
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENABLING FINE-TUNING OF DIRECT FEEDBACK
ALIGNMENT VIA FEEDBACK-WEIGHT MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Although Direct Feedback Alignment (DFA) has demonstrated potential by en-
abling efficient and parallel updates of weight parameters through direct propaga-
tion of the network’s output error, its usage has been primarily restricted to training
networks from scratch. In this paper, we introduce feedback-weight matching, a
first method that enables reliable fine-tuning of fully connected neural networks
using DFA. We provide an analysis showing that existing standard DFA struggles
to fine-tune networks pre-trained via back-propagation. Through a thorough anal-
ysis of weight alignment (WA) and gradient alignment (GA), we demonstrate that
the proposed feedback-weight matching enhances DFA’s ability and stability in
fine-tuning, which provides useful insights into DFA’s behavior and characteris-
tics in fine-tuning. In addition, we prove that feedback-weight matching, when
combined with weight decay, not only mitigates over-fitting but also further re-
duces the network output error, leading to improved learning performance during
DFA-based fine-tuning. Experimental results show that feedback-weight match-
ing, for the first time, enables reliable fine-tuning across various fine-tuning tasks,
compared to existing standard DFA, e.g., achieving 7.97% accuracy improvement
on image classification tasks (82.67% vs. 74.70%) and 0.66 higher correlation
score on NLP tasks (0.76 vs. 0.10). The code is available on an GitHub1.

1 INTRODUCTION

Recently, an alternative training mechanism called Direct Feedback Alignment (DFA) (Nøkland,
2016) has been proposed. Based on the concept of Feedback Alignment (FA) (Lillicrap et al., 2016),
DFA passes the error of the output layer directly to each layer of the network to update the weight
parameters without compute-intensive back-propagation (Rumelhart et al., 1986). By using random
feedback matrices, the weight gradient of each layer is independently approximated from the directly
passed error, enabling efficient training of fully connected networks through the parallel update of
multiple layers. This contrasts with the conventional back-propagation that propagates the network
error sequentially from the last to the first layer.

Although Direct Feedback Alignment (DFA) (Nøkland, 2016) has shown its potential in training
primarily for fully connected networks (Garg & Vempala, 2022; Launay et al., 2020), its application
to fine-tuning (Devlin et al., 2018), i.e., adapting a pre-trained network to a new task, has been less
studied until today despite its practical usefulness. In fact, it has been known that fine-tuning net-
works with DFA is challenging (Chu & Bacho, 2024); the performance of networks fine-tuned with
DFA is generally unreliable compared to that of those fine-tuned with back-propagation (Rumelhart
et al., 1986). Given that fine-tuning has become one of the practical and also effective ways of re-
utilizing pre-trained networks for various downstream tasks (Church et al., 2021), investigating how
DFA can be applied to the fine-tuning mechanism both theoretically and empirically is necessary.

Enabling fine-tuning with Direct Feedback Alignment (DFA) (Nøkland, 2016) can not only broaden
DFA’s usability but also introduce an alternative approach to current back-propagation-based fine-
tuning (Rumelhart et al., 1986; Church et al., 2021). Currently, DFA has not yet been estab-
lished as a reliable stand-alone training method that can provide comparable performance to back-
propagation (Launay et al., 2019; Crafton et al., 2019). Thus, taking a wide range of well-pre-trained
models, such as Transformer-based foundation models (Kenton & Toutanova, 2019), as the starting

1
https://anonymous.4open.science/r/Feedback-Weight-Matching-7764

1

https://anonymous.4open.science/r/Feedback-Weight-Matching-7764

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Pre-trained Network

Feedback Weight Matching (Ours)

Feedback Network

ഥ𝑭𝒍

ത𝐹𝑙−1

ത𝐹𝑙+1

Fine-tuning process
using standard DFA

Weight Matched Network

𝑾𝒍

Output

Input

𝑾𝒍

Input

ത𝐹𝑙

Output

Input

Feedback Matching

𝑾𝒍

Output

Input

Weight Matching

ഥ𝑭𝒍−𝟏
𝑻

ഥ𝑭𝒍

Output

Fully connected layer

Feedback matrix

Figure 1: An overview of the Feedback-Weight Matching process.
point would be a practical strategy that can complement DFA’s unstable and limited learning capa-
bilities. Additionally, by incorporating DFA’s unique advantages, such as back-propagation-free and
parallel training, into the widely used fine-tuning, we can explore new possibilities for re-utilizing
pre-trained models with DFA in a more agile, efficient, and biologically plausible manner, in contrast
to conventional back-propagation requiring much more resources and time in model training.

In this paper, we introduce a DFA-based fine-tuning method, which investigates the feasibility of Di-
rect Feedback Alignment (DFA) (Nøkland, 2016) for fine-tuning deep neural networks, with the aim
of extending the scope of DFA to embrace various pre-trained networks. We first analyze the reasons
why the existing standard DFA, which updates the pre-trained weights using random feedback ma-
trices, does not perform well in fine-tuning. This analysis is based on the weight alignment (WA) and
gradient alignment (GA) (Refinetti et al., 2021), which are two measures proposed to estimate the
state and learning performance of DFA. From this analysis, we propose feedback-weight matching as
illustrated in Fig. 1, which first reconstructs the feedback matrices by decomposing the pre-trained
weights (feedback matching) and then re-initializes the weights based on the reconstructed feedback
matrices before starting fine-tuning (weight matching). Additionally, we prove that applying weight
decay (Krogh & Hertz, 1991) on top of the proposed feedback-weight matching considerably im-
proves and stabilizes the fine-tuning performance of DFA, beyond the general regularization effect
on weight parameters. Together with the simple yet effective feedback-weight matching, weight
decay acts as a key facilitator for fine-tuning fully connected networks with DFA. To the best of our
knowledge, this work is the first to explore the possibility of applying DFA to fine-tuning of fully
connected networks with in-depth study.

The experiments provide evaluation results consistent with our theoretical analysis; applying
feedback-weight matching enables more effective and reliable fine-tuning of fully connected net-
works with DFA over various fine-tuning tasks, when compared to existing standard DFA (Nøkland,
2016). For instance, the image classification accuracy of fully connected networks fine-tuned with
feedback-weight matching reaches 82.67%, while the standard DFA achieves 74.70%. Also, it suc-
cessfully fine-tunes Transformer models (BERT) (Devlin et al., 2018) on NLP tasks, e.g., achieving
0.76 correlation score, while the standard DFA barely conducts fine-tuning at all, i.e., achieving mere
0.10 correlation score. These results demonstrate the potential for extending DFA to the widely used
pre-training and fine-tuning strategy, moving beyond its limited usage in from-scratch training.

2 BACKGROUND AND RELATED WORK

DFA. It is common to train a neural network using the back-propagation algorithm (Rumelhart et al.,
1986). Given a fully connected network, we denote Wl as the weight of l-th layer of the network,
L(ŷ,y) as the loss function, where ŷ is the ground-truth output, and y is the network output, and
hl = g(al) as the output of the l-th layer, where g(·) is the activation function, and al = Wlhl−1.
To update the weight parameter with the gradient descent algorithm (Ruder, 2016), the gradient of
the loss L w.r.t. the weight Wl is obtained using back-propagation (BP) as:

δWBP
l =− ∂L

∂Wl
=−

[(
W⊤

l+1δal+1

)
⊙ g′(al)

]
h⊤
l−1, δal=∂L/∂al (1)

where ⊙ is the Hadamard product. However, back-propagation poses challenges, specifically the
weight transport (Grossberg, 1987; Crick, 1989) and backward locking problems (Lillicrap et al.,
2020; Launay et al., 2019). Direct Feedback Alignment (DFA) (Nøkland, 2016) addresses the weight

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

transport problem by employing random feedback and mitigates the backward locking problem by
delivering the network’s output error to each layer independently. Specifically, 1) the global error
e = ŷ − y is transmitted to each layer, and 2) the weight Wl+1 at the l-th layer is replaced with a
random feedback matrix Fl, leading to the following weight gradient:

δWDFA
l =− ∂L

∂Wl
=− [(Fle)⊙ g′(al)]h

⊤
l−1−λtWl (2)

where λt is the weight-decay hyperparameter. Eq. (2) eliminates the necessity of sequential layer-
wise gradient computations of back-propagation (Rumelhart et al., 1986).

GA and WA. To better elucidate the dynamics of DFA (Nøkland, 2016), the concept of gradient
alignment (GA) is introduced (Lillicrap et al., 2016). GA quantifies the similarity between the
weight gradients obtained through DFA and those derived via back-propagation (Rumelhart et al.,
1986). This is achieved by comparing the weight updates generated from the identically initialized
weights by both methods. It has been hypothesized that a stronger (higher) GA corresponds to
enhanced learning performance in DFA. In addition, the weight alignment (WA) (Refinetti et al.,
2021) has been introduced to evaluate the relationship between the weight and the feedback matrix
in DFA, suggesting that strong WA is associated with strong GA. Although GA and WA have been
instrumental in analyzing the learning efficacy of DFA, prior research has not explored their utility
in the context of fine-tuning. In contrast, this paper pioneers the application of GA and WA concepts
to systematically investigate the fine-tuning process in DFA.

