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Abstract001

Recently, inference-time reasoning strategies002
have further improved the accuracy of large lan-003
guage models (LLMs), but their effectiveness004
on smaller models remains unclear. Based on005
the observation that conventional approaches006
often fail to improve performance in this007
context, we propose Cycle-Consistency in008
Question Answering (CCQA), a novel reason-009
ing method that can be effectively applied to010
SLMs. Inspired by cycle consistency, CCQA011
generates a question from each reasoning path012
and answer, evaluates each by its similarity to013
the original question, and then selects the can-014
didate solution with the highest similarity score015
as the final response. Since conventional SLMs016
struggle to generate accurate questions from017
their own reasoning paths and answers, we018
employ a lightweight Flan-T5 model special-019
ized for question generation to support this pro-020
cess efficiently. From the experimental results,021
it is verified that CCQA consistently outper-022
forms existing state-of-the-art (SOTA) methods023
across eight models on mathematical and com-024
monsense reasoning benchmarks. Furthermore,025
our method establishes a new practical base-026
line for efficient reasoning in SLMs. Source027
code can be found at https://github.com/028
ccqaofficial/ccqa_official.git.029

1 Introduction030

Recent advancements in large language models031

(LLMs) have yielded remarkable performance032

across a wide range of tasks, including machine033

translation (Bahdanau et al., 2014; Stahlberg,034

2020), code generation (Chen et al., 2021; Feng035

et al., 2020), sentiment analysis (Socher et al.,036

2013; Devlin et al., 2019), and reasoning (Shao037

et al., 2024; Bhargava and Ng, 2022). On top of038

that, inference-time reasoning strategies, such as039

chain-of-thought (CoT) (Wei et al., 2022), self-040

consistency (SC) (Wang et al., 2023), and self-041

correction (Huang et al., 2024), can produce more042

reliable outputs and further improve model accu- 043

racy, albeit at the cost of additional test-time com- 044

putation (Wei et al., 2022; Wang et al., 2023; Huang 045

et al., 2024). 046

While prior studies have clearly demonstrated 047

the effectiveness of these reasoning techniques for 048

large-scale models (Wang et al., 2023; Huang et al., 049

2024; Madaan et al., 2023), their applicability to 050

small language models (SLMs) has yet to be fully 051

explored. This motivates us to empirically inves- 052

tigate whether such reasoning strategies remain 053

effective when applied to SLMs, and our observa- 054

tions indicate that they often lead to performance 055

degradation in this setting, which will be discussed 056

in Section 5. 057

The performance degradation observed in SLMs 058

can be attributed to two main factors. First, smaller 059

models could struggle to understand complex in- 060

puts and fail to follow instructions (Chang et al., 061

2024; An et al., 2024; Fang et al., 2024; Shi et al., 062

2024). However, recent self-feedback methods, 063

such as self-correction (Huang et al., 2024), self- 064

refinement (Madaan et al., 2023), and universal 065

self-consistency (USC) (Chen et al., 2023), operate 066

under the assumption that the model is capable of 067

comprehending lengthy and complex inputs to gen- 068

erate appropriate feedback. This mismatch between 069

the model’s capacity and the underlying assump- 070

tion often leads to suboptimal or even misleading 071

outputs in the context of SLMs. Second, voting- 072

based approaches such as SC (Wang et al., 2023) 073

rely on a majority vote across multiple generated 074

answers. This strategy becomes less effective when 075

SLMs produce highly inconsistent outputs (Wang 076

et al., 2024). In such cases where generated answers 077

exhibit high variance without a clearly dominant 078

response, majority voting fails to produce a reliable 079

consensus and offers no meaningful advantage over 080

random choice. This occurs because SC selects the 081

final answer solely based on frequency, without 082

evaluating the quality of reasoning paths. 083
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To address these limitations, we propose a novel084

