always reflect real-world data characteristics and limit the expressivity of such weighting schemes as a result.

Building on these insights, we introduce *Class-Aware Zero-shot Prompt Reweighting* (CARPRT), a *training-free* method to infer class-specific prompt weights using only unlabeled images. Unlike our controlled proof-of-concept experiment, CARPRT does *not* require ground-truth labels for weight estimation. Instead (Section 4), for each image, CARPRT first calculates similarity scores against all possible prompt-class combinations using a pre-trained VLM (e.g., CLIP (Radford et al., 2021)). It then assigns a pseudo-class label to the image based on the combination yielding the highest score. These pseudo-labels are then used to aggregate information for class-specific weight derivation: for each class, the weight for a given prompt is determined by the maximum similarity that prompt achieves in conjunction with that (pseudo-)class across the reference images. This simple yet effective scheme helps tailor the prompt ensemble to the unique semantic content of each category.

We empirically evaluate CARPRT on ten fine-grained *zero-shot classification* benchmarks (Section 5), ImageNet (Russakovsky et al., 2015) (and its variants), and explore its utility in broader VLM-based adaptation scenarios such as prompt tuning (Appendix G). Our results show that CARPRT consistently outperforms existing prompt ensembling/reweighting schemes across VLM architectures and backbones, highlighting that incorporating class-awareness is an essential and promising way to maximize the potential of prompt ensembling for zero-shot classification, with potential benefits for a wide range of VLM applications.

¹The prompt templates denoted in Figure 1(b) are: P1 = “a photo of a , a type of flower.”, P2 = “satellite photo of .”, P3 = “a close-up photo of the .”, P4 = “a drawing of a .”

108

2 PROBLEM SETTING AND RELATED WORK

109

110

Zero-Shot Prediction with VLM. VLMs such as CLIP (Radford et al., 2021) achieve visual-text
111 alignment through large-scale contrastive pre-training. It consists of an image encoder $f: \mathcal{X} \rightarrow \mathcal{Z}$
112 and a text encoder $g: \mathcal{T} \rightarrow \mathcal{Z}$, mapping images from space \mathcal{X} and texts from space \mathcal{Y} into a shared
113 embedding space \mathcal{Z} . The alignment is driven by maximizing the cosine similarity between the
114 embeddings of matched image-text pairs while minimizing it for non-matched pairs.

115 This alignment enables *zero-shot image classification*. For a set of C classes $\mathcal{Y} = \{y_1, \dots, y_C\}$,
116 each class y_c is mapped to a text description \mathbf{t}_c via a prompt template $p: \mathcal{Y} \rightarrow \mathcal{T}$, such as $\mathbf{t}_c = \text{“A}$
117 $\text{photo of } \{y_c\}.$ ”. The text encoder $g(\cdot)$ then produces class embeddings $\mathbf{z}^T = [\mathbf{z}_1^T \ \mathbf{z}_2^T \ \dots \ \mathbf{z}_C^T]^\top$
118 where $\mathbf{z}_c^T = g(\mathbf{t}_c)$ for $c \in \{1, \dots, C\}$. Given an image $\mathbf{x} \in \mathcal{X}$ with its embedding $\mathbf{z}^I = f(\mathbf{x})$, the
119 predicted class is given by $\hat{y} = \arg \max_{c \in \{1, \dots, C\}} \text{sim}(\mathbf{z}^I, \mathbf{z}_c^T)$, i.e., one whose text embedding \mathbf{z}_c^T
120 has the highest cosine similarity with \mathbf{z}^I . This allows for zero-shot classification based on semantic
121 alignment without task-specific fine-tuning. Yet, the classification performance is highly sensitive to
122 the choice of prompt template p . An ill-suited template can lead to misaligned class embeddings.

123 This work focuses on mitigating this sensitivity by ensembling *multiple predefined templates* $\mathbb{P} =$
124 $\{p_1, \dots, p_n\}$, particularly when \mathbb{P} is fixed, without relying on additional labeled data. That is, in the
125 *zero-shot classification* setting, we consider the following problem²:

126

Problem 1 (Prompt Ensembling). *Given a pre-trained VLM with an image encoder f and a text
127 encoder g , a label space \mathcal{Y} with C classes, a fixed prompt template set \mathbb{P} with $|\mathbb{P}| = n$, and an
128 unlabeled image dataset $\mathbb{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$, construct the class embeddings \mathbf{z}^T using a prompt
129 weight matrix $\mathbf{W} \in \mathbb{R}^{n \times C}$, where each row $\mathbf{W}_c = [w_{1,c}, \dots, w_{n,c}]^\top$ refers to weights of n prompts
130 for class $y_c \in \mathcal{Y}$, subject to $w_{i,c} \geq 0$ and $\sum_{i=1}^n w_{i,:} = 1$. The text embeddings for class y_c are thus*

131
$$\begin{bmatrix} \mathbf{z}_1^T \\ \vdots \\ \mathbf{z}_C^T \end{bmatrix} = \frac{1}{n} \left(\begin{bmatrix} \mathbf{z}_{1,1}^T & \mathbf{z}_{2,1}^T & \dots & \mathbf{z}_{n,1}^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{z}_{1,C}^T & \mathbf{z}_{2,C}^T & \dots & \mathbf{z}_{n,C}^T \end{bmatrix} \cdot \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,C} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n,1} & w_{n,2} & \dots & w_{n,C} \end{bmatrix} \right). \quad (1)$$

132 where $\mathbf{z}_{i,c}^T = g(p_i(y_c))$ is the text embedding for class y_c under prompt p_i . The objective is then to
133 find the set of all such weight vectors $\mathbf{W} = \{\mathbf{W}_c\}_{c=1}^C$ that would (ideally) minimize the empirical
134 zero-shot classification error over the unlabeled dataset \mathbb{D} , i.e., correctly predict the (unknown)
135 ground-truth label y_j by \hat{y}_j for each $\mathbf{x}_j \in \mathbb{D}$.

136 Existing *prompt ensembling* schemes can be viewed as constrained versions of the general formulation
137 in Problem 1, differing primarily in how they determine the prompt weights \mathbf{W} .

138

Mean Prompt Ensembling (MPE) as a Solution. The most straightforward approach, MPE (Rad-
139 ford et al., 2021), averages text embeddings from multiple prompts, equivalently setting $w_{i,c} = 1$ for
140 all prompts p_i and classes y_c in equation 1, such that \mathbf{W} reduces to an *all-ones* matrix. MPE seeks to
141 improve robustness over single-prompt usage by diversifying textual inputs. Yet, treating all prompts
142 equally can impair the efficacy if \mathbb{P} is semantically misaligned with the downstream task \mathbb{D} .

143

Weighted Prompt Ensembling (WPE) as a Solution. To mitigate the impact of task-irrelevant
144 prompts, WPE (Allingham et al., 2023) (originally termed ZPE) extends MPE by assigning data-
145 driven weights to the prompts. WPE assesses whether a prompt p_i yields generally high similarity
146 scores over all classes with samples of \mathbb{D} , and up-weights more relevant ones. Each prompt p_i is
147 assigned a weight via $w_{i,:} = \frac{1}{m} \sum_{j=1}^m \max_{c \in \{1, \dots, C\}} \text{sim}(\mathbf{z}_j^I, \mathbf{z}_{i,c}^T)$, which, after normalization, is
148 applied uniformly across classes $w_{i,1} = w_{i,2} = \dots = w_{i,C}$. While WPE can down-weight unhelpful
149 prompts, it still assumes: a prompt deemed useful (or not) is considered so for all classes *equally*.

150

Can We Bridge the Gap? As Figure 1 shows, a prompt’s efficacy often depends on the specific
151 class it describes. Both MPE and WPE largely *neglect* this class-prompt interaction, nor attempt
152 to understand *why* class specificity is necessary to determine prompt relevance and *how* statistical
153 tools help to address it. To bridge this gap, we next present a probabilistic framework, establishing a
154 principled connection between *class-aware prompt reweighting* and *zero-shot classification*.

155

²We note that there are some VLM adaptation settings, e.g., prompt tuning (Zhou et al., 2022a;b), which are
156 not the focus of this work. To clarify, Appendix B details the relationship between Problem 1 and other settings.

162 **3 UNDERSTANDING PROMPT REWEIGHTING: A PROBABILISTIC VIEWPOINT**
 163

164 Zero-shot classification with VLMs can be framed as estimating the conditional probability
 165 $\Pr(y^*|\mathbf{x}^*, \mathbb{P}, \mathbb{D})$ of a label y^* given a query image \mathbf{x}^* , a set of prompts \mathbb{P} , and an unlabeled dataset \mathbb{D} .
 166 To understand how prompt reweighting influences this process, we develop a probabilistic framework
 167 that reveals why class-aware reweighting is necessary.

168 Let $\mathbf{W} \in \mathcal{W}$ be a weight matrix. We begin by marginalizing over the weight space \mathcal{W} as
 169

$$170 \quad \Pr(y^*|\mathbf{x}^*, \mathbb{P}, \mathbb{D}) = \int_{\mathcal{W}} \Pr(y^*|\mathbf{x}^*, \mathbb{P}, \mathbb{D}, \mathbf{W}) \Pr(\mathbf{W}|\mathbf{x}^*, \mathbb{P}, \mathbb{D}) d\mathbf{W}, \quad (2)$$

172 where $\Pr(\mathbf{W}|\mathbf{x}^*, \mathbb{P}, \mathbb{D})$ can further simplify to $\Pr(\mathbf{W}|\mathbb{P}, \mathbb{D})$, since in zero-shot settings, \mathbf{W} is deter-
 173 mined before access to the new query image \mathbf{x}^* . This decomposition suggests two essential tasks
 174 in zero-shot classification: (i) modeling prompt weights $\Pr(\mathbf{W}|\mathbb{P}, \mathbb{D})$ and (ii) making aggregated
 175 predictions $\Pr(y^*|\mathbf{x}^*, \mathbb{P}, \mathbb{D}, \mathbf{W})$ weighted by $\Pr(\mathbf{W}|\mathbb{P}, \mathbb{D})$. As such, we will continue to explore how
 176 further expansions can *inform and align with practical implementations*.

177 **Modeling Weight $\Pr(\mathbf{W}|\mathbb{P}, \mathbb{D})$.** Using Bayes' theorem and considering m i.i.d. samples $\mathbf{x}_j \in \mathbb{D}$,
 178

$$179 \quad \Pr(\mathbf{W}|\mathbb{P}, \mathbb{D}) \propto \Pr(\mathbf{W}|\mathbb{P}) \Pr(\mathbb{D}|\mathbf{W}, \mathbb{P}) = \Pr(\mathbf{W}|\mathbb{P}) \prod_{j=1}^m \Pr(\mathbf{x}_j|\mathbf{W}, \mathbb{P}), \quad (3)$$

181 where $\Pr(\mathbf{W}|\mathbb{P})$ is the prior over weights (details are deferred to Appendix H) and the data (image)
 182 likelihood $\Pr(\mathbf{x}_j|\mathbf{W}, \mathbb{P})$ is obtained by marginalizing over classes $y_c \in \mathcal{Y}$ further:

$$183 \quad \Pr(\mathbf{x}_j|\mathbf{W}, \mathbb{P}) = \sum_{y_c \in \mathcal{Y}} \Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P}) \Pr(y_c|\mathbf{W}, \mathbb{P}), \quad (4)$$

185 which describes how it depends on class priors and class-conditional likelihood.

187 **Modeling Class Prior $\Pr(y_c|\mathbf{W}, \mathbb{P})$.** For zero-shot classification where \mathbb{D} is large enough, the class
 188 prior $\Pr(y_c|\mathbf{W}, \mathbb{P})$ can be estimated from pseudo-labels (i.e., predictions from a pre-trained VLM).

189 **Proposition 1.** Let $\mathbb{D} = \{\mathbf{x}_j\}_{j=1}^m$ be an unlabeled dataset with unobserved classes $\mathcal{Y} = \{y_c\}_{c=1}^C$,
 190 and $\Pr(y_c)$ be the true class probability for class y_c . As m grows, the empirical class distribution
 191 $\widehat{\Pr}(y_c|\mathbf{W}, \mathbb{P})$ from pseudo-labels converges to $\Pr(y_c)$ with exponentially decreasing error probability.
 192 Specifically, for any $\epsilon > 0$, we have: $\Pr\{|\widehat{\Pr}(y_c|\mathbf{W}, \mathbb{P}) - \Pr(y_c)| \geq \epsilon\} \leq 2 \exp(-2m\epsilon^2)$. This
 193 implies that we can approximate true distributions by

$$194 \quad \widehat{\Pr}(y_c|\mathbf{W}, \mathbb{P}) = \frac{n_c}{\sum_{y_{c'} \in \mathcal{Y}} n_{c'}}, \quad \forall y_c \in \mathcal{Y}, \quad (5)$$

197 where $n_c = \sum_{j=1}^m \mathbb{1}_{\hat{y}_j=y_c}$ counts the images pseudo-labeled as class y_c over all samples in \mathbb{D} .

199 **Modeling Likelihood $\Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P})$.** Given that images \mathbf{x}_j often lie in high-dimensional spaces,
 200 directly modeling the class-conditional likelihood can be challenging. We therefore adopt Energy-
 201 based Models (EBMs) (LeCun et al., 2006) that excel at modeling high-dimensional distributions
 202 by defining an *unnormalized* energy function, normalized by a partition function. Interpreting
 203 $\text{sim}(\mathbf{z}_j^I, \mathbf{z}_c^T)$ as the negative energy (lower energy means more likely), we have

$$204 \quad \Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P}) = \frac{1}{Z(y_c, \mathbf{W}, \mathbb{P})} \exp\{\text{sim}(\mathbf{z}_j^I, \mathbf{z}_c^T)\}, \quad (6)$$

206 where $\mathbf{z}_j^I = f(\mathbf{x}_j)$ is the image embedding, $\mathbf{z}_c^T = g(p_i(y_c))$ is weighted text embedding for class y_c
 207 using \mathbf{W}_c (from \mathbf{W}). While the partition function $Z(y_c, \mathbf{W}, \mathbb{P}) = \int_{\mathcal{X}} \exp(\text{sim}(\mathbf{z}^I, \mathbf{z}_c^T)) d\mathbf{x}$ makes
 208 exact computation intractable, for classification we only need relative likelihoods of different classes.
 209

210 **Lemma 1** (Relative Likelihood). Assume $\text{sim}(\mathbf{a}, \mathbf{b}) = \mathbf{a}^\top \mathbf{b}$ (for ℓ_2 -normalized embeddings), then:

$$212 \quad \Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P}) \propto \exp\{\text{sim}(\mathbf{z}_j^I, \mathbf{z}_c^T)\} \propto \exp\left\{\sum_{i=1}^n (w_{i,c} \mathbf{z}_{i,c}^T)^\top \cdot \mathbf{z}^I\right\}. \quad (7)$$

214 **This proportion relationship shows that class-specific weights $w_{i,c}$ (for $c \in \{1, \dots, C\}$) indeed
 215 determine the influence of each prompt p_i (via its embedding $\mathbf{z}_{i,c}^T$) on the likelihood for class y_c .**

216 **Why Class-Specific Weighting Matters.** It is easy to check that Lemma 1 (proof in Appendix I)
 217 aligns with the most *general form* of prompt ensembling (equation 1). Crucially, class-agnostic
 218 weighting (i.e., independent) schemes, such as WPE, *deviate from this form* by unnecessarily imposing
 219 shared $w_{i,c}$ for all classes y_c , which fundamentally limits model expressivity.