Applying DFA to Transformers and CNNs. Some studies (Launay et al., 2020) explore the appli-
cability of DFA (Nøkland, 2016) to various fully connected networks, including NeRF (Mildenhall
et al., 2021; Sitzmann et al., 2019), recommender systems (Guo et al., 2017), and NLP (Vaswani,
2017; Merity et al., 2016). While they show that DFA can train a range of deep architectures,
they also reveal a significant performance gap between DFA and back-propagation (Rumelhart
et al., 1986), particularly in Transformer models (Vaswani, 2017). When applied to models not
based on fully connected networks, such as CNNs, the performance gap between DFA and back-
propagation is even more pronounced. For instance, VGG-16 (Simonyan & Zisserman, 2014) on
CIFAR-100 (Krizhevsky et al., 2009) trained with DFA achieves 1% top-1 accuracy (Launay et al.,
2019), while back-propagation achieves 60%. Similarly, in ImageNet (Deng et al., 2009), it is 6.2%
vs. 53% (Crafton et al., 2019). Given that applying DFA to from-scratch training scenarios 1)
consistently underperforms relative to back-propagation, 2) takes a much longer training time than
fine-tuning, and 3) is limited to a narrower range of architectures, we argue that utilizing fine-tuning
for DFA would be a more effective, efficient, practical, and expedient approach. Thus, in this study,
we investigate the potential of employing DFA in fine-tuning, which is conducive to the widely-used
pre-train-and-fine-tune strategy (Devlin et al., 2018).

Applying DFA to back-propagation weights. As described above, in CNNs, DFA encounters
challenges in effectively learning the necessary spatial information (Crafton et al., 2019). Similarly,
in fully connected networks, DFA is known to produce feature representation that deviate from those
learned via back-propagation (Nøkland, 2016). Moreover, although stable training can be achieved
when transitioning from weights learned through DFA to back-propagation, the reverse is not true;
switching from back-propagation to DFA results in unstable training, and DFA fails to fully recover
its performance even after large train epochs (Chu & Bacho, 2024). These imply inherent difficulties
in fine-tuning with DFA using pre-trained weights.

DFA with weight decay. In the prior study Song et al. (2021), it is analyzed that weight de-
cay (Krogh & Hertz, 1991) can reduce the output error in fully connected networks when used
with Feedback Alignment (FA) (Lillicrap et al., 2016). Nevertheless, the analysis predominantly
focuses on training of networks from scratch using FA, rather than on the fine-tuning process with
DFA. This work, for the first time, examines the impact of weight decay in the context of fine-tuning
with DFA. Our findings show that weight decay can be beneficial in fine-tuning with DFA, as it
reduces the network output error, enhancing learning performance.

3 FEEDBACK-WEIGHT MATCHING

We first discuss why the existing standard DFA (Nøkland, 2016) does not behave stably in fine-
tuning, based on weight alignment (WA) and gradient alignment (GA) (Refinetti et al., 2021). Then,
we introduce feedback-weight matching, which enables effective and reliable fine-tuning of DFA

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

with two phases: 1) feedback matching and 2) weight matching. In the first phase, feedback ma-
trices are reconstructed from the pre-trained weights. In the second phase, network weights are
re-initialized to align with the reconstructed feedback matrices. Then, fine-tuning is performed us-
ing the standard DFA method.

3.1 WHY DOES DFA PERFORM UNRELIABLY IN FINE-TUNING?

Definition 3.1. (Weak Weight Alignment) Given a L-layer fully connected linear network updated
(trained) with DFA (Nøkland, 2016), the weight parameter of the l-th layer at the t-th training step,
which is denoted as Wt

1≤l≤L, becomes as follows (Refinetti et al., 2021):
Wt

1 = F1A
t
1, W

t
1<l<L=FlA

t
lF

⊤
l−1, and Wt

L=At
LF

⊤
L−1, (3)

where At
1 = −η

∑t−1

t′=0
et

′
(xt′)⊤, and At

l≥2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(Bt′

l x
t′)(Bt′′

l xt′′)et
′
(et

′′
)⊤

Here, Fl is the feedback matrix of the l-th layer, At
1 and At

l≥2 are the alignment matrices, and
Bl = Al−2 · · ·A0 ∈ RnL×nL is defined recursively using the feedback matrices only, with A0 = I
(Refinetti et al., 2021). Eq. (3) is referred to as weak weight alignment (WA) (Refinetti et al., 2021),
representing the state where no particular relationship exists between Wt

1<l<L and FlF
⊤
l−1 and

between Wt
L and F⊤

L−1. At the early stage of DFA training, weak WA is naturally induced since
At

l≥2 in Eq. (3) starts with arbitrary values. However, as the training proceeds, At
l≥2 becomes

proportional to the identity matrix (Refinetti et al., 2021), i.e., At
l≥2 ∝ I, leading to another state

called strong weight alignment (WA), which is defined as follows.
Definition 3.2. (Strong Weight Alignment) If At

l≥2 ∝ I, Eq. (3) becomes the state called strong
weight alignment (WA), which is defined as follows.

Wt
1<l<L ∝ FlF

⊤
l−1, W

t
L ∝ F⊤

L−1 (4)

It is known that the strong WA in Eq. (4), given F⊤
l Fl ≡ I, implies strong gradient align-

ment (GA) (Refinetti et al., 2021) defined in Eq. (9), causing the gradient direction of the DFA
weight, Wt

1<l≤L, aligned to that of back-propagation (Rumelhart et al., 1986). Hence, strong WA
leads the learning trajectory of DFA to be comparable to that of back-propagation with strong GA.

However, if the pre-trained weights are fine-tuned via existing standard DFA using arbitrary random
feedback matrix Fl, it becomes difficult to achieve strong WA in Eq. (4), as shown below, likely to
result in sub-optimal fine-tuning performance by inducing weak GA from weak WA.
Proposition 3.3. If the pre-trained weight, W0

l , is updated via DFA with arbitrary random feedback
matrices Fl, the strong WA condition in Eq. (4) is unlikely to be satisfied as:

Wt
1<l<L�∝ FlF

⊤
l−1, W

t
L�∝ F⊤

L−1 (5)

where Wt
l denotes the weight after t steps of training, starting from the pre-trained weight W0

l .
Proof. The proof is provided in Sec. A.
Thus, Eq. (5) implies that simply applying the standard DFA to the pre-trained weight parameters is
less likely to induce the strong WA condition in Eq. (4).

3.2 INDUCING STRONG WEIGHT ALIGNMENT

To enable fine-tuning with DFA by deriving strong GA from strong WA defined in Eq. (4), we
propose the feedback-weight matching method, which induces both strong WA and GA as follows.
Definition 3.4. (Feedback Matching) From the pre-trained weight W0

l , we set the feedback matrix
F̄l such that:

F̄lF̄
⊤
l−1 ≈ W0

1<l<L and F̄⊤
L−1 ≡ W0

L. (6)

Eq. (6) requires decomposing the pre-trained weight W0
1<l<L into F̄l and F̄⊤

l−1. It can be achieved
either through traditional methods, such as SVD (Singular Value Decomposition) (Klema & Laub,
1980), or alternatively, by optimizing Eq. (23), as in Sec. B. Once the feedback matrix F̄l is recon-
structed as Eq. (6), we proceed to the weight matching process to induce strong WA, as follows.
Definition 3.5. (Weight Matching) Given the reconstructed F̄l derived by feedback matching, as
in Eq. (6), we re-initialize the pre-trained weight W0

l into W̄0
l so that it matches F̄l such that:

W̄0
1<l<L ≡ F̄lF̄

⊤
l−1 and W̄0

L ≡ F̄⊤
L−1. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The following proposition shows that Eq. (6) and (7) together lead to strong WA condition in Eq. (4).
Proposition 3.6. If the re-initialized weight W̄0

l in Eq. (7) is updated using DFA with the feedback
matrix F̄l derived by Eq. (6), the strong WA condition in Eq. (4) is induced as:

W̄t
1<l<L ∝ F̄lF̄

⊤
l−1, W̄

t
L ∝ F̄⊤

L−1 (8)
where W̄t

l is the weight at step t, initialized from W̄0
l .

Proof. The proof is provided in Sec. A.
Thus, Eq. (8) indicates that applying feedback-weight matching to the weight updated from the re-
initialized weight induces the strong WA condition in Eq. (4), in contrast to standard DFA (Eq. (5)).
Subsequently, strong WA, achieved through Eq. (6) and Eq. (7), leads to strong GA (Refinetti et al.,
2021). By matching the feedback matrix to the pre-trained weights, as in Eq. (6), it becomes possible
to preserve the knowledge embedded in the pre-trained weights. Additionally, by re-initializing
the pre-trained weights from the matched feedback matrices, as in Eq. (7), it becomes possible to
facilitate the attainment of strong WA through DFA in fine-tuning.

