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Abstract

Beyond the text detection and recognition tasks in image text spotting, video text
spotting presents an augmented challenge with the inclusion of tracking. While
advanced end-to-end trainable methods have shown commendable performance,
the pursuit of multi-task optimization may pose the risk of producing sub-optimal
outcomes for individual tasks. In this paper, we identify a main bottleneck in the
state-of-the-art video text spotter: the limited recognition capability. In response to
this issue, we propose to efficiently turn an off-the-shelf query-based image text
spotter into a specialist on video and present a simple baseline termed GoMatching,
which focuses the training efforts on tracking while maintaining strong recognition
performance. To adapt the image text spotter to video datasets, we add a rescoring
head to rescore each detected instance’s confidence via efficient tuning, leading to a
better tracking candidate pool. Additionally, we design a long-short term matching
module, termed LST-Matcher, to enhance the spotter’s tracking capability by
integrating both long- and short-term matching results via Transformer. Based on
the above simple designs, GoMatching delivers new records on ICDAR15-video,
DSText, BOVText, and our proposed novel test set with arbitrary-shaped text
termed ArTVideo, which demonstrates GoMatching’s capability to accommodate
general, dense, small, arbitrary-shaped, Chinese and English text scenarios while
saving considerable training budgets.

1 Introduction

Text spotting has received increasing attention due to its various applications, such as video re-
trieval [1] and autonomous driving [2]. Recently, numerous image text spotting (ITS) methods [3–6]
that simultaneously tackle text detection and recognition, have attained extraordinary accomplishment.
In the video realm, video text spotting (VTS) involves a tracking task additionally. Although VTS
methods [7–12] make significant progress, a substantial discrepancy persists when compared to ITS.
We observe that the text recognition proficiency of VTS models is far inferior to ITS models. To
investigate this issue, we compare the state-of-the-art (SOTA) VTS model TransDETR [12] and
ITS model Deepsolo [5] for image-level text spotting performance on ICDAR15-video [13] and our
established ArTVideo (i.e., Arbitrary-shaped Text in Video) test set (Sec.4.1) which comprises about
30% curved text.

As illustrated in Fig. 1(a), even when evaluating the image-level spotting performance on the VTS
model’s training set, the F1-score of TransDETR is only comparable to the zero-shot performance of
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(a) (b)

Figure 1: (a) ‘Gap between Spot. & Det.’: the gap between spotting and detection F1-score. As the
spotting task involves recognizing the results of the detection process, the detection score is indeed
the upper bound of spotting performance. The larger the gap, the poorer the recognition ability.
Compared to the ITS model (Deepsolo [5]), the VTS model (TransDETR [12]) presents unsatisfactory
image-level text spotting F1-scores, which lag far behind its detection performance, especially on
ArTVideo with curved text. It indicates recognition capability is a main bottleneck in the VTS model.
(b) GoMatching outperforms TransDETR by over 12 MOTA on ICDAR15-video while saving 197
training GPU hours and 10.8GB memory. Notice that since the pre-training strategies and settings
vary between TransDETR and GoMatching, the comparison is focused on the fine-tuning stage.

Deepsolo. The performance of the VTS model on ArTVideo is much worse. Moreover, there is a huge
gap between the spotting and detection-only performance of the VTS model, which indicates that the
recognition capability is the main bottleneck. We attribute this discrepancy to two key aspects: 1) the
model architecture and 2) the training data. First, in terms of model architecture, ITS studies [5, 6]
have presented the advantages of employing advanced query formulation for text spotting in DETR
frameworks [14, 15]. In contrast, existing Transformer-based VTS models still rely on Region of
Interest (RoI) components or simply cropping detected text regions for recognition. On the other
hand, some studies [16, 17] have indicated that there exists optimization conflict in detection and
association during the end-to-end training of MOTR [18]. We hold that TransDETR [12], which
further incorporates text recognition into MOTR-based architecture, may also suffer from optimization
conflict. Second, regarding the training data, most text instances in current video datasets [13, 10, 19]
are straight or oriented, and the bounding box labels are only quadrilateral, which constrains the data
diversity and recognition performance as well. Overall, the limitations in model architecture and
data probably lead to the unsatisfactory text spotting performance of the SOTA VTS model. Hence,
leveraging model and data knowledge from ITS presents considerable value for VTS.

