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ABSTRACT

Pre-trained vision-language models (VLMs) enable zero-shot image classification
by computing the similarity score between an image and textual descriptions,
typically formed by inserting a class label (e.g., “cat”) into a prompt (e.g., “a photo
of a”). Existing studies have shown that the score between a given image-class pair
is highly sensitive to the choice of prompt, and they proposed a scheme using a
weighting vector to reassemble scores regarding different prompts. We observe
that these studies assign the same weighting vector across all classes, by implicitly
assuming the conditional independence of classes and weights, which, however,
often does not hold in practice. For instance, a prompt like “an aerial view of”” might
be apt for “airport” but ill-suited for “apple”. To address this, we propose class-
aware zero-shot prompt reweighting (CARPRT), a scoring scheme that adjusts the
weighting vector for each class by capturing the class-specific relevance of different
prompts in a training-free manner. For each class and every available prompt, it
first identifies the maximum image-text relevance score using that prompt-class pair
across the dataset. These maximum scores are then normalized to estimate class-
specific weights that reflect how effectively a prompt represents different semantic
labels. Evaluations on standard fine-grained image classification benchmarks show
that CARPRT outperforms existing class-independent reweighting, confirming that
modeling prompt-class dependency is crucial for effective zero-shot prediction and
even broader VLM-based application settings that rely on prompt ensembling.

1 INTRODUCTION

Vision-language models (VLMs) have transformed how machine learning models interpret visual
content by jointly leveraging visual and textual modalities. Models like CLIP (Radford et al., 2021)
and DeCLIP (Li et al.,[2022) enable zero-shot image classification by computing similarity scores
between image and textual descriptions of class labels, then predicting the label with the highest
score. By forming textual descriptions of labels (e.g., “a photo of a [label]”), this approach—known
as prompting—removes the need for task-specific training to recognize visual concepts.

However, these models’ zero-shot performance is sensitive to the precise wording of prompts, as
subtle phrasing changes can significantly alter the perceived relevance of visual features, leading to
different similarity scores and classification outcomes (Radford et al.,[2021). Identifying phrasings
that remain effective across diverse visual concepts is challenging and often yields inconsistent
results across datasets (Allingham et al., 2023). This sensitivity means that manually crafting optimal
prompts for each class or dataset, while helpful for performance, becomes laborious and unreliable
in large-scale settings. Recent work has explored using large language models (LLMs) to generate
richer class descriptions, but this introduces heavy computational overhead, reducing the efficiency
that makes zero-shot methods attractive in the first place.

This paper focuses on a more prevalent question: improving zero-shot classification when only
a fixed set of predefined prompts and unlabeled images are available at inference, which requires
methods that leverage only the inference data to optimize prompt utilization. A common strategy is
prompt ensembling, which averages embeddings of multiple prompts to produce more stable class
representations (Radford et al.,[2021). However, this approach assumes equal prompt contributions—a
simplification that harms downstream performance when semantically misaligned templates are
included. |Allingham et al.| (2023)) advanced this concept by automatically determining prompt-specific
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Figure 1: Empirical motivation for class-specific weighting on Flower102 (Nilsback & Zisserman, 2008).
We showcase the results of five classes by shifting from class-agnostic WPE to class-specific WPE (using
ground-truth labels), and the estimated optimal weights under two weighting schemes, confirming that optimal
prompt weights are class-dependent.

weights using unlabeled data, depending on how compatible each prompt is with the downstream task.
This method achieves results comparable to manually selected templates. Still, while such methods
vary weights across prompts, they assign the same weight across all classes to each prompt.

We argue that this class-agnostic reweighting is suboptimal. Intuitively, different semantic classes
vary in their affinity to different prompts. For example, a prompt like “This is a photo of a [label],
a type of fruit” is more relevant to class “strawberry,” but ill-suited for class “lamb”, which would
better match “This is a photo of a [label], a type of animal” instead. This implies that optimal prompt
utilization may require class-specific considerations. To validate this intuition, we conduct controlled
proof-of-concept experiments on the Flower102 dataset (Nilsback & Zisserman| 2008) (Figure[T). By
applying Weighted Prompt Ensembling (WPE) (Allingham et al., 2023) independently to images of
each class (thus simulating “perfect” class-specific knowledge for weight estimation), we observe
consistent accuracy gains compared to global WPE that estimates a single set of class-agnostic
weights (Figure @.' Moreover, the optimal prompt weights vary substantially across classe
(Figure[T(b)), rather than being globally shared.

We further study this observation theoretically and present a probabilistic framework (Section[3) to
clarify the underlying mechanism of prompt ensembling. We show that class-agnostic weighting
schemes, such as WPE, indeed implicitly assume conditional independence between the class label
and the prompt weights given an image. This assumption, however, may not always reflect real-world
data characteristics and limit the expressivity of such weighting schemes as a result.

Building on these insights, we introduce Class-Aware Zero-shot Prompt ReweighTing (CARPRT), a
training-free method to infer class-specific prompt weights using only unlabeled images. Unlike our
controlled proof-of-concept experiment, CARPRT does not require ground-truth labels for weight
estimation. Instead (Section E[), for each image, CARPRT first calculates similarity scores against all
possible prompt-class combinations using a pre-trained VLM (e.g., CLIP (Radford et al., [2021)). It
then assigns a pseudo-class label to the image based on the combination yielding the highest score.
These pseudo-labels are then used to aggregate information for class-specific weight derivation: for
each class, the weight for a given prompt is determined by the maximum similarity that prompt
achieves in conjunction with that (pseudo-)class across the reference images. This simple yet effective
scheme helps tailor the prompt ensemble to the unique semantic content of each category.

We empirically evaluate CARPRT on ten fine-grained zero-shot classification benchmarks (Section 5),
ImageNet (Russakovsky et al., 2015) (and its variants), and explore its utility in broader VLM-
based adaptation scenarios such as prompt tuning (Appendix [G). Our results show that CARPRT
consistently outperforms existing prompt ensembling/reweighting schemes across VLM architectures
and backbones, highlighting that incorporating class-awareness is an essential and promising way to
maximize the potential of prompt ensembling for zero-shot classification, with potential benefits for a
wide range of VLM applications.

!The prompt templates denoted in Figure [1(b)|are: P1 = “a photo of a , a type of flower.”, P2 = “satellite
photo of ., P3 = “a close-up photo of the .”, P4 = “a drawing of a .”
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2 PROBLEM SETTING AND RELATED WORK

Zero-Shot Prediction with VLM. VLMs such as CLIP (Radford et al., |2021)) achieve visual-text
alignment through large-scale contrastive pre-training. It consists of an image encoder f : X — Z
and a text encoder g : 7 — Z, mapping images from space X" and texts from space ) into a shared
embedding space Z. The alignment is driven by maximizing the cosine similarity between the
embeddings of matched image-text pairs while minimizing it for non-matched pairs.

This alignment enables zero-shot image classification. For a set of C classes Y = {y1,...,yc},
each class y. is mapped to a text description ¢, via a prompt template p : ) — T, such as t. =“A
photo of {y.}”. The text encoder g(-) then produces class embeddings 2T = [z 27 -+ 2f]T
where zI' = g(t.) for c € {1,...,C}. Given an image = € X with its embedding 2! = f(zx), the
predicted class is given by § = argmax.cy1,... ¢} sim (zI, z?) i.e., one whose text embedding z!
has the highest cosine similarity with z!. This allows for zero-shot classification based on semantic
alignment without task-specific fine-tuning. Yet, the classification performance is highly sensitive to

the choice of prompt template p. An ill-suited template can lead to misaligned class embeddings.

This work focuses on mitigating this sensitivity by ensembling multiple predefined templates P =
{p1,...,pn} particularly when P is fixed, without relying on additional labeled data. That is, in the
zero-shot classification setting, we consider the following proble

Problem 1 (Prompt Ensembling). Given a pre-trained VLM with an image encoder f and a text
encoder g, a label space ) with C classes, a fixed prompt template set P with |P| = n, and an

unlabeled image dataset D = {xy,...,x,}, construct the class embeddings z1 using a prompt
weight matrix W € R™*C where each row W, = [W1 ey .. Wno] | refers to weights of n prompts
for class y. € Y, subject to w; . > 0and Y., w; . = 1. The text embeddings for class y. are thus
T T T T
zZj Zi1 *21 T Rpi w11 W12 o Wi,0
S 1 IR R N K ISR I M
T n T T T
Zc 1,0 *20 7 Fac Wn,1 Wn,2 - WnC

where z}:c = g(pi(yc)) is the text embedding for class y. under prompt p;. The objective is then to

find the set of all such weight vectors W = {W .}<_, that would (ideally) minimize the empirical
zero-shot classification error over the unlabeled dataset D, i.e., correctly predict the (unknown)
ground-truth label y; by §); for each x; € ID.

Existing prompt ensembling schemes can be viewed as constrained versions of the general formulation
in Problem [T} differing primarily in how they determine the prompt weights W.

Mean Prompt Ensembling (MPE) as a Solution. The most straightforward approach, MPE (Rad
ford et al., 2021, averages text embeddings from multiple prompts, equivalently setting w; . = 1 for
all prompts p; and classes y, in equation [I] such that W reduces to an all-ones matrix. MPE seeks to
improve robustness over single-prompt usage by diversifying textual inputs. Yet, treating all prompts
equally can impair the efficacy if P is semantically misaligned with the downstream task ID.

Weighted Prompt Ensembling (WPE) as a Solution. To mitigate the impact of task-irrelevant
prompts, WPE (Allingham et al.,|2023) (originally termed ZPE) extends MPE by assigning data-
driven weights to the prompts. WPE assesses whether a prompt p; yields generally high similarity
scores over all classes with samples of D, and up-weights more relevant ones. Each prompt p; is

assigned a weight via w;, = - St maXee 1,0} sim(zj, z,), which, after normalization, is
applied uniformly across classes w; 1 = w; 2 = - -+ = w; ¢. While WPE can down-weight unhelpful

prompts, it still assumes: a prompt deemed useful (or not) is considered so for all classes equally.

Can We Bridge the Gap? As Figure[I|shows, a prompt’s efficacy often depends on the specific
class it describes. Both MPE and WPE largely neglect this class-prompt interaction, nor attempt
to understand why class specificity is necessary to determine prompt relevance and how statistical
tools help to address it. To bridge this gap, we next present a probabilistic framework, establishing a
principled connection between class-aware prompt reweighting and zero-shot classification.

We note that there are some VLM adaptation settings, e.g., prompt tuning (Zhou et al.,2022a:b), which are
not the focus of this work. To clarify, Appendix E] details the relationship between ProblemE] and other settings.
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3 UNDERSTANDING PROMPT REWEIGHTING: A PROBABILISTIC VIEWPOINT

Zero-shot classification with VLMs can be framed as estimating the conditional probability
Pr(y*|=*,P,D) of a label y* given a query image x*, a set of prompts [P, and an unlabeled dataset .
To understand how prompt reweighting influences this process, we develop a probabilistic framework
that reveals why class-aware reweighting is necessary.