3.3 INDUCING STRONG GRADIENT ALIGNMENT

While the previous section (Sec. 3.2) shows that the proposed feedback-weight matching in Eq. (6)
and (7) promotes strong weight alignment (WA), naturally leading to strong gradient alignment
(GA), we now show that feedback-weight matching also directly induces strong GA. We begin by
formally defining gradient alignment (GA) as follows.
Definition 3.7. (Gradient Alignment) The gradient alignment (GA) is defined as the cosine simi-
larity between the weight gradient obtained using DFA (Nøkland, 2016), denoted as GDFA, and the
weight gradient of back-propagation (Rumelhart et al., 1986), denoted as GBP , which is given by:

cos∠(GDFA,GBP) = GDFA ·GBP /∥GDFA∥∥GBP ∥. (9)
We show that feedback-weight matching, i.e., Eq. (6) and (7), also directly induce strong GA when
fine-tuning the first layer of the two-layer fully connected linear network.
Proposition 3.8. Feedback-weight matching given in Eq. (6) and (7) induces strong GA, i.e., a
higher GA, in the first layer of a fully connected linear network, as follows:

cosFWM ∠(F1,W
t
2) ≥ cosDFA ∠(F1,W

t
2) (10)

where cosFWM ∠(F1,W
t
2) refers to GA in the first layer using feedback-weight matching, while

cosDFA ∠(F1,W
t
2) is GA in the first layer using standard DFA without feedback-weight matching.

Proof. The proof is provided in Sec. A.

4 WEIGHT DECAY

Similar to conventional trains using back-propagation (Nøkland, 2016), weight decay (Krogh &
Hertz, 1991) has been shown to mitigate over-fitting of DFA, though its effect in fine-tuning has not
been studied. We discuss how the proposed feedback-weight matching helps weight decay to reduce
the network error (i.e., improving learning performance) in fine-tuning when applied to DFA.
Lemma 4.1. Given the re-initialized weight W̄0

1<l≤L in Eq. (7) and the pre-trained weight
W0

1<l≤L, the following two terms, r1<l<L and rL, become non-negative with high probability.

r1<l<L = ∥Wt
l −W0

l ∥ − ∥Wt
l − W̄0

l ∥ = ∥F̄lF̄
⊤
l−1 −W0

l ∥ − |ctl − 1|∥F̄lF̄
⊤
l−1∥ ≥ 0, (11)

rL = ∥Wt
L −W0

L∥ − ∥Wt
L − W̄0

L∥ = ∥F̄⊤
L−1 −W0

L∥ − |ctL − 1|∥F̄⊤
L−1∥ ≥ 0, (12)

implying ∥Wt
l −W0

l ∥ ≥ ∥Wt
l − W̄0

l ∥ for all 1 < l ≤ L.
Proof. The proof is provided in Sec. A.
Based on Lem. 4.1, we show that feedback-weight matching reduces the network output error et+1

over the step t when combined with weight decay (Krogh & Hertz, 1991).
Proposition 4.2. Let et denote the output error of a two-layer fully connected non-linear network
(i.e., L=2) at the t-th training step, η is the learning rate, γ ≤ λmin(Ḡ) is a positive constant, where
Ḡ = Ew∼N (0,Ip)ψ(w

⊤xi)ψ(w
⊤xj) with the number of neuron as p and a non-linear function ψ(·),

λt is the weight-decay hyperparameter at the step t, and y is the output of the network. By applying
feedback-weight matching in Eq. (6) and (7), the following holds:

∥et+1∥ ≤
(
1− ηγ

4
− ηλt

)
∥et∥+ λt∥y∥ − α2r2 (13)

for all t ≥ 0 and a constant α2, with r2 defined in Eq. (11).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proof. The proof is provided in Sec. A.
Conjecture 4.3. Given an L-layer fully connected non-linear network, suppose that the right-hand
side of the inequality in Eq. (13), i.e.,

(
1− ηγ

4 −ηλt
)
∥et∥+λt∥y∥, contains ∥Wt

l −W0
l ∥ as linear

components for some 1 < l ≤ L. Then, based on Prop. 4.2 and Lem. 4.1, it is conjectured that
Eq. (13) can be generalized into:

∥et+1∥ ≤
(
1− ηγ

4
− ηλt

)
∥et∥+ λt∥y∥ −

L∑
l=2

αlrl (14)

with constants αl, and rl defined in Eq. (11) and (12) for some 1 < l ≤ L and all t ≥ 0.
From Eq. (13), and subsequently Eq. (14), it can be seen that the proposed feedback-weight matching
preserves the weight decay effect by decreasing the network error ∥et+1∥ by the quantity ηλt∥et∥−
λt∥y∥. It is achieved by

∑L
l=2 αlrl, which effectively counteracts the adverse impact of weight

decay, namely, the increase in error ∥et+1∥ when η∥et∥ ≤ ∥y∥, if
∑L

l=2 αlrl ≥ λt∥y∥ − ηλt∥et∥.
Due to the dependence of the term ∥Wt

l −W̄0
l ∥ on the reconstructed weights, deriving a theoretical

analysis is challenging. Nonetheless, the effect of weight decay on error reduction is empirically
validated through our controlled experiments, as detailed in the experimental section.

5 EXPERIMENT

We evaluate the proposed feedback-weight matching on a wide range of fine-tuning tasks. To the
best of our knowledge, this is the first extensive experiments to investigate fine-tuning of DFA across
diverse tasks and models, which is enabled by the proposed feedback-weight matching.

First, feed-weight matching is applied to image classification tasks using two fully connected
networks with 4 and 6 layers, respectively. These networks are pre-trained with CIFAR-
100 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015) using back-propagation (Rumel-
hart et al., 1986), and then fine-tuned on CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al.,
2011), and STL-10 (Coates et al., 2011) through DFA applying feedback-weight matching. Next, we
apply it to NLP tasks using Transformers, i.e., BERT-Tiny and Small (Kenton & Toutanova, 2019;
Turc et al., 2019), pre-trained on BookCorpus (Zhu et al., 2015) & Wikipedia, and then fine-tuned
with GLUE tasks (Wang, 2018). Lastly, we apply feedback-weight matching to Vision Transformer
(ViT) models, i.e., ViT-Tiny and ViT-Small (Wu et al., 2022). Each model utilizes pre-trained
weights learned from ImageNet (Deng et al., 2009) and is fine-tuned on CIFAR-10 (Krizhevsky
et al., 2009), STL-10 (Coates et al., 2011), and ImageNette (Howard, 2019). It is important to note
that even standard DFA has rarely been applied to Transformer models for from-scratch training due
to its inherent challenges and difficulties (Launay et al., 2020). Our experiment is the first attempt
to apply DFA fine-tuning to Transformers (i.e., BERT, ViT), which is considered more challenging
than from-scratch DFA training. The detailed experimental setups are provided in Sec. I.

5.1 FINE-TUNING PERFORMANCE

Table 1: Image classification tasks. The fine-tuning performance of feedback-weight matching
(DFAours) on the 4- and 6-layer fully connected networks, compared with standard DFA fine-tuning
(DFAfine), and from-scratch-training of DFA (DFAscratch). The pre-trained weights are obtained
through back-propagation. The bold indicates the best performance in DFA fine-tuning.

Target Data
4-layer 6-layer

Scratch CIFAR-100 TinyImageNet Scratch CIFAR-100 TinyImageNet

DFAscratch DFAfine DFAours DFAfine DFAours DFAscratch DFAfine DFAours DFAfine DFAours

CIFAR-10 52.78 53.79 55.38 56.75 55.51 51.94 53.04 55.39 51.08 55.54
SVHN 82.93 79.55 82.87 80.31 83.16 81.89 74.70 82.67 76.03 81.39
STL-10 42.20 44.83 45.30 50.62 45.61 40.48 43.42 45.28 43.33 45.21

Tab. 1 summarizes the fine-tuning performance on image classification tasks (i.e., test accuracy)
of feedback-weight matching compared against the standard DFA fine-tuning that does not apply
feedback-weight matching. As shown in the table, the proposed feedback-weight matching enables
reliable fine-tuning for various network architectures and tasks, which consistently outperforms stan-
dard DFA with an average of 2.16% accuracy gap. For instance, feedback-weight matching achieves
82.67% accuracy when fine-tuning the 6-layer network from CIFAR-100 to SVHN, which is 7.97%
higher than standard DFA that achieves 74.70%. It also indicates that the proposed feedback-weight
matching maintains more robust performance over network depths, whereas the performance of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

standard DFA deteriorates with deeper networks. For instance, in the case of fine-tuning from
CIFAR-100 to SVHN, the accuracy drop between 4-layer and 6-layer networks is only 0.20% with
feedback-weight matching, which is 24x smaller than the case not applying it (i.e., 4.85% drop).