To achieve this, a straightforward approach is to take an off-the-shelf SOTA image text spotter and
focus the training efforts on tracking across frames, akin to tracking-by-detection methods. An
important question is how to efficiently incorporate a RoI-free image text spotter for VTS. In this
paper, we propose a simple baseline via lonG and short term Matching, termed GoMatching, which
leverages an off-the-shelf RoI-free image text spotter to identify text from each single frame and
associates text instances across frames with a strong tracker.

Specifically, we select the state-of-the-art DeepSolo [5] as the image text spotter and design a Long-
Short Term Matching-based tracker termed LST-Matcher. Initially, to adapt the DeepSolo to video
datasets while preserving its inherent knowledge, we freeze Deepsolo and introduce a rescoring
mechanism. This mechanism entails training an additional lightweight text classifier called rescoring
head via efficient tuning, and recalibrating confidence scores for detected instances to mitigate
performance degradation caused by the image-video domain gap. The final score for each instance
is determined by a fusion operation between the original score provided by the image text spotter
and the calibrated score acquired from the rescoring head. The identified text instances are then sent
to LST-Matcher for association. LST-Matcher can effectively harnesses both long- and short-term
information, making it a highly capable tracker. As a result, our baseline significantly surpasses
existing SOTA methods by a large margin with much lower training costs, as shown in Fig. 1(b).

In summary, the contribution of this paper is threefold. 1) We identify the limitations in current
VTS methods and propose a novel and simple baseline, which leverages an off-the-shelf image
text spotter with a strong customized tracker. 2) We introduce the rescoring mechanism and long-
short term matching module to adapt image text spotter to video datasets and enhance the tracker’s
capabilities. 3) We establish the ArTVideo test set for addressing the absence of curved texts in
current video datasets and evaluating the text spotters on videos with arbitrary-shape text. Extensive
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experiments on public challenging datasets and the established ArTVideo test set demonstrate the
effectiveness of our baseline and its outstanding performance with less training budgets. For example,
GoMatching achieves the highest ranking on ICDAR15-video and DSText. Especially on bilingual
dataset BOVText, GoMatching obtains a 45% improvement on MOTA compared to the recorded best
performance [11]. On curved text dataset ArTVideo, GoMatching also surpasses previous SOTA
method [12] by a substantial margin.

2 Related Works

2.1 Multi-Object Tracking

Multi-object tracking methods follow the tracking-by-detection (TBD) or tracking-by-query-
propagation (TBQP) pipeline. TBD methods [20–22] employ detectors for localization and then use
association algorithms to get object trajectories. Different from extending tracks frame-by-frame,
GTR [23] proposes to generate entire trajectories at once in Transformer. TBQP paradigm extends
query-based object detectors[14, 15] to tracking. MOTR [18] detects object locations and serially
updates its tracking queries for detecting the same items in the following frames, achieving an
end-to-end solution. However, MOTR suffers from optimization con�ict between detection and
association [16, 17], resulting in inferior detection performance. For the VTS task which additionally
involves text recognition, a naive way of training all modules end-to-end may also lead to optimization
con�ict. In contrast, we explore inheriting prior knowledge of text spotting from ITS models while
focusing on the tracking task.

2.2 Image Text Spotting

Early approaches [24–26] crafted RoI-based modules to bridge text detection and recognition. How-
ever, these methods ignored one vital issue,i.e., the synergy problem between the two tasks. To
overcome this dilemma, recent Transformer-based methods [27, 3, 28, 6] get rid of the fetters of RoI
modules, and chase a better representation for the two tasks. For example, DETR-based TESTR [4]
uses two decoders for each task in parallel. In contrast, DeepSolo [5] proposes a uni�ed and explicit
query form for the two tasks, without harnessing dual decoders. However, the above methods cannot
perform tracking in the video.

2.3 Video Text Spotting

Compared to ITS, existing SOTA VTS methods still rely on RoI for recognition. CoText [11] adopts a
lightweight text spotter with Masked-RoI, then uses several encoders to fuse features derived from the
spotter, and �nally feeds them to a tracking head with cosine similarity matching. TransDETR [12]
performs detection and tracking under the MOTR paradigm and then uses Rotated-RoI to extract
features for the subsequent recognizer. They pursue training all modules in an end-to-end manner.
In comparison, we explore how to ef�ciently turn a RoI-free ITS model into a VTS one. We reveal
the probability of freezing off-the-shelf ITS part and focusing on tracking, thereby saving training
budgets while reaching SOTA performance.