reasoning method that can be effectively applied085

to SLMs, called Cycle-Consistency in Question086

Answering (CCQA). Inspired by the principle of087

cycle consistency (Hoffman et al., 2018), we con-088

struct a cycle between the original question, the089

solution produced by the SLM, and the question090

generated from that solution. Here, the solution091

includes a reasoning path and its corresponding092

answer. We believe that if the reasoning path and093

answer are correct, the regenerated question should094

be highly similar to the original input question. In095

the proposed framework, the SLM first receives096

the question as input and produces multiple can-097

didate solutions. When there is no dominant re-098

sponse during majority voting, CCQA generates a099

new question from each candidate and measures its100

similarity to the original; a higher similarity score101

indicates that the solution is more likely correct.102

The candidate solution whose generated question103

most closely matches the original is selected as the104

final response, without requiring the model to pro-105

cess any additional complex input. Moreover, we106

fine-tune a lightweight Flan-T5 (Chung et al., 2024)107

model to generate questions from candidate solu-108

tions. This is because conventional SLMs typically109

struggle to generate questions from their reasoning110

paths and answers. We confirm that our fine-tuned111

Flan-T5 is both efficient and excels at producing112

high-quality questions.113

Extensive experiments are conducted on six114

reasoning benchmarks, including four mathemat-115

ical and four commonsense tasks. Our evaluation116

uses eight SLMs ranging from 135M to 3B pa-117

rameters, including Llama3.2 (Grattafiori et al.,118

2024), SmolLM2 (Allal et al., 2025), and Qwen2.5119

(Qwen et al., 2025). From the experimental re-120

sults, it is confirmed that CCQA consistently out-121

performs current state-of-the-art (SOTA) reasoning122

methods across most SLMs and benchmarks. No-123

tably, CCQA with Llama-3B on GSM8K achieves124

69.60% accuracy compared to USC’s 53.83%.125

On CommonSenseQA with Llama-1B, it attains126

38.74% versus USC’s 33.99%, demonstrating its127

effectiveness in enhancing SLM reasoning capabil-128

ities.129

Our main contributions are summarized as fol-130

lows:131

• Our paper introduces a novel inference-132

time reasoning technique for SLMs, namely133

CCQA, that evaluates the quality of each rea-134

soning path and its answer by regenerating a 135

question and measuring its similarity to the 136

original. To the best of our knowledge, this is 137

the first attempt to investigate the inference- 138

time reasoning capabilities of SLMs and to 139

improve them. 140

• We leverage a lightweight Flan-T5 model to 141

generate questions from candidate solutions. 142

Compared to conventional SLMs, our fine- 143

tuned Flan-T5 is computationally efficient and 144

produces higher-quality questions. 145

• Our extensive experiments across diverse 146

benchmarks and SLMs demonstrate that 147

CCQA consistently outperforms SOTA rea- 148

soning methods, substantially improving rea- 149

soning capabilities of SLMs. 150

2 Related Work 151

2.1 Reasoning Methods for LLMs in Test-time 152

Reasoning remains one of the most challenging 153

tasks for language models, involving complex 154

problem-solving such as arithmetic and common- 155

sense reasoning. Various approaches have been de- 156

veloped to enhance reasoning performance. CoT 157

(Wei et al., 2022) induces models to describe 158

problem-solving steps clearly, with extensions like 159

least-to-most (Zhou et al., 2023) and tree of thought 160

(Yao et al., 2023) exploring more diverse reason- 161

ing paths. Self-feedback methods, including self- 162

correction (Huang et al., 2024) and self-refinement 163

(Madaan et al., 2023), enable models to improve 164

outputs using their own responses, though these 165

typically require processing extensive input con- 166

texts. Aggregation techniques such as SC (Wang 167

et al., 2023) employ majority voting across multi- 168

ple samples, while USC (Chen et al., 2023) gener- 169

ates responses by considering all previous outputs. 170

However, these methods rely on assumptions about 171

model capacity that become problematic for SLMs 172

with inconsistent outputs or limited ability to pro- 173

cess complex prompts. 174

2.2 Cycle Consistency in Generative Models 175

Cycle consistency has been widely used as an ef- 176

fective training and evaluation paradigm across var- 177

ious domains. Initially introduced in computer vi- 178

sion for tasks such as image-to-image translation 179

(Zhu et al., 2017) and 3D reconstruction (Tulsiani 180

et al., 2018), the concept leverages the principle 181
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Figure 1: Overall process of the CCQA. (1) CCQA receives a question as input and generates N solutions. (2) It
checks for the LCV condition; if the LCV condition is met (i.e., when the model’s answers are inconsistent with
no clear majority), it regenerates questions from the answers, otherwise it performs majority voting to select the
final answer. (3) Under the LCV condition, it compares the generated questions with the original question to assign
similarity scores. (4) The solution corresponding to the question with the highest similarity score is selected as the
final answer.