Let W € W be a weight matrix. We begin by marginalizing over the weight space WV as

Pr(y*|m*,IP’,ID)):/ Pr(y*|=*,P,D, W) Pr(W|z*,P,D)dW, 2)
w

where Pr(W|z*, P, D) can further simplify to l)l'( [P, D), since in zero-shot settings, W is deter-
mined before access to the new query image «*. This decomposition suggests two essential tasks
in zero-shot classification: (i) modeling prompt Welghts Pr(W/P,D) and (ii) making aggregated
predictions Pr( y*lz*, P, D, W) weighted by Pr(W|P, As such, we will continue to explore how
further expansions can mform and align with practical zmplementanons

Modeling Weight Pr(W|P. D). Using Bayes’ theorem and considering m i.i.d. samples x; € D,
Pr(W|P,D) x Pr(W|P) Pr(D|W,P) = Pr(W|P) Hm . Pr(z;|W,P), 3)
]:

where Pr(W/|P) is the prior over weights (details are deferred to Appendix [H) and the data (image)
likelihood Pr(z;|W,P) is obtained by marginalizing over classes y. € ) further:

Pr(x;|W,P) = Zycey Pr(z;|y., W, P) , @)

which describes how it depends on class priors and class-conditional likelihood.

Modeling . For zero-shot classification where D is large enough, the class
prior Pr(y.|W,P) can be estimated from pseudo-labels (i.e., predictions from a pre-trained VLM).

Proposition 1. Let D = {x;}" be an unlabeled dataset with unobserved classes ) = {ye}S,,
and Pr(y.) be the true class probability for class y.. As m grows, the empirical class distribution
15\r(yc W, P) from pseudo-labels converges to Pr(y.) with exponentially decreasing error probability.
Specifically, for any € > 0, we have: Pr{|f’;(yc|w,]}”) — Pr(ye)| > €} < 2exp(—2me?). This
implies that we can approximate true distributions by

n

e Yy, , 5
Zyc/eyncl’ ve € ®

wheren, = > " 14,=y. counts the images pseudo-labeled as class y. over all samples in D.

j=1

Modeling Likelihood Pr(z|y., W.I?). Given that images x; often lie in high-dimensional spaces,

directly modeling the class- cond1t10na1 likelihood can be challenging. We therefore adopt Energy-

based Models (EBMs) (LeCun et al., |2006) that excel at modeling high-dimensional distributions

by deﬁnlng an unnormalized energy function, normalized by a partition function. Interpreting
I

s1m(zj , 1) as the negative energy (lower energy means more likely), we have

Pr(z;|yc, W,P) = ) exp {sim(z], 2, )} , (6)

1
Z(yC7 W7 ]P)
where z; = f(z;) is the image embedding, 2T = g(pi(y.)) is weighted text embedding for class y.

using W, (from W). While the partition function Z(y., W,P) = [, exp(sim(z, z}))dx makes
exact computation intractable, for classification we only need relatlve likelihoods of dlfferent classes.

I

Lemma 1 (Relative Likelihood). Assume sim(a,b) = a'b (for lo-normalized embeddings), then:

n

Pr(x;|y., W,P) x exp {sim zj, 2, } X exp {Z(w” zEC)T . zI} . @)

i=1
This proportion relationship shows that class-specific Weights Wi (for c € {1,...,C}) indeed
determine the influence of each prompt p; (via its embedding =z}, ) on the likelihood for class y..
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Why Class-Specific Weighting Matters. It is easy to check that Lemma |l| (proof in Appendix
aligns with the most general form of prompt ensembling (equation [I). Crucially, class-agnostic
weighting (i.e., independent) schemes, such as WPE, deviate from this form by unnecessarily imposing
shared w; . for all classes y., which fundamentally limits model expressivity.

Proposition 2. Let X be the image space and ) be the class space. Given prompt set P, for any
prompt reweighting scheme S, define the representable likelihood set Fg as:

fsz{f»cxy—n& IW e Ws, P, st flz,y.) Pr(w\yc,W,]P’)},

where Wy is the weight space under scheme S. Let Fc; and Fcs be the representable likelihood sets
induced from class-independent weighting (i.e., WPE) and class-specific weighting (cf. equation![]))
schemes, respectively. Then, we have: 3f* € Feg such that V for € Fei,3x € X, y. € Y where
f*(x,ye) # for(x,ye). That is, Fey is a strict subset of Fcs.

Remark 1. Proposition[2|formally states that class-specific weighting allows for capturing a richer
set of image-text relationships than class-agnostic ones. To maximize potential expressivity, prompt
weights w; . must be class-specific to ensure that each class benefits from the most relevant prompts.

Modeling Predictive Probability Pr(y*|x*, [P, D, W). We now come to predicting the label .
for the query image x.. As zero-shot classification is training-free, a practical way is to approximate

full Pr(y*|x*, P, D, W) with Pr(y*|x*, P, W), where W is a point estimate derived from unlabeled
data D, per our discussion in equation [5|and equation[7] By considering each prompt p; € P, we have

_ — ex P o(wiezl )T 2l
PI‘(Z/*|JE*,P,W) _ Z Pr(y*\az*,pi,W) o p (Zz_l( nz,c z,c) . *)T < ®)
pi€P cel,...C exp (Zi:l(wivcl zi7c’) : Z*)

By now, we have framed VLM-based zero-shot classification in a probabilistic framework (equation2)),
justified class-aware prompt reweighting (Propositions[I|and [2), and interpreted how class prediction
for a query image can be performed (equation [8) under this understanding.

4 CLASS-AWARE PROMPT REWEIGHTING FOR VLMS

Guided by the probabilistic principles from Section 3] we next introduce CARPRT, a minimalistic
training-free method designed to compute class-specific weights for prompt ensembling in VLMs.

Overview. Given an unlabeled dataset D = {x;}"* |, an unknown class space Y = {y1,...,yc},
a fixed prompt set P = {p;}"_,, and a pre-trained VLM, CARPRT aims to find the optimal weight
matrix W* € R"*C where each column W3 = (W] oy w;,c]—r denotes the relative importance

of different prompts for a particular class y. and specifies the contribution of each prompt p; to the
class representation, as with Problem (I} Recall the key insight driving CARPRT is that optimal
prompt weights should reflect the semantic alignment between prompts and class concepts. As
depicted in Figure 2l CARPRT implements this insight through two steps: Score Calculation and
Weight Calculation (the algorithmic outline can be found in Appendix |D|due to page limit).

Stage 1: Prompt Relevance Score Calculation. Egs. (3|and ) suggest that estimating weight
distribution Pr(W P, D) hinges on the individual data likelihood Pr(z;|y., W,P). As Lemmall|
established, Pr(z;|y., W,P) is proportional to the VLM’s similarity score, which is thus leveraged
by CARPRT to compute raw similarity scores between all image embeddings and all prompt-derived
class embeddings. For an image «; € ID, a prompt template p; € IP, and class y. € ), the relevance
score s; ;  is:

Sjiec = sim(z;, ch)a 9)
where z} = f(z;) is the image embedding and 2", = g(p;(y.)) is the text embedding for class y.
under prompt p;. This yields a score tensor, wherein each entry s, ; . is an unnormalized estimate of
Pr(x;|y., W, P). The score tensor captures the semantic compatibility among all images ID, prompts
P, and classes )/, providing the foundation for reweighting prompt-template combinations.
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Figure 2: The CARPRT pipeline. First, the text encoder g and image encoder f yield textual class embeddings
(from C classes and n prompts) and image embeddings (from m unlabeled images). Then, compute the score
tensor from image-text embedding similarities, each entry s; ; . measures the relevance between the ¢-th prompt
and the j-th image for the c-th class. Extract pseudo-labels from the score tensor, and derive the class-aware
prompt reweighting matrix W, which assigns class-specific weights for each prompt based on the scores.

Stage 2: Class-Specific Weight Calculation. The second stage transforms unnormalized similarity
scores into normalized class-specific prompt weights through a process that mirrors our probabilistic
analysis in Section |3] By empirically quantifying each prompt’s relevance to specific classes, the
resulting weights ensure that prompts primarily contribute to the aggregated representation of their
most semantically aligned classes.

First, we create a pseudo-label set Y= {9537 i 1 i—1 by identifying, for each image-prompt pair, the
class with the highest similarity score §; ; = arg max,, ey S;,.. Then, we calculate intermediate
weight wg’c for each prompt-class pair by aggregating the scores s; ; . across all images x; predicted
to class y. under prompt p;. This can be expressed as:

S il
' j=154,4,cLg;,i=y.
W —

i,c m

Zj:l ]ll?j,i=yc
Here, 15, .=, is the indicator function. equation mlmplements the empirical estimate of class prior.
w; . reflects the average strength of association prompt p; shows for class y. across D, when p; itself
identifies y. as the best match. Finally, these intermediate weights are normalized via

(10)

\ exp (wj ./T)
Wi = =m / . (11
ST exp (u/7)

The temperature 7 controls the sharpness of the distribution. This normalization ensures weights
sum to one for each class, preserving their probabilistic validity. By constructing w; , in this way,
we integrate empirical class distributions into the reweighting scheme, ensuring that w; . reflects
both the relevance scores (equation ) and the estimated class priors (equation [5), thus providing a
principled inference time approach to achieve class-aware prompt reweighting.

(Optional): Iterative Refinement.. While the single-pass pipeline described above forms the core
of our approach, CARPRT can naturally be extended to refine both pseudo-labels and weights, by
following the procedure iteratively: (i). Use current weight estimates to combien predictions from
all prompts into refined pseudo-labels; (ii). Update class-specific weights based on these refined
pseudo-labels. Importantly, this refinement procedure is gradient-free and thus does not access
to ground-truth labels. This alternating refinement process allows CARPRT to sharpen its weight
estimates as pseudo-label quality improves. Full details are in Appendix

5 EXPERIMENTS

We evaluate how CARPRT performs on zero-shot classification with ten fine-grained benchmarks,
compared to existing prompt ensembling methods. Our investigation centers on three questions:
(RQ1) Does class-aware prompt reweighting outperform class-agnostic ones; if so, does it generalize
across different VLM architectures and backbones? (RQ2) What factors contribute to CARPRT’s
effectiveness? (RQ3) Can CARPRT’s benefit extend beyond zero-shot classification?
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Table 1: Accuracy (%) comparison between baselines and our method % on various fine-grained classification
datasets using CLIP and DeCLIP backbones. Bold values indicate the highest accuracy, while underlined values
represent the second highest in each column. “Human Selection” uses handcrafted prompts recommended by
CLIP authors and introduces external knowledge. Results are not directly comparable to automated methods.
Caltech101 DTD  EuroSAT Aircraft Foodl01 Flowerl02  Pets Cars SUN397 UCFI101 ImageNet Average

CLIP-ViT-B/16
MPE 92.50 46.88 51.86 21.49 85.34 64.21 79.46  65.21 64.92 67.41 67.59 64.26
Majority Vote 93.10 46.75 52.07 22.93 85.60 67.20 81.27 64.93 65.75 68.30 67.98 65.08
WPE 93.09 47.04 49.60 23.28 86.14 66.60 82.38 65.93 65.77 68.33 68.28 65.13
CARPRT (Ours) 94.16 48.90 55.56 24.49 86.31 71.36 89.13 66.14 66.93 70.41 68.59 67.45
Human Selection 92.94 44.39 47.60 24.72 86.06 71.23 88.91 65.32 62.50 66.75 68.31 65.34
CLIP-ResNet50
MPE 86.41 41.69 30.34 16.05 75.53 56.95 7598 55.74 59.32 60.06 59.12 56.11
Majority Vote 86.79 42.14 28.86 16.29 76.00 60.06 7729 56.01 60.40 60.87 59.24 56.72
WPE 86.65 40.89 30.65 16.11 76.15 58.82 78.43  56.02 59.71 61.53 59.78 56.79
CARPRT (Ours) 88.46 41.31 36.84 16.88 76.88 65.56 85.69 56.44 61.28 63.66 59.98 59.36
Human Selection 86.29 40.32 29.56 17.28 75.31 66.14 85.77 55.61 58.52 61.46 59.71 57.82
DeCLIP-ViT-B/32
MPE 94.04 41.63 28.05 7.10 71.71 77.76 76.75 5222 62.08 57.87 67.01 57.84
Majority Vote 94.26 40.29 27.68 7.70 72.34 78.19 77775 51.87 62.86 58.20 67.24 58.03
WPE 94.08 40.97 27.92 7.54 73.15 81.32 80.92 5221 63.23 5891 67.97 58.93
CARPRT (Ours) 94.37 43.31 33.14 8.76 74.15 82.42 83.28 52.23 64.12 59.57 68.08 60.31
Human Selection 93.97 42.55 30.07 9.05 73.59 83.41 83.14 50.77 63.14 58.70 67.85 59.66

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate on eleven classification benchmarks spanning diverse visual domains: Cal-
tech101, DTD, EuroSAT, Aircraft, Food101, Flowers102, Pets, Cars, Sun397, UCF101 and ImageNet
(details in Appendix [C.I)). We follow the evaluation protocol established by (Zhou et al.| 2022b).