Tab. 2 presents the evaluation results of feedback-weight matching applied to BERT-Tiny and BERT-
Small, fine-tuned for NLP tasks, using the same experimental setup in image classification tasks
(Tab. 1). Similar to image classification tasks, feedback-weight matching enables DFA to fine-tune
BERT for various tasks of the GLUE dataset in a more robust manner compared to standard DFA. In
particular, substantial performance gains are observed on datasets with limited samples, where fine-
tuning primarily depends on pre-trained weights. For example, on CoLA, feedback-weight matching
achieves a Matthews correlation of 0.53 in BERT-Small, compared to 0.06 with standard DFA. Simi-
larly, on STSB, BERT-Small achieves a Pearson correlation of 0.76 with feedback-weight matching,
while standard DFA yields only 0.10, demonstrating a significant gap in both learning performance
and reliability. In the worst case, standard DFA fails to learn from the fine-tuning data entirely,
achieving 0.00 Matthews correlation for CoLA with BERT-Tiny, whereas feedback-weight match-
ing achieves 0.29. Unlike architectures with stacked fully connected layers, transformers incorporate
attention mechanisms, which interfere with alignment. While alignment cannot be directly adjusted
for projection layers such as key, query, and value, aligning the subsequent dense layers alone sig-
nificantly improves weight alignment, gradient alignment, and overall performance. Experiments
related to this are presented in Sec. E

Table 2: NLP tasks. The fine-tuning performance of feedback-weight matching (DFAours) on Trans-
former architectures (i.e., BERT-Tiny and BERT-Small), compared with standard DFA fine-tuning
(DFAfine). The pre-trained weights are obtained via back-propagation (BP). For reference, we also
present the from-scratch-training results of DFA (DFAscratch). The bold indicates the best perfor-
mance in DFA fine-tuning.

Model Training CoLA SST-2 MRPC QQP MNLI QNLI STSB RTE WNLI
(mat) (acc) (acc) (acc) (acc) (acc) (pear) (acc) (acc)

BERT
Tiny

DFAscratch 0.00 95.2 67.4 81.2 59.2 84.2 -0.11 50.2 50.0
DFAfine 0.00 92.4 67.4 80.6 60.0 80.2 -0.17 51.2 51.0
DFAours 0.29 95.9 69.7 82.3 60.2 84.3 0.36 55.5 52.6

BERT
Small

DFAscratch 0.19 96.5 75.2 86.7 67.4 80.9 0.05 60.0 50.3
DFAfine 0.06 95.6 70.9 86.0 67.0 85.3 0.10 59.0 49.3
DFAours 0.53 97.3 92.5 86.9 65.8 87.2 0.76 59.0 51.0

Tab. 3 shows fine-tuning results for image classification tasks using Vision Transformers (ViTs).
Consistent with previous evaluations, the experiment results confirm that feedback-weight matching
is effective not only for simple fully connected networks but also for complex Transformer architec-
tures, e.g., the classification accuracy improves from 0.210 to 0.319 for ViT-Small on ImageNette.

Table 3: Image classification tasks with Vision Transformers. The fine-tuning performance of
feedback-weight matching (DFAours) on ViT-Small and ViT-Tiny compared with standard DFA fine-
tuning (DFAfine) and DFA training from scratch (DFAscratch). Bold indicates the best performance.

Target Data ViT-Tiny ViT-Small

DFAscratch DFAfine DFAours DFAscratch DFAfine DFAours

CIFAR-10 0.281 0.332 0.397 0.322 0.378 0.392
STL-10 0.197 0.164 0.247 0.221 0.111 0.247

ImageNette 0.168 0.209 0.294 0.230 0.210 0.319

5.2 WEIGHT ALIGNMENT AND GRADIENT ALIGNMENT

Fig. 2a and 2b plot the weight alignment (WA) and the gradient alignment (GA), along with the
train and test accuracy, for some fine-tuning setups. As shown in the figures, the proposed feedback-
weight matching (green) induces strong weight alignment (WA) from the outset, subsequently strong
gradient alignment (GA) as analyzed in Sec. 3.2 and 3.3, leading to both enhanced train and test
accuracy across all experiments with faster and stable convergence. In contrast, standard DFA (yel-
low), not applying feedback-weight matching, achieves significantly lower WA and GA. While they
gradually increase over fine-tuning epochs in some cases, the initially low WA and GA impede
effective fine-tuning. As a result, the train and test accuracy of standard DFA do not improve sub-
stantially from the pre-trained weight parameters, especially for BERT-Small. This suggests that
standard DFA struggles to adapt to the target dataset for fine-tuning, likely due to the mismatch
between its random feedback matrices and the pre-trained weights. In other words, it overly re-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0K 1K 2K
Epoch

0.3

0.6

0.9

Weight Alignment (WA)

0K 1K 2K
Epoch

0.3

0.6

0.9

Gradient Alignment (GA)

0K 1K 2K
Epoch

70

85

100

Train Accuracy

0K 1K 2K
Epoch

75

80

85

Test Accuracy

Feedback-Weight Matching (DFAours) DFAfine DFAscratch

(a) Fine-tuning the 4-layer network from TinyImageNet to SVHN.

1 2 3 4 5 6
Epoch

0.0

0.3

0.6

0.9

Weight Alignment (WA)

1 2 3 4 5 6
Epoch

0.0

0.3

0.6

0.9

Gradient Alignment (GA)

1 2 3 4 5 6
Epoch

65

75

85

95

Train Accuracy

1 2 3 4 5 6
Epoch

65

75

85

95

Test Accuracy

(b) Fine-tuning BERT-Small from BookCorpus & Wikipedia to MRPC (GLUE).

Figure 2: WA, GA, train accuracy, and test accuracy. The green graph denotes DFA fine-tuning
with feedback-weight matching (ours), yellow denotes DFA fine-tuning without feedback-weight
matching, blue is DFA trained from scratch.

lies on pre-trained weights in the hope that they will fit and perform well on new target fine-tuning
data. These results indicate that the improvements in fine-tuning performance are attributed to the
proposed feedback-weight matching. This is well exemplified in Fig. 2b, where the train and test
accuracies of DFAfine show minimal or no improvement from the pre-trained weights, whereas those
of DFAfine exhibit notable increases of approximately up to 0.27 from the pre-trained weights. In ad-
dition, Transformer models achieve lower WA and GA than fully connected networks when trained
with DFA from scratch. This is potentially due to the complexity of the attention operation (Sec. E).
When the proposed feedback-weight matching is applied to Transformer models, it induces WA and
GA, yielding better performance compared to fully connected networks.

5.3 ABLATION STUDY: FEEDBACK MATCHING, WEIGHT MATCHING, AND WEIGHT DECAY

Tab. 4 presents the impact of feedback matching, weight matching, and weight decay on fine-tuning
with DFA. To assess their effectiveness, we remove each of them in isolation. Removing feedback
matching results in a marginal performance decline, such as a reduction from 55.54% to 55.03%
when the 6-layer network is fine-tuned from TinyImageNet to CIFAR-10. This marginal drop occurs
because bypassing feedback matching applies random feedback matrices to the re-initialized weights
that are amenable to arbitrary random feedback matrices, resulting in a reasonable level of WA
and GA. In contrast, omitting weight matching leads to a relatively bigger performance drop, e.g.,
classification accuracy decreases from 83.16% to 79.77% when fine-tuning the 4-layer network from
TinyImageNet to SVHN. Similarly, the correlation score drops from 0.76 to -0.06 when fine-tuning
BERT-Small to STSB as shown in Tab. 6 (Sec. D). It is presumed that excluding weight matching
causes the pre-trained weights obtained by back-propagation, not by DFA, to be fine-tuned with
mismatched feedback matrices, thus resulting in weak WA and GA.

Table 4: Ablation experiment. The fine-tuning performance when removing each component
of feedback-weight matching: weight matching (DFAweight*), feedback matching (DFAfeed*), and
weight decay (DFAdecay*). ‘DFAours’ denotes applying all of them.

Model Target Data
Source Data

CIFAR-100 TinyImageNet

DFAweight* DFAfeed* DFAdecay* DFAours DFAweight* DFAfeed* DFAdecay* DFAours

4 layers
CIFAR-10 53.92 55.23 48.82 55.38 53.73 55.05 48.66 55.51

SVHN 80.65 81.34 77.99 82.87 79.77 83.13 77.63 83.16
STL-10 44.25 45.20 40.00 45.30 44.05 45.42 40.47 45.61

6 layers
CIFAR-10 53.47 55.03 46.21 55.39 53.50 55.03 45.77 55.54

SVHN 79.70 82.53 76.71 82.67 79.77 82.76 76.76 82.72
STL-10 43.86 45.42 39.17 45.28 43.78 45.43 40.23 45.21

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

When weight decay is not applied, fine-tuning of feedback-weight matching performance also ex-
hibits some declines, e.g., classification accuracy decreases from 55.38% to 48.82% when fine-
tuning the 4-layer network from CIFAR-100 to CIFAR-10. It should be noted that weight decay
appears to have minimal impact on fine-tuning of standard DFA when feedback-weight matching is
not applied; the classification accuracy even increases, such as from 54.38% to 56.75% when fine-
tuning the 4-layer network from TinyImageNet to CIFAR-10. This demonstrates the synergistic
effect of feedback-weight matching and weight decay, i.e., reducing network error as in Sec. 4.

