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ABSTRACT

Conditional diffusion models require external guidance for generation, but
common signals like text prompts are often noisy, necessitating prolonged training
on massive, high-quality paired datasets. To address this, we introduce Generative
Modeling with Explicit Memory (GMem), a framework that instead conditions
generation on high-quality semantic information extracted directly from the data
themselves. Such conditioning is stored in an external memory bank, providing
an accurate guidance signal that can accelerate training by a large margin. Our
experiments on ImageNet 256 × 256 show that GMem achieves a 50× training
speedup over SiT while also reaching a state-of-the-art (SoTA) FID of 1.53. The
key contributions of our work are threefold: (i) We demonstrate significant training
acceleration on ImageNet datasets. (ii) We propose an efficient downstream
adaptation pathway, where the image-pretrained model serves as a base model
for adapting to new tasks. (iii) We introduce a data- and compute-efficient
text-to-image (T2I) pipeline that matches the quality of strong baselines like
PixArt-α using only 1/17 of the data and 1/9 of the training time. Our work
establishes conditioning with explicit memory as a powerful paradigm for efficient
and effective generative modeling. Our code will be made publicly available.

1 INTRODUCTION

Deep generative models like diffusion models (Yang & Wang, 2023; Ho et al., 2020; Song et al., 2020a;
Nichol & Dhariwal, 2021; Choi et al., 2021; Li et al., 2024b; Chen et al., 2024b; Li et al., 2023a)
have achieved notable success within the deep learning community. These methods demonstrate
exceptional performance in complex tasks such as zero-shot text-to-image (T2I) and video generation
(Podell et al., 2023; Saharia et al., 2022; Esser et al., 2024; Polyak et al., 2024; Brooks et al., 2024).
As data grow richer and model sizes become larger, training and sampling of diffusion models suffer
from high computational burden (Karras et al., 2022; 2024). Moreover, the rapid growth of image
data further amplifies the difficulty of obtaining large-scale, high-quality text prompts, exacerbating
the cost of T2I training. Gu et al. (2023) show that due to memory capacity, scaling diffusion models
on larger datasets requires proportionally more parameters, which is an increasingly unsustainable
approach. This presents three key challenges to diffusion modeling: (i) faster training, (ii) reduced
model memorization to facilitate easier adaptation to shifted domains, (iii) mitigating the reliance
on text supervision during T2I training.
To address these interconnected challenges, we introduce GMem, a novel paradigm that synergizes
representation learning with an external memory bank. Our approach is predicated on the observation
that conditional generation tasks, such as T2I synthesis, inherently involve leveraging sparse guidance
signals to generate dense, high-information content. We contend that in conventional T2I models,
these guidance signals—typically text prompts—are susceptible to inaccuracies and noise. This paper
investigates the conjecture that sparse yet salient information extracted directly from the images
themselves can offer a more robust, efficient, and accurate form of guidance for the conditional
generation process. To realize this, our GMem paradigm incorporates an external memory bank
alongside the neural network, storing semantic representations to guide generation. This yields three
key benefits: (i) faster training—the rich semantic information in memory bank accelerates con-
vergence by reducing the burden of memorization; (ii) easier adaptation—the model supports both
efficient domain adaptation to styles like anime or medical imaging via lightweight fine-tuning, and
real-time user-guided editing through test-time memory manipulation. (iii) data-efficient T2I—our
approach enables a text-to-image training pipeline that significantly reduces the reliance on massive
paired datasets and prolonged training times. We also carefully analyze the relationship between
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Figure 1: GMem: appending an explicit memorization module into diffusion transformers unlocks
data- and compute- efficiency gains on ImageNet 256 × 256 and text-to-image generation. Sub-figure (a)
demonstrates the training efficiency of GMem on ImageNet 256× 256. At an FID = 4.86, GMem achieves over
25× speedup compared to REPA (Yu et al., 2024). At an FID = 7.66, it achieves over 50× speedup relative
to SiT (Ma et al., 2024). Sub-figure (b) illustrates data- and compute- efficiency in text-to-image generation.
Under comparable Geneval value, GMem requires 15.3× fewer data and 34× fewer training time comparing to
OpenUni (Wu et al., 2025) baselines.

GMem and traditional diffusion models (e.g. DiT (Peebles & Xie, 2023)), and in Appendix E we
present experiments demonstrating GMem can be progressively degraded into a standard conditional
diffusion model, and vice versa.
We outline our contributions below:
(i) Memory-augmented diffusion framework. We introduce GMem, a memory-augmented frame-

work for diffusion modeling that achieves 50× training speedup on ImageNet 256×256, reaching
FID=1.53 in only ∼20 hours training time. We also validate its effectiveness across various
diffusion backbones and tokenizers.

(ii) Rapid downstream adaptation. An ImageNet-pretrained GMem can adapt to new domains
(e.g., anime images, human faces) with only ∼20K fine-tuning steps (approximately 2 hours),
achieving performance comparable to training from scratch.

(iii) Data- and compute-efficient T2I training recipe. We propose a bank-free T2I training pipeline
that matches strong baselines like PixArt-α using only 1/17 of the data (1.48M total images) and
1/9 of the training cost (78.5 A100-days). This efficiency pattern extends to unified multimodal
understanding and generation models and high-resolution text-to-image generation.

2 RELATED WORK

Generative models. Generative models–—including Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014; Sauer et al., 2022; Xiao et al., 2021), Variational Autoencoders
(VAEs) (Kingma, 2013; He et al., 2022), flow-based methods, and diffusion-based methods (Ho
et al., 2020; Dhariwal & Nichol, 2021; Mittal et al., 2023)—–aim to learn the data distribution
p(x) and generate data through sampling, achieving remarkable performance in producing realistic
samples (Li et al., 2023b). Recently, diffusion-based methods employ stochastic interpolation to
model a forward process and then reverse the Gaussian distribution back to the original image space,
generating realistic samples. These methods achieve SoTA results in deep generative modeling and
are the focus of this study (Mittal et al., 2023; Song & Ermon, 2020; Durkan & Song, 2021).
Diffusion models face computational challenges due to high training cost and instability (Yu et al.,
2024; Song & Ermon, 2020) and high sampling costs from multi-step generation (Lu & Song, 2024),
driving extensive research to accelerate both processes. For example, REPA (Yu et al., 2024) leverages
external visual representations to speed up training. LightningDiT (Yao & Wang, 2025) accelerates
training by aligning the latent space of vision tokenizer (i.e. VA-VAE) with pretrained vision encoder.
Instead, GMem constructs an explicit memory bank of semantic representations to guide the model
toward richer feature learning, thereby significantly accelerating training and sampling.