3 Methodology

3.1 Overview

The architecture of GoMatching is presented in Fig. 2. It consists of a frozen image text spotter, a
rescoring head, and a Long-Short Term Matching module (LST-Matcher). We adopt an outstanding
off-the-shelf image text spotter (i.e., DeepSolo) and freeze its parameters, with the aim of introducing
strong text spotting capability into VTS while signi�cantly reducing training cost. In DeepSolo, there
arep sequences of queries used for �nal predictions, with each storing comprehensive semantics for
a text instance. To alleviate spotting performance degradation caused by the image-video domain
gap, we devise a rescoring mechanism, which determines the con�dence scores for text instances by
considering both the scores from the image text spotter and a new trainable rescoring head. Finally,
we design LST-Matcher to generate instance trajectories by leveraging long-short term information.
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Figure 2:The overall architecture of GoMatching. The frozen image text spotter provides text
spotting results for frames. The rescoring mechanism considers both instance scores from the image
text spotter and a trainable rescoring head to reduce performance degradation due to the domain gap.
Long-short term matching module (LST-Matcher) assigns IDs to text instances based on the queries
in long-short term frames. The yellow star sign `F ' indicates the �nal output of GoMatching.

3.2 Rescoring Mechanism

Owing to the domain gap between image and video datasets, employing a frozen image text spotter
for direct prediction may result in relative low recall due to low text con�dence, further leading to a
reduction in end-to-end spotting performance. To ease this issue, we devise a rescoring mechanism
via a lightweight rescoring head and a simple score fusion operation. Speci�cally, the rescoring
head is designed to recompute the score for each query from the decoder in the image text spotter.
It consists of a simple linear layer and is initialized with the parameters of the image text spotter's
classi�cation head. The score fusion operation then decides the �nal scores by considering both the
scores from the image text spotter and the rescoring head. LetC t

o = f ct
o1

; :::; ct
op

g be a set of original
scores produced by image text spotter in framet. C t

r = f ct
r 1

; :::; ct
r p

g is a set of recomputed scores
obtained from the rescoring head. We obtain the maximum value for each query as the �nal score,
denoted asC t

f = f ct
f 1

= max(ct
o1

; ct
r 1

); :::; ct
f p

= max(ct
op

; ct
r p

)g. With �nal scores, the queries in
frames are �ltered by a threshold before being sent to LST-Matcher for association.

3.3 Long-Short Term Matching Module

Figure 3: The inference pipeline of LST-Matcher,
which is a two-stage association process: (1) ST-
Matcher associates the instances with trajectories
in previous frames as denoted by blue lines. (2)
LT-Matcher associates the remaining unmatched
instances by utilizing other trajectories in history
frames as denoted by red lines.

Long-short term matching module (LST-
Matcher) consists of two sub-modules: the
Short Term Matching module (ST-Matcher) and
the Long Term Matching module (LT-Matcher),
which own the same structure. ST-Matcher is
steered to match simple instances between adja-
cent frames into trajectories, while LT-Matcher
is responsible for using long term information to
address the unmatched instances due to severe
occlusions or strong appearance changes. Each
of them contains a one-layer Transformer en-
coder and a one-layer Transformer decoder [23].
We use a simple multi-layer perceptron (MLP)
to map the �ltered text instance queries into em-
beddings as the input, getting rid of using RoI
features as in most existing MOT methods. In
the encoder, historical embeddings are enhanced
by self-attention. The decoder takes embeddings
in the current frame as query and enhanced his-
torical embeddings as key for cross-attention, and computes the association score matrix. The current
instances are then linked to the existing trajectories composed of historical embeddings or generate
new trajectories according to the association score matrix.
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To be speci�c, supposing a given clip includingT frames andN t text instances in framet after
threshold �ltering. Qt = f qt

1; :::; qt
N t

g is the set of text instance queries in framet. Initially, we
use a two-layer MLP to map these frozen queries into embeddingsE t = f et

1; :::; et
N t

g. The set of
embeddings in all frames is denoted asE L = E 1 [ ::: [ E T . Let the universal set of embeddings in
adjacent frames of the input batch be denoted asE S = E S2 [ E S3 [ ::: [ E ST andE St = E t � 1 [ E t .
Based on the predictions of image text spotter, we obtain their corresponding bounding boxes
B t = f bt