that transformations should be reversible — if data182

is transformed from domain A to domain B and183

back to domain A, the result should closely match184

the original input. This principle has been extended185

to natural language processing, including machine186

translation (Sennrich et al., 2016; He et al., 2016),187

where back translation serves as a form of cycle188

consistency to improve translation quality. Recent189

work has also explored cycle consistency for evalu-190

ating text generation quality (Lee and Lee, 2022)191

and ensuring factual consistency in summarization192

(Yuan et al., 2020). While cycle consistency has193

been used to assess generation quality in various194

domains, applying it to SLM’s reasoning quality195

offers a promising new direction.196

3 Proposed Method197

3.1 Motivation198

SLMs have gained increasing attention (Qu et al.,199

2025; Liu et al., 2024b), but when applied to rea-200

soning tasks, they underperform mainly due to two201

limitations. First, SLMs struggle with processing202

long and complex inputs (>1K tokens) due to their203

weak in-context learning abilities (Liu et al., 2024a;204

An et al., 2024; Fang et al., 2024). Second, they205

often generate inconsistent outputs that are highly206

varied (Wang et al., 2024). Consequently, both self-207

feedback mechanisms (e.g., self-correction, self- 208

refinement) and voting mechanisms (e.g., SC, USC) 209

show limited effectiveness with SLMs, as they re- 210

quire either strong input processing capabilities or 211

output consistency. Despite these limitations, rea- 212

soning approaches specifically designed for SLMs 213

remain largely unexplored, highlighting the need 214

for tailored methodologies for SLMs. Based on 215

these observations, we derive two key requirements 216

for effective SLM reasoning: (1) avoid lengthy feed- 217

back or correction prompts, and (2) reliably identify 218

high-quality reasoning despite inconsistent outputs. 219

3.2 CCQA 220

The overall process of CCQA is illustrated in Fig- 221

ure 1. CCQA begins by generating N independent 222

solutions, including both reasoning paths (RPs1) 223

and answers, using CoT prompting. It then applies 224

answer-only voting, as in the SC method, disre- 225

garding RPs. However, SLMs frequently produce 226

extremely diverse answers to the same question, 227

leading to unstable voting patterns where majority 228

voting acts like random selection. In those cases, 229

we employ a fine-tuned T5 model to regenerate 230

a question from each solution (Section 3.4) and 231

1Reasoning paths refer to the step-by-step solution pro-
cesses generated using CoT prompting, excluding the final
answer.

3



measure both lexical and semantic similarity be-232

tween each generated question and the original one.233

Finally, CCQA determines the final output by se-234

lecting the answer whose generated question has235

the highest similarity score (Section 3.5).236

3.3 Multiple Solution Generation and LCV237

Identification238

When SLMs generate highly varied answers, addi-239

tional verification becomes necessary. For instance,240

consider a case where a mathematical problem241

yields answers ‘18’, ‘24’, ‘27’, and ‘35’ with simi-242

lar frequencies across multiple generated solutions.243

In this scenario, it is difficult to determine which244

answer is more reliable based on voting alone, as245

the method cannot evaluate the quality of the RPs.246

To address this problem, we define such situations247

with highly varied answers as Low Confidence248

Voting (LCV) conditions. An LCV condition is249

defined by the following condition:250

LCV =
{
max

j
freq(Aj) < ⌈N/2⌉

}
.251

Here, freq(Aj) represents the frequency of the j-252

th unique answer, and N is the total number of gen-253

erated responses. In other words, LCV is defined as254

a situation where the frequency of the most voted255

answer does not reach a majority of the total num-256

ber of responses. In our experiments on the GSM8K257

dataset, evaluating eight different models of various258

sizes (0.5B-3B), we found that on average, LCV259

occurred in 36.46% of problems, and 80.85% of260

answers selected by SC in these LCV cases were261

incorrect. This demonstrates that a simple majority262

voting method cannot sufficiently leverage the rea-263

soning capabilities of SLMs. In these situations, a264

verification mechanism that directly considers RPs265

is needed rather than a majority voting approach.266

Therefore, we apply backward question generation267

and similarity measurement methods to directly268

evaluate the quality of each RP.269

3.4 Backward Question Generation270

To evaluate RP quality in LCV situations, we lever-271

age backward question generation. The backward272

question generation process is as follows: In LCV273

situations, each RPi (where i indicates the index of274

the RP) is used as input to the fine-tuned T5 model275

to generate a question (GQi, where i indicates the276

index of the GQ). To ensure more accurate ques-277

tion generation, we carefully select the appropriate278

model architecture and design a comprehensive279

Algorithm 1 CCQA
Require: Original Question OQ, parameter α, β,

sample count N , backward question genera-
tion BQG, reasoning path RPi, answer Ai

Ensure: Final answer (RPfinal, Afinal)
1: Generate reasoning path and answers
{(RPi, Ai)}Ni=1

2: Count frequency of each unique answer:
freq(Aj)

3: jmax ← argmaxj freq(Aj)
4: if freq(Ajmax) ≥ ⌈N/2⌉ then
5: return (RPjmax , Ajmax)
6: else
7: for i = 1 to N do do
8: GQi ← BQG(RPi)
9: bleui ← BLEU(GQi, OQ)