Diffusion modeling and representation learning. To overcome the instability and computational
inefficiency of diffusion models, recent studies (Yu et al., 2024; Fuest et al., 2024; Mittal et al., 2023)
start to leverage representation learning to enhance diffusion models. On the one hand, diffusion
models are capable of learning high-quality representations (Yu et al., 2024). For instance, Tang et al.
(2023) demonstrate that feature maps extracted from diffusion networks can establish correspondences
between real images, indicating a strong alignment between the learned representations with actual

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Selected samples on ImageNet 512 × 512 and 256 × 256. This figure presents images generated
by GMem under two experimental settings: (i) For ImageNet 256× 256, GMem was trained for 160 epochs
and sampled via Euler method (NFE = 100), achieving an FID = 1.53 without classifier-free guidance. (ii) For
ImageNet 512× 512, training extended to 400 epochs with identical sampling settings, yielding FID = 1.89.

image. Furthermore, Yang & Wang (2023) conduct a detailed analysis of the trade-off between the
quality of learned representations and the penalization of the optimal parameter spectrum.
On the other hand, well-trained representation models can improve performance and expedite the
training of diffusion models. Mittal et al. (2023) accomplish this by adjusting the weighting function
in the denoising score matching objective to enhance representation learning. REPA (Yu et al., 2024)
introduces an alignment loss for intermediate layer representations, significantly accelerating the
training process by over 17.5 times.
For a detailed discussion of retrieval-augmented generation (RAG) methods and other related ap-
proaches, please refer to Appendix B

3 MOTIVATION

3.1 THE CONTINUUM OF GENERATIVE PARADIGMS AND GMEM

Conditioning strength controls velocity complexity. The difficulty of training a flow-matching
model is primarily determined by the geometric complexity of its velocity field vθ(xt, t, c). We
argue this complexity, in turn, depends on the conditioning strength of c: stronger, more informative
conditioning tends to simplify the vector field, while weaker conditioning leads to more curved and
entangled trajectories. In the ideal case where x0 is fully specified (i.e., the conditioning directly pins
down the target), the probability flow can be represented by (almost) straight-line trajectories from the
noise prior to x0, yielding an approximately linear velocity field and hence the easiest optimization.

Three paradigms of generative modeling. Based on this perspective, generative models are
categorized into distinct tasks based on the density of c: (i) Unconditional generation (c = ∅)
operates with zero guidance, mapping noise to data without directional cues; (ii) Class-conditional
generation relies on discrete labels (c ∈ {1, . . . ,K}), providing sparse, cluster-level constraints;
(iii) Text-to-Image (T2I) generation utilizes dense semantic embeddings (c ∈ Rd), offering fine-
grained, high-density supervision. Despite sharing the same diffusion formalism, these paradigms are
traditionally treated as a separate yet progressive sequence of tracks.

GMem as a unified bridge. Building on this view of conditioning density, GMem leverages a
scalable memory bank to continuously tune the information content of c, spanning from weak class-
level guidance to dense, instance-level cues. Within a single GMem model, simply manipulating the
memory bank (e.g., from class snippet to instance-specific snippets) enables seamless conversion
between GMem and traditional class conditional method as described in Section 5.2 . By attaching
a lightweight T2S adapter that maps text embeddings into the snippet space, we convert depen-
dence of GMem on snippet-based inputs into text-based conditioning and fine-tune the pretrained
GMem backbone into an end-to-end T2I generator Section 4.4 . Our experiments ( Section 5.4 and
Appendix E ) empirically validate these conversions between class-conditional and T2I configura-
tions on top of a pretrained GMem backbone, providing strong evidence that GMem forms a data-
and compute-efficient bridge between these generative paradigms.
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Figure 3: Analysis of conditioning strength on learning dynamics. (Top Row) Probability flow trajecto-
ries: GMem effectively rectifies the flow trajectories similarly to the strong-conditional baseline, minimizing
curvature and trajectory length, which empirically correlates with easier training. Crucially, GMem preserves
the distributional spread seen in weak conditioning. (Bottom Row) Evolution of predicted x0: The rapid
convergence to the target and the subsequent flatness of the curves indicate a linearized velocity field, confirming
that GMem simplifies the learning landscape compared to the oscillating predictions of weak baselines.

3.2 GUIDANCE STRENGTH AND FLOW CURVATURE

To make this perspective concrete, we analyze the learning dynamics of a parameterized velocity field
vθ(xt, t, c) on a Gaussian Mixture Model under four conditioning regimes of increasing strength:
(i) Unconditional generation (c = ∅). The model receives no external guidance and learns to

approximate the marginal data distribution p(x0).
(ii) Weak conditional generation (c = µk). Conditioning on the cluster mean µk. This mirrors

standard class-conditional generation, providing global structural guidance.
(iii) GMem generation (c = sk∗ +ϵ, k∗ = argmink∥x0−sk∥2). We subsample memory snippets

{sk} from the training data and, for each x0, define c = sk∗+ϵ where ϵ ∼ N (0, 1). This provides
finer but still lossy guidance, interpolating between class labels in (i) and full observations in (iv),
in line with Section 4 .

(iv) Strong conditional generation (c = x0). The “oracle” setting where the exact target coordinate
is provided. This theoretically implies a deterministic mapping and represents the limit of
high-density conditioning, such as text-to-image models with highly detailed prompts.

We visualize the resulting velocity fields and probability flow trajectories from our numerical simula-
tions in Figure 3 .

Weak labels induce high-curvature flows. In unconditional and weak-conditional regimes, the
conditional information is insufficient to localize the target x0 at high noise levels (t→ T ). Mathe-
matically, the optimal prediction collapses to the conditional expectation of the distribution, which
corresponds to the geometric centroid: limt→T E[x0 | xt, c] ≈ E[x0 | c]. Consequently, early tra-
jectories regress toward this global mean. However, as t → 0, the flow is compelled to bifurcate
sharply to fit the multi-modal data distribution. This misalignment between the initial mean-seeking
dynamics and the final mode-seeking requirement forces the velocity field v(x, t) to exhibit extreme
non-linearity and curvature, significantly impeding convergence.