220 **Proposition 2.** *Let \mathcal{X} be the image space and \mathcal{Y} be the class space. Given prompt set \mathbb{P} , for any
 221 prompt reweighting scheme S , define the representable likelihood set \mathcal{F}_S as:*

$$223 \quad \mathcal{F}_S = \left\{ f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_+ \mid \exists \mathbf{W} \in \mathcal{W}_S, \mathbb{P}, \text{ s.t. } f(\mathbf{x}, y_c) \propto \Pr(\mathbf{x} \mid y_c, \mathbf{W}, \mathbb{P}) \right\},$$

225 where \mathcal{W}_S is the weight space under scheme S . Let \mathcal{F}_{CI} and \mathcal{F}_{CS} be the representable likelihood sets
 226 induced from class-independent weighting (i.e., WPE) and class-specific weighting (cf. equation 1)
 227 schemes, respectively. Then, we have: $\exists f^* \in \mathcal{F}_{\text{CS}}$ such that $\forall f_{\text{CI}} \in \mathcal{F}_{\text{CI}}, \exists \mathbf{x} \in \mathcal{X}, y_c \in \mathcal{Y}$ where
 228 $f^*(\mathbf{x}, y_c) \neq f_{\text{CI}}(\mathbf{x}, y_c)$. That is, \mathcal{F}_{CI} is a strict subset of \mathcal{F}_{CS} .

229 **Remark 1.** Proposition 2 formally states that class-specific weighting allows for capturing a richer
 230 set of image-text relationships than class-agnostic ones. To maximize potential expressivity, prompt
 231 weights $w_{i,c}$ **must** be class-specific to ensure that each class benefits from the most relevant prompts.

233 **Modeling Predictive Probability** $\Pr(y^* \mid \mathbf{x}^*, \mathbb{P}, \mathbb{D}, \mathbf{W})$. We now come to predicting the label \hat{y}_*
 234 for the query image \mathbf{x}_* . As zero-shot classification is *training-free*, a practical way is to approximate
 235 **full** $\Pr(y^* \mid \mathbf{x}^*, \mathbb{P}, \mathbb{D}, \mathbf{W})$ with $\Pr(y^* \mid \mathbf{x}^*, \mathbb{P}, \widehat{\mathbf{W}})$, where $\widehat{\mathbf{W}}$ is a point estimate *derived from unlabeled*
 236 *data* \mathbb{D} , per our discussion in equation 5 and equation 7. By considering each prompt $p_i \in \mathbb{P}$, we have

$$238 \quad \Pr(y^* \mid \mathbf{x}^*, \mathbb{P}, \widehat{\mathbf{W}}) = \sum_{p_i \in \mathbb{P}} \Pr(y^* \mid \mathbf{x}^*, p_i, \widehat{\mathbf{W}}) \propto \frac{\exp\left(\sum_{i=1}^n (w_{i,c} \mathbf{z}_{i,c}^T)^\top \cdot \mathbf{z}_*^I\right)}{\sum_{c' \in 1, \dots, C} \exp\left(\sum_{i=1}^n (w_{i,c'} \mathbf{z}_{i,c'}^T)^\top \cdot \mathbf{z}_*^I\right)}. \quad (8)$$

241 By now, we have framed VLM-based zero-shot classification in a probabilistic framework (equation 2),
 242 justified class-aware prompt reweighting (Propositions 1 and 2), and interpreted how class prediction
 243 for a query image can be performed (equation 8) under this understanding.

245 4 CLASS-AWARE PROMPT REWEIGHTING FOR VLMs

247 Guided by the probabilistic principles from Section 3, we next introduce CARPRT, a minimalistic
 248 *training-free* method designed to compute class-specific weights for prompt ensembling in VLMs.

250 **Overview.** Given an unlabeled dataset $\mathbb{D} = \{\mathbf{x}_j\}_{j=1}^m$, an *unknown* class space $\mathcal{Y} = \{y_1, \dots, y_C\}$,
 251 a *fixed* prompt set $\mathbb{P} = \{p_i\}_{i=1}^n$, and a pre-trained VLM, CARPRT aims to find the optimal weight
 252 matrix $\mathbf{W}^* \in \mathbb{R}^{n \times C}$, where each column $\mathbf{W}_c^* = [w_{1,c}^*, \dots, w_{n,c}^*]^\top$ denotes the relative importance
 253 of different prompts for a particular class y_c and specifies the contribution of each prompt p_i to the
 254 class representation, as with Problem 1. Recall the key insight driving CARPRT is that optimal
 255 prompt weights should reflect the **semantic alignment** between prompts and class concepts. As
 256 depicted in Figure 2, CARPRT implements this insight through two steps: *Score Calculation* and
 257 *Weight Calculation* (the algorithmic outline can be found in Appendix D due to page limit).

259 **Stage 1: Prompt Relevance Score Calculation.** Eqs. (3 and 4) suggest that estimating weight
 260 distribution $\Pr(\mathbf{W} \mid \mathbb{P}, \mathbb{D})$ hinges on the individual data likelihood $\Pr(\mathbf{x}_j \mid y_c, \mathbf{W}, \mathbb{P})$. As Lemma 1
 261 established, $\Pr(\mathbf{x}_j \mid y_c, \mathbf{W}, \mathbb{P})$ is proportional to the VLM’s similarity score, which is thus leveraged
 262 by CARPRT to compute raw similarity scores between all image embeddings and all prompt-derived
 263 class embeddings. For an image $\mathbf{x}_j \in \mathbb{D}$, a prompt template $p_i \in \mathbb{P}$, and class $y_c \in \mathcal{Y}$, the relevance
 264 score $s_{j,i,c}$ is:

$$265 \quad s_{j,i,c} = \text{sim}(\mathbf{z}_j^I, \mathbf{z}_{i,c}^T), \quad (9)$$

267 where $\mathbf{z}_j^I = f(\mathbf{x}_j)$ is the image embedding and $\mathbf{z}_{i,c}^T = g(p_i(y_c))$ is the text embedding for class y_c
 268 under prompt p_i . This yields a *score tensor*, wherein each entry $s_{j,i,c}$ is an unnormalized estimate of
 269 $\Pr(\mathbf{x}_j \mid y_c, \mathbf{W}, \mathbb{P})$. The *score tensor* captures the semantic compatibility among all images \mathbb{D} , prompts
 \mathbb{P} , and classes \mathcal{Y} , providing the foundation for reweighting prompt-template combinations.

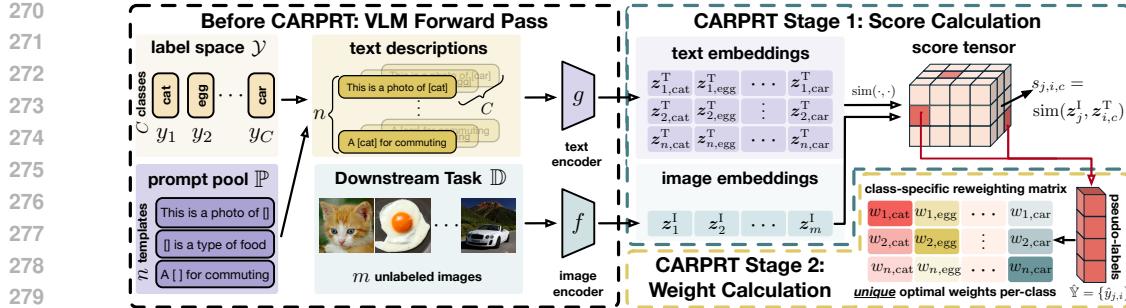


Figure 2: The CARPRT pipeline. First, the text encoder g and image encoder f yield textual class embeddings (from C classes and n prompts) and image embeddings (from m unlabeled images). Then, compute the score tensor from image-text embedding similarities, each entry $s_{j,i,c}$ measures the relevance between the i -th prompt and the j -th image for the c -th class. Extract pseudo-labels from the score tensor, and derive the class-aware prompt reweighting matrix \mathbf{W} , which assigns class-specific weights for each prompt based on the scores.

Stage 2: Class-Specific Weight Calculation. The second stage transforms unnormalized similarity scores into normalized class-specific prompt weights through a process that *mirrors our probabilistic analysis* in Section 3. By empirically quantifying each prompt’s relevance to specific classes, the resulting weights ensure that prompts primarily contribute to the aggregated representation of their most semantically aligned classes.

First, we create a pseudo-label set $\hat{Y} = \{\hat{y}_{j,i}\}_{j=1, i=1}^{m,n}$ by identifying, for each image-prompt pair, the class with the highest similarity score $\hat{y}_{j,i} = \arg \max_{y_c \in \mathcal{Y}} s_{j,i,c}$. Then, we calculate intermediate weight $w'_{i,c}$ for each prompt-class pair by aggregating the scores $s_{j,i,c}$ across all images x_j predicted to class y_c under prompt p_i . This can be expressed as:

$$w'_{i,c} = \frac{\sum_{j=1}^m s_{j,i,c} \mathbb{1}_{\hat{y}_{j,i}=y_c}}{\sum_{j=1}^m \mathbb{1}_{\hat{y}_{j,i}=y_c}}. \quad (10)$$

Here, $\mathbb{1}_{\hat{y}_{j,i}=y_c}$ is the indicator function. equation 10 implements the empirical estimate of class prior. $w'_{i,c}$ reflects the average strength of association prompt p_i shows for class y_c across \mathbb{D} , when p_i itself identifies y_c as the best match. Finally, these intermediate weights are normalized via

$$w^*_{i,c} = \frac{\exp(w'_{i,c}/\tau)}{\sum_{i=1}^n \exp(w'_{i,c}/\tau)}. \quad (11)$$

The temperature τ controls the sharpness of the distribution. This normalization ensures weights sum to one for each class, preserving their probabilistic validity. By constructing $w^*_{i,c}$ in this way, we integrate empirical class distributions into the reweighting scheme, ensuring that $w^*_{i,c}$ reflects both the relevance scores (equation 4) and the estimated class priors (equation 5), thus providing a principled inference time approach to achieve *class-aware prompt reweighting*.

(Optional): Iterative Refinement. While the single-pass pipeline described above forms the core of our approach, CARPRT can naturally be extended to refine both pseudo-labels and weights, by following the procedure *iteratively*: (i). Use current weight estimates to combien predictions from all prompts into refined pseudo-labels; (ii). Update class-specific weights based on these refined pseudo-labels. Importantly, this refinement procedure is *gradient-free* and thus does *not* access to ground-truth labels. This alternating refinement process allows CARPRT to sharpen its weight estimates as pseudo-label quality improves. Full details are in Appendix E.1.

5 EXPERIMENTS

We evaluate how CARPRT performs on *zero-shot classification* with ten fine-grained benchmarks, compared to existing *prompt ensembling* methods. Our investigation centers on three questions: **(RQ1)** Does class-aware prompt reweighting outperform class-agnostic ones; if so, does it generalize across different VLM architectures and backbones? **(RQ2)** What factors contribute to CARPRT’s effectiveness? **(RQ3)** Can CARPRT’s benefit extend beyond zero-shot classification?

324

325 Table 1: Accuracy (%) comparison between baselines and our method % on various fine-grained classification
 326 datasets using CLIP and DeCLIP backbones. **Bold** values indicate the highest accuracy, while underlined values
 327 represent the second highest in each column. * “Human Selection” uses handcrafted prompts recommended by
 328 CLIP authors and introduces external knowledge. Results are not directly comparable to automated methods.

	Caltech101	DTD	EuroSAT	Aircraft	Food101	Flower102	Pets	Cars	SUN397	UCF101	ImageNet	Average
CLIP-ViT-B/16												
MPE	92.50	46.88	51.86	21.49	85.34	64.21	79.46	65.21	64.92	67.41	67.59	64.26
Majority Vote	<u>93.10</u>	46.75	<u>52.07</u>	22.93	85.60	<u>67.20</u>	81.27	64.93	65.75	68.30	67.98	65.08
WPE	93.09	<u>47.04</u>	49.60	<u>23.28</u>	<u>86.14</u>	66.60	<u>82.38</u>	<u>65.93</u>	<u>65.77</u>	<u>68.33</u>	<u>68.28</u>	<u>65.13</u>
CARPRT (Ours)	94.16	48.90	55.56	24.49	86.31	71.36	89.13	66.14	66.93	70.41	68.59	67.45
Human Selection*	92.94	44.39	47.60	24.72	86.06	71.23	88.91	65.32	62.50	66.75	68.31	65.34
CLIP-ResNet50												
MPE	86.41	41.69	30.34	16.05	75.53	56.95	75.98	55.74	59.32	60.06	59.12	56.11
Majority Vote	86.79	42.14	28.86	<u>16.29</u>	76.00	<u>60.06</u>	77.29	56.01	<u>60.40</u>	60.87	59.24	56.72
WPE	86.65	40.89	<u>30.65</u>	16.11	<u>76.15</u>	58.82	<u>78.43</u>	<u>56.02</u>	59.71	<u>61.53</u>	59.78	<u>56.79</u>
CARPRT (Ours)	88.46	41.31	36.84	16.88	76.88	65.56	85.69	56.44	61.28	63.66	59.98	59.36
Human Selection*	86.29	40.32	29.56	17.28	75.31	66.14	85.77	55.61	58.52	61.46	59.71	57.82
DeCLIP-ViT-B/32												
MPE	94.04	<u>41.63</u>	28.05	7.10	71.71	77.76	76.75	<u>52.22</u>	62.08	57.87	67.01	57.84
Majority Vote	94.26	40.29	27.68	<u>7.70</u>	72.34	78.19	77.75	51.87	62.86	58.20	67.24	58.03
WPE	94.08	40.97	27.92	7.54	<u>73.15</u>	<u>81.32</u>	80.92	52.21	63.23	<u>58.91</u>	<u>67.97</u>	<u>58.93</u>
CARPRT (Ours)	94.37	43.31	33.14	8.76	74.15	82.42	83.28	52.23	64.12	59.57	68.08	60.31
Human Selection*	93.97	42.55	30.07	9.05	73.59	83.41	83.14	50.77	63.14	58.70	67.85	59.66

344 5.1 EXPERIMENTAL SETUP

345
 346 **Dataset.** We evaluate on eleven classification benchmarks spanning diverse visual domains: Cal-
 347 tech101, DTD, EuroSAT, Aircraft, Food101, Flowers102, Pets, Cars, Sun397, UCF101 and ImageNet
 348 (details in Appendix C.1). We follow the evaluation protocol established by (Zhou et al., 2022b).

349 **Models and Prompts.** We test CARPRT with three configurations: CLIP (Radford et al., 2021) with
 350 ViT-B/16 and ResNet50 backbones, and DeCLIP (Li et al., 2022) with the ViT-B/32, to validate if
 351 CARPRT generalizes across both CNN-based (He et al., 2016) and transformer-based (Dosovitskiy
 352 et al., 2021) backbones, and different VLM architectures. For all experiments, we use the same fixed
 353 set of 247 prompt templates from (Allingham et al., 2023) to ensure fair comparisons.