1; :::; bt
N t

g. Let � = f � 1; :::; � K g be the set of ground-truth (GT) trajectories of all instances
in the clip, where� k = f � 1

k ; :::; � T
k g describes a tube of instance locations� t

k 2 R 4 [ f;g through
time. � t

k = ; means the absence of instancek in framet. Let �̂ t
k be the matched instance index for

� t
k according to the following equation:

�̂ t
k =

�
; ; if � t

k = ; or maxi (IoU(bt
i ; � t

k )) < 0:5
argmaxi (IoU(bt

i ; � t
k )) ; otherwise : (1)

ST-Matcher calculates a short-term association scorevt
i (e

t
�̂ t

k
; E St ) 2 RN S t for i -th instances in

framet, whereet
�̂ t

k
2 RD is a trajectory query andNSt = N t + N t � 1. LT-Matcher calculates a

long-term trajectory-speci�c association scoreut
i (ek ; E L ) 2 RN for i -th instances in framet, where

ek 2 f e1
�̂ 1

k
; e2

�̂ 2
k
; :::; eT

�̂ T
k

g; N =
P T

t =1 N t . Speci�cally, whenvt
i (e

t
�̂ t

k
; E St ) = 0 andut

i (ek ; E L ) = 0 ,
it means no association at timet. Then, ST-Matcher and LT-Matcher can predict distributions of
short-term and long-term associations for all instancei in framet which can be written as:

Psa (et
�̂ t

k
; E St ) =

exp(vt
i (e

t
�̂ t

k
; E St ))

P
j 2f; ;1;:::;N t g exp(vt

j (et
�̂ t

k
; E St ))

; (2)

Pl a (ek ; E L ) =
exp(ut

i (ek ; E L ))
P

j 2f; ;1;:::;N t g exp(ut
j (ek ; E L ))

: (3)

To ensure suf�cient training of ST-Matcher and LT-Matcher, embeddings setE S andE L are fed into
ST-Matcher and LT-Matcher during training, respectively.

During inference, we engage a memory bank to store the instance trajectories fromH history frames
for long term association. All �ltered instances in each frame are further processed by non-maximum-
suppression (NMS) before being fed into LST-Matcher for association. Unlike the training phase,
where ST-Matcher and LT-Matcheder are independent of each other, LST-Matcher comprises a
two-stage associating procedure as described in Fig. 3. Concretely, ST-Matcher �rst matches the
embeddingE t in the current framet with the trajectories� t � 1 in the previous framet � 1. Then,
LT-Matcher employs other trajectories� H

oth in the memory bank to associate the unmatched ones
E t

s_u with low association score in ST-Matcher caused by the heavy occlusion or strong appearance
changes. If the association score with any trajectory calculated in ST-Matcher or LT-Matcher is higher
than a threshold� , the instance is linked to the trajectory with the highest score. Otherwise, this
instance is used to initiate a new trajectory. Finally, we combine the trajectories� s and� l predicted
by ST-Matcher and LT-Matcher to obtain new trajectories� N for tracking in the next frame.

3.4 Optimization

Rescoring Loss.To train the rescoring head, we following DETR [14] and use Hungarian algo-
rithm [29] to �nd a bipartite matchinĝ� between the prediction setŶ and the ground truth setY with
minimum matching costC:

�̂ = arg min
�

NX

i

C(Yi ; Ŷ� ( i ) ); (4)

whereN is the number of ground truth instances per frame. The costCcan be de�ned as:

C(Yi ; Ŷ� ( i ) ) = � cL cls (p̂� ( i ) (ci )) + � b

NX

1

kbi � b̂� ( i ) k; (5)

where� c and� b serve as the hyper-parameters to balance different tasks.p̂� ( i ) (ci ) andb̂� ( i ) are
the probability for ground truth classci and the predicition of bounding box respectively, andbi
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represents the ground truth bounding box.L cls is the focal loss [30]. Speci�cally, the focal loss for
training the rescoring head can be formulated as:

L res =
NX

1

[� 1f ci 6= ? g� (1� p̂�̂ ( i ) (ci )) 
 log(p̂�̂ ( i ) (ci )) � 1f ci = ? g(1� � )( p̂�̂ ( i ) (ci )) 
 log(1� p̂�̂ ( i ) (ci ))] ;

(6)
where� and
 are the hyper-parameters of focal loss.