Strong label suffers from overfitting. Providing the exact target c = x0 resolves ambiguity,
effectively reducing the conditional entropy to zero: H(x0 | xt, c)→ 0. While this straightens the
flow trajectories and simplifies the velocity matching objective, it forces the generative distribution to
collapse into a Dirac delta function: pθ(x | c)→ δ(x− c). This results in severe overfitting, where
the model essentially predict the same data under the same condition across different input noise.

GMem balances flow straightening and overfitting. GMem functions as a conceptual bridge
connecting the weak and strong conditioning paradigms. By modulating the granularity of c, GMem
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Figure 4: (Left) Training and inference pipeline with GMem. Sub-figure (a): Training pipeline of GMem.
During training, network is conditioned on processed snippets after S-Adapter. Sub-figure (b): Sampling
pipeline of GMem. At inference time, given a random noise ϵ, a memory snippet is retrieved from the memory
bank and fed into the network after S-Adapter. (Right) Comparison of GMem pipeline with other generative
pipelines. Sub-figure (c): Degrads GMem to a standard diffusion model. By replacing the memory bank
with a class–conditioned embedding table (one snippet per label), GMem degrades to a standard diffusion model.
Sub-figure (d): Upgrads GMem to T2I generation. By replacing the memory bank with a pretrained text
encoder and a lightweight Text-to-snippet (T2S) adapter, GMem upgrades to a text-to-image generation model.
On the right, the arrows indicate that these frameworks are unified by GMem and can be converted into one
another by simply swapping the conditioning module.

effectively interpolates the conditional entropy: Hstrong < HGMem < Hweak. Empirically, this design
strikes a balance: (i) unlike weak labels, GMem provides sufficiently dense semantic anchors to rectify
the flow curvature, accelerating training; (ii) unlike strong labels, the injected noise ϵ′ maintains
necessary uncertainty, preventing the distribution from collapsing into a Dirac delta.

4 METHODOLOGY

Current generative models (Ho et al., 2020; Song & Ermon, 2020) typically rely on one neural network
to simultaneously achieve both generalization and memorization of data distributions. However, the
capacity-constrained modern diffusion models, such as UNet and Transformer-based networks (Ho
et al., 2020; Peebles & Xie, 2023), face two critical limitations (Kadkhodaie et al., 2023): (i)
insufficient model parameters to memorize complex data distributions, and (ii) computationally
expensive parameter optimization for memorization.
To address these limitations, we propose augmenting the architecture with an external memory
bank—an editable memory mechanism that enables fast adaptation to other unseen domains. The
proposed framework is illustrated in Figure 4 .

4.1 EXTERNAL MEMORY BANK CONSTRUCTION

Building on Kadkhodaie et al. (2023)’s insight that diffusion models achieve generalization through
geometry-adaptive harmonic representations, we design a memory bank for diffusion models to: (i)
supply essential semantic information for generating high-quality, realistic images; and (ii) exclude
excessive details to prevent overfitting to the training data while maintaining robust generalization.

Memory snippet extraction. We employ a representation model f to extract semantic features
from any input x∼D. We refer to f(x) ∈ Rd as the global image representation produced by f (e.g.,
the last-layer [CLS]representation in DINOv2), where d is the dimensionality of the representation.
Finally, we define the memory snippet s ∈ Rd as the ℓ2-normalized global image representation:
s = f(x)/∥f(x)∥2 .

Memory bank construction. We then construct the memory bank by collecting N such snippets
from the training dataset D. Formally, the memory bank is represented as a matrix M ∈ RN×d,
composed of N unit-norm snippets: M = [s1, s2, . . . , sN ]

⊤ where |si|2 = 1.
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Representation models for memory bank construction. GMem supports diverse representation
models f , each varying in their ability to capture image information, which also directly influences
generative model performance. We employ self-supervised representation models for two key reasons:
(i) Yu et al. (2024) demonstrate that self-supervised models (e.g. DINOv2 (Oquab et al., 2023)) can

expedite the training of diffusion models. It motivates to use it in GMem.
(ii) Self-supervised models capture semantic information more effectively than supervised alterna-

tives (Bordes et al., 2022; Zimmermann et al., 2021; Sun et al., 2024).
We also examine other representation models, including the CLIP visual encoder (Radford et al.,
2021), to construct the memory bank (see Appendix G.5 ).

Incorporating memory bank into diffusion models. As illustrated in Figure 4 (right), the key
architectural difference between GMem and traditional diffusion transformers (e.g., DiT (Peebles &
Xie, 2023)) lies in the use of memory snippets as conditioning information.
To be specific, we introduce a Snippet Adapter (S-Adapter) that transforms raw memory snippets
into the model’s conditioning space through a two-stage process:
(i) Linear: The normalized snippet is projected to match the diffusion transformer’s hidden dimen-

sionality dt: sproj = Wprojs̃+ bproj, where Wproj ∈ Rdt×d and bproj ∈ Rdt are learnable.
(ii) Mask: To prevent overfitting to specific snippets, we apply random feature-level masking during

training: smasked = MASK(sproj). We tested three masking designs in Section G.5 and use the
random masking strategy, where each dimension of sproj has a probability p of being set to zero.

Consistent with the design of class embeddings in DiT, the processed snippet smasked is added to the
timestep embedding et to form the final conditioning signal: c = et + smasked.

Bridging GMem and DiT. We argue that the memory snippets s serve as a more general condi-
tioning signal compared to learned class embeddings, facilitating cross-dataset adaptation. More
importantly, as illustrated in Figure 4 (c), GMem can be systematically converted to a standard DiT by
replacing the memory bank with class embeddings, and vice versa. This dual conversion reveals that
DiT is essentially a degenerate case of GMem with a highly compressed memory bank. We further
provide comprehensive experimental validation of this bidirectional conversion in Appendix E .

4.2 TRAINING WITH MEMORY BANK

Memory bank provides semantic information about the data distribution, aiding both training and
inference phases in diffusion models. To further integrate snippet into training, we adapt the training
loss of diffusion models as:

L(θ) =
∫ T

0

E∥vθ(xt, s, t)− α̇tx0 − σ̇tϵ∥2dt , (1)

where x0 ∼ D, s = f(x0)/∥f(x0)∥2, ϵ ∼ N (0, I), α̇t = dαt

dt , σ̇t = dσt

dt , and vθ is the velocity
estimated by the network.