354 **Baselines.** We compare CARPRT against three automated PE baselines: (1) MPE (Radford et al.,
 355 2021): Uniformly averages embeddings from all prompts. (2) Majority Vote (Allingham et al.,
 356 2023): Final prediction is based on the most frequent class predicted by individual prompts. (3)
 357 WPE (Allingham et al., 2023): Estimates a class-agnostic set of prompt weights from unlabeled test
 358 data. As an upper-bound reference, we also report “Human Selection” which uses a subset of prompts
 359 *manually filtered* for each dataset by human experts. This helps to benchmark automated methods
 360 against careful prompt engineering. See Appendix C.2 for details.

361 **Implementation.** We follow the publicly available code of baselines, with two adjustments noted.
 362 We use a smaller batch size for weight estimation due to resource limitations, and we omit its original
 363 frequency normalization step, which requires the external LAION-400M dataset (Schuhmann et al.,
 364 2021), since this step is not the focus of this study (See Appendix G.6 for the analysis of the impact).
 365 Moreover, this omission ensures all methods align with our problem setting of using *only unlabeled*
 366 *test data* without external resources, for fair comparison. Details and code are in Appendix C.3.

368 5.2 RESULTS OF ZERO-SHOT CLASSIFICATION

369
 370 **Overall Comparison.** Table 1 shows that CARPRT consistently achieves the best accuracy across
 371 both fine-grained benchmarks and large-scale real-world datasets, such as ImageNet (with further
 372 evaluations on its variants provided in Appendix G.2). Gains are pronounced on datasets like
 373 Flower102 and Pets, highlighting the substantial impact of class-specific prompt relevance. Notably,
 374 CARPRT also surpasses Human Selection, where task-relevant prompts are manually filtered. This
 375 confirms that capturing class-specific weights can effectively *compensate for irrelevant prompts in*
 376 *generic prompt pools* and potentially outperform dataset-specific manual prompt engineering.

377 **Generalization Across Architectures.** CARPRT’s performance benefits are consistent and robust
 378 across different VLM architectures and backbones. With CLIP-ResNet50, despite its lower capacity

378 than ViT-B/16, CARPRT still achieves clear and measurable gains. When applied to DeCLIP-ViT-
 379 B/32, which adopts a distinct pre-training strategy, CARPRT likewise maintains its strong lead.
 380 Overall, performance across diverse model configurations suggests that CARPRT can effectively
 381 *capture semantic relationships*, rather than exploiting a particular setup.

382 **Dataset-Specific Patterns.** The extent of CARPRT’s improvement varies by dataset, showing
 383 larger gains on datasets with well-separated semantic categories (e.g., Flowers102, Pets). On highly
 384 specialized domains like Aircraft, the gains are modest, likely due to (i) the quality of the initial
 385 pseudo-labels generated by base VLMs, which impact both WPE and CARPRT. (ii) the suitability of
 386 generic prompt pool for highly specialized visual distinctions. Nonetheless, CARPRT consistently
 387 improves performance, highlighting the broad value of class-specific weighting.

389 5.3 ABLATION STUDY AND HYPERPARAMETER ANALYSIS

390 **Role of Class-specific Weights.** To isolate the
 391 benefit of class-specificity, we compare CARPRT
 392 to “CARPRT-Uniform”. This variant first com-
 393 putes CARPRT’s class-specific weights, then aver-
 394 ages them across classes to yield a global
 395 $w_i^u = \frac{1}{C} \sum_c w_{i,c}$ for each prompt p_i . This
 396 variant retains CARPRT’s prompt scoring mech-
 397 anism but discards class-level adaptation (it still
 398 differs from WPE; see Appendix G.1). As Figure
 399 3 shows, CARPRT consistently outperforms
 400 CARPRT-Uniform, with an average gain of 2.39%.
 401 Considerable improvements on datasets like Pets
 402 and Flowers102 affirm that tailoring prompt
 403 weights to individual classes is key to performance.

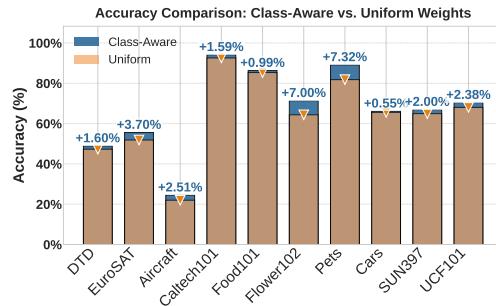


Figure 3: Accuracy gains of CARPRT over CARPRT-Uniform.

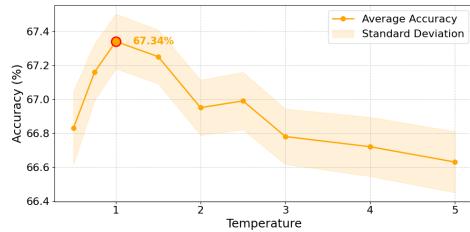


Figure 4: The variation of inference accuracy as the temperature τ changes, using CLIP-ViT-B/16.

413 **Temperature Sensitivity.** CARPRT uses a temper-
 414 ature τ (equation 11) to adjust prompt weight distri-
 415 butions. As shown in Figure 4, $\tau = 1.0$ balances
 416 relevance and diversity, emphasizing useful prompts
 417 while preserving ensemble variety for generalization.
 418 Lower $\tau < 1.0$ concentrates weights on dominant
 419 prompts but reduces diversity, whereas higher values
 420 flatten the distribution. Although finding a single
 421 best hyperparameter for all zero-shot tasks is diffi-
 422 cult, $\tau = 1.0$ is a stable choice across tasks, showing
 423 that calibrated reweighting helps without extensive
 424 per-task tuning. See Appendix G.1 for details.

425 5.4 EXTENDED EVALUATIONS AND CLASS-SPECIFIC WEIGHT VISUALIZATIONS

426 We explore CARPRT’s versatility further with additional experiments (detailed in Appendix E,F,G).

427 **CARPRT Is Robust Under Distribution Shifts** We further examine whether prompt weights learned
 428 on ImageNet can transfer to its variants (ImageNet-R, -A, -Sketch, -V2). Results show that CARPRT
 429 maintains strong performance even under these shifts, confirming the transferability of its weights and
 430 their robustness beyond the original dataset (Appendix G.3).

431 **Refined Pseudo-Labels and Weight Estimation.** CARPRT’s performance gains vary by dataset,
 432 partly due to the quality of initial pseudo-labels from the base VLM. With iterative refinement,
 433 CARPRT yields steady accuracy gains by leveraging increasingly accurate class information.

434 **Does Prompt Quality Matter?** While CARPRT is designed for *generic* prompt pools, it could
 435 further benefit from higher-quality, potentially domain-specific prompt templates. Preliminary tests
 436 with LLM-generated prompts showed improved CARPRT performance compared to using only
 437 dataset-agnostic templates from (Allingham et al., 2023) (Appendix G.5), suggesting that CARPRT
 438 effectively leverages the information in *any* given prompt set. While it is difficult to evaluate the
 439 “prompt quality”, we argue that investing in careful prompt engineering is likely to be beneficial.

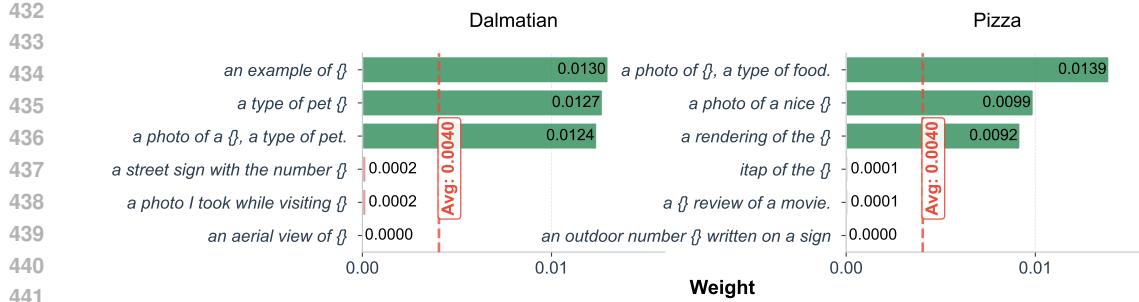


Figure 5: Visualization of class-specific prompt weights on Caltech101. For dalmatian and pizza, CARPRT assigns high weights to class-relevant prompts while suppressing irrelevant ones.

CARPRT as a General-Purpose Plug-In. We lastly show CARPRT’s versatility as a component to enhance various VLM adaptation settings: (i) with *test-time adaptation* (Karmanov et al., 2024), CARPRT offers improved weight initialization (Appendix F.1); (ii) with *image-feature focused zero-shot methods* (Qian et al., 2024a), CARPRT enhances pseudo-labels for visual proxy learning (Appendix F.3); (iii) with *soft prompt tuning* (Lu et al., 2022), class-aware reweighting of learned prompt can boost performance further (Appendix F.2); (iv) with *LLM-empowered prompt augmentation* (Shtedritski et al., 2023; Mirza et al., 2024), the utility of high-quality generated prompts can still be improved via class-aware reweighting (Appendix F.4). All these results confirm CARPRT’s flexibility as a general-purpose plug-in for broader VLM adaptation scenarios.

Visualization of Class-Specific Prompt Weights. To provide qualitative insight into CARPRT’s mechanism, we visualize class-specific prompt weights on Caltech101. Figure 5 shows the weights estimated by CARPRT for two representative classes, dalmatian and pizza. For dalmatian, CARPRT assigns higher weights to prompts with relevant semantics such as example, pet, and photo, while suppressing unrelated ones like aerial, visiting, or number. Similarly, for pizza, prompts highlighting food-related context (e.g., food, photo, rendering) are prioritized, whereas mismatched terms (e.g., sign, movie, itap) are down-weighted. These visualizations support our quantitative results, confirming that CARPRT prioritizes prompts differently for each class. See Appendix J for additional visualizations on other datasets.

6 DISCUSSION AND FUTURE OUTLOOK

Broader Related Works. The performance of VLM adaptation in downstream classification tasks is relevant to the text prompt, motivating research on improving prompt effectiveness in *different directions*. *Prompt tuning* (Zhou et al., 2022b; Khattak et al., 2023a) optimizes task-specific soft prompts through training, but departing from zero-shot settings. *Unsupervised transfer learning* methods (Qian et al., 2024a) aim to bridge domain gaps between visual and textual embeddings without labels; they do not focus on combining multiple prompts. *Augmentation-based weighting* instead relies on large-scale data augmentation, such as using LLMs to generate task-specific prompts or building partial image views, then assigning weights to augmented prompts or views (Zhu et al., 2024; Li et al., 2024); while powerful, they necessitate the availability of external computing resources. In contrast, CARPRT explicitly addresses the setting of *prompt ensembling* with a fixed, potentially task-irrelevant prompt pool. It is entirely *training-free*, relies on neither label supervision nor LLM-generated prompts, and focuses on reweighting existing prompts to capture class-specific relevance. This makes CARPRT *orthogonal* to the above directions, while also complementary to them, offering a unique perspective on VLM adaptation. We discuss these related works in detail in Appendix A.

Summary. This study focused on prompt ensembling and confirmed that class-aware prompt reweighting is not only beneficial but essential for improving the efficacy of VLMs across a variety of downstream classification tasks. By moving beyond uniform weighting, we showed that adapting weights to better reflect the class-specific characteristics leads to measurable gains in performance. We hope this study encourages further exploration of integrating class-awareness with other VLM adaptation techniques to enhance across a wider range of applications.

486
487
ETHICS STATEMENT488
489
490
491
492
All authors have read and agree to abide by the ICLR Code of Ethics and Code of Conduct. This
work does not involve sensitive personal data or experiments with human subjects. We have taken
care to ensure that the datasets used are publicly available and widely adopted in prior research, and
that the proposed method does not raise foreseeable ethical concerns. All claims and findings are
reported honestly and transparently.493
494
REPRODUCIBILITY STATEMENT495
496
497
498
499
We are committed to ensuring the reproducibility of our results. Detailed descriptions of the setup,
training and evaluation protocols, implementation details, and hyperparameter settings are provided
in Section 5 and Appendix C.3. All experiments are conducted on publicly available datasets, which
are listed in Appendix C.1. An anonymous code link is supplied to facilitate replication.500
501
AUTHOR CONTRIBUTIONS502
503
If you'd like to, you may include a section for author contributions as is done in many journals. This
is optional and at the discretion of the authors.504
505
ACKNOWLEDGMENTS506
507
508
Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
those to funding agencies, go at the end of the paper.509
510
REFERENCES511
512
513
514
James Urquhart Allingham, Jie Ren, Michael W Dusenberry, Xiuye Gu, Yin Cui, Dustin Tran,
Jeremiah Zhe Liu, and Balaji Lakshminarayanan. A simple zero-shot prompt weighting technique
to improve prompt ensembling in text-image models. In *ICML*, 2023.515
Anthropic. Claude 3.5: Advancements in large language models. *Anthropic Research*, 2024.516
517
518
Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In *ECCV*, 2014.519
520
Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In *NeurIPS*, 2019.521
522
523
Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation. In
CVPR, 2022.524
525
Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In *CVPR*, 2014.526
527
528
529
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2021.530
531
Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In *CVPR*, 2004.532
533
534
Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse data augmentation
with diffusions for effective test-time prompt tuning. In *CVPR*, 2023.535
536
537
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 2016.538
539
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In *CVPR*, 2016.

540 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 541 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
 542 *Topics in Applied Earth Observations and Remote Sensing*, 2019.

543

544 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 545 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 546 analysis of out-of-distribution generalization. In *ICCV*, 2021a.

547 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 548 examples. In *CVPR*, 2021b.

549

550 Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing. Efficient
 551 test-time adaptation of vision-language models. In *CVPR*, 2024.

552 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
 553 Khan. Maple: Multi-modal prompt learning. In *CVPR*, 2023a.

554

555 Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
 556 Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without
 557 forgetting. In *ICCV*, 2023b.

558 Soomro Khurram. Ucf101: A dataset of 101 human actions classes from videos in the wild. *arXiv*
 559 *preprint arXiv: 1212.0402*, 2012.

560

561 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 562 categorization. In *ICCV*, 2013.

563

564 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

565

566 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. Technical Report, 2015.

567

568 Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-based
 569 learning. *Predicting structured data*, 1(0), 2006.

570

571 Jinhao Li, Haopeng Li, Sarah Monazam Erfani, Lei Feng, James Bailey, and Feng Liu. Visual-
 572 text cross alignment: Refining the similarity score in vision-language models. In *International*
 573 *Conference on Machine Learning*, 2024.

574

575 Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, and
 576 Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-training
 577 paradigm. In *ICLR*, 2022.

578

579 Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization
 580 for practical domain adaptation. *arXiv preprint arXiv: 1603.04779*, 2016.

581

582 Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
 583 deep adaptation networks. In *ICML*, 2015.

584

585 Yuning Lu, Jianzhuang Liu, Yonggang Zhang, Yajing Liu, and Xinmei Tian. Prompt distribution
 586 learning. In *CVPR*, 2022.

587

588 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 589 visual classification of aircraft. In *arXiv preprint arXiv: 1306.5151*, 2013.