5.4 FEEDBACK-WEIGHT MATCHING AND WEIGHT DECAY

To evaluate the impact of feedback-weight matching on weight decay, we measure the fine-tuning
performance with weight decay, with and without applying feedback-weight matching, which is
shown in Tab. 5. The results indicate that weight decay enhances fine-tuning accuracy (reducing
network output error) when used with feedback-weight matching, with an average improvement
of 8.35%. This demonstrates that feedback-weight matching facilitates weight decay in reducing
network output error, thus improving fine-tuning accuracy, as provided in Eq. (14). In contrast,
weight decay is less likely to improve fine-tuning performance without feedback-weight matching.
In fact, when applied to the standard DFA (not applying feedback-weight matching), weight decay
results in fine-tuning accuracy with minimal variation, providing similar accuracy.
Table 5: Feedback-Weight Matching and weight decay. ‘DFAfine’ applies weight decay without
feedback-weight matching, compared with ‘DFAours’ applying both weight decay and feedback-
weight matching. The following tables show the results for image classification and NLP tasks.

(a) Fine-tuning image classification tasks (fully connected networks)

Target Data
4 layers 6 layers

CIFAR-100 TinyImageNet CIFAR-100 TinyImageNet

DFAfine DFAours DFAfine DFAours DFAfine DFAours DFAfine DFAours

CIFAR-10 54.39 55.38 54.38 55.51 54.08 55.39 53.50 55.54
SVHN 80.77 82.87 80.74 83.16 78.73 82.67 79.57 82.72
STL-10 45.00 45.30 50.40 45.61 43.56 45.28 45.28 45.21

(b) Fine-tuning NLP tasks (BERT)

Model Training CoLA SST-2 MRPC QQP MNLI QNLI STSB RTE WNLI
(mat-cor) (acc) (acc) (acc) (acc) (acc) (pearson) (acc) (acc)

BERT-Tiny DFAfine 0.00 92.4 67.4 80.6 60.0 80.2 -0.17 51.2 51.0
DFAours 0.29 95.9 69.7 82.3 60.2 84.3 0.36 55.5 52.6

BERT-Small DFAfine 0.06 95.6 70.9 86.0 67.0 85.3 0.10 59.0 49.3
DFAours 0.53 97.3 92.5 86.9 65.8 87.2 0.76 59.0 51.0

Fig. 3 plots the weight alignment (WA), gradient alignment (GA), training accuracy, and test ac-
curacy across varying strengths of weight decay during the fine-tuning of 4-layer network from
CIFAR-100 to CIFAR-10. Feedback-weight matching ensures strong WA and GA as discussed in
Sec. 3.2 and 3.3 from the beginning, which helps mitigate alignment degradation, while exhibiting
varying behaviors depending on different levels of weight decay. In the absence of weight decay
(black curve), GA declines and exhibits significant oscillations, ultimately causing a decrease in test
accuracy. Conversely, when a strong weight decay is applied (blue curve), both WA and GA de-
crease sharply, followed by substantial reductions in both training and test accuracy. This supports
Conj. 4.3 that applying an appropriate level of weight decay can mitigate its adverse effect (the in-
crease in error), thus leading to an overall error reduction. These observations suggest that a proper
weight decay strength is crucial for effective fine-tuning (green curve) of feedback-weight matching.

0K 2K 4K
Epoch

0.6

0.8

1.0

Weight Alignment (WA)

0K 2K 4K
Epoch

0.6

0.8

1.0

Gradient Alignment (GA)

0K 2K 4K
Epoch

40

60

80

100
Train Accuracy

0K 2K 4K
Epoch

35

45

55

Test Accuracy

0 5e-4 1e-3 1e-2

Figure 3: WA/GA and train/test accuracy on various weight decays (0, 5e-4, 1e-3, 1e-2). A 4-layer
fully connected network is fine-tuned from CIFAR-100 to CIFAR-10 by feedback-weight matching.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models solely for polishing grammar and improving the readability of the
manuscript. The contents and research contributions were written entirely by the authors.

REFERENCES

AF Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

Dominique Chu and Florian Bacho. Random feedback alignment algorithms to train neural net-
works: why do they align? Machine Learning: Science and Technology, 5(2):025023, 2024.

Kenneth Ward Church, Zeyu Chen, and Yanjun Ma. Emerging trends: A gentle introduction to
fine-tuning. Natural Language Engineering, 27(6):763–778, 2021.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Brian Crafton, Abhinav Parihar, Evan Gebhardt, and Arijit Raychowdhury. Direct feedback align-
ment with sparse connections for local learning. Frontiers in neuroscience, 13:525, 2019.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Shivam Garg and Santosh Vempala. How and when random feedback works: A case study of low-
rank matrix factorization. In International Conference on Artificial Intelligence and Statistics, pp.
4070–4108. PMLR, 2022.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cog-
nitive science, 11(1):23–63, 1987.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jeremy Howard. Imagenette, 2019. URL https://github.com/fastai/imagenette.
Accessed: 2025-01-26.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some appli-
cations. IEEE Transactions on automatic control, 25(2):164–176, 1980.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

10

https://github.com/fastai/imagenette

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with direct
feedback alignment. arXiv preprint arXiv:1906.04554, 2019.

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. Advances in neural information processing
systems, 33:9346–9360, 2020.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
13276, 2016.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Back-
propagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Maria Refinetti, Stéphane d’Ascoli, Ruben Ohana, and Sebastian Goldt. Align, then memorise:
the dynamics of learning with feedback alignment. In International Conference on Machine
Learning, pp. 8925–8935. PMLR, 2021.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Ganlin Song, Ruitu Xu, and John Lafferty. Convergence and alignment of gradi-
ent descent with random backpropagation weights. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 19888–19898. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/a576eafbce762079f7d1f77fca1c5cc2-Paper.pdf.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962, 2019.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/a576eafbce762079f7d1f77fca1c5cc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a576eafbce762079f7d1f77fca1c5cc2-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
Tinyvit: Fast pretraining distillation for small vision transformers, 2022. URL https://
arxiv.org/abs/2207.10666.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

12

https://arxiv.org/abs/2207.10666
https://arxiv.org/abs/2207.10666

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF

A.1 PROOF OF PROPOSITION 3.3

Proof. We prove Prop. 3.3 for Wt
1<l<L in Eq. (15), and the same reasoning applies to Wt

L in (16).
Since At

l≥2 in Eq. (3) becomes such that At
l≥2 ∝ I as the training proceeds (Refinetti et al., 2021),

the weight newly updated with DFA, which is denoted as W̄t
1<l<L, comes to satisfy Eq. (4), i.e.,

W̄t
1<l<L = ctlFlF

⊤
l−1 with some constant ctl . Given that we take the pre-trained weight W0

1<l<L as
the initial training point in our fine-tuning, the overall weight Wt

1<l<L obtained by DFA is expressed
as the sum of W0

1<l<L and W̄t
1<l<L, which is given by:

Wt
1<l<L = W0

1<l<L + W̄t
1<l<L = W0

1<l<L + ctlFlF
⊤
l−1�∝ FlF

⊤
l−1 (15)

Wt
L = W0

L + W̄t
L = W0

L + ctLF
⊤
L−1�∝ F⊤

L−1 (16)

where ct1<l≤L is a constant. In Eq. (15), since W0
1<l<L is unlikely to be proportional to FlF

⊤
l−1,

i.e., W0
1<l<L �∝ FlF

⊤
l−1, the overall weight Wt

1<l<L, which includes W0
1<l<L, is also unlikely

to be proportional to FlF
⊤
l−1, i.e., Wt

1<l<L�∝FlF
⊤
l−1, though W̄t

1<l<L = ctlFlF
⊤
l−1 ∝ FlF

⊤
l−1.

Hence, Eq. (15) can hardly induce strong WA in Eq. (4).

A.2 PROOF OF PROPOSITION 3.6

Proof. Similar to Eq. (15) and (16), the overall weight Wt
l obtained by DFA is the sum of W0

l and
W̄t

l . Specifically, now that W̄0
1<l<L = F̄lF̄

⊤
l−1 and W̄0

L = F̄⊤
L−1, these become proportional to

F̄lF̄
⊤
l−1 and F̄L−1, respectively, as:

Wt
1<l<L = W̄0

1<l<L + W̄t
1<l<L = F̄lF̄

⊤
l−1 + ctlF̄lF̄

⊤
l−1 = (1 + ctl)F̄lF̄

⊤
l−1 ∝ F̄lF̄

⊤
l−1 (17)

Wt
L = W̄0

L + W̄t
L = F̄⊤

L−1 + ctLF̄
⊤
L−1 = (1 + ctL)F̄

⊤
L−1 ∝ F̄⊤

L−1 (18)

with constants ct1<l≤L, which aligns with the strong WA condition in Eq. (4).