10: cosi ← Cosine similarity(GQi, OQ)
11: scorei ← α · bleui + β · cosi
12: end for
13: best_idx← argmaxi scorei
14: return (RPbest_idx, Abest_idx)
15: end if

training process. Among models of similar size, 280

we choose the T5-base model due to its superior 281

performance in text generation tasks. We also ex- 282

periment with other small-sized models, but they do 283

not perform well regardless of whether we apply 284

fine-tuning or not. Furthermore, we utilize train- 285

ing sets from various mathematical and common- 286

sense reasoning benchmarks, reverse the existing 287

question-answer pairs to answer-question format 288

for our task. Detailed hyperparameters and data 289

preprocessing rules are presented in the Section 4. 290

3.5 Similarity-based Answer Selection 291

After the backward question generation is com- 292

pleted, we need to compare the similarity between 293

the generated questions (GQ) and the original 294

question (OQ). We measured the similarity be- 295

tween each GQi from each reasoning path RPi 296

and the original question (OQ) using two comple- 297

mentary methods: BLEU (Papineni et al., 2002) 298

and embedding-based cosine similarity (Reimers 299

and Gurevych, 2019). BLEU score for lexical over- 300

lap and embedding-based cosine similarity for se- 301

mantic correspondence. BLEU score captures the 302

lexical overlap and structural similarity by mea- 303

suring n-gram matches between the generated and 304

original questions. This helps identify how well the 305

surface-level textual elements are preserved. For 306
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semantic similarity, we used cosine similarity of307