Models and Prompts. We test CARPRT with three configurations: CLIP (Radford et al.,|2021)) with
ViT-B/16 and ResNet50 backbones, and DeCLIP (Li et al., 2022) with the ViT-B/32, to validate if
CARPRT generalizes across both CNN-based (He et al., 2016) and transformer-based (Dosovitskiy:
et al.} 2021) backbones, and different VLM architectures. For all experiments, we use the same fixed
set of 247 prompt templates from (Allingham et al.| |2023) to ensure fair comparisons.

Baselines. We compare CARPRT against three automated PE baselines: (1) MPE (Radford et al.}
2021): Uniformly averages embeddings from all prompts. (2) Majority Vote (Allingham et al.|
2023): Final prediction is based on the most frequent class predicted by individual prompts. (3)
WPE (Allingham et al.| 2023): Estimates a class-agnostic set of prompt weights from unlabeled test
data. As an upper-bound reference, we also report “Human Selection” which uses a subset of prompts
manually filtered for each dataset by human experts. This helps to benchmark automated methods
against careful prompt engineering. See Appendix [C.2]for details.

Implementation. We follow the publicly available code of baselines, with two adjustments noted.
We use a smaller batch size for weight estimation due to resource limitations, and we omit its original
frequency normalization step, which requires the external LAION-400M dataset (Schuhmann et al.,
2021, since this step is not the focus of this study (See Appendix [G.6|for the analysis of the impact).
Moreover, this omission ensures all methods align with our problem setting of using only unlabeled
test data without external resources, for fair comparison. Details and code are in Appendix

5.2 RESULTS OF ZERO-SHOT CLASSIFICATION

Overall Comparison. Table[T|shows that CARPRT consistently achieves the best accuracy across
both fine-grained benchmarks and large-scale real-world datasets, such as ImageNet (with further
evaluations on its variants provided in Appendix [G.2). Gains are pronounced on datasets like
Flower102 and Pets, highlighting the substantial impact of class-specific prompt relevance. Notably,
CARPRT also surpasses Human Selection, where task-relevant prompts are manually filtered. This
confirms that capturing class-specific weights can effectively compensate for irrelevant prompts in
generic prompt pools and potentially outperform dataset-specific manual prompt engineering.

Generalization Across Architectures. CARPRT’s performance benefits are consistent and robust
across different VLM architectures and backbones. With CLIP-ResNet50, despite its lower capacity
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than ViT-B/16, CARPRT still achieves clear and measurable gains. When applied to DeCLIP-ViT-
B/32, which adopts a distinct pre-training strategy, CARPRT likewise maintains its strong lead.
Overall, performance across diverse model configurations suggests that CARPRT can effectively
capture semantic relationships, rather than exploiting a particular setup.

Dataset-Specific Patterns. The extent of CARPRT’s improvement varies by dataset, showing
arger gains on datasets with well-separated semantic categories (e.g., Flowers102, Pets). On highly
specialized domains like Aircraft, the gains are modest, likely due to (i) the quality of the initial
pseudo-labels generated by base VLMs, which impact both WPE and CARPRT. (ii) the suitability of
generic prompt pool for highly specialized visual distinctions. Nonetheless, CARPRT consistently
improves performance, highlighting the broad value of class-specific weighting.

5.3 ABLATION STUDY AND HYPERPARAMETER ANALYSIS

Role of Class-specific Weights. To isolate the
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to “CARPRT-Uniform”. This variant first com- 1009 W Class-Aware 11 5g0

putes CARPRT’s class-specific weights, then av- Hriefm oo gapt

erages them across classes to yield a global

wy = &3 w;. for each prompt p;. This PO

variant retains CARPRT’s prompt scoring mech-

anism but discards class-level adaptation (it still 2.51%

differs from WPE; see Appendix [G.I). As Fig- D

ure [3] shows,’ CARPRT consistently qutperforms %O S

CARPRT-Uniform, with an average gain of 2.39%. © @@5’ o Q}x@c}‘” QOO&;(\ &0 9y
@)

@
S
8

7.00%
Y +0.550+2.009¢ 2:38%

Accuracy (%)
8§ 8
X X

%
+

N
]
8

Considerable improvements on datasets like Pets
and Flowers102 affirm that tailoring prompt Figure 3: Accuracy gains of CARPRT over
weights to individual classes is key to performance. CARPRT-Uniform.
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5.4 EXTENDED EVALUATIONS AND CLASS-SPECIFIC WEIGHT VISUALIZATIONS

We explore CARPRT’s versatility further with additional experiments (detailed in Appendix [E[HIG).

CARPRT Is Robust Under Distribution Shifts We further examine whether prompt weights learned
on ImageNet can transfer to its variants (ImageNet-R, -A, -Sketch, -V2). Results show that CARPRT
maintains strong performance even uder these shifts, confirming the transferability of its weights and
their robustness beyond the original dataset (Appendix [G.3).

Refined Pseudo-Labels and Weight Estimation. CARPRT’s performance gains vary by dataset,
partly due to the quality of initial pseudo-labels from the base VLM. With iterative refinement,
CARPRT yields steady accuracy gains by leveraging increasingly accurate class information.

Does Prompt Quality Matter? While CARPRT is designed for generic prompt pools, it could
further benefit from higher-quality, potentially domain-specific prompt templates. Preliminary tests
with LLM-generated prompts showed improved CARPRT performance compared to using only
dataset-agnostic templates from (Allingham et al.l 2023) (Appendix [G.5), suggesting that CARPRT
effectively leverages the information in any given prompt set. While it is difficult to evaluate the
“prompt quality”, we argue that investing in careful prompt engineering is likely to be beneficial.
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Figure 5: Visualization of class-specific prompt weights on Caltech101. For dalmatian and pizza, CARPRT
assigns high weights to class-relevant prompts while suppressing irrelevant ones.

CARPRT as a General-Purpose Plug-In. We lastly show CARPRT’s versatility as a component
to enhance various VLM adaptation settings: (i) with test-time adaptation (Karmanov et al.} [2024),
CARPRT offers improved weight initialization (Appendix [FI); (ii) with image-feature focused
zero-shot methods (Qian et al., 2024a), CARPRT enhances pseudo-labels for visual proxy learning
(Appendix [F3); (iii) with soft prompt tuning (Lu et all, 2022)), class-aware reweighting of learned
prompt can boost performance further (Appendix [F.2); (iv) with LLM-empowered prompt augmenta-
tion (Shtedritski et al, 2023} Mirza et al} 2024)), the utility of high-quality generated prompts can
still be improved via class-aware reweighting (Appendix [F4). All these results confirm CARPRT’s
flexibility as a general-purpose plug-in for broader VLM adaptation scenarios.

Visualization of Class-Specific Prompt Weights. To provide qualitative insight into CARPRT’s
mechanism, we visualize class-specific prompt weights on Caltech101. Figure 5] shows the weights
estimated by CARPRT for two representative classes, dalmatian and pizza. For dalmatian, CARPRT
assigns higher weights to prompts with relevant semantics such as example, pet, and photo, while
suppressing unrelated ones like aerial, visiting, or number. Similarly, for pizza, prompts highlight-
ing food-related context (e.g., food, photo, rendering) are prioritized, whereas mismatched terms
(e.g., sign, movie, itap) are down-weighted. These visualizations support our quantitative results,
confirming that CARPRT prioritizes prompts differently for each class. See Appendix [J]for additional
visualizations on other datasets.

6 DISCUSSION AND FUTURE OUTLOOK

Broader Related Works. The performance of VLM adaptation in downstream classification tasks
is relevant to the text prompt, motivating research on improving prompt effectiveness in different
directions. Prompt tuning (Zhou et al,[2022b} [Khattak et al.l 2023a)) optimizes task-specific soft
prompts through training, but departing from zero-shot settings. Unsupervised transfer learning
methods (Qian et al, 2024a)) aim to bridge domain gaps between visual and textual embeddings
without labels; they do not focus on combining multiple prompts. Augmentation-based weighting
instead relies on large-scale data augmentation, such as using LLMs to generate task-specific prompts
or building partial image views, then assigning weights to augmented prompts or views
2024} [Li et al} [2024); while powerful, they necessitate the availability of external computing resources.
In contrast, CARPRT explicitly addresses the setting of prompt ensembling with a fixed, potentially
task-irrelevant prompt pool. It is entirely training-free, relies on neither label supervision nor LLM-
generated prompts, and focuses on reweighting existing prompts to capture class-specific relevance.
This makes CARPRT orthogonal to the above directions, while also complementary to them, offering
a unique perspective on VLM adaptation. We discuss these related works in detail in Appendix [A]

Summary. This study focused on prompt ensembling and confirmed that class-aware prompt
reweighting is not only beneficial but essential for improving the efficacy of VLMs across a variety
of downstream classification tasks. By moving beyond uniform weighting, we showed that adapting
weights to better reflect the class-specific characteristics leads to measurable gains in performance.
We hope this study encourages further exploration of integrating class-awareness with other VLM
adaptation techniques to enhance across a wider range of applications.
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A DETAILED DISCUSSION ON RELATED WORKS

Prompt tuning methods. Prompt tuning adapts a pre-trained model by introducing learnable
embeddings, known as prompt tokens, at the input stage. These tokens can be either text prompts
or visual prompts, enabling flexible adjustments to the model’s input interface to better address
specific tasks. CoOp was the first to apply prompt tuning in CLIP, optimizing learnable prompts
within its textual branch for few-shot image recognition (Zhou et al., |2022b)). Addressing CoOp’s
limitations, CoCoOp introduces conditionally generated prompts based on visual features to enhance
generalization performance (Zhou et al.l 2022a). Further, MaPLe advances a multi-modal approach,
applying prompt tuning simultaneously within the vision and textual branches to facilitate better
transfer capabilities (Khattak et al.,|2023a). Building upon MaPle, PromptSRC employs a strategy
that enhances textual prompt learning by utilizing descriptive text generated by large language models
(LLMs), such as GPT-4 (Khattak et al.,|2023b). However, this approach requires updating learnable
input variables in the text or image inputs, leading to additional computational resources and labeled
downstream data, even if only few-shot data is used. Since our problem setting differs from that of
tuning methods, we do not include such approaches as baselines in our experiments with CARPRT.