4.3 SAMPLING WITH MEMORY BANK

During training, we store the memory bank for use at generation. The indexing-based retrieval
method during sampling introduces minimal additional overhead. We also design an efficient storage
scheme to reduce the storage cost. Additionally, the editability of the memory bank enables the model
to perform test-time domain adaptation.

Sampling pipeline. The generation pipeline using memory bank works as (see Figure 4 (b)):
(i) Generation begins by sampling input noise z ∼ N (0, I). The size of z typically matches that of

the VAE latent (e.g. 4 × 32 × 32 for SD-VAE (Podell et al., 2023)), and acts as xT , a heavily
noised image awaiting denoising, where T is the total number of diffusion steps.

(ii) To enable end-to-end generation (i.e., relying solely on the input noise z), we devised a noise-
based indexing mechanism: mapping the input noise z to a uniformly distributed index i = Φ(z),
where Φ(z) = 1√

2π

∫ z

−∞ e−
1
2u

2

du is the standard normal cumulative distribution function.
(iii) Using the index i, we retrieve the corresponding memory snippet si from the memory bank.
(iv) Finally, we feed the noise z and the retrieved snippet si into the network to iteratively refine

the noise into a high-quality image.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Sampling quality on various datasets. We report the performance of GMem on CIFAR-10 (left), Ima-
geNet 256×256 (middle) and ImageNet 512×512 (right). GMem achieves comparable FID with fewer training
epochs across multiple datasets. All results reported are w/o classifier-free guidance unless otherwise specified.

CIFAR-10
METHOD Epoch (↓) FID (↓)
Traditional generative models
BigGAN (Brock, 2018) - 14.7
StyleGAN2 (Karras et al., 2020) - 8.32

Diffusion models (UNets)
DDPM (Ho et al., 2020) 2048 3.17
DDIM (Song et al., 2020a) - 4.04
Score SDE (deep) (Song et al., 2020b) - 2.20
EDM (Karras et al., 2022) 4000 2.01
Diffusion Style-GAN (Wang et al., 2022a) - 3.19
Diffusion GAN (Xiao et al., 2021) 1024 3.75

Diffusion models (Transformer)
SiT-XL/2 (Ma et al., 2024) 512 6.68

+ REPA (Yu et al., 2024) 200 4.52
+ GMem (ours) 52 4.08
+ GMem (ours) 450 1.22

ImageNet 256×256
METHOD Epoch (↓) FID (↓)
Traditional generative models
BigGAN (Brock, 2018) - 6.96
VQ-GAN (Esser et al., 2021) - 15.78

Diffusion models (UNets)
ADM (Dhariwal & Nichol, 2021) 400 10.94

Diffusion models (Transformer)
MaskGIT (Chang et al., 2022) 300 6.18
MAGVIT-v2 (Yu et al., 2023) 270 3.65
SD-DiT (Zhu et al., 2024) 480 7.21
DiT-XL/2 (Peebles & Xie, 2023) 1400 9.62
SiT-XL/2 (Ma et al., 2024) 1400 8.30
+ REPA (Yu et al., 2024) 782 5.90
+ GMem (ours) 80 5.27

LightningDiT-XL/1 (Yao & Wang, 2025) 800 2.17
+ REPA (Yu et al., 2024) 160 1.84
+ GMem (ours) 160 1.53

ImageNet 512×512
METHOD Epoch (↓) FID (↓)
Traditional generative models
StyleGAN-XL (Sauer et al., 2022) - 2.41
BigGAN (Brock, 2018) 472 9.54

Diffusion models (UNets)
ADM (Karras et al., 2024) - 23.2
EDM2 (Karras et al., 2024) 734 1.91

Diffusion models (Transformer)
MaskGIT (Chang et al., 2022) 300 7.32
MAGVIT-v2 (Yu et al., 2023) 270 3.07
DiT-XL/2 (Peebles & Xie, 2023) 600 12.03
SiT-XL/2 (Ma et al., 2024) (w/ cfg) 600 2.62
+ REPA (Yu et al., 2024) (w/ cfg) 200 2.08

LightningDiT-XL/1 (Yao & Wang, 2025) - -
+ GMem (ours) 400 1.89
+ GMem (ours) (w/ cfg) 400 1.71

For privacy concerns regarding memory banks derived from training data, we retain banks for
small datasets (e.g., ImageNet) with leakage analysis in Appendix G.1 , while replacing banks with
lightweight text-to-snippet adapters for large-scale T2I settings ( Section 4.4 ).

Memory compression and manipulation. Large-scale memory banks can be compressed using
SVD decomposition, reducing storage fromO(Nd) toO(Nr+dr) where r ≪ min(N, d) (details in
Appendix C ). Additionally, the memory bank supports test-time adaptation through external snippet
incorporation or interpolation between existing snippets, enabling novel style generation without
retraining; implementation details are provided in Appendix D.1 .

4.4 TEXT-TO-IMAGE GENERATION

To bypass the prohibitive storage cost of an explicit memory bank in large-scale T2I, we propose a
bank-free pipeline shown in Figure 4 (d). The core idea is to first map a text prompt to a snippet
using a lightweight Text-to-Snippet (T2S) module; this snippet is then processed by the pretrained
S-Adapter and fed into the pretrained GMem network to synthesize the final image.

T2S Module Design. The T2S module consists of two sequential components:
(i) Text Encoder: A frozen pretrained encoder (e.g., Gemma-2B (Team et al., 2024)) that transforms

input text into intermediate latent representations T.
(ii) T2S Adapter: A lightweight two-layer multilayer perceptron (MLP) that maps text representations

to the snippet space: s = gϕ(
1
L

∑L
i=1 Ti), where gϕ is the MLP.

The generated snippet s is then processed by the pretrained S-Adapter and fed into pretrained
GMem network.