590

591 Aditya Menon and Carl Vondrick. Visual classification via description from large language models.
 592 In *ICLR*, 2023a.

593

594 Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
 595 In *ICLR*, 2023b.

596

597 M Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Sivan Doveh, Jakub Micorek, Mateusz Kozinski,
 598 Hilde Kuehne, and Horst Possegger. Meta-prompting for automating zero-shot visual recognition
 599 with llms. In *ECCV*, 2024.

594 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 595 of classes. In *Indian conference on computer vision, graphics & image processing*, 2008.

596

597 OpenAI. Phi 3.1: Generative models for vision-language tasks. *OpenAI Technical Report*, 2024.

598

599 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *CVPR*,
 600 2012.

601

602 Qi Qian, Yuanhong Xu, and Juhua Hu. Intra-modal proxy learning for zero-shot visual categorization
 603 with clip. *Advances in Neural Information Processing Systems*, 36, 2024a.

604

605 Qiyuan Qian, Yifan Xu, and Jie Hu. Intra-modal proxy learning for zero-shot visual categorization
 606 with clip. In *NeurIPS*, 2024b.

607

608 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 609 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 610 models from natural language supervision. In *ICML*, 2021.

611

612 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 613 generalize to imagenet? In *ICML*, 2019.

614

615 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 616 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 617 challenge. *IJCV*, 2015.

618

619 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 620 Arush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
 621 clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.

622

623 Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. What does clip know about a red
 624 circle? visual prompt engineering for vlms. In *ICCV*, 2023.

625

626 Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei
 627 Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models. In *NeurIPS*,
 628 2022.

629

630 Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain
 631 adaptation. In *ICLR*, 2018.

632

633 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 634 test-time adaptation by entropy minimization. In *ICLR*, 2021.

635

636 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
 637 by penalizing local predictive power. *NeurIPS*, 2019.

638

639 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 640 Large-scale scene recognition from abbey to zoo. In *CVPR*, 2010.

641

642 Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
 643 augmentation. In *NeurIPS*, 2022.

644

645 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 646 vision-language models. In *CVPR*, 2022a.

647

648 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 649 language models. In *IJCV*, 2022b.

650

651 Yuhan Zhu, Yuyang Ji, Zhiyu Zhao, Gangshan Wu, and Limin Wang. Awt: Transferring vision-
 652 language models via augmentation, weighting, and transportation. In *NeurIPS*, 2024.

653

654

655

656

657

648 A DETAILED DISCUSSION ON RELATED WORKS 649

650 **Prompt tuning methods.** Prompt tuning adapts a pre-trained model by introducing learnable
 651 embeddings, known as prompt tokens, at the input stage. These tokens can be either text prompts
 652 or visual prompts, enabling flexible adjustments to the model’s input interface to better address
 653 specific tasks. CoOp was the first to apply prompt tuning in CLIP, optimizing learnable prompts
 654 within its textual branch for few-shot image recognition (Zhou et al., 2022b). Addressing CoOp’s
 655 limitations, CoCoOp introduces conditionally generated prompts based on visual features to enhance
 656 generalization performance (Zhou et al., 2022a). Further, MaPLe advances a multi-modal approach,
 657 applying prompt tuning simultaneously within the vision and textual branches to facilitate better
 658 transfer capabilities (Khattak et al., 2023a). Building upon MaPLe, PromptSRC employs a strategy
 659 that enhances textual prompt learning by utilizing descriptive text generated by large language models
 660 (LLMs), such as GPT-4 (Khattak et al., 2023b). However, this approach requires updating learnable
 661 input variables in the text or image inputs, leading to additional computational resources and labeled
 662 downstream data, even if only few-shot data is used. Since our problem setting differs from that of
 663 tuning methods, we do not include such approaches as baselines in our experiments with CARPRT.
 664

665 **Unsupervised Transfer Learning Method for VLMs.** Unsupervised transfer learning for VLMs
 666 focuses on adapting pre-trained VLMs, e.g., CLIP, to downstream tasks without using ground-truth
 667 labels. Existing research has developed along two methodological directions.
 668

669 The first approach, exemplified by methods like Zero-Shot Prompt Engineering (WPE), focuses on
 670 *automatically reweighting different prompts from a provided prompt template pool*. This method
 671 assigns weights to individual templates based on their relevance to a specific dataset, providing a
 672 way to identify which prompts are most important for the model’s performance (Allingham et al.,
 673 2023). By automating this process, WPE enhances interpretability, allowing users to understand the
 674 influence of different prompts on model behavior.
 675

676 The second direction leverages transductive learning techniques such as InMaP (Qian et al., 2024a),
 677 relying solely on image features to construct the classifier. These methods typically achieve higher
 678 accuracy by exploiting the visual features in unlabeled data. However, they sacrifice interpretability,
 679 as the model’s decisions are driven by image features without providing insights into which specific
 680 prompts influence the output. While these methods often outperform the first ones in terms of
 681 accuracy, they do not offer the same transparency.
 682

683 Our work follows the first approach, focusing on interpretability while achieving better accuracy than
 684 traditional zero-shot methods. Additionally, the pseudo-labels generated by our method can enhance
 685 performance when applied to the second learning frameworks like InMaP. The detailed results are
 686 shown in Appendix F.3.
 687

688 **View-aware weighting approaches.** These methods adapt VLMs by leveraging multiple aug-
 689 mented visual or textual views and assigning weights to them based on confidence or alignment.
 690 WCA focuses on local visual prompting: it aggregates similarities between cropped image regions
 691 and fine-grained textual descriptions through a weighted pooling mechanism (Li et al., 2024). AWT
 692 instead introduces diverse augmented images together with LLM-generated prompts, and computes
 693 weights across these views before applying optimal transport for cross-modal alignment (Zhu et al.,
 694 2024). Both approaches improve zero-shot transfer by enriching sample-level evidence but rely
 695 on external resources (e.g., LLMs) or costly augmentations at inference. In contrast, CARPRT
 696 derives class-specific weights directly from image–text similarity scores within a fixed prompt pool,
 697 without external models or augmentations, resulting in much lower inference cost while remaining
 698 complementary to these methods.
 699

700 **Test-time Adaptation.** The *test-time adaptation* (TTA) problem aims to adapt models to testing
 701 downstream data (Ganin et al., 2016; Long et al., 2015; Zhang et al., 2022). TTA methods can be
 702 divided into two types: the training-based method and the training-free method. Training-based
 703 methods typically involve updating model weights or fine-tuning prompts based on test data (Zhang
 704 et al., 2022). TTA methods, such as TENT, adapt models by optimizing for test-time objectives
 705 like entropy minimization, adjusting the model’s batch normalization statistics to align with the
 706 test distribution (Wang et al., 2021). CoTTA have explored contrastive learning to preserve feature
 707 space alignment, making TTA effective for CLIP-like models (Chen et al., 2022). TPT addresses
 708

702 the challenge in vision-language models by fine-tuning a learnable prompt for each individual test
 703 sample (Shu et al., 2022). DiffTPT extends this approach by utilizing pre-trained diffusion models
 704 to increase the diversity of test data samples used in TPT, enhancing the effectiveness of test-time
 705 prompt tuning (Feng et al., 2023).
 706

707 On the other hand, non-training methods rely on adjusting normalization statistics or augmenting
 708 test samples without changing model parameters (Li et al., 2016; Karmanov et al., 2024). Since the
 709 problem setting of non-training TTA methods, which only require unlabeled test data and do not
 710 involve additional training, aligns with the CARPRT setup, we analyze the non-training TTA methods
 711 in comparison to CARPRT in Appendix F.1.
 712

712 B DIFFERENT PROBLEM SETUP FOR VLMS ADAPTATION

713 Prompt ensembling, as formalized in Problem 1, targets a strictly zero-shot inference setting where
 714 the only available resources are a fixed prompt template set \mathbb{P} and an unlabeled test set \mathbb{D} . No
 715 learnable parameters, task-specific fine-tuning, or external supervision are permitted. This setting is
 716 entirely inference-time, model-free, and tuning-free.
 717

718 In contrast, other VLM adaptation paradigms operate under more relaxed assumptions, either by
 719 enabling trainable components, leveraging supervision, or utilizing additional knowledge sources.
 720 We outline the key differences as follows:
 721

722 **Prompt Tuning** relaxes the “no training” constraint by introducing learnable prompt tokens, typically
 723 optimized using downstream supervision. Formally, the prompt becomes a learnable function $p_\theta(y_c)$
 724 with parameters θ , where θ is optimized on labeled data $\{(x_j, y_j)\}$. CoOp Zhou et al. (2022b) learns
 725 a global soft prompt, while CoCoOp Zhou et al. (2022a) further conditions it on image embeddings
 726 $f(x)$ to improve generalization. These methods trade interpretability for adaptability and require
 727 supervision at training time.
 728

729 **LLM-Generated Descriptions** expand the prompt space \mathcal{P} using external generative models. Rather
 730 than fixing \mathcal{P} a priori, a large language model g_{LLM} generates class descriptions $\tilde{p}_i(y_c) = g_{LLM}(y_c)$
 731 that are often more expressive and context-aware Menon & Vondrick (2023a). While such prompts
 732 can improve alignment, this introduces non-negligible computational overhead and reduces repro-
 733 ducibility, especially when prompts are generated on-the-fly.
 734

735 **Image-Centric Adaptation** bypasses prompt usage entirely by constructing classifiers purely from
 736 image features. Methods like InMap Qian et al. (2024b) rely on clustering method to construct a
 737 label assignment function $h : \mathcal{X} \rightarrow \mathcal{Y}$ without accessing any textual information. These methods
 738 often outperform prompt-based approaches in raw accuracy but offer limited interpretability and are
 739 incompatible with text-conditioned decision-making.
 740

741 CARPRT operates strictly within the constraints of Problem 1. Unlike the above paradigms, it does
 742 not rely on any learnable components, LLM-generated text, or image-only inference. Instead, it
 743 focuses on exploiting the class-specific alignment between \mathcal{P} and \mathcal{Y} in a training-free, interpretable,
 744 and modular fashion. As demonstrated in Appendix F, its output (pseudo-labels and weights) can
 745 directly benefit and enhance downstream methods in both prompt tuning and image-centric learning
 746 pipelines.
 747

748 C DATASETS, BASELINE METHODS, AND IMPLEMENTATION

749 C.1 DATASETS

750 **Fine-grained datasets.** Following Zhou et al. (2022b), we evaluate our method in 10 different fine-
 751 grained datasets. Caltech101 (Fei-Fei et al., 2004): A dataset containing images of objects belonging
 752 to 101 different categories, commonly used for object recognition tasks; DTD (Cimpoi et al., 2014):
 753 A texture dataset containing images categorized by describable texture attributes such as “bumpy” or
 754 “scaly”; EuroSAT (Helber et al., 2019): A dataset for land use and land cover classification, consisting
 755 of satellite images across 10 classes such as residential, forest, and river; Aircraft (Maji et al., 2013):
 756 A fine-grained dataset containing aircraft images, used for recognizing and classifying different
 757 airplane models; Food101 (Bossard et al., 2014): A large dataset containing 101 food categories,
 758

756 designed for image recognition tasks in the food domain; Flower102 (Nilsback & Zisserman, 2008):
 757 A fine-grained flower classification dataset with 102 different types of flowers, used for challenging
 758 image recognition tasks; Oxford Pets (Parkhi et al., 2012): A dataset consisting of images of 37 pet
 759 breeds, used for fine-grained image classification tasks; Cars196 (Krause et al., 2013): A fine-grained
 760 dataset for car model classification, with 196 car classes focused on vehicle recognition; SUN397
 761 (Xiao et al., 2010): A large-scale scene recognition dataset with 397 scene categories, covering a
 762 wide variety of environments; UCF101 (Khurram, 2012): A dataset for action recognition in videos,
 763 containing 101 human action categories captured in realistic video scenarios.

764
 765 **ImageNet and its Variant datasets.** Following Allingham et al. (2023), we also evaluate our
 766 method in ImageNet and the following variants of the ImageNet dataset: ImageNet (Russakovsky
 767 et al., 2015): A large-scale dataset for image classification, containing over 14 million labeled
 768 images across 1,000 object categories; Tiny-ImageNet (Le & Yang, 2015) is a smaller subset of
 769 ImageNet, containing 200 classes designed for efficient benchmarking in low-resource settings;
 770 ImageNet-A (Hendrycks et al., 2021b): A curated subset of ImageNet consisting of challenging
 771 adversarial images that fool standard models, designed to test the robustness of image classifiers;
 772 ImageNet-R (Hendrycks et al., 2021a): A dataset containing renditions of ImageNet objects in diverse
 773 artistic forms, such as paintings, cartoons, and sculptures, used to assess model performance on
 774 non-photorealistic images; ImageNet-Sketch (Wang et al., 2019): A sketch-based dataset derived
 775 from ImageNet, used to evaluate model robustness and generalization to line drawings of objects;
 776 ImageNet-V2 (Recht et al., 2019): A reproduction of the original ImageNet test set collected under
 777 similar conditions, used to measure model generalization to a newly collected version of the dataset.

778 779 C.2 BASELINES 780

781 To evaluate our method under a consistent setting, we compare CARPRT with several representative
 782 baselines that operate within the same zero-shot classification protocol and fixed prompt set (see
 783 Problem 1).

784 **Mean Prompt Ensembling (MPE).** MPE is a simple yet effective baseline where predictions from
 785 all prompts are averaged with equal weight. For each class, the model constructs text embeddings
 786 from all prompt templates and averages them to form the class prototype. At test time, each image is
 787 classified based on cosine similarity to these averaged embeddings. This approach assumes that all
 788 prompts contribute equally, regardless of class or semantics.

789 **Majority Vote.** Instead of aggregating embeddings, Majority Vote treats each prompt as an inde-
 790 pendent voter. For each prompt, the model predicts the most similar class for a given image, and the
 791 final prediction is determined by majority voting across all prompts. This method ignores prediction
 792 confidence and treats all prompts equally, assuming their votes carry equal importance.

793 **Zero-shot Prompt Ensembling (WPE) (Allingham et al., 2023).** WPE is a data-driven method
 794 that learns a global set of weights for prompts using the unlabeled test set. It aggregates prompt-
 795 conditioned class embeddings using learned weights and estimates them by minimizing entropy over
 796 softmax predictions. However, WPE uses a single weight vector shared across all classes, which fails
 797 to account for class-specific variations in prompt relevance.

798 799 C.3 DETAILS REGARDING EXPERIMENTS 800

801 **Implementation Details.** We implement all methods using PyTorch 1.7.1 and Python 3.7.6, and
 802 conduct all experiments on a single NVIDIA A100 Tensor Core GPU. Our vision-language model is
 803 built on the architecture and pretrained weights from OpenAI (Radford et al., 2021) and DeCLIP
 804 (Li et al., 2022). The code for our experiments is available at <https://anonymous.4open.science/r/CPL-7755/README.md> provided for reproducibility.

805 **Hyper-parameter Settings.** We set fixed hyperparameters for different datasets. The temperature τ
 806 is set to 1.0 for fine-grained datasets and 1.5 for ImageNet (Russakovsky et al., 2015) and its variants,
 807 and the batch size is fixed at 512 for all experiments.