Long-Short Association Loss.In ST-Matcher, we only consider each trajectory in the universal set
of adjacent frames, while in LT-Matcher we consider each trajectory in all long term frames. For each
trajectory, we optimize the log-likelihood of its assignments�̂ k following GTR [23]:

L s_ass (E S ; �̂ k ) = �
TX

t =2

logPsa (�̂ t
k jet

�̂ t
k
; E St ); (7)

L l _ass (E L ; �̂ k ) = �
X

w

TX

t =1

logPl a (�̂ t
k jE w

�̂ w
k

; E L ); (8)

wherew 2 f 1; :::; T j�̂ w
k 6= ;g .

In ST-Matcher and LT-Matcher, empty trajectories would be generated for these unassociated queries,
and their optimization goals can be de�ned as:

L s_bg(E S ) = �
X

j :@̂� t
k = j

TX

t =2

logPsa (� t = ;j et
j ; E St ); (9)

L l _bg(E L ) = �
TX

w=1

X

j :@̂� w
k = j

TX

t =1

logPl a (� t = ;j E w
j ; E L ): (10)

Finally, we can get the long-short association loss as follows:

L asso = L s_bg + L l _bg +
X

�̂ k

(L s_ass + L l _ass ): (11)

Overall Loss. Combined with the rescore lossL res in Eq. (6) and the long-short association loss
L asso in Eq. (11), the �nal training loss can be de�ned as:

L = � res L res + � asso L asso ; (12)

where the hyper-parameters� res and� asso are the weights ofL res andL asso , respectively.

4 Experiments

4.1 Datasets and Evaluation Metrics

ICDAR15-video [13] is a word-level video text reading benchmark annotated with quadrilateral
bounding boxes, comprising a training set of 25 videos and a test set of 24 videos. It focuses on wild
scenarios, such as driving on the road, exploring shopping streets, walking in a supermarket,etc.

BOVText [10] is a large-scale, bilingual, and open-world benchmark for video text spotting, encom-
passing English and Chinese. The dataset is meticulously collected fromYouTubeandKuaiShouwith
different scenarios. The text box annotations are represented as quadrilaterals at the textline level.

DSText [19] is a newly proposed dataset, and focuses on dense and small text reading challenges
in the video. This dataset provides 50 training videos and 50 test videos. Compared with the
previous datasets, DSText mainly includes the following three new challenges: dense video texts,
high-proportioned small texts, and various new scenarios,e.g., `Game', `Sports',etc. Similar to
ICDAR15-video, DSText adopts word-level annotations, which are labeled with quadrilaterals.

ArTVideo is a novel word-level test set established in this work to evaluate the performance of
arbitrary-shaped video text, which is absent in the VTS community. It contains 20 videos with
about 30% curved text instances. Straight text is annotated with quadrilaterals, while curved text is
annotated with polygons. More details are provided in the Appendix A.

Evaluation Metrics. To evaluate performance, we adopt three evaluation metrics commonly used in
ICDAR15-video competition and DSText competition, including MOTA [31], MOTP, and IDF1 [32].
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4.2 Implementation Details

In all experiments, we only use a single NVIDIA GeForce RTX 3090 (24G) GPU to train and
evaluate GoMatching. As for the image text spotter in GoMatching, we apply the of�cially released
DeepSolo [5]. During �ne-tuning GoMatching on downstream video datasets, we only update the
rescoring head and LST-Matcher, while keeping DeepSolo frozen. More inference settings can be
seen in the Appendix B.

Training Setting. The text spotting part of GoMatching is initialized with off-the-shelf DeepSolo
weights and kept frozen in all experiments. We optimize other modules on video datasets. We follow
Ef�cientDet [33] to adopt the scale-and-crop augmentation strategy with a resolution of 1280. The
batch sizeT is 6. All frames in a batch are from the same video. Text instances with fusion scores
higher than 0.3 are fed into the LST-Matcher during training. AdamW [34] is used as the optimizer.
We adopt the warmup cosine annealing learning rate strategy with the initial learning rate being set to
0.00005. The loss weights� res and� asso are set to 1.0 and 0.5, respectively. For focal loss,� is 0.25
and
 is 2.0 as in [14, 5]. The model is trained for 30k iterations on all downstream video datasets.