Advantages of the Bank-Free T2I Design. Replacing the explicit memory bank with a learnable
T2S module offers three key advantages over traditional T2I approaches. (i) Network reusability and
training efficiency: by decoupling text-to-snippet mapping from snippet-to-image synthesis, we can
directly reuse pretrained GMem networks without retraining from scratch. (ii) Privacy preservation
relative to retrieval-based methods: instead of storing per-example features in an external memory
bank, our approach internalizes semantic information into model parameters, avoiding the additional
privacy risks associated with persistent retrieval databases (e.g., RDM (Blattmann et al., 2022)).
(iii) Storage efficiency relative to retrieval-based methods: the T2S module replaces the potentially
massive retrieval memory banks that may contain millions of snippets or feature vectors. We argue
that this reduction in extra storage overhead beyond the base model is especially important in T2I
tasks that typically involve large-scale datasets.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. For pixel-level generation, we test GMem on CIFAR-10 (Krizhevsky et al., 2009) due
to its diverse classes and its popularity in benchmarking image generation. We then evaluate GMem
on ImageNet 256 × 256 (Deng et al., 2009) to examine how it models latent space distributions,
which is a key focus in recent image generation research (Karras et al., 2022; Yu et al., 2024; Ma
et al., 2024; Peebles & Xie, 2023). Finally, we assess the scalability of GMem to larger resolutions
by conducting experiments on ImageNet 512× 512 (Deng et al., 2009).
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Backbones and visual tokenizers. Following prior image generation approaches (Yu et al., 2024),
we primarily use LightningDiT (Yao & Wang, 2025) and SiT (Ma et al., 2024) as the backbone.
We also evaluate the effectiveness of GMem on different visual tokenizers such as SD-VAE (?),
DC-AE (Chen et al., 2024a), and VA-VAE (Yao & Wang, 2025) in Table 12 .

Baselines. Unless noted otherwise we report numbers for two SoTA, efficiency-oriented backbones.
(i) SiT (Ma et al., 2024)+REPA (Yu et al., 2024): one of the strongest and most efficient diffusion
models. (ii) LightningDiT (Yao & Wang, 2025): a highly optimised diffusion transformer with
competitive FID and fast convergence. All speed (training epochs, NFEs, wall-clock sampling time)
and quality (FID) results are shown before and after inserting GMem, isolating the contribution of
GMem. For overall image-generation quality we additionally list the best reported numbers, as shown
in Table 1 , from the latest diffusion models, additional baselines are provided in Appendix F.3 .

Metrics. For image generation, consistent with prior work (Peebles & Xie, 2023; Yu et al., 2024),
we primarily use FID-50K (FID) (Heusel et al., 2017) to evaluate generation quality. For T2I tasks,
aligned with (Chen et al., 2023), we primarily use GenEval (Ghosh et al., 2023) as the evaluation
metric, supplemented by MJHQ-50K (Li et al., 2024a). For efficiency metrics, we primarily use
A100 GPU-days (GPUd) to measure training or sampling time overhead. We apply an exchange
rate of 1/2.4 to convert H800 GPU days to A100 equivalents. Consistent with prior work (Borgeaud
et al., 2022; Wu et al., 2022), we count only parameters updated by gradients during training.

Experimental details. Unless stated otherwise we keep the original training pipelines of each
backbone (Ma et al., 2024; Yu et al., 2024; Yao & Wang, 2025). We list the pipelines below: (i) data
preprocessing: exactly as in the backbone papers. For data augmentation, SiT uses the raw images
with no augmentation; LightningDiT applies only random horizontal flips. For latent models we adopt
SD-VAE (?) with SiT and VA-VAE (Yao & Wang, 2025) (f16d32, patch size= 1) with LightningDiT.
(ii) model configuration: unless noted we report results for SiT-XL/2+REPA and LightningDiT-
XL/1. Smaller settings SiT-L/2+REPA and LightningDiT-B/1 are also used in ablations. (iii) training
strategy: AdamW with batch size 256 for SiT and 1024 for LightningDiT, matching (Song et al.,
2020b; Karras et al., 2024). (iv) sampler configurations: following SiT (Ma et al., 2024), we use
SDE solver and set the NFE to 50 for CIFAR-10 and 100 for ImageNet 256× 256 and 512× 512 by
default. Full implementation details appear in Appendix F .

5.2 ENHANCED GENERATION WITH MEMORY BANK

As illustrated in Section 4.2 and Figure 4 , we train the network with memory bank and study the
benefits brought by GMem. Implementation details for each experiment are provided in Appendix F .

Training efficiency. A key advantage of GMem lies in its ability to substantially improve training
efficiency. We evaluate how rapidly GMem attains target image quality compared to diffusion-
transformer baselines under two generative regimes.
(i) pixel-space generation: On CIFAR-10 ( Table 1 ), GMem matches REPA’s performance within

52 epochs, yielding a 3.85× speedup over REPA and over 10× compared to SiT.
(ii) latent-space generation: On ImageNet ( Table 1 ), GMem reaches FID=1.53 at 256×256 and

FID=1.71 at 512×512 in only 160 and 400 epochs, respectively, without classifier-free guidance
(CFG). As summarized in Table 9 , GMem attains competitive FID with much fewer epochs than
the most efficient baselines: (i) Using only 32 epochs (25× speedup), GMem achieves FID=4.86,
outperforming REPA which requires 800+ epochs; (ii) With 28 epochs (50× speedup), GMem
delivers FID=7.66, surpassing SiT’s FID=8.61 at 1400 epochs.

Furthermore, through a comparison between generating and training images (see Appendix G.2 ),
we confirm that these efficiency gains are not achieved at the expense of generative diversity.

Other benefits. Due to space limit, we highlight several additional benefits of GMem in the
appendix.
(i) Sampling efficiency: in Appendix G.3 , we show that in addition to training efficiency, GMem

delivers up to a 5× sampling speedup on ImageNet 256× 256.
(ii) Memory manipulation enables test-time editing: in Appendix D.1 , we show that GMem can

synthesize novel concept compositions (e.g., “a dog wearing a hat”) by manipulating of snippet
during test-time. We argue such controllable interpolation underscores potential of GMem for
real-time, user-guided image editing.
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Table 2: Efficiency advantages of GMem. (Left) Adaptation to specialized domains. GMem achieves zero-
shot performance superior to DiT-XL/2 on FFHQ and matches PixArt-α on MJHQ with only 20K fine-tuning
steps. (Middle) Training speedup on ImageNet 256 × 256. GMem delivers up to 50× training speedup
while maintaining or improving generation quality on ImageNet 256× 256. (Right) Memory bank capacity.
Larger memory bank consistently improves the performance of GMem. All experiments are conducted using
LightningDiT on ImageNet.