Unsupervised Transfer Learning Method for VLMs. Unsupervised transfer learning for VLMs
focuses on adapting pre-trained VLMs, e.g., CLIP, to downstream tasks without using ground-truth
labels. Existing research has developed along two methodological directions.

The first approach, exemplified by methods like Zero-Shot Prompt Engineering (WPE), focuses on
automatically reweighting different prompts from a provided prompt template pool. This method
assigns weights to individual templates based on their relevance to a specific dataset, providing a
way to identify which prompts are most important for the model’s performance (Allingham et al.,
2023)). By automating this process, WPE enhances interpretability, allowing users to understand the
influence of different prompts on model behavior.

The second direction leverages transductive learning techniques such as InMaP (Qian et al., 2024a)),
relying solely on image features to construct the classifier. These methods typically achieve higher
accuracy by exploiting the visual features in unlabeled data. However, they sacrifice interpretability,
as the model’s decisions are driven by image features without providing insights into which specific
prompts influence the output. While these methods often outperform the first ones in terms of
accuracy, they do not offer the same transparency.

Our work follows the first approach, focusing on interpretability while achieving better accuracy than
traditional zero-shot methods. Additionally, the pseudo-labels generated by our method can enhance
performance when applied to the second learning frameworks like InMaP. The detailed results are
shown in Appendix [F3]

View-aware weighting approaches. These methods adapt VLMs by leveraging multiple aug-
mented visual or textual views and assigning weights to them based on confidence or alignment.
WCA focuses on local visual prompting: it aggregates similarities between cropped image regions
and fine-grained textual descriptions through a weighted pooling mechanism (Li et al.,2024). AWT
instead introduces diverse augmented images together with LLM-generated prompts, and computes
weights across these views before applying optimal transport for cross-modal alignment (Zhu et al.,
2024). Both approaches improve zero-shot transfer by enriching sample-level evidence but rely
on external resources (e.g., LLMs) or costly augmentations at inference. In contrast, CARPRT
derives class-specific weights directly from image—text similarity scores within a fixed prompt pool,
without external models or augmentations, resulting in much lower inference cost while remaining
complementary to these methods.

Test-time Adaptation. The test-time adaptation (TTA) problem aims to adapt models to testing
downstream data (Ganin et al., 2016} |Long et al.| 2015} |Zhang et al.,[2022)). TTA methods can be
divided into two types: the training-based method and the training-free method. Training-based
methods typically involve updating model weights or fine-tuning prompts based on test data (Zhang
et al.| [2022)). TTA methods, such as TENT, adapt models by optimizing for test-time objectives
like entropy minimization, adjusting the model’s batch normalization statistics to align with the
test distribution (Wang et al.,|2021)). CoTTA have explored contrastive learning to preserve feature
space alignment, making TTA effective for CLIP-like models (Chen et al., [2022). TPT addresses
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the challenge in vision-language models by fine-tuning a learnable prompt for each individual test
sample (Shu et al., 2022). DiffTPT extends this approach by utilizing pre-trained diffusion models
to increase the diversity of test data samples used in TPT, enhancing the effectiveness of test-time
prompt tuning (Feng et al., [2023).

On the other hand, non-training methods rely on adjusting normalization statistics or augmenting
test samples without changing model parameters (Li et al.l 2016} [Karmanov et al.,[2024). Since the
problem setting of non-training TTA methods, which only require unlabeled test data and do not
involve additional training, aligns with the CARPRT setup, we analyze the non-training TTA methods
in comparison to CARPRT in Appendix [F1]

B DIFFERENT PROBLEM SETUP FOR VLMS ADAPTATION

Prompt ensembling, as formalized in Problem ] targets a strictly zero-shot inference setting where
the only available resources are a fixed prompt template set P and an unlabeled test set D. No
learnable parameters, task-specific fine-tuning, or external supervision are permitted. This setting is
entirely inference-time, model-free, and tuning-free.

In contrast, other VLM adaptation paradigms operate under more relaxed assumptions, either by
enabling trainable components, leveraging supervision, or utilizing additional knowledge sources.
We outline the key differences as follows:

Prompt Tuning relaxes the “no training” constraint by introducing learnable prompt tokens, typically
optimized using downstream supervision. Formally, the prompt becomes a learnable function py(y.)
with parameters 6, where 6 is optimized on labeled data {(x;, y;)}. CoOp Zhou et al.{(2022b) learns
a global soft prompt, while CoCoOp Zhou et al.|(2022a) further conditions it on image embeddings
f(z) to improve generalization. These methods trade interpretability for adaptability and require
supervision at training time.

LLM-Generated Descriptions expand the prompt space P using external generative models. Rather
than fixing P a priori, a large language model g v generates class descriptions p;(y.) = grm(Ye)
that are often more expressive and context-aware Menon & Vondrick|(2023a). While such prompts
can improve alignment, this introduces non-negligible computational overhead and reduces repro-
ducibility, especially when prompts are generated on-the-fly.

Image-Centric Adaptation bypasses prompt usage entirely by constructing classifiers purely from
image features. Methods like InMaP |Qian et al.| (2024b) rely on clustering method to construct a
label assignment function h : X — ) without accessing any textual information. These methods
often outperform prompt-based approaches in raw accuracy but offer limited interpretability and are
incompatible with text-conditioned decision-making.

CARPRT operates strictly within the constraints of Problem 1. Unlike the above paradigms, it does
not rely on any learnable components, LLM-generated text, or image-only inference. Instead, it
focuses on exploiting the class-specific alignment between P and ) in a training-free, interpretable,
and modular fashion. As demonstrated in Appendix [F] its output (pseudo-labels and weights) can
directly benefit and enhance downstream methods in both prompt tuning and image-centric learning
pipelines.

C DATASETS, BASELINE METHODS, AND IMPLEMENTATION

C.1 DATASETS

Fine-grained datasets. Following Zhou et al.|(2022b)), we evaluate our method in 10 different fine-
grained datasets. Caltech101 (Fei-Fei et al.,|2004): A dataset containing images of objects belonging
to 101 different categories, commonly used for object recognition tasks; DTD (Cimpoi et al., 2014):
A texture dataset containing images categorized by describable texture attributes such as “bumpy” or
”scaly”; EuroSAT (Helber et al.,|2019): A dataset for land use and land cover classification, consisting
of satellite images across 10 classes such as residential, forest, and river; Aircraft (Maji et al., 2013)):
A fine-grained dataset containing aircraft images, used for recognizing and classifying different
airplane models; Food101 (Bossard et al., 2014): A large dataset containing 101 food categories,
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designed for image recognition tasks in the food domain; Flower102 (Nilsback & Zisserman), 2008)):
A fine-grained flower classification dataset with 102 different types of flowers, used for challenging
image recognition tasks; Oxford Pets (Parkhi et al.,|2012): A dataset consisting of images of 37 pet
breeds, used for fine-grained image classification tasks; Cars196 (Krause et al.,|2013): A fine-grained
dataset for car model classification, with 196 car classes focused on vehicle recognition; SUN397
(Xiao et al.,[2010): A large-scale scene recognition dataset with 397 scene categories, covering a
wide variety of environments; UCF101 (Khurram||[2012): A dataset for action recognition in videos,
containing 101 human action categories captured in realistic video scenarios.

ImageNet and its Variant datasets. Following |Allingham et al.| (2023), we also evaluate our
method in ImageNet and the following variants of the ImageNet dataset: ImageNet (Russakovsky:
et al., 2015): A large-scale dataset for image classification, containing over 14 million labeled
images across 1,000 object categories; Tiny-ImageNet (Le & Yang] [2015)) is a smaller subset of
ImageNet, containing 200 classes designed for efficient benchmarking in low-resource settings;
ImageNet-A (Hendrycks et al., 2021b)): A curated subset of ImageNet consisting of challenging
adversarial images that fool standard models, designed to test the robustness of image classifiers;
ImageNet-R (Hendrycks et al.,[2021a): A dataset containing renditions of ImageNet objects in diverse
artistic forms, such as paintings, cartoons, and sculptures, used to assess model performance on
non-photorealistic images; ImageNet-Sketch (Wang et al2019): A sketch-based dataset derived
from ImageNet, used to evaluate model robustness and generalization to line drawings of objects;
ImageNet-V2 (Recht et al.,[2019): A reproduction of the original ImageNet test set collected under
similar conditions, used to measure model generalization to a newly collected version of the dataset.

C.2 BASELINES

To evaluate our method under a consistent setting, we compare CARPRT with several representative
baselines that operate within the same zero-shot classification protocol and fixed prompt set (see
Problem T).

Mean Prompt Ensembling (MPE). MPE is a simple yet effective baseline where predictions from
all prompts are averaged with equal weight. For each class, the model constructs text embeddings
from all prompt templates and averages them to form the class prototype. At test time, each image is
classified based on cosine similarity to these averaged embeddings. This approach assumes that all
prompts contribute equally, regardless of class or semantics.

Majority Vote. Instead of aggregating embeddings, Majority Vote treats each prompt as an inde-
pendent voter. For each prompt, the model predicts the most similar class for a given image, and the
final prediction is determined by majority voting across all prompts. This method ignores prediction
confidence and treats all prompts equally, assuming their votes carry equal importance.

Zero-shot Prompt Ensembling (WPE) (Allingham et al., 2023). WPE is a data-driven method
that learns a global set of weights for prompts using the unlabeled test set. It aggregates prompt-
conditioned class embeddings using learned weights and estimates them by minimizing entropy over
softmax predictions. However, WPE uses a single weight vector shared across all classes, which fails
to account for class-specific variations in prompt relevance.

C.3 DETAILS REGARDING EXPERIMENTS

Implementation Details. We implement all methods using PyTorch 1.7.1 and Python 3.7.6, and
conduct all experiments on a single NVIDIA A100 Tensor Core GPU. Our vision-language model is
built on the architecture and pretrained weights from OpenAl (Radford et al., [2021)) and DeCLIP
(L1 et al., [2022). The code for our experiments is available at https://anonymous.4open,
science/r/CPL-7755/README .md provided for reproducibility.

Hyper-parameter Settings. We set fixed hyperparameters for different datasets. The temperature 7
is set to 1.0 for fine-grained datasets and 1.5 for ImageNet (Russakovsky et al., 2015) and its variants,
and the batch size is fixed at 512 for all experiments.
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Algorithm 1 Class-Aware Prompt Reweighting (CARPRT)

Input: Pre-trained CLIP with image encoder f and text encoder g, a prompt set P, an unlabeled
dataset D, a candidate label space ) and the temperature parameter 7 and the normalization scale A.
1: Generate prompted-class texts p;(y.), Vp; € P,Vy. € V;

2: Encode image embeddings z§ = f(x;),Vx; € D;

3: Encode text embeddings 2., = g(pi(y.)),Vp; € P,Vy. € V:

4: Obtain the relevance score set S = {s“c};”:?fi Le—1 by equation@;

5: Obtain the pseudo-labels set: ¥ = {95.352) im0

6: Derive the weight matrix W* by Eq. and Eq. (TI);
Output: a class-aware prompt weight matrix W*.