A.3 PROOF OF PROPOSITION 3.8

Proof. The weight at the second layer of the network, Wt
2, can be expressed with the pre-trained

weight, W0
2, with the learning rate η , the number of neurons as p, F1 ∈ Rp, and Wt

2 ∈ Rp as
follows (Song et al., 2021).

Wt
2 = Wt−1

2 − η
1
√
p
Wt−1

1 X⊤et−1 = W0
2 −

η
√
p

t′−1∑
t=0

Wt
1X

⊤et (19)

For the standard DFA that does not apply feedback-weight matching in Eq. (6) and (7), we have
GDFA = F1 and GBP = Wt

2. By using Eq. (19), the gradient alignment (GA) defined in Eq. (9)
between them, which is denoted as cosDFA ∠(F1,W

t
2), is at least as follows.

cosDFA ∠(F1,W
t
2) =

F⊤
1 Wt

2

∥F1∥∥Wt
2∥

=

F⊤
1

∥F1∥W
t
2

∥Wt
2∥

=

F⊤
1

∥F1∥ (W
0
2 −

η√
p

∑t′−1
t=0 Wt

1X
⊤et)

∥W0
2 −

η√
p

∑t′−1
t=0 Wt

1X
⊤et∥

≥
F⊤

1

∥F1∥ (W
0
2 −

η√
p

∑t′−1
t=0 Wt

1X
⊤et)

∥W0
2∥+ ∥ η√

p

∑t′−1
t=0 Wt

1X
⊤et∥

(20)

Conversely, when applying feedback-weight matching in Eq. (6) and (7), we have F1 = W0
2 for

L=2. Using Eq. (19) again, GA between them, cosFWM ∠(F1,W
t
2), is at least as follows.

cosFWM ∠(F1,W
t
2) =

F⊤
1

∥F1∥ (W
0
2 −

η√
p

∑t′−1
t=0 Wt

1X
⊤et)

∥W0
2 −

η√
p

∑t′−1
t=0 Wt

1X
⊤et∥

≥
F⊤

1

∥F1∥ (F1 − η√
p

∑t′−1
t=0 Wt

1X
⊤et)

∥F1∥+ ∥ η√
p

∑t′−1
t=0 Wt

1X
⊤et∥

.

(21)
If we assume that both F1 and W0

2 follow the standard Gaussian distribution, we have ∥F⊤
1 W

0
2∥ ≤

∥F1∥2 (Song et al., 2021). Thus, cosFWM ∠(F1,W
t
2) exhibits a higher lower bound compared to

cosDFA ∠(F1,W
t
2), i.e., cosFWM ∠(F1,W

t
2) ≥ cosDFA ∠(F1,W

t
2), implying a higher GA.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 PROOF OF LEMMA 4.1

Proof. We show that r1<l<L ≥ 0 in Eq. (11), and the same reasoning extends to rL in (12).
Given that W̄0

l = F̄lF̄
⊤
l−1 ∝ Wt

l = ctlF̄lF̄
⊤
l−1, we can interpret Wt

l as a scaled version of W̄0
l ,

which implies that ∥Wt
l − W̄0

l ∥ is small. Conversely, since W0
l is not proportional to Wt

l , i.e.,
W0

l �∝ Wt
l = ctlF̄lF̄

⊤
l−1, it follows that ∥Wt

l −W0
l ∥ is generally larger than∥Wt

l − W̄0
l ∥. There-

fore, ∥Wt
l − W̄0

l ∥ is likely smaller than ∥Wt
l −W0

l ∥.

A.5 PROOF OF PROPOSITION 4.2

Proof. It is shown (Song et al., 2021) that the inequality in Eq. (13), i.e., ∥et+1∥ ≤
(
1 − ηγ

4 −
ηλt

)
∥et∥ + λt∥y∥, holds for a two-layer fully connected non-linear network when applying FA

(Feedback Alignment) (Lillicrap et al., 2016) with weight decay (Krogh & Hertz, 1991). Specifi-
cally, the right-hand side of the inequality, i.e.,

(
1− ηγ

4 −ηλt
)
∥et∥+λt∥y∥, consists of the following

term as a linear component in fine-tuning:

∥Wt
2 −W0

2∥ s.t. W0
2�∝ F⊤

1 (22)

where W0
2 is the pre-trained weights. By assuming that W0

2 is replaced with the re-initialized
weights, W̄0

2 in Eq. (7), ∥et+1∥ in Eq. (13) is reduced by α2r2 since ∥Wt
2−W0

2∥≥∥Wt
2−W̄0

2∥, as
in Lem. 4.1.

B DECOMPOSITION OF WEIGHT INTO FEEDBACK MATRICES

One way of finding feedback matrices F̄l and F̄⊤
l−1 in Eq. (6) from W0

1<l<L, other than SVD
(Singular Value Decomposition) (Klema & Laub, 1980), is to optimize the following objective LFM .

LFM =
1

2

∑L−1

l=2
(W0

l hl−1−F̄lF̄
⊤
l−1hl−1)

2+
1

2
(W0

LhL−1−F̄L−1hL−1)
2+

1

2

∑L−1

l=1
(I−F̄⊤

l F̄l)
2

(23)
Here, LFM is minimized to ensure that the layer output, when replaced by the feedback matrix
F̄lF̄

⊤
l−1hl−1, matches the output obtained using the pre-trained weight W0

l hl−1, while F̄l is to be
orthogonal to itself in accordance with the regular DFA condition (Lillicrap et al., 2016).

C LIMITATIONS AND FUTURE WORKS

Extending to different architectures. Although this study presents the significant potential of fine-
tuning with DFA, its current application is restricted to fully connected networks. This limitation
arises because, at present, DFA is predominantly effective for fully connected architectures, and
further research is needed to extend its applicability to other network types. In our future work, we
plan to explore the application of DFA fine-tuning to various network architectures, such as CNNs.
Meanwhile, we anticipate the development of more generalized methods that will enable DFA to be
applied across a broader range of network types, thereby enhancing the applicability of our work.

Improving learning performance. The learning performance of the proposed feedback-weight
matching is shown to surpass both 1) training networks with DFA from scratch and 2) fine-tuning
networks with DFA using random feedback matrices. While fine-tuning with DFA applying the
proposed method achieves superior and more stable performance compared to them, it still falls
short of the performance achieved with fine-tuning using back-propagation (Rumelhart et al., 1986).
We plan to explore how to achieve fine-tuning performance comparable to that of back-propagation
by investigating DFA from its fundamental mechanism, along with the proposed method.

Proving hypotheses. This work provides some hypotheses regarding fine-tuning and weight decay
in the context of DFA. Conj. 4.3 posits that applying the proposed method to weight decay en-
hances fine-tuning performance of DFA for fully connected networks of arbitrary layers. However,
formal proofs are necessary to substantiate these hypotheses and validate the efficacy of the pro-
posed approach. In future research, we intend to generalize the propositions presented in this study
to encompass various types of fully connected network architectures.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D ABLATION EXPERIMENT ON BERT

Tab. 6 presents the fine-tuning performance of BERT models when weight matching, feedback
matching, and weight decay are individually removed. It is important to note that DFA is not applied
to all fully connected layers in BERT, which limits the ability to properly assess the effectiveness of
feedback-weight matching. Thus, this experimental setup may not provide an accurate evaluation.
Table 6: Ablation experiment. The fine-tuning performance when removing weight matching
(DFAweight*), feedback matching (DFAfeed*), and weight decay (DFAdecay*). ‘DFAours’ denotes ap-
plying all of them.

Model Training CoLA SST-2 MRPC QQP MNLI QNLI STSB RTE WNLI
(mat-cor) (acc) (acc) (acc) (acc) (acc) (pearson) (acc) (acc)

BERT-Tiny

DFAweight* 0.00 94.7 67.4 81.4 59.2 88.4 -0.15 50.3 50.9
DFAfeed* 0.00 95.8 68.9 82.4 60.8 86.9 0.35 55.5 50.0
DFAdecay* 0.31 95.9 71.4 81.9 61.0 83.3 0.36 53.3 51.9
DFAours 0.29 95.9 69.7 82.3 60.2 84.3 0.36 50.8 52.6

BERT-Small

DFAweight* 0.08 96.0 75.1 85.0 66,7 79.7 -0.06 61.8 50.1
DFAfeed* 0.54 97.0 91.5 87.4 65.2 85.3 0.75 62.0 50.2
DFAdecay* 0.53 97.2 91.2 87.1 64.7 85.4 0.78 68.7 50.9
DFAours 0.53 97.3 92.5 86.9 65.8 87.2 0.76 59.0 51.0

E LAYER-WISE GRADIENT ALIGNMENT ANALYSIS

Weight alignment and gradient alignment have generally been analyzed in the context of sequen-
tial fully connected layers. However, Transformer-based models introduce attention mechanisms,
which disrupt the sequential structure of fully connected layers. To investigate the impact of at-
tention on our method, we analyze layer-wise gradient alignment across different components of
the Transformer. Figure 4 illustrates the average gradient alignment of each sequential fully con-
nected layer in a BERT model trained on the GLUE dataset. The key, query, and value layers in
the attention module function as usual. As a result, the fully connected layer following the atten-
tion operation exhibits notably lower gradient alignment compared to others. This indicates that the
attention operation interferes with gradient alignment and highlights the need for additional archi-
tectural considerations tailored to the attention module. Although our method alone improves both
gradient alignment and performance in the sequential fully connected layers of Transformer models,
further enhancing alignment within the attention module leads to even greater performance gains.