sentence embeddings generated by Sentence-BERT308

(Reimers and Gurevych, 2019), which captures the309

overall meaning correspondence between the two310

questions beyond exact word matches. These two311

measurements were combined using the following312

weighted sum:313

score(GQi, OQ) = α · BLEU(GQi, OQ)314

+ β · cosine(GQi, OQ). (1)315

Here, BLEU is the BLEU score value, and cosine is316

the embedding-based cosine similarity score value.317

α and β are weights that adjust the importance of318

each measurement. In our method, we set α to 0.4319

and β to 0.6. Detailed experiments for determining320

these weights are presented in Section 6. The com-321

plete CCQA approach is formalized in Algorithm322

1.323

4 Experimental Setup324

Models. The specific models used in our ex-325

periments are Llama3.2-1B and Llama3.2-3B326

(Grattafiori et al., 2024), Qwen2.5-0.5B, Qwen2.5-327

1.5B, and Qwen2.5-3B (Qwen et al., 2025),328

SmolLM2-135M and SmolLM2-360M (Allal et al.,329

2025). Llama3.2 is a decoder-only language330

model with improved reasoning and instruction-331

following capabilities. We selected Llama3.2-1B332

and Llama3.2-3B variants to test performance333

on recent architectural designs. Qwen2.5 is a334

transformer-based model known for its strong335

multilingual capabilities and performance on336

knowledge-intensive tasks. To assess how CCQA’s337

scaling properties are affected by increasing model338

capacity, we utilized three different variants of this339

model. SmolLM2 is a lightweight model optimized340

for efficiency with a specialized architecture for341

resource-constrained environments. We included342

SmolLM2-135M and SmolLM2-360M variants to343

test CCQA’s applicability in on-device environ-344

ments. Also we finetuned Flan-T5 models to gener-345

ate question, using learning rate of 2e-5, 3 epochs,346

and a batch size of 16.347

Benchmarks. We evaluated CCQA on six stan-348

dard reasoning benchmarks. For arithmetic reason-349

ing, we utilized GSM8K (Cobbe et al., 2021) with350

its multi-step grade school math problems (train:351

7.47K, test: 1.32K), SVAMP (Patel et al., 2021)352

offering varied math word problems (train: 700,353

test: 300), and Multi-Arith (Roy and Roth, 2015)354

for problems requiring multiple operations (train: 355

420, test: 180). For commonsense reasoning, we se- 356

lected CSQA (Talmor et al., 2019) for its multiple- 357

choice questions requiring world knowledge (train: 358

9.74K, val: 1.22K, test: 1.14K), StrategyQA (Geva 359

et al., 2021) which poses yes/no questions need- 360

ing strategic inference (train: 1.6K, test: 687), and 361

ARC-Challenge (Clark et al., 2018) (train: 1.12K, 362

val: 299, test: 1.17K). If there was an answer field, 363

we used the test dataset; if not, we used the dev 364

dataset. Also, the datasets used for finetuning were 365

the train sets of CSQA, StrategyQA, and GSM8K- 366

main. 367

Implementation. We conducted experiments us- 368

ing the A6000 with 48GB. For generating model 369

responses, we followed standard guidelines to set 370

the temperature parameter for text generation (Rad- 371

ford et al., 2019; Holtzman et al., 2020). Specifi- 372

cally, we configured the temperature to 0.7 across 373

all models when generate solutions. Additionally, 374

based on previous research showing that top-p sam- 375

pling provides more stable results for smaller mod- 376

els(Albalak et al., 2024; Brown et al., 2020), we 377

used top-p = 0.9 for decoding. (Albalak et al., 2024; 378

Brown et al., 2020). We conducted all experiments 379

in a few-shot setting, utilizing demonstration exam- 380

ples derived from prior open-domain text genera- 381

tion studies (Wei et al., 2022; Wang et al., 2023). 382

We also created simple prompts for T5 question 383

generation. Our prompts and sample solutions are 384

presented in Appendix A.1, which shows the cor- 385

responding prompts used for question generation. 386

Additionally, we converted question-answer pairs 387

from the training sets of various reasoning bench- 388

marks into answer-question pairs to finetune the 389

Flan-T5 model. 390

5 Experimental Results 391

We evaluated CCQA on multiple benchmarks, com- 392

paring it with conventional reasoning methods, in- 393

cluding CoT (Wei et al., 2022), self-correction 394

(Huang et al., 2024), SC (Huang et al., 2024), and 395

USC (Chen et al., 2023). As mentioned earlier, we 396

focused on assessing the effectiveness of inference- 397

time reasoning strategies for SLMs. 398

5.1 Main Results 399

Arithmetic Reasoning. The results for arith- 400

metic reasoning are presented in Table 1. Each 401

SLM independently generated five solutions 402

(N = 5) per question. Interestingly, conventional 403
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Model GSM8K MultiArith SVAMP
CoT Self-Corr SC USC CCQA CoT Self-Corr SC USC CCQA CoT Self-Corr SC USC CCQA

Qwen-0.5B 11.45 4.55 17.32 4.32 17.32 40.00 11.24 51.11 7.87 52.22 44.33 15.33 52.67 12.67 55.00
Qwen-1.5B 37.98 22.37 44.88 25.02 48.37 95.00 66.85 97.22 19.66 97.22 74.33 38.00 83.67 69.00 84.00
Qwen-3B 33.01 0.30 29.12 23.21 30.71 75.56 0.00 81.11 71.91 82.78 86.00 16.67 88.00 32.67 88.33
Llama-1B 25.32 17.89 35.78 27.60 39.20 70.22 25.84 85.00 70.22 86.11 52.33 40.00 58.67 53.67 59.00
Llama-3B 49.81 4.85 69.31 53.83 69.60 80.58 8.63 93.89 80.58 98.89 79.00 27.33 85.00 79.33 86.00
Falcon-1B 32.52 0.08 40.94 35.56 42.61 79.21 63.33 91.67 79.21 92.78 44.00 20.67 51.33 49.00 52.33
SmolLM2-135M 2.35 0.00 1.97 0.00 2.88 0.00 0.00 3.33 0.00 3.33 6.00 0.00 8.33 0.00 7.67
SmolLM2-360M 6.60 0.00 8.79 0.00 8.72 7.78 0.00 24.44 7.78 25.56 15.33 0.00 24.33 3.33 27.00

Method CommonSenseQA StrategyQA ARC-Challenge
CoT Self-Corr SC USC CCQA CoT Self-Corr SC USC CCQA CoT Self-Corr SC USC CCQA

Qwen-0.5B 39.64 21.21 43.00 10.97 43.82 53.13 19.07 54.29 18.05 54.29 44.28 26.54 48.46 33.19 49.89
Qwen-1.5B 62.74 7.53 66.58 52.17 66.34 55.02 12.23 52.55 49.34 55.17 71.33 24.66 75.09 42.15 74.40
Qwen-3B 65.11 70.27 70.52 48.24 70.52 51.97 51.53 52.98 48.18 55.31 79.95 26.56 84.90 68.34 84.98
Llama-1B 30.71 22.43 37.92 33.99 38.74 54.00 3.64 57.21 42.65 57.35 44.71 39.25 49.40 46.08 49.66
Llama-3B 56.18 48.37 65.68 59.62 66.42 45.65 51.53 49.20 49.05 49.20 69.71 72.05 74.40 69.37 74.06
Falcon-1B 32.68 0.00 35.14 31.29 35.79 58.52 6.11 58.52 51.86 59.57 54.52 30.72 55.38 53.84 55.72
SmolLM2-135M 16.79 0.00 17.69 0.00 18.35 49.05 0.87 49.34 0.00 49.34 22.53 18.00 23.12 0.00 23.98
SmolLM2-360M 19.66 0.00 19.49 0.66 19.82 49.49 0.15 49.20 5.97 49.49 16.81 18.21 18.00 1.37 18.09