D MORE DETAILS OF CARPRT

D.1 CARPRT ALGORITHM

We summarize the overall procedure of our proposed Class-Aware Prompt Reweighting (CARPRT)
in Algorithm |lI} As shown in the algorithm, CARPRT begins by encoding both image and text
embeddings using a pre-trained CLIP-liked model. It then computes the relevance score between
image features and prompt-conditioned text features, followed by pseudo-label assignment. Finally, a
class-aware weight matrix is derived based on the computed scores, enabling the construction of a
refined prompt weight matrix that improves zero-shot classification performance.

D.2 CONNECTING CARPRT FORMULATION WITH THE PROBABILISTIC FRAMEWORK

We now detail the correspondence between the CARPRT formulation (Section)) and the probabilistic
framework established in Section

Concretely, the practical implementation Eqs. (9{11) align with Eqs.(3}{7) in the following manner.

Score Calculation. equation [9]implements the likelihood term Pr(x; |y, W, P) from equation[7] by

deﬁnlng Sj,ic Zyey exp(aj,i,c/A)

cosine similarity a; ; . as the negative energy term and normalizing through softmax to obtain proper
probabilities.

Weight Calculation. Eqs. (I0}[11)) correspond to estimating Pr(W [P, D) from equation 4] through a
two-step process. equation [LO|first obtains the pseudo-labels for samples as the empirical estimates
Pr(y.|W,P) (i.e., equation|5). It then estimates intermediate weights by aggregating scores across
pseudo-labeled samples by multiplying the scores Pr(z;|y., W,P) (i.e., s, ) with Pr(y.|W,P).
equation |l I{applies softmax to ensure the resulting weights form a valid probability distribution over
prompts for each class, which satisfies the simplex constraint implied by our probabilistic framework.

. This formulation aligns with the EBM in equationby using

E DETAILS OF CARPRT WITH ITERATIVE REFINEMENT (ICARPRT)

E.1 METHODS

In this section, we introduce iterative class-aware prompt reweighting (ICARPRT). Unlike the single-
pass approach described in the main text, iCARPRT refines pseudo-labels and class-aware prompt
weights through multiple rounds of alternating updates. The procedure consists of the following two
main steps: pseudo-label generation and class-aware weight estimation.

In pseudo-label generation, the pseudo-label 3/; of the image x; is computed by the prompt weights
estimated in the previous iteration. W{=1 as:
. t—1
y; = arg ma§ w;;

= 2,C 8.7'71'70 (12)
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Algorithm 2 Iterative Class-Aware Prompt Reweighting (iCARPRT)

Input: Pre-trained CLIP with image encoder f and text encoder g, a prompt set P, an unlabeled dataset D, a
candidate label space ), the maximum iterations 77,4, the temperature parameter 7 and the normalization scale
A

1: Generate prompted-class texts p;(yc), Vp; € P,Vy. € V;

2: Encode image embeddings z;— = f(z;),Va; € D;

3: Encode text embeddings z;". = g(pi(y.)), ¥pi € P,Vy. € V;

4: Obtain the relevance score set S = {sﬂc};":fg 1.e—1 bY equationl?];

(0)

i,c

5: Initialize the class-aware weights w
fort =1to Traz do
6: Obtain the pseudo-labels set: ¥ = {7;}7, using equation
7: Derive the weight matrix W' by Eq. (13) and Eq. ;

uniformly;

end
Output: a class-aware prompt weight matrix W* = W7maz

Table 2: Accuracy (%) comparison between CARPRT and iCARPRT on various fine-grained clas-
sification datasets using CLIP-ViT-B/16 and CLIP-ResNet50 backbones. Bold values indicate the
highest accuracy.
Caltech101 DTD  EuroSAT Aircraft Foodl01 Flowerl02  Pets  Cars SUN397 UCF101 Average
CLIP-ViT-B/16

CARPRT 94.16 48.90 55.56 24.49 86.31 71.36 89.13  66.14 66.93 70.41 67.34

iCARPRT 94.27 48.14 54.79 23.71 87.25 72.01 89.64 67.19 67.28 70.53 67.48
CLIP-ResNet50

CARPRT 88.46 41.31 36.84 16.88 76.88 65.56 85.69 56.44 61.28 63.66 59.30

iCARPRT 89.14 41.83 35.65 15.42 77.96 66.13 86.09 57.28 61.45 64.32 59.53

where the s; ; . is the relevance scores computed in equation@} Once the pseudo-labels 3j; are updated,
the intermediate weight wj . are estimated by:

ST sl
;o 2ui=15jiclgi=y.
i,c T N

225 Lgy=ye

where 15, -, is an indicator function that is 1 if §; = y., and 0 otherwise. Then the final weight w; .
are computed by the the intermediate weight wgﬁ using the equation

13)

These two steps repeat until a predefined maximum number of iterations is reached. By alternating
between pseudo-label prediction and weight re-estimation, iCARPRT creates a reinforcing cycle that
continuously improves both the pseudo-labels and the class-aware prompt weights..

E.2 EXPERIMENTS RESULTS

We evaluate the performance of iCARPRT against the single-pass version, CARPRT. As shown in
Figure 2] the results demonstrate that iCARPRT achieves improvements in mean accuracy across
different backbones. This suggests that the iterative refinement process effectively enhances class-
aware prompt weighting by progressively improving pseudo-label quality and weight estimation.

Quality of Pseudo Labels Matters. In datasets such as EuroSAT and Aircraft, iCARPRT does not
outperform CARPRT. A possible reason is the relatively low initial pseudo-label accuracy in these
datasets. Since iCARPRT updates prompt weights based on pseudo-labels in each iteration, a poor
starting point may lead to reinforcement of incorrect labels rather than improvement. In such cases,
the iterative updates fail to enhance pseudo-label quality, limiting the effectiveness of the approach.

F CoOMBINING CARPRT WITH OTHER VISION-LANGUAGE METHODS

While CARPRT focuses on a strict zero-shot image classification problem using a fixed set of
handcrafted prompts and unlabeled data (Problem [I)—CARPRT is inherently modular and can be
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Table 3: Accuracy (%) comparison between our method and baselines combing to TDA method using
CLIP-ViT-B/16 and CLIP-ResNet50 backbones. Bold value represents the highest accuracy on each
column.

Caltechl01 DTD EuroSAT Aircraft Foodl0l Flowerl02 Pets Cars SUN397 UCF101 Average

CLIP-ViT-B/16
MPE 93.18 46.75 60.60 23.37 86.04 65.61 8421 6744 6641 71.48 66.51
WPE 93.49 47.02 62.48 23.09 86.21 68.10 84.12  67.23 66.98 71.23 67.00
CARPRT (Ours) 94.62 48.52 63.95 24.05 86.50 70.36 84.50 67.83  68.06 71.85 68.02
Human Selection (TDA) 94.24 47.40 58.00 2391 86.14 71.42 88.63 67.28 67.62 70.66 67.53
CLIP-ResNet50
MPE 92.03 41.77 54.56 19.77 83.41 62.50 80.65 63.55 64.14 68.80 63.12
WPE 91.67 41.89 56.78 19.84 83.21 56.67 81.66 63.43 64.87 68.72 63.45
CARPRT (Ours) 91.75 42.71 57.65 19.98 83.61 62.66 81.38 6598  65.98 68.65 63.76
Human Selection (TDA) 91.42 41.00 56.97 20.55 83.34 62.75 83.62 64.14 6586 68.52 63.82

integrated into a wide range of existing vision-language pipelines. Although direct comparison
is not applicable due to differing problem assumptions, we show that CARPRT can function as a
complementary component rather than a competing method.

Specifically, we conduct case studies in three representative scenarios. We first combine CARPRT
with a test-time adaptation method, then apply it to augment soft prompt tuning, and finally integrate
it with a recent zero-shot method that leverages LLM-generated prompts. Details and results for each
case are presented in the following subsections.

F.1 CoOMBINING CARPRT WITH TEST-TIME ADAPTATION METHOD

CARPRT can be integrated with the training-free TTA method as it operates without training, making
it computationally efficient. TDA is a state-of-the-art, training-free test-time adaptation (TTA)
method for CLIP that enables efficient and effective adaptation of vision-language models without
backpropagation (Karmanov et al.| 2024).

Our approach is not in conflict with TDA but is orthogonal to it. While TDA uses a human-
selected prompt pool for each task, our method can serve as a complementary module that replaces
this human selection pool, providing an alternative way of selecting prompts without requiring
human intervention. This allows our method to work alongside TDA, enhancing the adaptability of
vision-language models in a more automated manner. We conduct the experiment to compare the
performance of our method with several baselines, including the human-selected prompts, the equal
weight prompt selection, an WPE, all combined with the TDA method. The results are evaluated
using both CLIP-ViT-B/16 and CLIP-ResNet50 backbones across ten fine-grained datasets, as shown
in Table 3l

From the result, we can observe that our method outperforms the other baselines in several datasets,
achieving the highest average accuracy of 67.96% for CLIP-ViT-B/16 and 63.76% for CLIP-ResNet50.
Specifically, for datasets like EuroSAT, Food101, and Flower102, our method shows significant
improvements over the human-selected and WPE baselines. These improvements demonstrate that
our approach effectively enhances the performance of TTA methods, by offering a more efficient
prompt selection strategy. However, there are cases where it falls short compared to human-selected
prompts. This may be caused by the limited diversity and smaller size of the template pool, where
automatic reweighting methods may not perform as well as direct human selection. However, the
automated approach significantly reduces the human labor cost. This experiment demonstrates the
promising future of our method—not only in prompt reweighting but also as a technique that can
be integrated into other vision-language model (VLM) transfer learning approaches. The ability
to automatically adjust prompts in a computationally efficient manner paves the way for broader
applications and adaptability in various VLM-based tasks.

Posterior Update with TTA. When prompt weights can be updated continuously, such as in TTA
settings, different priors (e.g., uniform, global Dirichlet, or class-specific Dirichlet) define initial
beliefs about weight distributions before observing test data. In the TTA scenario, test data arrives as
a stream: {w(o), o x® D }. Based on equation we have a general form of posterior

p(Wz'.P) o p(zV|W,P)p(W|P),
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where p(W|P) is the prior, p(z(*)|[W,P) is the likelihood from test data, and p(W|x®),P) is the
posterior that guides weight updates sample-by-sample. The posterior updating process follows:

For first test sample x(%):
Prior : p(W|P)
Likelihood : p(z(Q|W,P)
Posterior : p(W|z(?), P)  p(z¥ |W, P)p(W|P)
Then, as we observe the second test sample ;c(l), we have
Prior : p(W|z®),P) (previous posterior)
Likelihood : p(zV|W,P)
Posterior : p(W|z?, 21 P) & p(xV|W,P)p(W |z, P)

This leads to the sequential update scheme, formulated as

p(Wz ... 2" P) o p(a W, P)p(Wz®, ...z, P)

Thus, in TTA settings, these priors can be (1) initialized based on initial test samples; and (2) updated
sequentially as new test samples arrive.

More specifically, choosing different prior distributions would lead to different updating computations.