Setting Fine-tuning budget (steps) FID (↓)

FFHQ (Karras et al., 2019)

Pretrained GMem 0 8.65
Pretrained GMem 20K 6.62
DiT-XL/2 (Peebles & Xie, 2023) – 12.86

MJHQ (Li et al., 2024a)

Pretrained GMem 0 8.73
Pretrained GMem 20K 6.10
PixArt-α (Chen et al., 2023) – 6.14

Method # Params Epoch (↓) FID (↓)

DiT-XL/2 675M 1400 9.62
SiT-XL/2 675M 1400 8.61
+ REPA 675M 800 5.90

LightningDiT-XL/1 675M 800 2.17
+ GMem 684M 160 1.58
+ REPA 675M 160 1.84
+ GMem 684M 28 7.66
+ GMem 684M 32 4.86
+ GMem 684M 160 1.53

1K 5K 13K 130K 1.28M
Bank size

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

FI
D

-5
0K

   B, 256×256, 64 Epochs
XL, 256×256, 64 Epochs
XL, 512×512, 160 Epochs

(iii) Dual conversion between GMem and DiT: in Appendix E , we demonstrate that GMem and DiT
are inter-convertible. We show that a standard DiT can be viewed as a specialized instance of
GMem with a highly compressed memory bank (i.e., class embeddings), and provide experimental
validation for converting between both frameworks.

5.3 EFFICIENT DOWNSTREAM ADAPTATION

In this section, we validate GMem’s adaptation capabilities and training efficiency on downstream
tasks. We use a GMem model pretrained on ImageNet 256 × 256 for 650 epochs (referred to as
Pretrained GMem) as the base model for fine-tuning on downstream datasets.

Adaptation to specialized domains. We evaluate GMem’s adaptation capabilities on FFHQ (Karras
et al., 2019) (high-quality human faces) and MJHQ (Li et al., 2024a) (anime-style images)—detailed
experimental settings are provided in Appendix H.2 . Results are summarized in Table 2 .
Main results demonstrate both zero-shot transfer and rapid fine-tuning capabilities of GMem:
(i) Zero-shot transfer: On FFHQ, Pretrained GMem achieves FID=8.65, outperforming DiT-XL/2

trained from scratch (FID=12.86). We argue that face images share semantic similarities with
natural images, enabling effective knowledge transfer from ImageNet pretraining.

(ii) Rapid adaptation: On MJHQ, which differs significantly from ImageNet in visual style, 20K
fine-tuning steps enable GMem to achieve FID=6.10, matching PixArt-α. This demonstrates
that even when pretraining provides limited transferable knowledge, GMem can efficiently adapt
to new downstream tasks.

Additional experimental results on medical imaging domains are provided in Appendix H.2 .
These results establish Pretrained GMem as a general-purpose base model that requires only
minimal computational investment (∼20K steps, approximately 2 hours on 8×H800 GPUs) to adapt
to specialized domains. This efficiency is particularly valuable in scenarios with limited training data
or computational resources, making rapid downstream adaptation as a core advantage of GMem.

Adaptation to higher resolutions. The efficient adaptation capability of GMem also holds when
handling different resolutions: with just approximately 0.3 epochs of fine-tuning, pretrained GMem
is able to generate high-quality, high-resolution face images (FID =11.57 on MJHQ 1024× 1024).
The experimental results can be found in Appendix G.4 .

5.4 DATA- AND COMPUTE-EFFICIENT TEXT-TO-IMAGE GENERATION

Following the pipeline in Section 4.4 , we transform Pretrained GMem into an end-to-end T2I model
by replacing the memory bank with a lightweight T2S adapter. We evaluate this pipeline across three
dimensions: generation quality (GenEval (Ghosh et al., 2023)), data efficiency, and compute efficiency.
Results are summarized in Table 15 with detailed experimental settings in Appendix H.3 .

Text-to-image generation. We assess GMem’s T2I capabilities against both memorization and
diffusion baselines, with key findings listed below.
(i) Data efficiency. Compared to PixArt-α (Chen et al., 2023) which requires 25M private paired

samples, GMem uses only 0.2M open-sourced paired data plus 1.28M ImageNet images for
pretraining (1/17 reduction). This result demonstrats that expensive large-scale paired datasets are
not necessary for high-quality T2I generation.
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Table 3: Validation of compute and data efficiency of GMem. (Left): Text-to-image generation. (Right):
Unified multimodal understanding and generation. GMem achieves competitive performance across various
networks and resolutions using approximately 1/9 of the training time and 1/17 of the data compared to baselines.
Model GPUd Data amount MJHQ FID (↓) GenEval (↑)

GMem 75+3.5 1.28M +0.20M 6.32 0.52
CLIP retrieval – 5B – 0.35
PixArt-α 753 25M 6.14 0.48
SD 1.5 6,250 2,000M 9.62 –

Model Resolution Pretraining epochs Training epochs GenEval (↑)

OpenUni 512 2.226 - 0.63
+ GMem 512 0.056 0.009 0.69

OpenUni 1024 2.226 - 0.60
+ GMem 1024 0.089 0.009 0.64

(ii) Compute efficiency. GMem achieves GenEval= 0.52 using only 78.5 GPU-days total training
time, representing a 1/9 reduction compared to PixArt-α’s 753 GPU-days. We argue this efficiency
stems from leveraging knowledge transfer from ImageNet pretraining, eliminating the need for
extensive training T2I from scratch.

(iii) Beyond Retrieval. GMem attains a ∼48% relative improvement over CLIP retrieval
(GenEval=0.35), demonstrating its ability to synthesize novel, text-aligned images rather than
merely retrieving existing ones.

Unified multimodal understanding and generation. We further evaluate whether the proposed
T2I training recipe generalizes to unified multimodal understanding and generation scenarios (Zhang
et al., 2025). Specifically, we adopt OpenUni (Wu et al., 2025) as the network backbone, with detailed
experimental settings provided in Appendix H.1 . Results are summarized in Table 3 .
The findings demonstrate that GMem maintains its data and compute efficiency advantages:
(i) Compute efficiency. At both 512×512 and 1024×1024 resolutions, GMem achieves superior

GenEval scores with less than 1/34 and 1/23 of the training epochs respectively, reinforcing its
computational efficiency across different scales.