Table 1: Performance on different reasoning methods on arithmetic (GSM8K, Multi-Arith, SVAMP) and common-
sense (CommonSenseQA, StrategyQA, ARC-Challenge) benchmarks, measured by accuracy (%). CoT: chain-
of-thought prompting, Self-Corr: self-correction, SC: self-consistency, USC: universal self-consistency, CCQA:
proposed method.

feedback-based methods, such as self-correction404

and USC, showed significant performance degra-405

dation. When applied to SLMs, these methods406

achieved markedly lower accuracy than chain-of-407

thought prompting and self-consistency, suggest-408

ing that feedback-dependent inference strategies409

may be suboptimal in the smaller model setting.410

However, the results show that CCQA consistently411

achieves the highest accuracy across most con-412

figurations, outperforming all other methods on413

GSM8K, SVAMP, and MultiArith. In particular,414

on the MultiArith benchmark, Llama3.2-3B with415

CCQA achieves a 5.00 % performance improve-416

ment over SC, showed better accuracy than the417

other methods. For SmolLM2, its limited capacity418

resulted in generally poor performance on the arith-419

metic reasoning benchmark. Nevertheless, CCQA420

still produced a measurable accuracy improvement.421

Commonsense Reasoning. Experimental results422

for commonsense reasoning are also summarized in423

Table 1. Across the three evaluated benchmarks, in-424

cluding CommonsenseQA, StrategyQA, and ARC-425

Challenge, CCQA outperformed competing meth-426

ods across most models and benchmarks. As with427

arithmetic reasoning, self-correction and USC also428

exhibited performance degradation in common-429

sense reasoning. For SmolLM2, every method ex-430

cept CCQA and SC performed worse than CoT,431

with some approaches’ accuracy even falling to432

0 %. Among the techniques, only CCQA and SC433

maintained performance at or above CoT. How-434

Benchmark LCV SCLCV CCQALCV ∆

GSM8K 36.46 19.15 22.11 +2.96
CSQA 21.28 26.48 28.68 +2.20
StrategyQA 5.79 36.88 48.03 +11.15
SVAMP 36.46 19.15 21.20 +2.05

Table 2: Proportion of questions triggering the LCV con-
dition and corresponding accuracy. LCV (%) = percent-
age of all samples under LCV condition (i.e., no clear
majority); SCLCV (%) = accuracy of self-consistency
on LCV samples; CCQALCV (%) = accuracy of the
proposed method on the same samples; ∆ (percentage-
point gain) = CCQALCV – SCLCV.

ever, CCQA consistently delivered higher accuracy 435

than SC. This suggests that CCQA provides more 436

consistent gains for SLMs across both arithmetic 437

and commonsense reasoning tasks, whereas other 438

inference-time methods may sometimes underper- 439

form or show unstable results. 440

5.2 CCQA Performs More Robustly Under 441

LCV Condition 442

We also compared SC and CCQA performance 443

under the LCV condition, as reported in Table 2. 444

When the LCV condition was true, this means that 445

the model produced highly diverse and inconsistent 446

answers without any clear majority. On StrategyQA 447

benchmark, CCQA correctly solved 11.15% more 448

problems under the LCV condition compared to SC. 449

Because SC lacked a mechanism for resolving con- 450

flicting answers, it struggled when outputs are in- 451

consistent. In contrast, CCQA effectively selected 452
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Figure 2: Comparison of CoT, SC, and CCQA accuracy across benchmarks for varying numbers of generated
solutions N . The rightmost plot shows the mean performance across all benchmarks and models. Self-correction
and USC, which performed worse than SC and CCQA (see Table 1), were omitted for clarity.

higher-quality reasoning paths, demonstrating its453

potential as an inference-time strategy for SLMs.454

Though CCQA required slightly more computa-455

tional resources than SC, it achieved a favorable456

performance-resource balance, offering significant457

accuracy gains with only marginal additional com-458

putational cost.459

5.3 Robust Performance across Various460

Numbers of Responses461

We evaluated CCQA’s robustness by progressively462

increasing the number of generated solutions to 10463

and measuring performance at each increment. As464

shown in Figure 2, we observed consistent perfor-465

mance gains across both arithmetic reasoning and466

commonsense benchmarks relative to SC, which467

was the strongest-performing method among all ap-468

proaches aside from CCQA. The rightmost graph469

compared CCQA, CoT, and SC using the average470

of the six benchmarks we used. From the results,471

it is verified that CCQA demonstrates consistent472

performance improvements across all benchmark473

averages.474

6 Analysis475

6.1 Similarity Metrics for CCQA476

To measure the similarity between generated ques-477

tions and original questions, we considered various478

similarity metrics. First, we believed that using479

both surface-level and semantic similarities would480

be beneficial for the similarity score. This approach481

provides a more comprehensive evaluation frame-482

work by capturing different aspects of textual simi-483
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Figure 3: Comparison of different similarity metrics
with varying weights (α for first metric, β = 1− α for
second metric).