Uniform Prior. Recall the uniform prior is defined as

s ifWew
pWIp) =< -
0 otherwise
By taking log to both LHS and RHS, we will have

—log|W| fWeWw

1 W|P) =
og (WIP) {—oo otherwise

which then leads to the log posterior to be expressed as

log p(W1a", P) oc —log [W] +1log Y p(@']ye, W, P)p(y|W,P)

Ye €Y
n . L
E— log |W| + IOg Z exp (Z (wi’czg‘c) . ZI> . Z:y%
V€Y =1 3" i =Ye

Global Dirichlet Prior. The global Dirichlet prior treats all weights across classes as a single vector:

p(W|P) = Dir(vec(W)|ay, ..., nc)

where vec(W) € R"C is the vectorization of weight matrix W (here we denote C' = |))| as the
cardinality of label space) Similarly, we will have the log prior and posterior as

log p(W|P) = log Dir(vec(W)|ay, ..., anc)

nC nC
=logT'(a) — Zlog T(ag) + Z((Xk —Dlogwr (ap= Zak
k=1 k=1
nC C n C n
R STTED 359 T SNNNRES o) o PR
k=1 c=1i=1 c=1i=1
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and

log p(W|z), P) o< log p(W|P) + logp< W, P) — log p(x'"|P)

C n
=logT'(ayp) ZlogI‘ ag) + Z Z(a(c—l)n—s-i —1)logw; .

c=1i=1
+ log Z p(z|ye, W, P)p(y.|W,P)
Y €Y
nC C n
= log T'(avp) ZlogF o) + Z Z(a(c,l)nﬂ» —1)log w; .
c=1i=1
& T ]l@‘a‘,:yc
+ log Z exp (Z (wi,czgc) ~z1> . Z;li
Y EY i=1 3" TYiri=Ye

Class-specific Dirichlet Prior. We again start from the prior definition

c
p(WIP) = [ [ Dir(We|ae,1, ..., cven)
c=1
then turn into the log prior and posterior
c
log p(W|P) = > " log Dir(Weac, ..., aen)
c=1
C n n n
=> llog [(aco) = ) logT(acy) + (e —1)log w] Qo =)0
e=1 i=1 i=1 i=1
and log posterior
c n n
log p(Wla",P) = [logF o) = > logT(aei) + Y (oei—1) logwi,c]
e=1 i=1 i=1
+1og > p(alye, W, P)p(yc|W, P)
Yc€Y
c n n
3| LTS S ORIS TR
c=1 i=1 i=1
+ log Z exp i (wi,ez;, A T
e Sl oy
Yc€Y i=1 J 3'i=Ye

However, since Dirichlet priors would introduce additional steps (e.g., estimating concentration
parameters «), in our preliminary investigation, we used uniform prior to keep simplicity. Despite
this simplest setup, our CARPRT prompt reweighting strategy effectively facilitated TTA methods.
We leave more systematic explorations of alternative priors (e.g., Dirichlet) into future work.

F.2 CoOMBINING CARPRT wITH SOFT PROMPT TUNING

Soft Prompt tuning has recently become a powerful technique for adapting CLIP and other pre-trained
vision-language models to downstream tasks. By learning optimal prompts that guide the model’s
understanding of new data, prompt tuning has shown remarkable effectiveness (Zhou et al., 2022b;a}
Khattak et al.,|2023b). ProDA optimizes prompt distributions to improve few-shot performance by
training a set of learnable invisible prompt embeddings. While CARPRT is primarily designed to
reweight visible prompt templates, our approach is not restricted to visible prompts. In this section,
we also apply class-aware reweighting to the invisible prompts trained by ProDA, making our method
capable of enhancing performance in various prompt tuning scenarios.
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Our CARPRT method could enhance the ProDA framework by introducing a class-aware reweighting
technique that adjusts the influence of each prompt based on the underlying class structure. Specif-
ically, before each iteration of ProDA’s prompt distribution learning, we use CARPRT to update
the weights, which then guide the model’s logit outputs for training the prompts. As the problem
setting transitions from zero-shot to few-shot, our approach adapts by refining the weight estimation.
Specifically, we use ground truth labels instead of the pseudo labels for weight estimation, as shown
in the following replacement for equation [I0

;o Z;n:1 8j.i.cly;=ye
s - m ?
e Zj:l Ly;=y.
where y; is the ground truth label of the sample j. The results shown in Table@]demonstrate that

our method provides notable improvements in most data sets, highlighting the effectiveness of our
class-aware prompt reweighting mechanism.

(14)

Table 4: Accuracy (%) comparison between our method and the prompt tuning baseline on fined-
grained datasets using the CLIP-ViT-B/16 backbone. Bold values represent the highest accuracy in
each raw.

ProDA  ProDA + CARPRT

Caltech101 91.3 95.4
DTD 70.1 69.6
EuroSAT 84.3 83.4
Aircraft 36.6 36.9
Food101 82.4 88.1
Flower102 95.5 95.6
Pets 90.0 93.7
Cars 75.5 78.6
Average 78.2 80.2

F.3 CoOMBINING CARPRT WITH MODERN ZERO-SHOT METHODS

Recent zero-shot approaches often rely on large language models (LLMs) to generate class descrip-
tions or prompts. While these methods have shown strong performance, they typically introduce
external information and lack mechanisms to calibrate prompt relevance across classes. CARPRT may
be able to be applied on top of such methods to reweight their prompt pools in a class-aware manner,
enhancing prediction quality without modifying the model or relying on additional supervision.

Beyond prompt-based methods, CARPRT is also compatible with image-centric approaches that
construct classifiers directly from visual features, such as InMaP (Qian et al.,|2024a)). These two
strategies are complementary: while InMaP builds a vision proxy via clustering, our method provides
high-quality pseudo-labels that can guide its optimization. As shown in Table 3] integrating CARPRT
with InMaP consistently improves performance. In particular, refining pseudo-labels using Sinkhorn
distance leads to further gains, validating that better pseudo-labels directly reduce the theoretical
gap between recovered and optimal vision proxies. These results highlight that CARPRT not only
improves zero-shot inference on its own, but also serves as a valuable component within broader
vision-language learning frameworks.
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Table 5: .Accuracy (%) comparison between our method and the baseline on ImageNet using the
CLIP-ViT-B/16 and CLIP-ResNet50backbone. Bold values represent the highest accuracy in each
raw.

InMaP  InMaP + CARPRT

CLIP-ViT-B/16

w/o Skinhorn 70.14 71.09
Skinhorn 72.55 72.57
CLIP-ResNet50

w/o Skinhorn 60.83 60.95
Skinhorn 63.74 63.14

Table 6: Details for the datasets in our experiments.

Dataset Classes Test Size
ImageNet 1000 50,000
Tiny-ImageNet 200 10,000
ImageNet-R 200 30,000
ImageNet-A 200 6862
ImageNet-Sketch 1000 50,889
ImageNet-V2 1000 10,000
Caltech101 100 2465
DTD 47 1692
EuroSat 10 8100
Alircraft 100 3333
Food101 101 30,300
Flowers102 102 2463
Oxford Pets 37 3669
Cars196 196 8041
Sun397 397 19,850
UCF101 101 3783

F.4 CoOMBINING CARPRT wWiITH LLM-EMPOWERED PROMPT AUGMENTATION METHODS

Although CARPRT and LLM-empowered prompt augmentation methods are conceptually different,
they can be combined in a complementary way. CARPRT is a training-free and inference-only
method, relying solely on a fixed prompt template pool and without using any external knowledge
such as LLMs. By contrast, CuPL (Shtedritski et al., [2023), MPVR (Mirza et al., 2024}, and
VisDesc (Menon & Vondrickl, [2023b)) generate class-specific prompts/descriptors via large language
models and thus address a different setting. Importantly, these approaches are orthogonal to ours:
while direct comparison is not the focus, CARPRT can reweight LLM-generated prompts, and
combining them consistently brings further gains

As shown in Table [/} integrating CARPRT with LLM-based prompt generation methods consis-
tently improves their performance across datasets. This demonstrates that class-aware reweighting
is complementary to LLM-generated prompts, enhancing their effectiveness without altering the
underlying generation process. While VisDesc can be competitive or stronger in some cases, it
requires a more complex pipeline and additional resources, whereas CARPRT provides a lightweight
plug-in alternative.

G ADDITIONAL EXPERIMENTS

G.1 DETAILED RESULTS FOR HYPERPARAMETER ANAYLSIS

In this section, we analyze the impact of key hyperparameters across all fine-grained datasets,
focusing on the temperature parameter 7. In zero-shot classification, where only test data is available,
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Table 7: Accuracy (%) comparison between LLM-based prompt generation baselines and their
combinations with our method on fine-grained datasets using the CLIP-ViT-B/16 backbone. Bold
values represent the highest accuracy in each row.

Method Caltech101 DTD  EuroSAT Aircraft Foodl0l Flowerl02 Pets Cars SUN397 UCFI01 Average
CuPL 93.68 50.27 52.69 25.57 86.71 71.31 89.10 65.31 65.13 70.33 67.01
CuPL+Ours 94.27 50.35 56.67 25.42 86.76 71.42 89.24 66.25 67.46 71.28 67.91
MPVR 93.98 50.12 55.47 26.18 86.89 72.14 89.07 66.97 65.24 70.42 67.65
MPVR+Ours 94.23 50.46 56.82 26.09 86.87 72.25 89.24 67.13 67.32 71.37 68.18
VisDesc 94.52 50.59 56.12 25.16 85.75 71.89 88.87 67.28  67.87 70.37 67.84

conventional hyperparameter selection is inherently challenging due to the absence of training or
validation data. Following|Shu et al.|(2018), we aim to identify hyperparameters that exhibit robust
and consistent performance across diverse datasets.

As shown in Table[8] accuracy peaks at 7 = 1.0 and remains stable across a broad range, with a slight
decline at higher values. A lower temperature, such as 0.5, sharpens focus on the most probable
prompts but reduces distribution spread, limiting the ensemble effect of 247 prompt templates. This
effect is crucial for capturing diverse information cues, and excessive concentration on dominant
prompts may lead to performance degradation. While 7 = 1.0 may not be optimal for every dataset,
it serves as a practical and generalizable choice under zero-shot constraints.