(ii) Data efficiency. GMem demonstrates significant data efficiency, requiring only 1/15 of the paired
data for fine-tuning compared to a baseline trained on the full dataset.

(iii) Scalable high-resolution generation. GMem maintains strong performance at 1024×1024
resolution, demonstrating that the efficiency advantages extend beyond moderate resolutions
to challenging high-resolution generation tasks.

These results establish GMem as a data- and compute-efficient approach for T2I generation and
unified multimodal models, proving its potential across diverse network architectures and resolutions.

5.5 ABLATION STUDIES

The performance of GMem depends on several factors: bank size, backbone architecture, solver,
and masking strategies. We conduct ablation studies on ImageNet 256× 256 with 64 epochs, and
found that while each factor slightly affects optimal performance, GMem consistently generates
high-quality images efficiently.
• Memory capacity scaling. As shown in Table 2 , we sweep memory capacity N from 1.2M

to 1000 entries during sampling, observing monotonic FID improvements with larger banks but
diminishing returns at scale; detailed analysis is provided in Appendix G.5 .

• Memory-parameter trade-offs. Experiments also reveal that 2K memory snippets can substitute
for approximately 1M trainable parameters while maintaining comparable generation quality; see
Appendix G.5 for quantitative analysis.

• Additional findings. We also find that moderate masking ratios (0.4) achieve optimal performance,
SVD-based compression reduces memory size while improving FID, SDE solvers consistently
outperform ODE solvers, and GMem generalizes well across various backbones and tokenizers;
comprehensive results are provided in Appendix G.5 .

6 CONCLUSION

In this work, we systematically introduce an explicit memorization mechanism into the Diffusion
Transformer, proposing a novel framework named GMem. This design yields a 50× acceleration in
training speed on the ImageNet 256× 256 dataset. Furthermore, we demonstrate that a GMem model
pretrained on ImageNet can serve as a powerful general-purpose base model. It can be efficiently
adapted to diverse downstream tasks, such as anime, face, and medical imaging, with only ∼20K
fine-tuning steps, achieving performance comparable to training from scratch. Finally, we present a
data- and compute-efficient pipeline for text-to-image generation. This pipeline achieves performance
on par with the PixArt-α baseline (GenEval score: 0.52 vs. 0.48) while using only 1/17 of the data
and 1/9 of the total training time.
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or animal experimentation. All datasets utilized in this study, including ImageNet (Deng et al.,
2009), CIFAR-10 (Krizhevsky et al., 2009), the OpenUni Dataset (Wu et al., 2025), and Micro-
diffusion (Sehwag et al., 2024), are publicly available and have been appropriately cited. We
have taken rigorous measures to mitigate potential biases and prevent discriminatory outcomes.
Furthermore, our research did not involve any personally identifiable information, and our experiments
were designed to pose no privacy or security risks. We are dedicated to upholding the principles of
transparency and integrity throughout our research process.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of the results presented in this paper. To this
end, all source code and datasets are publicly available in the supplementary materials. The paper
provides a detailed description of the experimental setup, including training procedures, model
configurations, and hardware specifications. To further facilitate the replication of our experiments,
we have also provided comprehensive implementation details in Appendix F . We are confident that
these measures will enable other researchers to verify our findings and build upon our work, thereby
contributing to the advancement of the field.
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A USE OF LLMS

This paper only uses LLMs for polishing.

B RELATED WORK

External representation-augmented diffusion models via retrieval and generation. As the
sampling process of GMem follows a Retrieval-Augmented Generation (RAG) manner, we briefly
review the RAG methods in generative models. Retrieval-Augmented Generation (RAG) enhances
generation quality by integrating external knowledge. IC-GAN (Casanova et al., 2021) augments
image generation by conditioning on neighborhood instances retrieved from the training dataset. How-
ever, using only training images limits generalization. To address this issue, KNN-Diffusion (Sheynin
et al., 2022) and RDM (Blattmann et al., 2022) employ large external memory sets, guiding generation
via kNN retrieval during training and inference. Similarly, Chen et al. (2022) and Li et al. (2022)
leverage a set of text-image pairs with cross-modality retrieval, improving generation performance on
rare images.
Despite their advantages, RAG methods encounter two key challenges: (i) substantial storage
demands for large memory sets, and (ii) increased computational costs during retrieval. We further
contend that over-reliance on training sets restricts generalization capabilities (Blattmann et al., 2022).
By employing a masking strategy (see our Appendix G.5 ), we mitigate this dependency without
incurring additional computational or storage overhead, thereby improving both generalization and
training/inference efficiency.
Representations for generation augmentation can also be obtained from representation generators.
For instance, RCG (Li et al., 2023b) employs a representation generator to produce 1D “memory
snippets” to guide diffusion models. Although RCG reduces the need to store large-scale memory
sets, it encounters two primary challenges: (i) the requirement for additional training and sampling
processes for the representation generator, increasing computational demands; (ii) the necessity to
retrain the representation generator to incorporate knowledge of new classes or artistic style transfers,
thereby limiting its generalization capability. To overcome these limitations, Appendix D.1 presents
an efficient, training-free method for incorporating additional knowledge into the memory bank.

C STORAGE-EFFICIENT DECOMPOSITION STRATEGY

However, akin to Blattmann et al. (2022); Casanova et al. (2021), the memory bank requires explicitly
storage and retrieval during inference. For large-scale datasets like ImageNet, this results in pro-
hibitive storage demands and retrieval costs. Additionally, memory snippets often exhibit significant
redundancy (e.g., snippets from the same class are highly correlated), leading to unnecessary storage
when all features are retained directly.
To reduce redundancy and minimize storage, we propose an efficient storage strategy based on
matrix decomposition. The core idea is to represent the large memory bank M ∈ RN×d by three
much smaller components: a mean vector µ, a coefficient matrix C, and a basis matrix B. This
decomposition is achieved through the following three-step process:
(i) Center the Memory Bank. First, we compute the mean snippet µ = mean(M) ∈ R1×d from

the full memory bank M. We then center the bank by subtracting this mean from every snippet,
yielding a centered matrix Mc = M− µ.