larity. Surface-level metrics can effectively identify 484

exact matches and structural similarities, while se- 485

mantic measures can recognize paraphrases and 486

conceptually equivalent expressions that might 487

use different vocabulary. Therefore, we employed 488

BLEU and Rouge (Lin, 2004) for surface-level sim- 489

ilarity, while utilizing embedding-based cosine sim- 490

ilarity, BERTScore (Zhang* et al., 2020) for seman- 491

tic similarity. We found optimal performance by 492

using a weighted sum of these surface-level and 493

semantic similarity measures. 494

Our empirical analysis revealed that a balanced 495

combination of lexical structure and semantic 496
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meaning provides the most effective similarity497

measure for identifying accurate reasoning paths.498

Specifically, assigning weights of α = 0.4 to bleu499

score, and β = 0.6 to embedding-based cosine sim-500

ilarity yielded optimal performance across diverse501

reasoning benchmarks. These weights were de-502

termined through comprehensive grid search over503

range 0.0, 0.1,...,1.0 with the constraint α+ β = 1.504

The three combinations with the best performance505

are presented in Figure 3. Using this optimized506

similarity measure, CCQA selects the reasoning507

path and its corresponding answer that generates508

the question most similar to the original problem.509

6.2 Backward Question Generation Model510

For the efficiency and performance of the proposed511

method, generating backward questions played an512

important role. We considered several models re-513

quiring minimal additional resources, taking into514

account the characteristics of SLMs. We used a to-515

tal of three models: Llama3.2-1B, Qwen2.5-0.5B,516

and Flan-T5. We first used these three models with-517

out fine-tuning, but all models failed to generate518

problems properly. Specifically, Llama3.2-1B and519

Qwen2.5-0.5B often generated responses that were520

irrelevant to the answers, while the T5 model gen-521

erated questions but sometimes missed important522

parts of the answers. Therefore, we used the Flan-523

T5 model with fine-tuning. We also tried using524

other models with fine-tuning, but they exhibited525

the same problems. Detailed examples of question526

generation from all three models are presented in527

Appendix A.2. Additionally, we measured the simi-528

larity between the questions generated by the mod-529

els and the original questions, not just through ob- 530

servation. As shown in Figure 2 below, when we 531

generated questions from solutions by using Flan- 532

T5 models, it had the highest average semantic 533

similarity value. As a result, by using this model, 534

we were able to improve performance with CCQA 535

while only slightly increasing resource require- 536

ments. 537

7 Conclusion 538

We presented CCQA, a novel inference-time rea- 539

soning framework designed for SLMs. Inspired 540

by the cycle consistency, CCQA regenerated a 541

question from each candidate solution using a 542

lightweight, fine-tuned Flan-T5 and compared it to 543

the original prompt to identify the most reliable rea- 544

soning path. This simple yet effective mechanism 545

makes the proposed method robust under LCV con- 546

ditions, where small models typically produce in- 547

consistent outputs, while adding only minimal com- 548

putational overhead. From extensive experiments 549

across arithmetic and commonsense benchmarks, 550

it is verified that that CCQA consistently surpassed 551

existing inference-time strategies, substantially en- 552

hancing the reasoning capabilities of SLMs. 553

8 Limitations 554

Despite its strong performance, CCQA has sev- 555

eral limitations. First, the effectiveness of the pro- 556

posed framework depends on the quality of the 557

backward question generator; if the component 558

produces low-quality questions, then CCQA’s over- 559

all performance degrades. Second, the auxiliary 560

Flan-T5 model introduces additional parameters. 561

However, its lightweight design and the substantial 562

performance gains on SLMs make this overhead 563

acceptable. Also, considering that SLMs typically 564

struggle to generate reliable questions on their own, 565

the additional cost is essential for achieving robust 566

reasoning performance. Compared to the high com- 567

putational cost and numerous forward passes of 568

other inference-time reasoning methods, CCQA’s 569

extra demand is reasonable. Finally, our evalua- 570

tion is limited to arithmetic and commonsense rea- 571

soning in English, leaving broader domains and 572

languages for future work. Future work should ex- 573

tend CCQA to other domains—and to additional 574

languages. Despite these limitations, we believe 575

CCQA can substantially enhance the reasoning ca- 576

pabilities of SLMs and, by extension, improve their 577

real-world utility. 578
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A Appendix866