Algorithm 1 Class-Aware Prompt Reweighting (CARPRT)

Input: Pre-trained CLIP with image encoder f and text encoder g , a prompt set \mathbb{P} , an unlabeled dataset \mathbb{D} , a candidate label space \mathcal{Y} and the temperature parameter τ and the normalization scale λ .
1: Generate prompted-class texts $p_i(y_c), \forall p_i \in \mathbb{P}, \forall y_c \in \mathcal{Y}$;
2: Encode image embeddings $\mathbf{z}_j^I = f(\mathbf{x}_j), \forall \mathbf{x}_j \in \mathbb{D}$;
3: Encode text embeddings $\mathbf{z}_{i,c}^T = g(p_i(y_c)), \forall p_i \in \mathbb{P}, \forall y_c \in \mathcal{Y}$;
4: Obtain the relevance score set $\mathbb{S} = \{s_{j,i,c}\}_{j=1,i=1,c=1}^{m,n,C}$ by equation 9 ;
5: Obtain the pseudo-labels set: $\hat{\mathbb{Y}} = \{\hat{y}_{j,i}\}_{j=1,i=1}^{m,n}$;
6: Derive the weight matrix \mathbf{W}^* by Eq. (10) and Eq. (11);
Output: a class-aware prompt weight matrix \mathbf{W}^* .

D MORE DETAILS OF CARPRT
D.1 CARPRT ALGORITHM

We summarize the overall procedure of our proposed Class-Aware Prompt Reweighting (CARPRT) in Algorithm 1. As shown in the algorithm, CARPRT begins by encoding both image and text embeddings using a pre-trained CLIP-liked model. It then computes the relevance score between image features and prompt-conditioned text features, followed by pseudo-label assignment. Finally, a class-aware weight matrix is derived based on the computed scores, enabling the construction of a refined prompt weight matrix that improves zero-shot classification performance.

D.2 CONNECTING CARPRT FORMULATION WITH THE PROBABILISTIC FRAMEWORK

We now detail the correspondence between the CARPRT formulation (Section 4) and the probabilistic framework established in Section 3.

Concretely, the practical implementation Eqs. (9-11) align with Eqs.(3-7) in the following manner.

Score Calculation. equation 9 implements the likelihood term $\Pr(\mathbf{x}_j|y_c, W, \mathbb{P})$ from equation 7 by defining $s_{j,i,c} = \frac{\exp(a_{j,i,c}/\lambda)}{\sum_{y \in \mathcal{Y}} \exp(a_{j,i,c}/\lambda)}$. This formulation aligns with the EBM in equation 7 by using cosine similarity $a_{j,i,c}$ as the negative energy term and normalizing through softmax to obtain proper probabilities.

Weight Calculation. Eqs. (10-11) correspond to estimating $\Pr(W|\mathbb{P}, \mathbb{D})$ from equation 4 through a two-step process. equation 10 first obtains the pseudo-labels for samples as the empirical estimates $\widehat{\Pr}(y_c|W, \mathbb{P})$ (i.e., equation 5). It then estimates intermediate weights by aggregating scores across pseudo-labeled samples by multiplying the scores $\Pr(\mathbf{x}_j|y_c, W, \mathbb{P})$ (i.e., $s_{j,i,c}$) with $\widehat{\Pr}(y_c|W, \mathbb{P})$. equation 11 applies softmax to ensure the resulting weights form a valid probability distribution over prompts for each class, which satisfies the simplex constraint implied by our probabilistic framework.

E DETAILS OF CARPRT WITH ITERATIVE REFINEMENT (iCARPRT)
E.1 METHODS

In this section, we introduce *iterative class-aware prompt reweighting* (iCARPRT). Unlike the single-pass approach described in the main text, iCARPRT refines pseudo-labels and class-aware prompt weights through multiple rounds of alternating updates. The procedure consists of the following two main steps: pseudo-label generation and class-aware weight estimation.

In pseudo-label generation, the pseudo-label \hat{y}_j of the image \mathbf{x}_j is computed by the prompt weights estimated in the previous iteration. \mathbf{W}_c^{t-1} as:

$$\hat{y}_j = \arg \max_{y_c \in \mathcal{Y}} w_{i,c}^{t-1} s_{j,i,c} \quad (12)$$

864 **Algorithm 2** Iterative Class-Aware Prompt Reweighting (iCARPRT)

865 **Input:** Pre-trained CLIP with image encoder f and text encoder g , a prompt set \mathbb{P} , an unlabeled dataset \mathbb{D} , a
 866 candidate label space \mathcal{Y} , the maximum iterations T_{max} the temperature parameter τ and the normalization scale
 867 λ .
 868 **1: Generate** prompted-class texts $p_i(y_c), \forall p_i \in \mathbb{P}, \forall y_c \in \mathcal{Y}$;
 869 **2: Encode** image embeddings $\mathbf{z}_j^I = f(\mathbf{x}_j), \forall \mathbf{x}_j \in \mathbb{D}$;
 870 **3: Encode** text embeddings $\mathbf{z}_{i,c}^T = g(p_i(y_c)), \forall p_i \in \mathbb{P}, \forall y_c \in \mathcal{Y}$;
 871 **4: Obtain** the relevance score set $\mathbb{S} = \{s_{j,i,c}\}_{j=1,i=1,c=1}^{m,n,C}$ by equation 9 ;
 872 **5: Initialize** the class-aware weights $w_{i,c}^{(0)}$ uniformly;
 873 **for** $t = 1$ to T_{max} **do**
 874 **6: Obtain** the pseudo-labels set: $\hat{\mathbb{Y}} = \{\hat{y}_j\}_{j=1}^m$ using equation 12;
 875 **7: Derive** the weight matrix \mathbf{W}^t by Eq. (13) and Eq. (11);
 876 **end**
 877 **Output:** a class-aware prompt weight matrix $\mathbf{W}^* = \mathbf{W}^{T_{max}}$.

880 Table 2: Accuracy (%) comparison between CARPRT and iCARPRT on various fine-grained clas-
 881 sification datasets using CLIP-ViT-B/16 and CLIP-ResNet50 backbones. **Bold** values indicate the
 882 highest accuracy.

	Caltech101	DTD	EuroSAT	Aircraft	Food101	Flower102	Pets	Cars	SUN397	UCF101	Average
CLIP-ViT-B/16											
CARPRT	94.16	48.90	55.56	24.49	86.31	71.36	89.13	66.14	66.93	70.41	67.34
iCARPRT	94.27	48.14	54.79	23.71	87.25	72.01	89.64	67.19	67.28	70.53	67.48
CLIP-ResNet50											
CARPRT	88.46	41.31	36.84	16.88	76.88	65.56	85.69	56.44	61.28	63.66	59.30
iCARPRT	89.14	41.83	35.65	15.42	77.96	66.13	86.09	57.28	61.45	64.32	59.53

891 where the $s_{j,i,c}$ is the relevance scores computed in equation 9. Once the pseudo-labels \hat{y}_j are updated,
 892 the intermediate weight $w'_{i,c}$ are estimated by:

$$w'_{i,c} = \frac{\sum_{j=1}^m s_{j,i,c} \mathbb{1}_{\hat{y}_j=y_c}}{\sum_j \mathbb{1}_{\hat{y}_j=y_c}}. \quad (13)$$

893 where $\mathbb{1}_{\hat{y}_j=y_c}$ is an indicator function that is 1 if $\hat{y}_j = y_c$, and 0 otherwise. Then the final weight $w^*_{i,c}$
 894 are computed by the the intermediate weight $w'_{i,c}$ using the equation 11
 895

896 These two steps repeat until a predefined maximum number of iterations is reached. By alternating
 897 between pseudo-label prediction and weight re-estimation, iCARPRT creates a reinforcing cycle that
 898 continuously improves both the pseudo-labels and the class-aware prompt weights..

902 **E.2 EXPERIMENTS RESULTS**

904 We evaluate the performance of iCARPRT against the single-pass version, CARPRT. As shown in
 905 Figure 2, the results demonstrate that iCARPRT achieves improvements in mean accuracy across
 906 different backbones. This suggests that the iterative refinement process effectively enhances class-
 907 aware prompt weighting by progressively improving pseudo-label quality and weight estimation.

909 **Quality of Pseudo Labels Matters.** In datasets such as EuroSAT and Aircraft, iCARPRT does not
 910 outperform CARPRT. A possible reason is the relatively low initial pseudo-label accuracy in these
 911 datasets. Since iCARPRT updates prompt weights based on pseudo-labels in each iteration, a poor
 912 starting point may lead to reinforcement of incorrect labels rather than improvement. In such cases,
 913 the iterative updates fail to enhance pseudo-label quality, limiting the effectiveness of the approach.

914 **F COMBINING CARPRT WITH OTHER VISION-LANGUAGE METHODS**

916 While CARPRT focuses on a strict zero-shot image classification problem using a fixed set of
 917 handcrafted prompts and unlabeled data (Problem 1)—CARPRT is inherently modular and can be

918
 919 Table 3: Accuracy (%) comparison between our method and baselines combining to TDA method using
 920 CLIP-ViT-B/16 and CLIP-ResNet50 backbones. **Bold** value represents the highest accuracy on each
 921 column.

	Caltech101	DTD	EuroSAT	Aircraft	Food101	Flower102	Pets	Cars	SUN397	UCF101	Average
CLIP-ViT-B/16											
MPE	93.18	46.75	60.60	23.37	86.04	65.61	84.21	67.44	66.41	71.48	66.51
WPE	93.49	47.02	62.48	23.09	86.21	68.10	84.12	67.23	66.98	71.23	67.00
CARPRT (Ours)	94.62	48.52	63.95	24.05	86.50	70.36	84.50	67.83	68.06	71.85	68.02
Human Selection (TDA)	94.24	47.40	58.00	23.91	86.14	71.42	88.63	67.28	67.62	70.66	67.53
CLIP-ResNet50											
MPE	92.03	41.77	54.56	19.77	83.41	62.50	80.65	63.55	64.14	68.80	63.12
WPE	91.67	41.89	56.78	19.84	83.21	56.67	81.66	63.43	64.87	68.72	63.45
CARPRT (Ours)	91.75	42.71	57.65	19.98	83.61	62.66	81.38	65.98	65.98	68.65	63.76
Human Selection (TDA)	91.42	41.00	56.97	20.55	83.34	62.75	83.62	64.14	65.86	68.52	63.82

930
 931 integrated into a wide range of existing vision-language pipelines. Although direct comparison
 932 is not applicable due to differing problem assumptions, we show that CARPRT can function as a
 933 complementary component rather than a competing method.

934
 935 Specifically, we conduct case studies in three representative scenarios. We first combine CARPRT
 936 with a test-time adaptation method, then apply it to augment soft prompt tuning, and finally integrate
 937 it with a recent zero-shot method that leverages LLM-generated prompts. Details and results for each
 938 case are presented in the following subsections.

939 F.1 COMBINING CARPRT WITH TEST-TIME ADAPTATION METHOD

940
 941 CARPRT can be integrated with the training-free TTA method as it operates without training, making
 942 it computationally efficient. TDA is a state-of-the-art, training-free test-time adaptation (TTA)
 943 method for CLIP that enables efficient and effective adaptation of vision-language models without
 944 backpropagation (Karmanov et al., 2024).

945
 946 Our approach is not in conflict with TDA but is orthogonal to it. While TDA uses a human-
 947 selected prompt pool for each task, our method can serve as a complementary module that replaces
 948 this human selection pool, providing an alternative way of selecting prompts without requiring
 949 human intervention. This allows our method to work alongside TDA, enhancing the adaptability of
 950 vision-language models in a more automated manner. We conduct the experiment to compare the
 951 performance of our method with several baselines, including the human-selected prompts, the equal
 952 weight prompt selection, an WPE, all combined with the TDA method. The results are evaluated
 953 using both CLIP-ViT-B/16 and CLIP-ResNet50 backbones across ten fine-grained datasets, as shown
 954 in Table 3.

955
 956 From the result, we can observe that our method outperforms the other baselines in several datasets,
 957 achieving the highest average accuracy of 67.96% for CLIP-ViT-B/16 and 63.76% for CLIP-ResNet50.
 958 Specifically, for datasets like EuroSAT, Food101, and Flower102, our method shows significant
 959 improvements over the human-selected and WPE baselines. These improvements demonstrate that
 960 our approach effectively enhances the performance of TTA methods, by offering a more efficient
 961 prompt selection strategy. However, there are cases where it falls short compared to human-selected
 962 prompts. This may be caused by the limited diversity and smaller size of the template pool, where
 963 automatic reweighting methods may not perform as well as direct human selection. However, the
 964 automated approach significantly reduces the human labor cost. This experiment demonstrates the
 965 promising future of our method—not only in prompt reweighting but also as a technique that can
 966 be integrated into other vision-language model (VLM) transfer learning approaches. The ability
 967 to automatically adjust prompts in a computationally efficient manner paves the way for broader
 968 applications and adaptability in various VLM-based tasks.

969
 970 **Posterior Update with TTA.** When prompt weights can be updated continuously, such as in TTA
 971 settings, different priors (e.g., uniform, global Dirichlet, or class-specific Dirichlet) define initial
 972 beliefs about weight distributions before observing test data. In the TTA scenario, test data arrives as
 973 a stream: $\{\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(t)}, \mathbf{x}^{(t+1)}, \dots\}$. Based on equation 4, we have a general form of posterior

$$p(\mathbf{W}|\mathbf{x}^{(t)}, \mathbb{P}) \propto p(\mathbf{x}^{(t)}|\mathbf{W}, \mathbb{P})p(\mathbf{W}|\mathbb{P}),$$

972 where $p(W|\mathbb{P})$ is the prior, $p(\mathbf{x}^{(t)}|\mathbf{W}, \mathbb{P})$ is the likelihood from test data, and $p(W|\mathbf{x}^{(t)}, \mathbb{P})$ is the
 973 posterior that guides weight updates sample-by-sample. The posterior updating process follows:
 974

975 For first test sample $\mathbf{x}^{(0)}$:

$$\begin{aligned} 976 \quad \text{Prior} &: p(\mathbf{W}|\mathbb{P}) \\ 977 \quad \text{Likelihood} &: p(\mathbf{x}^{(0)}|\mathbf{W}, \mathbb{P}) \\ 978 \quad \text{Posterior} &: p(W|\mathbf{x}^{(0)}, \mathbb{P}) \propto p(\mathbf{x}^{(0)}|\mathbf{W}, \mathbb{P})p(\mathbf{W}|\mathbb{P}) \end{aligned}$$

981 Then, as we observe the second test sample $\mathbf{x}^{(1)}$, we have

$$\begin{aligned} 983 \quad \text{Prior} &: p(\mathbf{W}|\mathbf{x}^{(0)}, \mathbb{P}) \quad (\text{previous posterior}) \\ 984 \quad \text{Likelihood} &: p(\mathbf{x}^{(1)}|\mathbf{W}, \mathbb{P}) \\ 985 \quad \text{Posterior} &: p(\mathbf{W}|\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbb{P}) \propto p(\mathbf{x}^{(1)}|\mathbf{W}, \mathbb{P})p(\mathbf{W}|\mathbf{x}^{(0)}, \mathbb{P}) \end{aligned}$$

987 This leads to the sequential update scheme, formulated as

$$989 \quad p(\mathbf{W}|\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(t)}, \mathbb{P}) \propto p(\mathbf{x}^{(t)}|\mathbf{W}, \mathbb{P})p(\mathbf{W}|\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(t-1)}, \mathbb{P})$$

991 Thus, in TTA settings, these priors can be (1) initialized based on initial test samples; and (2) updated
 992 sequentially as new test samples arrive.