4.3 Comparison with State-of-the-art Methods

Results on ICDAR15-video.To evaluate the effectiveness of GoMatching on oriented video text, we
conduct a comparison with the state-of-the-art methods on ICDAR15-video presented in Table 1a.
As can be seen, GoMatching ranks �rst in all metrics on the ICDAR15-video leaderboard. By
effectively combining a robust image text spotter with a strong tracker, GoMatching improves the best
performance by 5.08% MOTA, 0.75% MOTP, and 3.16% IDF1, respectively. Furthermore, owing to
the substantial enhancement in recognition and tracking capabilities (details can be found in Sec. 4.4
and Appendix G), GoMatching outperforms the current SOTA single-model method TransDETR by
11.08% MOTA, 3.92% MOTP, and 7.31% IDF1, respectively.

Results on BOVText.Except for the English word recognition scenario, GoMatching can readily
adapt to other video text recognition scenarios, such as Chinese text line recognition. For BOVText,
which focuses on English and Chinese textline recognition, we employ the DeepSolo trained on
bilingual textline datasets and then �ne-tune GoMatching on BOVText. The results are presented in
Table 1b. It is evident that GoMatching achieves a new record on the BOVText dataset and surpasses
previous methods signi�cantly. GoMatching exhibits superior performance over the previous SOTA
method CoText [11], with improvements of 41.5% on MOTA, 6.9% on MOTP, and 14.3% on IDF1.
Such exceptional performance of GoMatching on BOVText suggests its pro�ciency in spotting both
Chinese and English text in videos. Moreover, it can be easily extended to other languages by
adapting the image spotter.

Results on DSText.We further conduct experiments on DSText with dense and small video text
scenarios. Results are presented in Table 1c. It is worth noting that most of the previous methods on
the DSText leaderboard used an ensemble of multiple models and large public datasets to enhance
their performance [19]. For example,TencentOCRintegrates the detection results of DBNet [35]
and Cascade MaskRCNN [36] built with multiple backbone architectures, combines the Parseq [37]
text recognizer, and further improves the end-to-end tracking with ByteTrack [22]. DA adopts
Mask R-CNN [38] and DBNet to detect text, then uses BotSORT [21] to replace the tracker in
VideoTextSCM [39] and employs the Parseq model for recognition. As a single model with a frozen
image text spotter, GoMatching also shows competitive performance compared to other ensembling
methods on the leaderboard. GoMatching ranks �rst (22.83%) on MOTA, second (80.43%) on MOTP,
and third (46.09%) on IDF1. Moreover, compared to the SOTA single-model method, GoMatching
achieves substantial improvements of 45.46% and 19.66% on MOTA and IDF1, respectively.

Results on ArTVideo. We test TransDETR and GoMatching on ArTVideo to compare the zero-shot
text spotting capabilities for arbitrary-shaped text. For a fair comparison, both TransDETR and
GoMatching are trained on ICDAR15-video. Unlike ICDAR15-video and DSText which only have
straight text, ArTVideo has a substantial number of curved text, so we report results under four
settings: tracking results on both straight and curved text, spotting results on both straight and curved
text, tracking results on curved text only, and spotting results on curved text only. As shown in
Table 1d, GoMatching outperforms TransDETR under all settings. Especially when involving an
additional recognition task (end-to-end spotting) or only considering curved text, the performance
advantages of GoMatching are more signi�cant. This further con�rms that the previous SOTA
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Table 1:Comparison results with SOTA methods on four distinct datasets.̀†' denotes that the
results are collected from the of�cial competition website. `*': we use the of�cially released model
for evaluation. `M-ME' indicates whether multi-model ensembling is used. `Y' and `N' stand for yes
and no. The best and second-best results are marked inbold and underlined, respectively.

(a)Results on ICDAR15-video.

Method MOTA (" ) MOTP (" ) IDF1 (" )
HIK_OCR [9] 52.98 74.88 61.85
CoText [11] 58.94 74.53 71.66

TransDETR [12] 60.96 74.61 72.80
h&h_lab† 63.76 77.78 71.08

GOCR Of�ine† 63.05 74.31 76.95
CoText(Kuaishou_MMU)† 66.96 76.55 74.24

GoMatching (size:800) (ours) 68.51 77.52 76.59
GoMatching (size:1000) (ours) 72.04 78.53 80.11
GoMatching (size:1440) (ours) 70.52 78.25 78.70

(b) Results on BOVText.