A.1 Detailed Prompts And Inputs of Question867

Models868

Table 3 gives simple prompt examples to generate869

questions. We used slightly different prompts for870

mathematical reasoning benchmarks compared to871

commonsense reasoning, emphasizing numbers to872

fully preserve the mathematical information in the873

solutions.874

A.2 Question Generating Models’ Generated875

Question876

To evaluate the performance of the question genera-877

tion model, we considered a total of three mod-878

els: Llama3.2-1B, Qwen2.5-0.5B, and Flan-T5-879

base. As shown in Table 4, the Llama3.2-1B and880

Qwen2.5-0.5B models essentially failed to gen-881

erate proper questions. In contrast, we observed882

that T5 was able to perfectly reconstruct questions883

corresponding to the given answers. Consequently,884

along with semantic similarity criteria and after885

observing these cases, we selected the T5 model.886

A.3 Fail Case of SLMs in Conventional887

Method888

In our experiments, as shown in Table 5, models889

under 1B parameters such as SmolLM and Llama890

experienced performance degradation when con-891

ventional feedback methods like USC and self-892

correction were applied. To help understand these893

situations, we have attached fail cases.894

A.4 Ethics Statements895

This work does not raise any ethical concerns.896
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Arithmetic reasoning Commonsense reasoning

Solution Marco’s dad’s strawberries
weighed 11 pounds. Together
they weighed 30 pounds. Since
Marco’s dad weighed 11 pounds,
Marco must have weighed 30 - 11
= 19 pounds. The answer is 19.

Going to church is one way people
can hear testimony of how spiritu-
ality changes lives. Therefore, the
answer is (A).

Prompts Do not change ANY numeric val-
ues in the answer. Every number
must be preserved EXACTLY in
your question. Generate a question
that would have this as its answer:

From the commonsense reasoning
answer provided below, recreate
the original commonsense ques-
tion. Generate a question that
would have this as its answer:

Generated Questions Marco and his dad went straw-
berry picking. Marco’s dad’s straw-
berries weighed 11 pounds. If to-
gether their strawberries weighed
30 pounds. How much did Marco’s
strawberries weigh?

You can hear testimony of how
spirituality changes lives when you
do what?

Table 3: Examples of question generating prompts. Input solutions and prompts for question generation in arithmetic
reasoning and common sense reasoning.

Model Generated Question

Original An-
swer

Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast. That means
she has 16 - 3 = 13 eggs left each day. She bakes muffins with 4 eggs and sells
the rest for $2 each. That means she sells 13 - 4 = 9 eggs per day. She sells 9
eggs for $2 each, so she earns 9 * 2 = 18 dollars per day. The answer is 18.

LLaMA Note: The problem is not a typical subtraction problem, but rather a problem
that involves subtraction and then adding back the result. It is also not just a
subtraction, it is a combination of subtraction (for the muffin sales) and adding
the earnings from selling the eggs (from the remaining eggs).

Qwen (Actually, Janet earns more than $10 because she can sell the remaining 5 eggs
at $0.50 each.)
Question: If Janet’s ducks laid 640 eggs in a week, how much money would
Janet make from selling the eggs if she eats them all up and then bakes for her
family of x people? To solve this problem, let’s break down the information
given: 1. Janet has ducks that lay eggs. 2. Each duck lays...

T5 Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast each day and
bakes muffins with 4 eggs. How much money does she earn per day if she sells
9 eggs for $2 each?

Table 4: Comparison of Generated Questions by Different Models
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Model SmolLM2-360

Input Prompt: Evaluate these responses. Select the most consistent response based on majority
consensus. Start your answer with "The most consistent response is Response X" (without
quotes)
response1: Janet makes $2 per fresh duck egg. She eats three for breakfast every morning
and bakes muffins for her friends every day with four.
response2: Janet makes 16 / 3 = 6 eggs per day. 16 / 3 = 5 eggs per day. 3 / 5 = 0.6 eggs
per day. 6 / 3 = 1.6 eggs per day. 1.6 / 5 = 0.34 eggs per day.
.....
response5: She spends $2 / day * 16 eggs per day = $32. She makes $32 - $16 = $18. The
answer is 18.

USC Output "Response 1: The most consistent response is Response X.Response 2: The most consistent
response is Response Y.Response 3: The most consistent response is Response Z.Response
4: The most consistent response is Response W.Response 5: The most consistent response
is Response X.Response 6: The most consistent response is Response Y.Response 7: The
most consistent response is Response Z.Response 8: The most consistent response is
Response W.Response 9: The most consistent response is Response X.Response 10: The
most consistent response is Response Y.Response 11: The most consistent response is
Response Z.Response 12: The most consistent response is Response W.Response 13: The
most consistent response is Response X.Response 14: The most consistent response is
Response Y.Response 15: The most consistent response is Response Z.Response 16: The
most consistent response is Response X.Response 17: The most consistent response is
Response Y.Response 18: The most consistent","

Table 5: Model evaluation with USC method. It shows that SmolLM2 that cannot understand when long input
context is provided
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