993 More specifically, choosing different prior distributions would lead to different updating computations.

995 *Uniform Prior.* Recall the uniform prior is defined as

$$997 \quad p(W|\mathbb{P}) = \begin{cases} \frac{1}{|\mathcal{W}|} & \text{if } W \in \mathcal{W} \\ 998 \quad 0 & \text{otherwise} \end{cases}$$

1000 By taking log to both LHS and RHS, we will have

$$1002 \quad \log p(\mathbf{W}|\mathbb{P}) = \begin{cases} -\log |\mathcal{W}| & \text{if } \mathbf{W} \in \mathcal{W} \\ 1003 \quad -\infty & \text{otherwise} \end{cases}$$

1004 which then leads to the log posterior to be expressed as

$$\begin{aligned} 1006 \quad \log p(\mathbf{W}|\mathbf{x}^{(t)}, \mathbb{P}) &\propto -\log |\mathcal{W}| + \log \sum_{y_c \in \mathcal{Y}} p(\mathbf{x}^{(t)}|y_c, \mathbf{W}, \mathbb{P})p(y_c|\mathbf{W}, \mathbb{P}) \\ 1007 \quad &= -\log |\mathcal{W}| + \log \sum_{y_c \in \mathcal{Y}} \exp \left(\sum_{i=1}^n (w_{i,c} \mathbf{z}_{i,c}^T)^\top \cdot \mathbf{z}^I \right) \cdot \frac{\mathbb{1}_{\hat{y}_{j,i} = y_c}}{\sum_{j'} \mathbb{1}_{\hat{y}_{j',i} = y_c}} \end{aligned}$$

1012 *Global Dirichlet Prior.* The global Dirichlet prior treats all weights across classes as a single vector:

$$1015 \quad p(W|\mathbb{P}) = \text{Dir}(\text{vec}(W)|\alpha_1, \dots, \alpha_{nC})$$

1017 where $\text{vec}(\mathbf{W}) \in \mathbb{R}^{nC}$ is the vectorization of weight matrix \mathbf{W} (here we denote $C = |\mathcal{Y}|$ as the
 1018 cardinality of label space) Similarly, we will have the log prior and posterior as

$$\begin{aligned} 1020 \quad \log p(\mathbf{W}|\mathbb{P}) &= \log \text{Dir}(\text{vec}(\mathbf{W})|\alpha_1, \dots, \alpha_{nC}) \\ 1021 \quad &= \log \Gamma(\alpha_0) - \sum_{k=1}^{nC} \log \Gamma(\alpha_k) + \sum_{k=1}^{nC} (\alpha_k - 1) \log w_k \quad (\alpha_0 = \sum_{k=1}^{nC} \alpha_k) \\ 1022 \quad &= \log \Gamma(\sum_{k=1}^{nC} \alpha_k) - \sum_{c=1}^C \sum_{i=1}^n \log \Gamma(\alpha_{(c-1)n+i}) + \sum_{c=1}^C \sum_{i=1}^n (\alpha_{(c-1)n+i} - 1) \log w_{i,c} \end{aligned}$$

1026 and

$$\begin{aligned}
\log p(\mathbf{W}|\mathbf{x}^{(t)}, \mathbb{P}) &\propto \log p(\mathbf{W}|\mathbb{P}) + \log p(\mathbf{x}^{(t)}|\mathbf{W}, \mathbb{P}) - \log p(\mathbf{x}^{(t)}|\mathbb{P}) \\
&= \log \Gamma(\alpha_0) - \sum_{k=1}^{nC} \log \Gamma(\alpha_k) + \sum_{c=1}^C \sum_{i=1}^n (\alpha_{(c-1)n+i} - 1) \log w_{i,c} \\
&\quad + \log \sum_{y_c \in \mathcal{Y}} p(x|y_c, \mathbf{W}, \mathbb{P}) p(y_c|\mathbf{W}, \mathbb{P}) \\
&= \log \Gamma(\alpha_0) - \sum_{k=1}^{nC} \log \Gamma(\alpha_k) + \sum_{c=1}^C \sum_{i=1}^n (\alpha_{(c-1)n+i} - 1) \log w_{i,c} \\
&\quad + \log \sum_{y_c \in \mathcal{Y}} \exp \left(\sum_{i=1}^n (w_{i,c} \mathbf{z}_{i,c}^\top)^\top \cdot \mathbf{z}^I \right) \cdot \frac{\mathbb{1}_{\hat{y}_{j,i} = y_c}}{\sum_{j'} \mathbb{1}_{\hat{y}_{j',i} = y_c}}
\end{aligned}$$

1041 *Class-specific Dirichlet Prior.* We again start from the prior definition

$$p(W|\mathbb{P}) = \prod_{c=1}^C \text{Dir}(W_c|\alpha_{c,1}, \dots, \alpha_{c,n})$$

1046 then turn into the log prior and posterior

$$\begin{aligned}
\log p(\mathbf{W}|\mathbb{P}) &= \sum_{c=1}^C \log \text{Dir}(W_c|\alpha_{c,1}, \dots, \alpha_{c,n}) \\
&= \sum_{c=1}^C \left[\log \Gamma(\alpha_{c,0}) - \sum_{i=1}^n \log \Gamma(\alpha_{c,i}) + \sum_{i=1}^n (\alpha_{c,i} - 1) \log w_{i,c} \right] \quad (\alpha_{c,0} = \sum_{i=1}^n \alpha_{c,i})
\end{aligned}$$

1053 and log posterior

$$\begin{aligned}
\log p(\mathbf{W}|\mathbf{x}^{(t)}, \mathbb{P}) &= \sum_{c=1}^C \left[\log \Gamma(\alpha_{c,0}) - \sum_{i=1}^n \log \Gamma(\alpha_{c,i}) + \sum_{i=1}^n (\alpha_{c,i} - 1) \log w_{i,c} \right] \\
&\quad + \log \sum_{y_c \in \mathcal{Y}} p(x|y_c, \mathbf{W}, \mathbb{P}) p(y_c|\mathbf{W}, \mathbb{P}) \\
&= \sum_{c=1}^C \left[\log \Gamma(\alpha_{c,0}) - \sum_{i=1}^n \log \Gamma(\alpha_{c,i}) + \sum_{i=1}^n (\alpha_{c,i} - 1) \log w_{i,c} \right] \\
&\quad + \log \sum_{y_c \in \mathcal{Y}} \exp \left(\sum_{i=1}^n (w_{i,c} \mathbf{z}_{i,c}^\top)^\top \cdot \mathbf{z}^I \right) \cdot \frac{\mathbb{1}_{\hat{y}_{j,i} = y_c}}{\sum_{j'} \mathbb{1}_{\hat{y}_{j',i} = y_c}}
\end{aligned}$$

1066 However, since Dirichlet priors would introduce additional steps (e.g., estimating concentration
1067 parameters α), in our preliminary investigation, we used uniform prior to keep simplicity. Despite
1068 this simplest setup, our CARPRT prompt reweighting strategy effectively facilitated TTA methods.
1069 We leave more systematic explorations of alternative priors (e.g., Dirichlet) into future work.1071

F.2 COMBINING CARPRT WITH SOFT PROMPT TUNING

1073 *Soft Prompt tuning* has recently become a powerful technique for adapting CLIP and other pre-trained
1074 vision-language models to downstream tasks. By learning optimal prompts that guide the model's
1075 understanding of new data, prompt tuning has shown remarkable effectiveness (Zhou et al., 2022b;a;
1076 Khattak et al., 2023b). ProDA optimizes prompt distributions to improve few-shot performance by
1077 training a set of learnable invisible prompt embeddings. While CARPRT is primarily designed to
1078 reweight visible prompt templates, our approach is not restricted to visible prompts. In this section,
1079 we also apply class-aware reweighting to the invisible prompts trained by ProDA, making our method
capable of enhancing performance in various prompt tuning scenarios.

Our CARPRT method could enhance the ProDA framework by introducing a class-aware reweighting technique that adjusts the influence of each prompt based on the underlying class structure. Specifically, before each iteration of ProDA’s prompt distribution learning, we use CARPRT to update the weights, which then guide the model’s logit outputs for training the prompts. As the problem setting transitions from zero-shot to few-shot, our approach adapts by refining the weight estimation. Specifically, we use ground truth labels instead of the pseudo labels for weight estimation, as shown in the following replacement for equation 10:

$$w'_{i,c} = \frac{\sum_{j=1}^m s_{j,i,c} \mathbb{1}_{y_j=y_c}}{\sum_{j=1}^m \mathbb{1}_{y_j=y_c}}, \quad (14)$$

where y_j is the ground truth label of the sample j . The results shown in Table F.2 demonstrate that our method provides notable improvements in most data sets, highlighting the effectiveness of our class-aware prompt reweighting mechanism.

Table 4: Accuracy (%) comparison between our method and the *prompt tuning* baseline on fine-grained datasets using the CLIP-ViT-B/16 backbone. **Bold** values represent the highest accuracy in each raw.

	ProDA	ProDA + CARPRT
Caltech101	91.3	95.4
DTD	70.1	69.6
EuroSAT	84.3	83.4
Aircraft	36.6	36.9
Food101	82.4	88.1
Flower102	95.5	95.6
Pets	90.0	93.7
Cars	75.5	78.6
Average	78.2	80.2

F.3 COMBINING CARPRT WITH MODERN ZERO-SHOT METHODS

Recent zero-shot approaches often rely on large language models (LLMs) to generate class descriptions or prompts. While these methods have shown strong performance, they typically introduce external information and lack mechanisms to calibrate prompt relevance across classes. CARPRT may be able to be applied on top of such methods to reweight their prompt pools in a class-aware manner, enhancing prediction quality without modifying the model or relying on additional supervision.

Beyond prompt-based methods, CARPRT is also compatible with image-centric approaches that construct classifiers directly from visual features, such as InMaP (Qian et al., 2024a). These two strategies are complementary: while InMaP builds a vision proxy via clustering, our method provides high-quality pseudo-labels that can guide its optimization. As shown in Table 5, integrating CARPRT with InMaP consistently improves performance. In particular, refining pseudo-labels using Sinkhorn distance leads to further gains, validating that better pseudo-labels directly reduce the theoretical gap between recovered and optimal vision proxies. These results highlight that CARPRT not only improves zero-shot inference on its own, but also serves as a valuable component within broader vision-language learning frameworks.

1134
 1135 Table 5: .Accuracy (%) comparison between our method and the baseline on ImageNet using the
 1136 CLIP-ViT-B/16 and CLIP-ResNet50backbone. **Bold** values represent the highest accuracy in each
 1137 raw.

	InMaP	InMaP + CARPRT
CLIP-ViT-B/16		
w/o Skinhorn	70.14	71.09
CLIP-ResNet50		
w/o Skinhorn	60.83	60.95
Skinhorn	63.74	63.14

1146
 1147 Table 6: Details for the datasets in our experiments.

Dataset	Classes	Test Size
ImageNet	1000	50,000
Tiny-ImageNet	200	10,000
ImageNet-R	200	30,000
ImageNet-A	200	6862
ImageNet-Sketch	1000	50,889
ImageNet-V2	1000	10,000
Caltech101	100	2465
DTD	47	1692
EuroSat	10	8100
Aircraft	100	3333
Food101	101	30,300
Flowers102	102	2463
Oxford Pets	37	3669
Cars196	196	8041
Sun397	397	19,850
UCF101	101	3783

1166 F.4 COMBINING CARPRT WITH LLM-EMPOWERED PROMPT AUGMENTATION METHODS

1168 Although CARPRT and LLM-empowered prompt augmentation methods are conceptually different,
 1169 they can be combined in a complementary way. CARPRT is a training-free and inference-only
 1170 method, relying solely on a fixed prompt template pool and without using any external knowledge
 1171 such as LLMs. By contrast, CuPL (Shtedritski et al., 2023), MPVR (Mirza et al., 2024), and
 1172 VisDesc (Menon & Vondrick, 2023b) generate class-specific prompts/descriptors via large language
 1173 models and thus address a different setting. Importantly, these approaches are orthogonal to ours:
 1174 while direct comparison is not the focus, CARPRT can reweight LLM-generated prompts, and
 1175 combining them consistently brings further gains

1176 As shown in Table 7, integrating CARPRT with LLM-based prompt generation methods consis-
 1177 tently improves their performance across datasets. This demonstrates that class-aware reweighting
 1178 is complementary to LLM-generated prompts, enhancing their effectiveness without altering the
 1179 underlying generation process. While VisDesc can be competitive or stronger in some cases, it
 1180 requires a more complex pipeline and additional resources, whereas CARPRT provides a lightweight
 1181 plug-in alternative.

1182 G ADDITIONAL EXPERIMENTS

1183 G.1 DETAILED RESULTS FOR HYPERPARAMETER ANALYSIS

1184 In this section, we analyze the impact of key hyperparameters across all fine-grained datasets,
 1185 focusing on the temperature parameter τ . In zero-shot classification, where only test data is available,

1188

1189
1190
1191
Table 7: Accuracy (%) comparison between LLM-based prompt generation baselines and their
combinations with our method on fine-grained datasets using the CLIP-ViT-B/16 backbone. **Bold**
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
245

1242
 1243 Table 9: Accuracy (%) comparison between baselines and our method on ImageNet and its variants
 1244 using CLIP-ViT-B/16 and CLIP-ResNet50 backbones. **Bold** value represents the highest accuracy on
 1245 each column. Standard deviations are shown inline using \pm .

	ImageNet	Tiny-ImageNet	-A	-R	-Sketch	-V2	Average
CLIP-ViT-B/16							
MPE	67.59	62.12	49.35	77.33	46.92	61.37	60.51
WPE	68.28 \pm 0.01	62.19 \pm 0.05	50.07 \pm 0.12	77.25 \pm 0.03	47.14 \pm 0.02	61.81 \pm 0.11	61.12 \pm 0.06
CARPRT (Ours)	68.59\pm0.01	62.71\pm0.04	51.60\pm0.07	77.48\pm0.04	47.53\pm0.02	62.11\pm0.09	61.67\pm0.05
CLIP-ResNet50							
MPE	59.12	43.32	46.25	69.05	39.05	54.05	53.50
WPE	59.78 \pm 0.01	43.12 \pm 0.08	46.37\pm0.08	69.27 \pm 0.01	39.14 \pm 0.07	54.07 \pm 0.09	53.72 \pm 0.06
CARPRT (Ours)	59.98\pm0.02	43.45\pm0.06	46.19\pm0.09	69.59\pm0.01	39.34\pm0.04	54.26\pm0.03	53.90\pm0.06

1255
 1256 Table 10: Robustness under distribution shifts. Weights are estimated on in-distribution ImageNet and directly
 1257 transferred to four variants. CARPRT consistently outperforms both MPE and WPE.