Table 8: Accuracy(%) results for varying temperature settings across fine-grained datasets using
CLIP-ViT-B/16 and CLIP-ResNet50 backbone. Bold value represents the highest accuracy in each

column.
Temperature ~ Caltechl01 DTD  EuroSAT  Aircraft Food101 Flowerl02 Pets  Cars SUN397 UCFI01 Average

CLIP-ViT-B/16

0.5 93.45 49.13 53.29 23.97 87.26 71.82 88.69 64.66 66.32 69.68 66.83
1.0 (selected) 94.16 48.90 55.56 24.49 86.31 71.36 89.13 66.14  66.93 70.41 67.34
2.0 94.07 48.54 55.19 24.17 85.87 71.12 88.69 65.67 66.07 70.11 66.95
3.0 93.93 48.27 55.15 24.04 85.74 70.95 88.39 65.29 65.98 70.09 66.78
4.0 93.87 48.16 55.07 23.96 85.69 70.93 88.36 6521 65.91 69.95 66.71
5.0 93.72 48.09 54.92 23.87 85.62 70.85 88.31 65.14 65.88 69.77 66.62
CLIP-ResNet50
0.5 88.67 38.92 34.31 16.61 7711 66.05 86.40 56.56 60.47 62.43 58.75
1.0 (selected) 88.46 41.31 36.84 16.88 76.88 65.56 85.69 5644  61.28 63.66 59.30
2.0 88.64 41.13 35.00 16.54 76.43 64.26 84.07 56.51 61.04 64.09 58.77
3.0 88.29 4141 3241 16.50 76.20 64.31 83.41 56.35 60.88 63.70 58.35
4.0 88.18 41.30 31.78 16.48 76.08 64.36 82.94 56.34 60.65 63.64 58.17
5.0 88.07 41.20 31.14 16.46 75.96 64.40 82.46 56.33 60.64 63.17 57.98

G.2 RESULTS ON IMAGENET‘S VARIANTS DATASETS

We also evaluate the performance of our method across Tiny-ImageNet and its variant datasets
(ImageNet-A, ImageNet-R, ImageNet-Sketch, and ImageNet-V2), as shown in Table E} The im-
provements on ImageNet and its variants datasets are smaller compared to those observed on the
fine-grained datasets (shown in Table[I)), for the following reasons. First, frequency bias is likely
more pronounced in ImageNet and its variants. Given our use of a relatively small batch size of 512
and the exclusion of larger datasets such as LAION-400M for debiasing, the skewed class distribution
may have negatively impacted the results. Second, the quality of the template pool plays a crucial
role in model performance. According to (Allingham et al.| 2023), the template pool was constructed
by combining templates from 10 fine-grained datasets and 6 ImageNet and its variants datasets.
Fine-grained datasets benefit more from the pool, as they can exploit class-specific templates. In
contrast, the more diverse categories in ImageNet and its variants find less relevant information in
the fine-grained templates, deriving less benefit from these templates. This mismatch reduces our
method’s effectiveness on ImageNet datasets, as it depends on template-provided information. These
limitations suggest that mitigating frequency bias and enhancing template relevance for broader
datasets could further improve CARPRT’s performance.
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Table 9: Accuracy (%) comparison between baselines and our method on ImageNet and its variants
using CLIP-ViT-B/16 and CLIP-ResNet50 backbones. Bold value represents the highest accuracy on
each column. Standard deviations are shown inline using =+.

ImageNet  Tiny-ImageNet -A -R -Sketch -V2 Average
CLIP-ViT-B/16
MPE 67.59 62.12 49.35 77.33 46.92 61.37 60.51
WPE 68.2840.01 62.1940.05 50.07+0.12  77.25+0.03 47.144+002 61.814+0.11  61.1240.06

CARPRT (Ours)  68.59-+0.01 62.71+0.04 51.60+0.07 77.484+004 47.53+0.02 62.11+0.09 61.67+0.05
CLIP-ResNet50

MPE 59.12 43.32 46.25 69.05 39.05 54.05 53.50
WPE 59.78+0.01 43.12+0.08 46.37+0.08 69.27+0.01  39.144007 54.07+£0.09  53.7240.06
CARPRT (Ours)  59.98-0.02 43.45+0.06 46.194+0.09 69.59+001 39.34+004 54.26+0.03 53.90+0.06

Table 10: Robustness under distribution shifts. Weights are estimated on in-distribution ImageNet and directly
transferred to four variants. CARPRT consistently outperforms both MPE and WPE.

Method ImageNet -A -R -Sketch  -V2  Average
MPE 67.59 4935 7733 4692 6137  60.51
WPE 68.28 5034 7734 4750 6196  61.08
Ours 68.59 5196 77.69 4791 6251  61.73

G.3 ROBUSTNESS OF CARPRT TO DISTRIBUTION SHIFTS

To evaluate robustness, we investigate CARPRT under distribution shifts on ImageNet and four
variants: ImageNet-A, -R, -Sketch, and -V2. In this setting, prompt weights are estimated once
using only unlabeled samples from the in-distribution ImageNet test set, and the same weights are
subsequently applied to all variants for evaluation, without access to their target distributions during
estimation.

As shown in Table [I0] CARPRT consistently surpasses MPE and WPE across all ImageNet variants,
despite not accessing their distributions during weight estimation. This confirms that CARPRT’s
reweighting strategy generalizes well under distribution shifts. We attribute this capability to
CARPRT’s design: by aligning prompt text with class names, rather than overfitting to visual
features of a specific dataset, CARPRT benefits from the larger sample size of ImageNet, yielding a
more stable estimation of class—prompt relevance and thus transferring effectively across distributions.

G.4 EXPERIMENTS ON IMBALANCED DATASETS

In this section, we evaluate the performance of CARPRT on datasets with class imbalances. Following
Cao et al.|(2019), we manually construct an imbalanced CIFAR-10 (Krizhevsky et al.,[2009) dataset
using an exponential decay strategy to create various degrees of class imbalance. We use an imbalance
factor (8 to describe the severity of the long-tailed distribution, defined as the ratio between the number
of training samples in the most frequent class and the least frequent class. Specifically, 5 is given by:

Nmax

B - Nmin ’

where Np.x and Ny, represent the number of training samples in the most frequent and least
frequent classes, respectively. We conduct experiments with different imbalance ratios, setting
B =10, 8 = 50, and 8 = 100, using the CLIP-ViT-B/16 backbone.

The results shown in Table [TT] demonstrate that CARPRT significantly outperforms the average
baseline for all degrees of class imbalance. Specifically, CARPRT provides a consistent improvement
in performance over WPE, though the gain decreases as the imbalance factor (5 increases. This
decreasing gain may be attributed to the global nature of the WPE weight estimation, which remains
effective even under a higher imbalance. WPE calculates a single weight for the entire dataset,
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Table 11: Accuracy (%) comparison between our method and baselines on CIFAR-10 using the
CLIP-ViT-B/16 backbone. Bold values represent the highest accuracy in each column.

Balanced Datasets =10 S=50 pS=100

MPE 89.56 89.58 89.57 89.56
WPE 89.55 90.02 90.78 91.07
CARPRT (Ours) 90.82 91.07 91.36 91.70

capturing the overall distribution and maintaining reasonable performance, even when certain classes
are underrepresented.

In contrast, CARPRT uses a per-class weighting strategy, which allows better adaptation to individual
class characteristics, which is highly effective in balanced or moderately imbalanced settings. How-
ever, when the class imbalance becomes severe, the challenge arises for classes with very few samples
(e.g., only 10 samples). In these cases, the reliability of CARPRT’s weight estimates decreases as a
result of insufficient data, impacting performance.

G.5 IMPACT OF TEMPLATE QUALITY

In this section, we investigate the impact of template quality on ImageNet classification tasks.
Specifically, we explore how different prompt template pools influence performance by evaluating
two newly generated template pools alongside the original templates on the ImageNet datasets.
Specifically, Pooll was generated using Claude 3.5 (Anthropic, 2024) to produce 300 templates
tailored to the ImageNet label space. Each category in Pooll consists of 100 prompt templates
structured in descriptive formats, such as “A photo of a ”, A photo of a ”, "The type of ”. These
templates aim to incorporate task-specific context and improve the alignment between the prompts
and ImageNet categories. Pool2, on the other hand, was constructed using Phi 3.1 (OpenAlL |[2024)
to create highly descriptive templates. For each ImageNet category, Phi 3.1 generated five detailed
prompts, resulting in a total of 5,000 templates across all categories. These templates focus on
providing class-specific descriptive information, enabling a more precise and nuanced interaction
with the underlying vision-language model. These additional template pools were evaluated on
ImageNet dataset compared to the original templates (Pool0), as shown in Table

Table 12: Accuracy (%) comparison across different template pools using WPE and CARPRT
methods on ImageNet classification.

Pool Method ImageNet Acc. (%) Perf. Comparison

ooty WPE 68.28 -
0% CARPRT 68.59 +0.31

pooll . WPE 68.35 _
CARPRT 68.61 +0.26

pooly _ WPE 68.34 -
CARPRT 68.97 +0.63

Pooll targets more task-specific information by generating templates with respect to the ImageNet
label space. This leads to performance improvements for both WPE and CARPRT prompt reweighting
strategies compared to Pool0. On the other hand, the generated templates in Pool2 incorporate more
class-specific descriptive information. CARPRT benefits significantly from these templates, achieving
greater performance gains compared to WPE. This highlights the effectiveness of class-aware prompt
reweighting in leveraging descriptive templates.

Future Work. Results in Appendix [G.5]show that a high-quality prompt template pool significantly
improves performance. Building on these results and the previously discussed limitations, a key
direction for future work is enhancing the quality and diversity of the prompt template pool, which ex-
isting methods often overlook. Future research could focus on cost-effective strategies for generating
and evaluating diverse, representative prompts. This may include developing metrics to assess how
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Table 13: Comparison of normalization schemes under WPE and CAPPRT. Accuracy (%) is reported
on Fine-Grained, ImageNet, and Variant subsets, along with the average across them.

Method  Normalization Schemes Fine-Grained ImageNet Variant Average

none 64.82 6828  59.69  64.26

WPE test 64.93 68.45 5972 64.37
pre-train 65.01 68.64 59.57 64.41

both 65.00 68.56 5974  64.43

none 67.34 6859 6039 6544

test 67.12 6827  60.18  65.19

CAPPRT pre-train 67.45 6872  60.55  65.57
both 67.44 6877 6053  65.58

well prompts capture class-specific characteristics and enhancing inter-class distinctions to improve
the model’s ability to differentiate closely related categories.

G.6 ANALYSIS OF FREQUENCY B1AS CORRECTION

To correct potential biases introduced by the class frequency distribution in the pre-training or test-
time datasets, /Allingham et al.[(2023) applies normalization to the score matrix before computing
the prompt weights. This step ensures that the scale and distribution of class-prompt scores are
consistent across categories and prompts, thereby mitigating dataset-specific artifacts that could affect
final predictions. The scores s; ; . across all images x; predicted to class y. under prompt p; are
normalized as follows:

Sjie = Sjic— M (15)

where p is the mean and standard deviation of scores for scores, and are computed differently
depending on the normalization scheme: (1) none: No normalization is applied and we set i = 0;

tes
(2) test: /mu is computed by the test data scores: p = p'*st = ﬁ Zjvzl ' S8j,i,c; (3) pre-

train: /mu is computed by the data drawn from LAION400m (Schuhmann et al., 2021, following
Allingham et al.| (2023): p = pP™® = ﬁ Zjvzpl 85.4,c; (4) both: Combine the two sources by
interpolation:y = (u*®s* 4 uPr®)/2. These normalized scores are then used to compute prompt

weights.

As shown in Table[I3] the WPE method benefits noticeably from normalization. All normalization
schemes improve over the unnormalized baseline, with the both setting achieving the best overall
performance. This suggests that WPE is sensitive to distributional bias and gains from explicitly
correcting both pre-training and test-time frequency effects.

By contrast, CARPRT performs robustly across all settings. Even without normalization, CARPRT
outperforms WPE, and gains only slight improvements from applying pre-train or both nor-
malization. Interestingly, test-only normalization slightly reduces performance, indicating that
test-derived statistics may inject noise rather than correct meaningful bias. This robustness likely
stems from the class-aware formulation of CARPRT, which captures prompt-class dependencies
more explicitly.

In summary, while WPE requires normalization to mitigate its reliance on biased score distributions,
CARPRT consistently maintains strong performance, demonstrating its effectiveness as a prompt
reweighting method.