1 2 3 4 5 6
Epoch

-0.05

0.05

0.15

0.25

G
ra

d
A

lig
nm

en
t

Attention layer

1 2 3 4 5 6
Epoch

-0.05

0.05

0.15

0.25

Intermediate layer

1 2 3 4 5 6
Epoch

-0.05

0.05

0.15

0.25

Output layer

Feedback-Weight Matching (DFAours) DFAfine DFAscratch

Figure 4: Gradient alignment comparison across attention, intermediate, and output layer.
The green graph denotes DFA fine-tuning with feedback-weight matching (ours), yellow denotes
DFA fine-tuning without feedback-weight matching, blue is DFA trained from scratch.

F COMPARISON WITH BACK-PROPAGATION

To demonstrate the effectiveness of feedback-weight matching in enhancing DFA-based fine-tuning,
we presented empirical results in the previous sections. These results indicate that we have success-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

fully achieved our objective of enabling and improving DFA-based fine-tuning. But, it still falls short
of the performance achieved by backpropagation. In this section, we provide a detailed comparison
between DFA and back-propagation in terms of fine-tuning performance. This analysis helps po-
sition DFA fine-tuning within the broader landscape of learning algorithms and clarifies its current
limitations and future potential.

For a fair comparison, we use the same pre-trained weights and experimental setup as in the DFA
experiments. The experimental details are in Sec. I. We denote fine-tuning with backpropagation as
BPfine, and training from scratch with backpropagation as BPscratch. The performance of feedback-
weight matching does not yet reach that of back-propagation fine-tuning. However, it is often com-
parable to, and occasionally surpasses, the performance of back-propagation trained from scratch.
For instance, in the case of training on STL-10 with a fully connected architecture, feedback-weight
matching can outperform back-propagation from scratch.

Table 7: Image classification tasks with back-propagation. The fine-tuning performance of
feedback-weight matching (DFAours) on the 4 and 6-layer fully connected networks, compared
with standard DFA fine-tuning (DFAfine) and back-propagation fine-tuning (BPfine). The pre-trained
weights are obtained through back-propagation (BP). For reference, we also present the from-
scratch-training results of back-propagation (BPscratch) and DFA (DFAscratch). The bold indicates
the best performance in DFA fine-tuning.

Model Target Data
Source Data

Scratch CIFAR-100 TinyImageNet

BPscratch DFAscratch BPfine DFAfine DFAours BPfine DFAfine DFAours

4 layers
CIFAR-10 55.48 52.78 57.16 53.79 55.38 57.66 56.75 55.51

SVHN 85.10 82.93 84.32 79.55 82.87 84.69 80.31 83.16
STL-10 43.15 42.20 47.73 44.83 45.30 50.29 50.62 45.61

6 layers
CIFAR-10 54.93 51.94 58.85 53.04 55.39 55.97 51.08 55.54

SVHN 85.10 81.89 84.34 74.70 82.67 84.72 76.03 81.39
STL-10 43.10 40.48 47.78 43.42 45.28 47.63 43.33 45.21

Table 8: NLP tasks with back-propagation. The fine-tuning performance of feedback-weight
matching (DFAours) on Transformer architectures (i.e., BERT-Tiny and BERT-Small), compared
with standard DFA fine-tuning (DFAfine) and back-propagation-based fine-tuning (BPfine). The pre-
trained weights are obtained via back-propagation (BP). For reference, we also present the from-
scratch-training results of back-propagation (BPscratch) and DFA (DFAscratch). The bold indicates the
best performance in DFA fine-tuning.

Model Training CoLA SST-2 MRPC QQP MNLI QNLI STSB RTE WNLI
(mat-cor) (acc) (acc) (acc) (acc) (acc) (pearson) (acc) (acc)

BERT-Tiny

BPscratch 0.07 96.3 67.4 82.8 63.4 89.2 -0.19 64.1 50.0
BPfine 0.00 93.5 70.7 86.9 73.8 88.2 -0.25 60.3 52.6
DFAscratch 0.00 95.2 67.4 81.2 59.2 84.2 -0.11 50.2 50.0
DFAfine 0.00 92.4 67.4 80.6 60.0 80.2 -0.17 51.2 51.0
DFAours 0.29 95.9 69.7 82.3 60.2 84.3 0.36 55.5 52.6

BERT-Small

BPscratch 0.55 96.3 95.4 91.3 75.3 93.4 0.67 89.8 51.9
BPfine 0.87 98.9 96.7 98.0 93.0 99.1 0.90 94.0 53.3
DFAscratch 0.19 96.5 75.2 86.7 67.4 80.9 0.05 60.0 50.3
DFAfine 0.06 95.6 70.9 86.0 67.0 85.3 0.10 59.0 49.3
DFAours 0.53 97.3 92.5 86.9 65.8 87.2 0.76 59.0 51.0

G RECOVERY ABILITY OF THE FEEDBACK MATRICES

We evaluate the resilience of feedback matrices in the Feedback-Weight Matching process. The
feedback matrices are designed to mimic the existing pre-trained weights and preserve their informa-
tion. Accordingly, we examine the extent of performance degradation when re-initialized weights,
generated using the trained feedback matrices, are evaluated on the pre-trained dataset CIFAR-100.
Tab. 9 reports the performance of pre-trained weights and re-initialized weights obtained from the
trained feedback matrices on CIFAR-100. For most classification tasks, the layer dimensions are
larger than the number of classes. Consequently, feedback matrices with dimensions equal to the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Comparison between Pre-trained and FWM weights on CIFAR-100

Pre-trained Weight FWM Weight
CIFAR-100 32.38 26.86

Table 10: Results according to epoch within the Feedback-Matching process

Dataset DFAlow DFAmid DFAours
CIFAR-10 51.38 53.27 55.38

number of classes have a lower rank than the pre-trained weights. This inevitably leads to some loss
of information, resulting in slightly reduced performance of the re-initialized weights compared to
the pre-trained weights.

To investigate how the training of feedback matrices affects fine-tuning performance, we measured
fine-tuning results at different epochs in the Feedback-Matching process. In Tab. 10, DFAlow corre-
sponds to 1 epoch, DFAmid to 2 epochs, and DFAours to 3 epochs of feedback matrix training, which
matches the original setting. When the feedback matrices are less thoroughly trained, fine-tuning
performance decreases. This indicates that insufficiently trained feedback matrices fail to capture
the information of the pre-trained weights, leading to reduced performance.

H TRAINING COST

The training cost of our method does not differ significantly from that of standard DFA, as train-
ing proceeds using standard DFA after re-initializing the feedback matrices and weights. Standard
DFA theoretically enables layerwise parallel training and can achieve a speed-up proportional to the
number of layers compared to back-propagation, but improving its training efficiency is not the fo-
cus of this work. Consequently, during the fine-tuning phase, training speed and memory overhead
remain equivalent to those of standard DFA. Furthermore, the overhead introduced by the feedback
matching stage is minimal, as it is conducted for only three epochs.

Although DFA theoretically supports layer-parallel updates, implementing true parallelism within
a single model remains challenging. Existing parallelization methods mainly focus on distributing
data or model components across multiple GPUs, whereas they do not readily support inter-layer
parallel execution on a single GPU. In our implementation, we approximate the behavior of DFA
by splitting the backward graph at each layer and substituting the local gradient with the DFA error
signal. This design preserves the learning dynamics of DFA, yet the update process still proceeds
sequentially as in standard back-propagation.

To illustrate the potential efficiency gains of parallel DFA, we report per-layer backward computa-
tion times measured on a six-layer MLP with 1000 hidden units trained on CIFAR-100 in Tab. 11.
In back-propagation, lower layers must wait for the computations of upper layers, which results in
cumulative backward times. In contrast, DFA can, in principle, update all layers simultaneously
so that the total update time would be determined only by the slowest layer. Although full paral-
lelization is not implemented, the per-layer measurements provide an upper bound on the possible
speed-up.

Table 11: DFA vs BP layer-wise and total backward time comparison (ms). Layer-wise values
indicate the backward computation time for each layer, whereas total values represent accumulated
backward time for BP and the maximum layer time for DFA under ideal parallel execution. Results
are measured on a six-layer MLP with 1,000 hidden units trained on CIFAR-100. The maximum
DFA layer time is highlighted.