Method	ImageNet	-A	-R	-Sketch	-V2	Average
MPE	67.59	49.35	77.33	46.92	61.37	60.51
WPE	68.28	50.34	77.34	47.50	61.96	61.08
Ours	68.59	51.96	77.69	47.91	62.51	61.73

G.3 ROBUSTNESS OF CARPRT TO DISTRIBUTION SHIFTS

1266 To evaluate robustness, we investigate CARPRT under distribution shifts on ImageNet and four
 1267 variants: ImageNet-A, -R, -Sketch, and -V2. In this setting, prompt weights are estimated once
 1268 using only unlabeled samples from the in-distribution ImageNet test set, and the same weights are
 1269 subsequently applied to all variants for evaluation, without access to their target distributions during
 1270 estimation.

1271 As shown in Table 10, CARPRT consistently surpasses MPE and WPE across all ImageNet variants,
 1272 despite not accessing their distributions during weight estimation. This confirms that CARPRT’s
 1273 reweighting strategy *generalizes well under distribution shifts*. We attribute this capability to
 1274 CARPRT’s design: by aligning prompt text with class names, rather than overfitting to visual
 1275 features of a specific dataset, CARPRT benefits from the larger sample size of ImageNet, yielding a
 1276 more stable estimation of class–prompt relevance and thus transferring effectively across distributions.

G.4 EXPERIMENTS ON IMBALANCED DATASETS

1280 In this section, we evaluate the performance of CARPRT on datasets with class imbalances. Following
 1281 Cao et al. (2019), we manually construct an imbalanced CIFAR-10 (Krizhevsky et al., 2009) dataset
 1282 using an exponential decay strategy to create various degrees of class imbalance. We use an imbalance
 1283 factor β to describe the severity of the long-tailed distribution, defined as the ratio between the number
 1284 of training samples in the most frequent class and the least frequent class. Specifically, β is given by:

$$1285 \quad 1286 \quad 1287 \quad 1288 \quad \beta = \frac{N_{\max}}{N_{\min}},$$

1289 where N_{\max} and N_{\min} represent the number of training samples in the most frequent and least
 1290 frequent classes, respectively. We conduct experiments with different imbalance ratios, setting
 1291 $\beta = 10$, $\beta = 50$, and $\beta = 100$, using the CLIP-ViT-B/16 backbone.

1292 The results shown in Table 11 demonstrate that CARPRT significantly outperforms the average
 1293 baseline for all degrees of class imbalance. Specifically, CARPRT provides a consistent improvement
 1294 in performance over WPE, though the gain decreases as the imbalance factor β increases. This
 1295 decreasing gain may be attributed to the global nature of the WPE weight estimation, which remains
 1296 effective even under a higher imbalance. WPE calculates a single weight for the entire dataset,

1296
 1297 Table 11: Accuracy (%) comparison between our method and baselines on CIFAR-10 using the
 1298 CLIP-ViT-B/16 backbone. **Bold** values represent the highest accuracy in each column.

	Balanced Datasets	$\beta = 10$	$\beta = 50$	$\beta = 100$
MPE	89.56	89.58	89.57	89.56
WPE	89.55	90.02	90.78	91.07
CARPRT (Ours)	90.82	91.07	91.36	91.70

1304
 1305 capturing the overall distribution and maintaining reasonable performance, even when certain classes
 1306 are underrepresented.

1307
 1308 In contrast, CARPRT uses a per-class weighting strategy, which allows better adaptation to individual
 1309 class characteristics, which is highly effective in balanced or moderately imbalanced settings. How-
 1310 ever, when the class imbalance becomes severe, the challenge arises for classes with very few samples
 1311 (e.g., only 10 samples). In these cases, the reliability of CARPRT’s weight estimates decreases as a
 1312 result of insufficient data, impacting performance.

1313 G.5 IMPACT OF TEMPLATE QUALITY

1315
 1316 In this section, we investigate the impact of template quality on ImageNet classification tasks.
 1317 Specifically, we explore how different prompt template pools influence performance by evaluating
 1318 two newly generated template pools alongside the original templates on the ImageNet datasets.
 1319 Specifically, Pool1 was generated using Claude 3.5 (Anthropic, 2024) to produce 300 templates
 1320 tailored to the ImageNet label space. Each category in Pool1 consists of 100 prompt templates
 1321 structured in descriptive formats, such as *"A photo of a "*, *"A photo of a "*, *"The type of "*. These
 1322 templates aim to incorporate task-specific context and improve the alignment between the prompts
 1323 and ImageNet categories. Pool2, on the other hand, was constructed using Phi 3.1 (OpenAI, 2024)
 1324 to create highly descriptive templates. For each ImageNet category, Phi 3.1 generated five detailed
 1325 prompts, resulting in a total of 5,000 templates across all categories. These templates focus on
 1326 providing class-specific descriptive information, enabling a more precise and nuanced interaction
 1327 with the underlying vision-language model. These additional template pools were evaluated on
 1328 ImageNet dataset compared to the original templates (Pool0), as shown in Table 12.

1329 Table 12: Accuracy (%) comparison across different template pools using WPE and CARPRT
 1330 methods on ImageNet classification.

Pool	Method	ImageNet Acc. (%)	Perf. Comparison
Pool0	WPE	68.28	–
	CARPRT	68.59	+0.31
Pool1	WPE	68.35	–
	CARPRT	68.61	+0.26
Pool2	WPE	68.34	–
	CARPRT	68.97	+0.63

1331
 1332 Pool1 targets more task-specific information by generating templates with respect to the ImageNet
 1333 label space. This leads to performance improvements for both WPE and CARPRT prompt reweighting
 1334 strategies compared to Pool0. On the other hand, the generated templates in Pool2 incorporate more
 1335 class-specific descriptive information. CARPRT benefits significantly from these templates, achieving
 1336 greater performance gains compared to WPE. This highlights the effectiveness of class-aware prompt
 1337 reweighting in leveraging descriptive templates.

1338
 1339
 1340 **Future Work.** Results in Appendix G.5 show that a high-quality prompt template pool significantly
 1341 improves performance. Building on these results and the previously discussed limitations, a key
 1342 direction for future work is enhancing the quality and diversity of the prompt template pool, which
 1343 existing methods often overlook. Future research could focus on cost-effective strategies for generating
 1344 and evaluating diverse, representative prompts. This may include developing metrics to assess how
 1345

1350
 1351 Table 13: Comparison of normalization schemes under WPE and CAPPRT. Accuracy (%) is reported
 1352 on Fine-Grained, ImageNet, and Variant subsets, along with the average across them.

Method	Normalization Schemes	Fine-Grained	ImageNet	Variant	Average
WPE	none	64.82	68.28	59.69	64.26
	test	64.93	68.45	59.72	64.37
	pre-train	65.01	68.64	59.57	64.41
	both	65.00	68.56	59.74	64.43
CAPPRT	none	67.34	68.59	60.39	65.44
	test	67.12	68.27	60.18	65.19
	pre-train	67.45	68.72	60.55	65.57
	both	67.44	68.77	60.53	65.58

1363
 1364 well prompts capture class-specific characteristics and enhancing inter-class distinctions to improve
 1365 the model’s ability to differentiate closely related categories.

1367 G.6 ANALYSIS OF FREQUENCY BIAS CORRECTION

1369 To correct potential biases introduced by the class frequency distribution in the pre-training or test-
 1370 time datasets, Allingham et al. (2023) applies normalization to the score matrix before computing
 1371 the prompt weights. This step ensures that the scale and distribution of class-prompt scores are
 1372 consistent across categories and prompts, thereby mitigating dataset-specific artifacts that could affect
 1373 final predictions. The scores $s_{j,i,c}$ across all images x_j predicted to class y_c under prompt p_i are
 1374 normalized as follows:

$$1376 \tilde{s}_{j,i,c} = s_{j,i,c} - \mu, \quad (15)$$

1377 where μ is the mean and standard deviation of scores for scores, and are computed differently
 1378 depending on the normalization scheme: (1) **none**: No normalization is applied and we set $\mu = 0$;
 1379 (2) **test**: μ is computed by the test data scores: $\mu = \mu^{\text{test}} = \frac{1}{N^{\text{test}}} \sum_{j=1}^{N^{\text{test}}} s_{j,i,c}$; (3) **pre-
 1380 train**: μ is computed by the data drawn from LAION400m (Schuhmann et al., 2021), following
 1381 Allingham et al. (2023): $\mu = \mu^{\text{pre}} = \frac{1}{N^{\text{pre}}} \sum_{j=1}^{N^{\text{pre}}} s_{j,i,c}$; (4) **both**: Combine the two sources by
 1382 interpolation: $\mu = (\mu^{\text{test}} + \mu^{\text{pre}})/2$. These normalized scores are then used to compute prompt
 1383 weights.

1385 As shown in Table 13, the WPE method benefits noticeably from normalization. All normalization
 1386 schemes improve over the unnormalized baseline, with the **both** setting achieving the best overall
 1387 performance. This suggests that WPE is sensitive to distributional bias and gains from explicitly
 1388 correcting both pre-training and test-time frequency effects.

1389 By contrast, CAPPRT performs robustly across all settings. Even without normalization, CAPPRT
 1390 outperforms WPE, and gains only slight improvements from applying **pre-train** or **both** nor-
 1391 malization. Interestingly, **test**-only normalization slightly reduces performance, indicating that
 1392 test-derived statistics may inject noise rather than correct meaningful bias. This robustness likely
 1393 stems from the class-aware formulation of CAPPRT, which captures prompt-class dependencies
 1394 more explicitly.

1395 In summary, while WPE requires normalization to mitigate its reliance on biased score distributions,
 1396 CAPPRT consistently maintains strong performance, demonstrating its effectiveness as a prompt
 1397 reweighting method.

1400 H DISCUSSION OF PRIOR DISTRIBUTION OF THE PROMPT WEIGHTS $\text{Pr}(\mathbf{W}|\mathbb{P})$

1401
 1402 We extend the discussion of the proposed probabilistic interpretation (Section 3) to the weights
 1403 prior $\text{Pr}(\mathbf{W}|\mathbb{P})$. In the current zero-shot classification scenario addressed by CAPPRT, there is no
 optimization-based process for “estimating” the weights, and as such, the weight prior $\text{Pr}(\mathbf{W}|\mathbb{P})$

1404 does not play a role in the methodology. Nevertheless, our probabilistic framework is flexible enough
 1405 to accommodate more general trainable settings, such as active learning and few-shot estimation,
 1406 where the probabilistic formulation becomes particularly beneficial. In these cases, a discussion of
 1407 the weight prior would provide valuable insights and contribute to a more complete understanding of
 1408 the framework’s advantages.

1409 Suppose there is a label space \mathcal{Y} with size $|\mathcal{Y}| = C$. Let $\mathbb{P} = \{p_i\}_{i=1}^n$ be a pool of n independent
 1410 prompt templates. Let $\mathbf{W} = \{\mathbf{W}_c\}_{c=1}^C$ be our weight matrix. Recall that $\mathbf{W}_c \in \Delta^{n-1}$ is the
 1411 $(n-1)$ -dimensional probability simplex, representing the weights for class y_c across all prompts.
 1412

1413 We consider three choices of priors: uniform prior, global Dirichlet prior, and class-specific Dirichlet
 1414 priors.

1415 **Uniform Prior.** The uniform prior assumes all valid weight configurations are equally likely a priori.

$$1417 \quad 1418 \quad 1419 \quad p(\mathbf{W}|\mathbb{P}) = \begin{cases} \frac{1}{|\mathcal{W}|} & \text{if } \mathbf{W} \in \mathcal{W} \\ 0 & \text{otherwise} \end{cases}$$

1420 where $\mathcal{W} = \{\mathbf{W} \in \mathbb{R}^{n \times C} : W_c \in \Delta^{n-1} \text{ for all } c \in \{1, \dots, C\}\}$.

1421 The uniform prior is the easiest setup to implement and does not introduce bias towards any particular
 1422 weight configuration. However, the uniform prior does not leverage any prior knowledge about the
 1423 prompts, which is prone to overfitting with limited data (when adapted to trainable setting).

1424 **Global Dirichlet Prior.** This defines a single Dirichlet distribution over all weights, treating them as
 1425 a single vector.

$$1426 \quad p(\mathbf{W}|\mathbb{P}) = \text{Dir}(\text{vec}(\mathbf{W})|\alpha_1, \dots, \alpha_{nC})$$

1427 where $\text{vec}(\mathbf{W})$ is the vectorization of \mathbf{W} , and $\alpha_i > 0$ are concentration parameters of the Dirichlet
 1428 distribution.

1429 Compared to uniform prior, Dirichlet prior can encode varying degrees of certainty about different
 1430 weights. Moreover, it is conjugate to multinomial likelihood, allowing for closed-form posterior
 1431 updates for certain model setup. This can also align with WPE-like class-shared-weighting strategies.
 1432 However, it ignores the class structure and treats all weights as part of a single distribution, potentially
 1433 missing class-specific patterns.

1434 **Class-specific Dirichlet Prior.** This strategy sets an independent Dirichlet distribution for each
 1435 class’s weight, and stacks a product of C classes’ Dirichlet distributions.

$$1437 \quad 1438 \quad 1439 \quad p(\mathbf{W}|\mathbb{P}) = \prod_{c=1}^C \text{Dir}(\mathbf{W}_c|\alpha_{c,1}, \dots, \alpha_{c,n})$$

1440 where $\alpha_{c,i} > 0$ are class and prompt-specific concentration parameters.

1441 Currently, this setup best suits our class-aware prompt reweighting mechanism, as it allows for
 1442 different prior beliefs about weight distributions for each class, class-specific modeling. Compared
 1443 with global Dirichlet, it reduces dimensionality - each Dirichlet distribution is over n parameters, not
 1444 $n \times C$ anymore. More importantly, it aligns with the per-class simplex constraint of the weight space.

1445 **Entropy Analysis.** Different prior choices lead to different entropy results. The uniform prior has an
 1446 associated entropy as

$$1447 \quad H[p(\mathbf{W}|\mathbb{P})]_{\text{uniform}} = \log |\mathcal{W}|,$$

1448 where $|\mathcal{W}|$ is the volume of the weight space.

1449 As for global Dirichlet prior, we have

$$1451 \quad 1452 \quad 1453 \quad H[p(\mathbf{W}|\mathbb{P})] = \log B(\alpha) + (\alpha_0 - nC)\psi(\alpha_0) - \sum_{i=1}^{nC} (\alpha_i - 1)\psi(\alpha_i),$$

1454 where $B(\cdot)$ is the multivariate beta function, and $\psi(\cdot)$ is the digamma function.