Method MOTA (" ) MOTP (" ) IDF1 (" )
EAST + CRNN [10] -79.3 76.3 6.8

PSENet + CRNN [10] -17.0 79.2 31.3
DB + CRNN [10] -13.2 81.3 38.8

TransVTSpotter [10] -1.4 82.0 43.6
CoText [11] 11.4 80.3 48.3

GoMatching (ours) 52.9 87.2 62.6

(c) Results on DSText.

Method M-ME MOTA (" ) MOTP (" ) IDF1 (" )
TransDETR+HRNet† Y -28.58 80.36 26.20
SCUT-MMOCR-KS† Y -27.47 76.59 43.61

TextTrack† Y -25.09 74.95 26.38
abcmot† Y 5.54 74.61 24.25

DA† Y 10.51 78.97 53.45
TencentOCR† Y 22.44 80.82 56.45

TransDETR [12]* N -22.63 79.73 26.43
GoMatching (ours) N 22.83 80.43 46.09

(d) Results on ArTVideo.

Method MOTA (" ) MOTP (" ) IDF1 (" )
ArTVideo Tracking

TransDETR [12] 54.2 67.9 70.4
GoMatching (ours) 67.2 81.3 75.8

ArTVideo End-to-End Spotting
TransDETR [12] 2.8 69.7 49.3

GoMatching (ours) 68.8 82.9 78.5
ArTVideo-Curved Tracking

TransDETR [12] 4.4 60.5 50.2
GoMatching (ours) 59.5 76.3 73.5

ArTVideo-Curved End-to-End Spotting
TransDETR [12] -66.7 61.9 26.9

GoMatching (ours) 56.8 78.0 73.9

methods have unsatisfactory recognition capabilities and limited adaptability to complex scenarios.
Furthermore, as shown in Fig. 1(b), GoMatching achieves excellent performance while signi�cantly
reducing the training budget.

Some visual results are provided in Fig. 4. It shows that GoMatching performs well on straight and
curved text, and even more complex scene text. More visual results (including some failure cases)
and analysis are provided in the Appendix G.

4.4 Ablation Studies

We �rst conduct comprehensive ablation studies on ICDAR15-video to verify the effectiveness of
each component. The experimental results are shown in Table 2. The impact of frame length on
long-term association during inference is then studied, and the results are shown in Appendix C.

Effectiveness of Utilizing Queries.Comparing the �rst two rows in Table 2, we can �nd that using
queries from the decoder of image text spotter is more bene�cial for tracking than RoI features. By
leveraging the uni�ed queries from frozen DeepSolo, 0.98% and 1.05% improvements on MOTA and
IDF1 are achieved. This is because queries integrate more text instance information,i.e., unifying
multi-scale features, text semantics, and position information, which has been proven effective in
DeepSolo. Although position information is essential for tracking, it is ignored in RoI features.

Effectiveness of Rescoring Mechanism.To verify the effectiveness of the rescoring mechanism, we
test three different scoring mechanisms: the original score from DeepSolo, the score recomputed by
the rescoring head, and the fusion score from the rescoring mechanism. As shown in row 2 and row 3
of Table 2, the rescoring head can alleviate the performance degradation caused by the domain gap
between ICDAR15-image and ICDAR15-video, and achieve gains of 1.25% and 0.97% on MOTA
and IDF1, respectively. Moreover, as shown in row 4, we can observe that combining the knowledge
of rescoring head learned from the new dataset with the prior knowledge of DeepSolo can further
improve MOTA and IDF1 by 0.33% and 0.32%, respectively. Appendix F contains more results.

Effectiveness of LST-Matcher.In this part, we conduct three experiments to prove the effectiveness
of the LST-Matcher. As shown in row 4 of Table 2, we only use LT-Matcher to associate high-score
text instances in the current frame with trajectories in the tracking memory bank. In row 5, we only
use ST-Matcher to associate high-score text instances in the current frame with trajectories of the
previous frame. In addition, as shown in row 6, we employ both LT-Matcher and ST-Matcher to test
LST-Matcher. We can easily observe that compared to LT-Matcher, LST-Matcher improves MOTA
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