Type layers 1 layers 2 layers 3 layers 4 layers 5 layers 6
DFA (layer) 0.0132 0.1003 0.0942 0.0910 0.0895 0.0811
BP (layer) 0.0098 0.0899 0.0927 0.0942 0.0957 0.0996
DFA (total) 0.1003 0.1003 0.1003 0.1003 0.1003 0.1003
BP (total) 0.4820 0.4722 0.3823 0.2895 0.1953 0.0996

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Regarding memory usage, DFA requires additional feedback matrices of size Nl × e for each layer,
where Nl is the number of neurons and e is the dimensionality of the error vector. As a result, DFA
exhibits higher memory consumption compared to back-propagation. In our experiments, DFA
reached a peak memory usage of approximately 130.99 MiB, while back-propagation used around
100.75 MiB. This difference reflects the cost of storing the feedback matrices. From a compu-
tational perspective, DFA also differs from back-propagation in terms of the operations required
for propagating error signals. Back-propagation computes Wl+1δal+1, which requires O(NlNl+1)
operations, whereas DFA computes Fle, requiring O(NlNL). Since NL is typically much smaller
than Nl+1 in classification tasks, DFA can require fewer operations and reduced data movement.
Although exploiting this theoretical efficiency is not the main objective of our study, we include this
analysis for completeness.

I EXPERIMENTAL SETUPS

In this section, we offer an explanation of the experimental setup utilized throughout our research.
Sec. I.1 outlines the training details of the feedback matrix used for feedback matching in all models.
Sec. I.2 covers the configuration settings required for the fully connected network experiments.
Sec. I.3 describes the setup necessary for experiments involving BERT, which employs a transformer
architecture. Sec. I.4 provides the setup employed for experiments with the ViT model. For fine-
tuning of BERT and ViT, feedback-weight matching is applied to the attention, intermediate, and
block outputs of the encoder layers in a similar way to previous works (Launay et al., 2020) that
attempt to apply DFA to Transformer’s attention modules (Vaswani, 2017). To ensure the robustness
of our findings, we report the average results over three different random seeds. All experiments
were conducted on an NVIDIA GeForce RTX 3090 GPU with 24GB of memory.

I.1 FEEDBACK MATRIX

We train feedback matrices to reconstruct pre-trained weights that were trained using back-
propagation (Rumelhart et al., 1986). The loss function, in Eq. (23), is used to guide the feedback
matching process. The two learned feedbacks are then combined and re-initialized into a single
weight matrix for each layer. We use the Adam optimizer (Kingma, 2014) without weight decay or
any scheduler. In fully connected networks, a learning rate of 1e-5 is applied, while in transform-
ers (BERT) (Kenton & Toutanova, 2019; Turc et al., 2019), a learning rate of 1e-3 is used. For all
experiments on the model and dataset, training is conducted for 3 epochs with a batch size of 64.

I.2 FULLY CONNECTED NETWORKS

We pre-train two fully connected networks with four and six layers on the CIFAR-100 (Krizhevsky
et al., 2009) and TinyImageNet (Le & Yang, 2015) datasets utilizing weights obtained through
back-propagation (BP). These pre-trained weights are subsequently fine-tuned on the CIFAR-
10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and STL-10 (Coates et al., 2011) datasets.
During the pre-processing phase, we apply image resizing and normalization, without any augmen-
tations. For Direct Feedback Alignment (DFA) (Nøkland, 2016), the weights are initialized with a
uniform distribution within the range of (-0.01, 0.01). Conversely, for back-propagation (Rumelhart
et al., 1986), we employ the He initialization (He et al., 2015). The optimization process is car-
ried out using Stochastic Gradient Descent, and ReLU (Agarap, 2018) is employed as the activation
function. The hyperparameters for both the 4-layer and 6-layer architectures remain consistent. A
comprehensive description of each hyperparameter under various training conditions is presented in
Tab. 12.

I.3 BERT

We train BERT-Tiny and Small models (Kenton & Toutanova, 2019; Turc et al., 2019) on the
GLUE (Wang, 2018) dataset using the AdamW (Loshchilov, 2017) optimizer with a fixed learn-
ing rate and no scheduler. We apply weight decay and dropout techniques. GeLU (Hendrycks &
Gimpel, 2016) is used for the activation function, which is commonly employed in BERT. Layers
such as the encoder block outputs, intermediate outputs, and attention outputs are optimized using
Direct Feedback Alignment (DFA) (Nøkland, 2016), while the projection layers for key, query, and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameters for fully connected networks training.

Target Data Hyperparmeters BPscratch BPfine DFAscratch DFAfine DFAfeed DFAweight DFAours

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Batch size 64 64 64 64 64 64 64
Hidden Dim 1000 1000 1000 1000 1000 1000 1000
Input size 3072 3072 3072 3072 3072 3072 3072

CIFAR-10
Epochs 5000 5000 5000 5000 5000 5000 5000
Weight Decay 5e-4 5e-4 0 0 5e-4 5e-4 5e-4
Dropout 0.1 0.1 0 0 0 0 0

SVHN
Epochs 5000 5000 5000 5000 5000 5000 5000
Weight Decay 5e-4 5e-4 0 0 5e-4 5e-4 5e-4
Dropout 0.1 0.1 0 0 0 0 0

STL-10
Epochs 5000 5000 5000 5000 30000 30000 30000
Weight Decay 5e-4 5e-4 0 0 1e-3 1e-3 1e-3
Dropout 0.1 0.1 0 0 0.1 0.1 0.1

value are trained using back-propagation (BP) (Rumelhart et al., 1986). The weights are initialized
using a uniform distribution, and the feedback matrix is specifically designed to satisfy the left or-
thogonality condition. A comprehensive description of the hyperparameter values is presented in
Tab. 13.

Table 13: Hyperparameters for BERT training.

Model Hyperparmeters Target Data BPscratch BPfine DFAscratch DFAfine DFAfeed DFAweight DFAours

Batch size 64 64 64 64 64 64 64
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Epochs 6 6 6 6 6 6 6
Max length 512 512 512 512 512 512 512

BERT-Tiny

Num of heads 2 2 2 2 2 2 2
Num of layers 2 2 2 2 2 2 2
Hidden dim 128 128 128 128 128 128 128
Intermediate dim 512 512 512 512 512 512 512

Learning Rate

CoLA 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
SST-2 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
MRPC 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
QQP 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

MNLI 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
QNLI 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
STSB 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
RTE 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

WNLI 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5

BERT-Small

Num of heads 8 8 8 8 8 8 8
Num of layers 4 4 4 4 4 4 4
Hidden of dim 512 512 512 512 512 512 512
Intermediate dim 2048 2048 2048 2048 2048 2048 2048

Learning Rate

CoLA 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
SST-2 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
MRPC 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
QQP 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

MNLI 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
QNLI 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
STSB 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
RTE 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

WNLI 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

I.4 VIT

We fine-tune ViT-Tiny and Small models (Wu et al., 2022), both pre-trained on ImageNet-1K (Deng
et al., 2009), on the CIFAR-10 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011), and Ima-
geNette (Howard, 2019) datasets. For preprocessing, we resize the 32x32 images from CIFAR-10
and STL-10 to 224x224 and apply normalization. We use the AdamW (Loshchilov, 2017) optimizer
and GeLU (Hendrycks & Gimpel, 2016) as the activation function. Following the approach used in

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

BERT, we apply Direct Feedback Alignment (DFA) to train the ViT models, specifically targeting
the encoder block outputs, intermediate outputs, and attention outputs. While the Tiny and Small
models have the same number of layers, they differ in the number of channels and attention heads.
A comprehensive list of hyperparameters for these models is provided in Tab. 14.

Table 14: Hyperparameters for ViT training.

Model Hyperparmeters Target Data DFAscratch DFAfine DFAours

Batch size 64 64 64
Dropout 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01
Epochs 5 5 5
Image Size 224 224 224
Patch Size 16 16 16
Num of layers 12 12 12

Learning Rate
CIFAR-10 2e-5 2e-5 2e-5

STL-10 2e-5 2e-5 2e-5
ImageNette 2e-5 2e-5 2e-5

ViT-Tiny
Num of heads 3 3 3
Hidden dim 192 192 192
Intermediate dim 768 768 768

ViT-Small
Num of heads 6 6 6
Hidden of dim 384 384 384
Intermediate dim 1536 1536 1536

20

	Introduction
	Background and related work
	Feedback-Weight Matching
	Why does DFA perform unreliably in fine-tuning?
	Inducing strong weight alignment
	Inducing strong gradient alignment

	Weight decay
	Experiment
	Fine-tuning performance
	Weight alignment and gradient alignment
	Ablation study: Feedback Matching, Weight Matching, and weight decay
	Feedback-Weight Matching and weight decay

	Proof
	Proof of Proposition 3.3
	Proof of Proposition 3.6
	Proof of Proposition 3.8
	Proof of Lemma 4.1
	Proof of Proposition 4.2

	Decomposition of weight into feedback matrices
	Limitations and future works
	Ablation experiment on BERT
	Layer-wise gradient alignment analysis
	Comparison with back-propagation
	Recovery ability of the feedback matrices
	Training cost
	Experimental setups
	Feedback matrix
	Fully connected networks
	BERT
	ViT