1455 The entropy for class-specific Dirichlet priors is

$$1456 \quad 1457 \quad H[p(\mathbf{W}|\mathbb{P})] = \sum_{c=1}^C (\log B(\alpha_c) + (\alpha_{c,0} - n)\psi(\alpha_{c,0}) - \sum_{i=1}^n (\alpha_{c,i} - 1)\psi(\alpha_{c,i})),$$

1458 where $\alpha_c = (\alpha_{c,1}, \dots, \alpha_{c,n})$ and $\alpha_{c,0} = \sum_{i=1}^n \alpha_{c,i}$ for each class c .
 1459

1460 When we are setting the equal concentration parameters, such that $\alpha_i = \alpha$ for all i in the global
 1461 Dirichlet, and $\alpha_{c,i} = \alpha$ for all c, i in the class-specific Dirichlets, and let $\alpha = 1$, the uniform prior
 1462 has the highest entropy (uninformative), while the class-specific Dirichlets having the lowest entropy.
 1463 This is because the class-specific Dirichlets with $\alpha = 1$ are equivalent to independent uniform
 1464 distributions over smaller simplices, further concentrating the probability.
 1465

I DETAILED PROOFS

1468 **Lemma 2** (Relative Likelihood *cf.* Lemma 1). *The likelihood of an image \mathbf{x} , given class c , prompt
 1469 weights \mathbf{W} and a prompt pool \mathbb{P} , following the EBM defined in equation 6, is proportional to:*

$$1470 \Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P}) \propto \exp\{\text{sim}(\mathbf{z}_j^I, \mathbf{z}_c^T)\} \propto \exp\left\{\sum_{i=1}^n (w_{i,c} \mathbf{z}_{i,c}^T)^\top \cdot \mathbf{z}^I\right\}, \quad (16)$$

1473 where $\mathbf{z}_j^I = f(\mathbf{x}_j)$ and $\mathbf{z}_{i,c}^T = g(p_i(y_c))$ are image embeddings of sample \mathbf{x}_j and text embeddings of
 1474 class y_c under prompt p_i , respectively.

1475 *Proof. Similarity as Negative Energy.* As with (LeCun et al., 2006), a general form of EBMs is
 1476 given by $P_\theta(x) = \exp(-\beta E_\theta(x))/Z(\theta)$, which enables us to define unnormalized energy function
 1477 with a partition function for normalization. Therefore, in our zero-shot classification context, we
 1478 define the energy function with respect to the score function of the CLIP.

$$1480 E(\mathbf{x}_j, y_c, \mathbf{W}, \mathbb{P}) = \text{sim}(\mathbf{z}_j^I, \mathbf{z}_c^T)$$

1481 This score function measures the compatibility between the image embedding \mathbf{z}_j^I and the text
 1482 embedding embedding \mathbf{z}_c^T of class y_c . higher compatibility corresponds to lower energy, aligning
 1483 with the EBM principle that more likely configurations (of model) have lower energy.
 1484

1485 **Intractable Partition Function.** Computing the partition function is intractable since we need to
 1486 marginalize over the image space. However, what we care about is the relative relation between
 1487 $\Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P})$ and $\Pr(\mathbf{x}_j|y_{c'}, \mathbf{W}, \mathbb{P})$, we can safely drop off the partition function in our relative
 1488 likelihood.

1489 **Similarity Computation.** Consider a general linear combination of similarities for a prompt ensemble:
 1490

$$1491 \text{sim}(\mathbf{z}^I, \mathbf{z}_c^T) = h_c(\{\text{sim}(\mathbf{z}^I, \mathbf{z}_{i,c}^T)\}_{i=1}^n)$$

$$1492 h_c(\{s_i\}_{i=1}^n) = \sum_{i=1}^n \alpha_{i,c} s_i + \beta_c$$

1493 where $h_c : \mathbb{R}^d \rightarrow \mathbb{R}$ is a function that linearly combines the similarities over all prompts $p_i \in \mathbb{P}$ for a
 1494 specific class y_c . $\alpha_{i,c} \in \mathbb{R}$ and $\beta_c \in \mathbb{R}$ are weights and bias terms. Substituting $s_i = \text{sim}(\mathbf{z}^I, \mathbf{z}_{i,c}^T) =$
 1495 $\mathbf{z}_{i,c}^{TT} \cdot \mathbf{z}^I$, we get:

$$1496 \text{sim}(\mathbf{z}_j^I, \mathbf{z}_{i,c}^T) = \sum_{i=1}^n \alpha_{i,c} (\mathbf{z}_{i,c}^T)^\top \cdot \mathbf{z}_j^I + \beta_c$$

1497 We can then absorb the bias term β_c into the exponential function,

$$1498 \Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P}) \propto \exp(\text{sim}(\mathbf{z}_j^I, \mathbf{z}_{i,c}^T))$$

$$1499 = \exp\left(\sum_{i=1}^n \alpha_{i,c} (\mathbf{z}_{i,c}^T)^\top \cdot \mathbf{z}_j^I + \beta_c\right)$$

$$1500 = \exp(\beta_c) \exp\left(\sum_{i=1}^n \alpha_{i,c} (\mathbf{z}_{i,c}^T)^\top \cdot \mathbf{z}_j^I\right)$$

$$1501 \propto \exp\left(\sum_{i=1}^n (\alpha_{i,c} \mathbf{z}_{i,c}^T)^\top \cdot \mathbf{z}_j^I\right).$$

1502 By setting $w_{i,c} = \alpha_{i,c}$, we arrive at the formulation in Lemma 1. \square
 1503

1512 **Proposition 3** (cf. Proposition 2). *Let \mathcal{X} be the image space, \mathcal{Y} be the class space. Given a set of
 1513 prompts \mathbb{P} , for any prompt weighting scheme S (cf. Eqs. (1)), define the representable likelihood set
 1514 \mathcal{F}_S as:*

$$1515 \quad 1516 \quad \mathcal{F}_S = \{f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_+ \mid \exists \mathbf{W} \in \mathcal{W}_S, \mathbb{P}, \text{ s.t. } f(\mathbf{x}, y_c) \propto \Pr(\mathbf{x}|y_c, \mathbf{W}, \mathbb{P})\},$$

1517 *where \mathcal{W}_S is the weight space under the scheme S . Let \mathcal{F}_{CI} and \mathcal{F}_{CS} be the representable likelihood
 1518 set induced from class-independent weighting and class-aware weighting (cf. equation 1) schemes.
 1519 Then, we have: $\exists f^* \in \mathcal{F}_{\text{CS}}$ such that $\forall f_{\text{CI}} \in \mathcal{F}_{\text{CI}}, \exists \mathbf{x} \in \mathcal{X}, y_c \in \mathcal{Y}$ where $f^*(\mathbf{x}, y_c) \neq f_{\text{CI}}(\mathbf{x}, y_c)$.*

1520 *Proof.* We prove this by constructing a specific function in \mathcal{F}_{CS} and showing it cannot be represented
 1521 by any function in \mathcal{F}_{CI} . For simplicity, we consider a **toy** setting with three classes $\mathcal{Y} = \{y_1, y_2, y_3\}$
 1522 and two prompts $\mathbb{P} = \{p_1, p_2\}$. For any $\mathbf{x} \in \mathcal{X}$, the function under class-aware weighting for
 1523 $\forall y_c \in \{y_1, y_2, y_3\}$ takes the form:

$$1524 \quad 1525 \quad f^*(\mathbf{x}, y_c) = \sum_{i=1}^{|\mathbb{P}|} w_{i,c} \Pr(\mathbf{x}|y_c, p_i) \\ 1526 \quad 1527 \quad = w_{1,c} \Pr(\mathbf{x}|y_c, p_1) + w_{2,c} \Pr(\mathbf{x}|y_c, p_2).$$

1528 *where $w_{i,j} \in \mathbb{R}_+$ are class-aware weights for prompt i and class j . For ease of notation, we denote
 1529 the prompt-conditional likelihood by $a_{i,c} \triangleq \Pr(\mathbf{x}|y_c, p_i)$. This way $f^* \in \mathcal{F}_{\text{CS}}$ can be expressed as*

$$1530 \quad 1531 \quad f^*(\mathbf{x}, y_1) = w_{1,1}a_{1,1} + w_{2,1}a_{2,1} \\ 1532 \quad 1533 \quad f^*(\mathbf{x}, y_2) = w_{1,2}a_{1,2} + w_{2,2}a_{2,2} \\ 1534 \quad 1535 \quad f^*(\mathbf{x}, y_3) = w_{1,3}a_{1,3} + w_{2,3}a_{2,3}$$

1536 We then consider a specific instance³ of this function by choosing:

$$1537 \quad 1538 \quad w_{1,1} = 2, \quad w_{2,1} = 1 \\ 1539 \quad 1540 \quad w_{1,2} = 1, \quad w_{2,2} = 2 \\ 1541 \quad 1542 \quad w_{1,3} = 3, \quad w_{2,3} = 3$$

1543 This leads to

$$1544 \quad 1545 \quad f^*(\mathbf{x}, y_1) = 2a_{1,1} + a_{2,1} \\ 1546 \quad 1547 \quad f^*(\mathbf{x}, y_2) = a_{1,2} + 2a_{2,2} \\ 1548 \quad 1549 \quad f^*(\mathbf{x}, y_3) = 3a_{1,3} + 3a_{2,3}$$

1550 Now, suppose for contradiction that $\exists f_{\text{CI}} \in \mathcal{F}_{\text{CI}}$ such that $f^* = f_{\text{CI}}$. By definition of \mathcal{F}_{CI} , f_{CI} takes
 1551 the form $f_{\text{CI}}(\mathbf{x}, y_c) = w_1 a_{1,c} + w_2 a_{2,c}$, where $w_1, w_2 \in \mathbb{R}_+$ are class-independent weights.

1552 If $f^* = f_{\text{CI}}$, then for all classes $y_c \in \{y_1, y_2, y_3\}$, we must have the following equations to hold
 1553 simultaneously:

$$1554 \quad 1555 \quad 2a_{1,1} + a_{2,1} = w_1 a_{1,1} + w_2 a_{2,1} \quad (\text{for } y_1) \\ 1556 \quad 1557 \quad a_{1,2} + 2a_{2,2} = w_1 a_{1,2} + w_2 a_{2,2} \quad (\text{for } y_2) \\ 1558 \quad 1559 \quad 3a_{1,3} + 3a_{2,3} = w_1 a_{1,3} + w_2 a_{2,3} \quad (\text{for } y_3)$$

1560 From these equations, we can deduce that

$$1561 \quad 1562 \quad w_1 = 2 \text{ and } w_2 = 1 \text{ must hold for any } a_{1,1}, a_{2,1} > 0 \quad (\text{for } y_1) \\ 1563 \quad 1564 \quad w_1 = 1 \text{ and } w_2 = 2 \text{ must hold for any } a_{1,2}, a_{2,2} > 0 \quad (\text{for } y_2) \\ 1565 \quad 1566 \quad w_1 = 3 \text{ and } w_2 = 3 \text{ must hold for any } a_{1,3}, a_{2,3} > 0 \quad (\text{for } y_3)$$

1567 Thus, we need $w_1 = 2$ for y_1 while $w_1 = 1$ for y_2 , immediately leading to a contradiction as w_1
 1568 cannot simultaneously equal 1 and 2.

1569 Therefore, no class-independent weighting scheme can represent the function f^* we constructed.
 1570 We have proven that $\exists f^* \in \mathcal{F}_{\text{CS}}$ such that $\forall f_{\text{CI}} \in \mathcal{F}_{\text{CI}}, \exists \mathbf{x} \in \mathcal{X}, y_c \in \mathcal{Y}$ where $f^*(\mathbf{x}, y_c) \neq$
 1571 $f_{\text{CI}}(\mathbf{x}, y_c)$. \square

1572 ³unnormalized weights, just for illustration

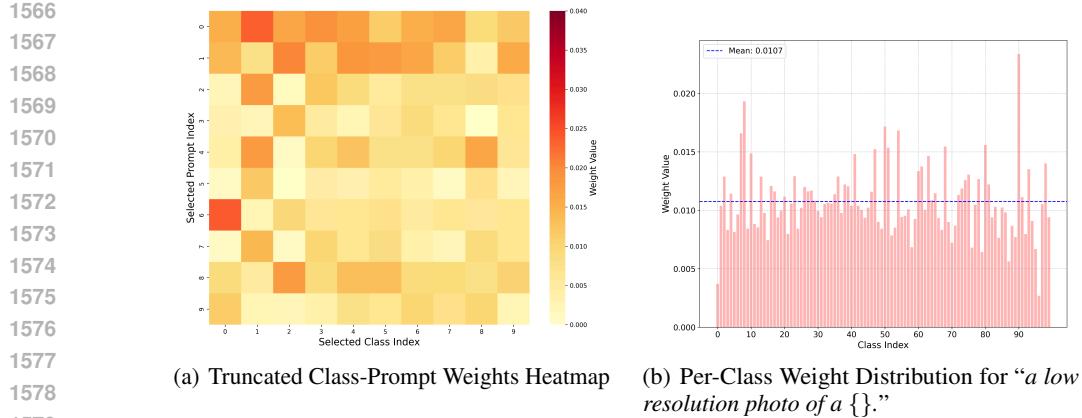


Figure 6: Visualization of the class-aware prompt weights estimated by CARPRT on the Caltech101 dataset. (a) The heatmap shows the prompt weights across a subset of classes and prompts, revealing diverse weight patterns and confirming class-specific preferences. (b) The bar plot displays the distribution of prompt weights assigned to the prompt “*a low resolution photo of a {}*” across all classes.

J ADDITIONAL VISUALIZATIONS OF PROMPT WEIGHTS

To provide qualitative insight into CARPRT’s mechanism, we first visualize the learned class-specific prompt weights on the *Caltech101* dataset. Figure 6(a) shows the *truncated* weight matrix for a subset of prompts ($n' < n$ columns) and classes ($C' < C$ rows) from the full matrix $\mathbf{W} \in \mathbb{R}^{n \times C}$, where clear differences in the weights assigned to the same prompt across different classes are evident. Figure 6(b) further illustrates this class-dependency by plotting the weights of a single prompt template—“*a low resolution photo of a {}*”—across all classes, demonstrating that the contribution of this prompt is tailored to each class. These visualizations corroborate our quantitative results, confirming that CARPRT prioritizes prompts differently for each class.

In addition, we include additional visualizations of the CARPRT-generated prompt weights across all ten fine-grained datasets in the supplementary material (due to file size, these figures are not embedded in the main PDF). Each visualization is presented as a heatmap, where the vertical axis corresponds to the prompt index and the horizontal axis to the class index.

These heatmaps consistently reveal the class-specific nature of the learned weights: the columns exhibit noticeable variation across prompts rather than remaining uniform, indicating that different prompts are emphasized for different classes. Moreover, for most fine-grained datasets, only a small subset of prompts receive high weights across classes, while the majority are down-weighted—this sparsity manifests visually as a few strong horizontal lines. This trend is particularly evident on Food101, where the semantic homogeneity of the dataset leads to more consistent prompt preferences across classes.

Nevertheless, even within Food101, the highest-weighted prompt still varies across classes, demonstrating that class-aware prompt weighting remains essential. These results collectively support the effectiveness of WPE (Allingham et al., 2023) in highlighting useful prompts for the dataset, while also confirming the necessity of CARPRT’s class-aware weighting to fully capture intra-dataset variation.

K USE OF LARGE LANGUAGE MODELS (LLMs)

In preparing this submission, we LLMs solely as writing aids to improve readability. Specifically, LLMs were employed to correct grammar errors and polish the text. No part of the scientific content—including problem formulation, method design, experiments, or analysis—is generated by LLMs. All technical contributions and claims were conceived, implemented, and evaluated by the authors.