H DISCUSSION OF PRIOR DISTRIBUTION OF THE PROMPT WEIGHTS Pr(W|P)

We extend the discussion of the proposed probabilistic interpretation (Section [3)) to the weights
prior Pr(W|P). In the current zero-shot classification scenario addressed by CARPRT, there is no
optimization-based process for “estimating” the weights, and as such, the weight prior Pr(W|P)
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does not play a role in the methodology. Nevertheless, our probabilistic framework is flexible enough
to accommodate more general trainable settings, such as active learning and few-shot estimation,
where the probabilistic formulation becomes particularly beneficial. In these cases, a discussion of
the weight prior would provide valuable insights and contribute to a more complete understanding of
the framework’s advantages.

Suppose there is a label space ) with size |J| = C. Let P = {p;}!_; be a pool of n independent
prompt templates. Let W = {W, .}, be our weight matrix. Recall that W, € A"~! is the
(n — 1)-dimensional probability simplex, representing the weights for class y. across all prompts.

We consider three choices of priors: uniform prior, global Dirichlet prior, and class-specific Dirichlet
priors.

Uniform Prior. The uniform prior assumes all valid weight configurations are equally likely a priori.

1 .
0 otherwise

where W = {W € R"*¢ : W, € A" ! forallc € {1,...,C}}.

The uniform prior is the easiest setup to implement and does not introduce bias towards any particular
weight configuration. However, the uniform prior does not leverage any prior knowledge about the
prompts, which is prone to overfitting with limited data (when adapted to trainable setting).

Global Dirichlet Prior. This defines a single Dirichlet distribution over all weights, treating them as
a single vector.

p(W|P) = Dir(vec(W)|a, ..., anc)
where vec(W) is the vectorization of W, and «; > 0 are concentration parameters of the Dirichlet
distribution.

Compared to uniform prior, Dirichlet prior can encode varying degrees of certainty about different
weights. Moreover, it is conjugate to multinomial likelihood, allowing for closed-form posterior
updates for certain model setup. This can also align with WPE-like class-shared-weighting strategies.
However, it ignores the class structure and treats all weights as part of a single distribution, potentially
missing class-specific patterns.

Class-specific Dirichlet Prior. This strategy sets an independent Dirichlet distribution for each
class’s weight, and stacks a product of C classes’ Dirichlet distributions.
C
p(WIP) = [ [ Dir(Welac1, ..., cren)
c=1
where a. ; > 0 are class and prompt-specific contenration parameters.

Currently, this setup best suits our class-aware prompt reweighting mechanism, as it allows for
different prior beliefs about weight distributions for each class, class-specific modeling. Compared
with global Dirichlet, it reduces dimensionality - each Dirichlet distribution is over n parameters, not
n x C anymore. More importantly, it aligns with the per-class simplex constraint of the weight space.

Entropy Analysis. Different prior choices lead to different entropy results. The uniform prior has an
associated entropy as

H[p(W‘P)}uniform = IOg ‘W‘>
where |W| is the volume of the weight space.

As for global Dirichlet prior, we have
nC

H[p(W|P)] = log B(a) + (a0 — nC)p(an) — 3 (s — w(as),
i=1
where B(-) is the multivariate beta function, and ¢ (-) is the digamma function.

The entropy for class-specific Dirichlet priors is
C

H[p(WP)] =3 " (log B(ac) + (aco — n)ih(aco) — 3 (aei — Dib(ac,)),

c=1 i=1
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where a. = (a1, oy Q) @and e g = Yoy i for each class c.

When we are setting the equal concentration parameters, such that a; = « for all 7 in the global
Dirichlet, and o, ; = « for all ¢, i in the class-specific Dirichlets, and let o = 1, the uniform prior
has the highest entropy (uninformative), while the class-specific Dirichlets having the lowest entropy.
This is because the class-specific Dirichlets with o« = 1 are equivalent to independent uniform
distributions over smaller simplices, further concentrating the probability.

I DETAILED PROOFS

Lemma 2 (Relative Likelihood ¢f. Lemmall). The likelihood of an image x, given class ¢, prompt
weights W and a prompt pool P, following the EBM defined in equation[6} is proportional to:

Pr(x;|ye, W,P) o exp {sim(z}7 ch)} X exp {Z(wlc ZEC)T ) ZI} ) (16)

=1

where z% = f(x;) and z}jc = g(pi(y.)) are image embeddings of sample x; and text embeddings of
class y. under prompt p;, respectively.

Proof. Similarity as Negative Energy. As with (LeCun et al.,[2000), a general form of EBMs is
given by Py(x) = exp(—SEy(x))/Z(0), which enables us to define unnormalized energy function
with a partition function for normalization. Therefore, in our zero-shot classification context, we
define the energy function with respect to the score function of the CLIP.

E(wjv Yoy W, P) = Sim(Z;, w'cl“)

This score function measures the compatibility between the image embedding z} and the text

embedding embedding = of class .. higher compatibility corresponds to lower energy, aligning
with the EBM principle that more likely configurations (of model) have lower energy.

Intractable Partition Function. Computing the partition function is intractable since we need to
marginalize over the image space. However, what we care about is the relative relation between
Pr(z;|y., W,P) and Pr(x,;|y., W, P), we can safely drop off the partition function in our relative
likelihood.

Similarity Computation. Consider a general linear combination of similarities for a prompt ensem-

ble:
sim(, =7) = he ({fsim(=", 210} )

{S i= 1 ZQZCSZ—'_/BC

where h. : R? — R is a function that linearly comblnes the similarities over all prompts p; € P for a
specific class y.. o; . € R and 5. € R are weights and bias terms. Substituting s; = sim(zl, z;»r)c) =

2TT . L1 .
zi. *z,weget

I
snnz z E a;c(z Zc ~zj+ﬂc

We can then absorb the bias term (3. into the exponennal function,
Pr(x;|y., W,P) exp(sim(z;-7 zgc))

=exp() aie(zl) " 2]+ 6)

n
= exp(Be) exp(>_ aio(2l,)" - 21)
=1
n

x exp(Z(ai,CzEC)T . zg)

i=1
By setting w; . = o ., we arrive at the formulation in Lemma L]
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Proposition 3 (c¢f. Proposition[2). Let X be the image space, ) be the class space. Given a set of
prompts P, for any prompt weighting scheme S (cf. Egs. (1)), define the representable likelihood set
Fs as:

Fs={f: X xY = RL[IW € Wy, P, s.t. f(x,yc)  Pr(x|ye, W,P)},

where Wg is the weight space under the scheme S. Let F¢; and Fcs be the representable likelihood
set induced from class-independent weighting and class-aware weighting (cf. equation|l)) schemes.
Then, we have: 3f* € Fcs such thatV fcr € Fer, 3 € X, y. € Y where f*(x,y.) # fa(x, ye)-

Proof. We prove this by constructing a specific function in F¢s and showing it cannot be represented
by any function in F¢y. For simplicity, we consider a toy setting with three classes ) = {y1, y2, y3 }
and two prompts P = {py,p2}. For any & € X, the function under class-aware weighting for
Yy. € {y1, Y2, ys3} takes the form:

IP|

I (x,y.) = szv Pr(z|ye, pi)

=1
= Wi,c Pr($|yc»P1) + w2 ¢ Pr(wlyc7p2)~

where w; ; € R are class-aware weights for prompt ¢ and class j. For ease of notation, we denote
the prompt-conditional likelihood by a; . £ Pr(z|y., p:). This way f* € Fcs can be expressed as

[ (x,y1) = wi1a1,1 + w1021
[ (®,y2) = w1 2a1,2 + w2 2022
[z, y3) = wi301,3 + w3023

We then consider a specific instanceﬂ of this function by choosing:

w1 =2, we;=1
wip =1, wpo =2
wig =3, Waz=3
This leads to
[ (x,91) =2a11 + a2,
[ (®,y2) = a12 + 2022
[*(x,y3) = 3a1,3 + 3az3
Now, suppose for contradiction that 3 fc; € F¢p such that f* = fcr. By definition of F¢y, fcr takes
the form fei(x, y.) = wiai,c + waasg, ., where wy, we € Ry are class-independent weights.

If f* = fci, then for all classes y. € {y1,y2, y3}, we must have the following equations to hold
simultaneously:
2a11 + a1 = wiay,1 + weazy  (foryp)
a1,2 + a2 = wiai 2 + waag s (for ys)
3a1,3 + 3as3 = wiay,3 + woag s (for ysz)

From these equations, we can deduce that

w1 = 2 and we = 1 must hold for any a; 1,a21 >0 (fory;)
w1 = 1 and we = 2 must hold for any a; 2,a22 > 0 (for y2)
w1 = 3 and wy = 3 must hold for any a; 3,a23 >0 (fory;)

Thus, we need w; = 2 for y; while w; = 1 for yo, immediately leading to a contradiction as w;
cannot simultaneously equal 1 and 2.

Therefore, no class-independent weighting scheme can represent the function f* we constructed.
We have proven that 3f* € Fcg such that Vfor € Fer, Jx € X, y. € gY where f*(x,y.) #
O

fCI(a:a yc)

unnormalized weights, just for illustration
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(a) Truncated Class-Prompt Weights Heatmap  (b) Per-Class Weight Distribution for “a low
resolution photo of a {}.”

Figure 6: Visualization of the class-aware prompt weights estimated by CARPRT on the Caltech101 dataset.
(a) The heatmap shows the prompt weights across a subset of classes and prompts, revealing diverse weight
patterns and confirming class-specific preferences. (b) The bar plot displays the distribution of prompt weights
assigned to the prompt “a low resolution photo of a {}” across all classes.

J ADDITIONAL VISUALIZATIONS OF PROMPT WEIGHTS

To provide qualitative insight into CARPRT’s mechanism, we first visualize the learned class-specific
prompt weights on the Caltech101 dataset. Figure[6(a)|shows the rruncated weight matrix for a subset
of prompts (n’ < n columns) and classes (C” < C rows) from the full matrix W € R"*¢ where
clear differences in the weights assigned to the same prompt across different classes are evident.
Figure further illustrates this class-dependency by plotting the weights of a single prompt
template—*a low resolution photo of a {}”—across all classes, demonstrating that the contribution
of this prompt is tailored to each class. These visualizations corroborate our quantitative results,
confirming that CARPRT prioritizes prompts differently for each class.

In addition, we include additional visualizations of the CARPRT-generated prompt weights across
all ten fine-grained datasets in the supplementary material (due to file size, these figures are not
embedded in the main PDF). Each visualization is presented as a heatmap, where the vertical axis
corresponds to the prompt index and the horizontal axis to the class index.

These heatmaps consistently reveal the class-specific nature of the learned weights: the columns
exhibit noticeable variation across prompts rather than remaining uniform, indicating that different
prompts are emphasized for different classes. Moreover, for most fine-grained datasets, only a small
subset of prompts receive high weights across classes, while the majority are down-weighted—this
sparsity manifests visually as a few strong horizontal lines. This trend is particularly evident
on Food101, where the semantic homogeneity of the dataset leads to more consistent prompt
preferences across classes.

Nevertheless, even within Food1 01, the highest-weighted prompt still varies across classes, demon-
strating that class-aware prompt weighting remains essential. These results collectively support the
effectiveness of WPE (Allingham et al., 2023)) in highlighting useful prompts for the dataset, while
also confirming the necessity of CARPRT’s class-aware weighting to fully capture intra-dataset
variation.

K USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this submission, we LL.Ms solely as writing aids to improve readability. Specifically,
LLMs were employed to correct grammar errors and polish the text. No part of the scientific
content—including problem formulation, method design, experiments, or analysis—is generated by
LLMs. All technical contributions and claims were conceived, implemented, and evaluated by the
authors.
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