(ii) Apply Truncated SVD. Next, we apply Singular Value Decomposition (SVD) to the centered
matrix Mc and truncate it to a rank r (e.g., r = 512). This factorizes the matrix as Mc ≈
UrΣrV

⊤
r , where Ur,Σr,Vr contain the top r components.

(iii) Form the Compact Representation. Finally, we use the SVD factors to define our compact
storage components. We construct the coefficient matrix C = UrΣ

1/2
r ∈ RN×r and the basis

matrix B = VrΣ
1/2
r ∈ Rd×r.

The matrix B acts as a compact, fixed basis encoding global structure, whereas C flexibly stores
snippet-specific coefficients. By storing C and B separately we achieve compressed storage, reducing
the space cost from O(Nd)→ O(Nr + dr).
During inference, retrieving a snippet involves looking up its coefficients in C and transforming them
via B. Specifically, the i-th memory snippet si can be reconstructed as:

si = ciB
⊤ + µ , (2)
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Novel image Generated image Top-5 similar images in training set

Style-domain adaptation.
Swan Swan swimming in green river Green background

Painting style Thermos in painting style Thermos

Dog Dog wearing a hat Hat

Concept-domain adaptation.

Figure 5: Demonstration of test-time style and concept-domain adaptation via memory manipulation.
Selected samples from ImageNet 256× 256 generated by the GMem. In the “Style-domain adaptation.” part,
we show the reference image used to build a new snippet (left), followed by the generated samples and 5 of the
nearest training images, illustrating GMem’s adaptation to external memory. In the “Concept-domain adaptation.”
examples, two reference images (left and right) form an interpolated image (center), demonstrating GMem can
manipulate internal memory to create new concepts.

where ci ∈ R1×r is the coefficient vector corresponding to the i-th snippet from coefficient matrix C.

D MEMORY MANIPULATION ENABLES TEST-TIME ADAPTATION

D.1 METHODS

The core insight of GMem lies in introducing an explicit memory bank to generative modeling,
which allows us to manipulate the memory bank to enabling generation beyond training data. This
is achieved through two approaches: (i) incorporating external memory by introducing novel images
absent from the original dataset, and (ii) manipulating internal memory by combining existing snippets
into new compositions. While our memory bank provides compact storage and flexibility for new
snippets integration, we note that advancing the modularity of the memory bank remains future work.
Aspect I: external memory augmentation. To incorporate external memory outside the training
dataset, we project the feature vector f(xnew) ∈ Rd onto the existing coefficient matrix C. We calcu-
late the coefficients cnew ∈ Rr of the centered feature vector by projecting it onto the basis matrix B:

cnew = (f(xnew)−µ)B/S , (3)

where S (the diagonal of Σ) stores singular values1. By appending cnew to C , we expanding the
memory bank with negligible overhead. This process seamlessly integrates new snippets not present
in the training dataset, allowing the model to utilize the network’s generalization capabilities for
generating new samples without additional training.
Aspect II: internal memory modification. We generate new memory snippets by interpolating
between existing ones. Given two snippets indexed by i and j, we construct a new coefficient vector:

cnew = α ci + (1− α) cj , α ∈ [0, 1] . (4)

Appending cnew to C yields a latent interpolation in M without modifying B. This approach enables
training-free style transfer and compositional generalization by exploring linear paths between
coefficients of different memory snippets, effectively creating novel samples from the internal
memory encoded in C.

D.2 RESULTS

Concept-composition and image editing. Beyond distributional shift, we examine compositional-
ity and editability at inference without any additional training. We show that GMem can adjust to
domains never encountered during training simply by manipulating its external memory at inference
time. Two complementary cases are considered below:

1These singular values are several floating-point numbers with negligible storage cost.
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(i) style-domain adaptation via memory augmentation: As illustrated in Section D.1 , a single
snippet extracted from an unseen reference image (for example a low-poly or charcoal sketch
photograph) is appended to the memory bank. Without updating network weights, GMem can
render similar images in the new style while preserving their semantics. To be specific, as shown
in Figure 5 , the generated samples inherit the characteristic contours and shading of the reference
style yet remain visually distinct from it, indicating genuine synthesis rather than direct copying.

(ii) concept-domain adaptation via memory modification: As illustrated in Section D.1 , two
existing snippets that encode known concepts such as dog and hat are combined into a
novel-concept snippet. With the modified snippet, GMem produces coherent hybrids like a dog
wearing a hat, illustrated in Figure 5 . This approach also allows introducing artistic concepts
to existing classes, e.g., we can generate a swan swimming in a green river by interpolating
between a internal snippet swan and a external concept green background snippet. The resulting
images suggesting that the network successfully adapt to new concept-domain on the fly.

These qualitative results further confirm that GMem can achieve test-time domain adaptation (both
stylistic transfer and concept composition) without any retraining. We argue that such controllable
interpolation highlights GMem ’s potential for real-time, user-guided image editing workflows.

E BRIDGING GMEM AND DIFFUSION TRANSFORMERS

E.1 REDUCTION GMEM TO DIFFUSION TRANSFORMERS.

The external memory in GMem can be regarded as a class–conditioned embedding table: each label y
is linked to a set of snippet vectors. Appendix F.8 shows that keeping only one–tenth of the original
bank (about 130 snippets per ImageNet class) incurs a minor FID increase. This observation suggests
a training-free procedure for gradually reducing GMem into a standard diffusion transformer:

(i) Group all snippets by their image class.

(ii) Reduce each class to k ∈ {13, 5, 1} representatives, denoted Random@k (random pick) or
Average k (snippet average).

(iii) Initialise the network’s label_embedder with the resulting k embeddings per class and
sample without further optimisation.

Table 4 summarises the outcome. With Random@1 using LightningDiT-B/1+REPA+GMem—
exactly one embedding per class, matching LightningDiT setting, FID rises from 6.96 to 8.92
yet remains comparable the LightningDiT-B/1 baseline (15.82). Intermediate settings (Random@5,
Random@13) offer a smooth quality–memory trade-off.

Which reduction to prefer? For a well-trained GMem (FID<6) we recommend Random@1:
selecting a real snippet preserves fine semantics, whereas averaging may blur details and harm quality.
For earlier checkpoints, a coarse yet representitive Average@1 can suppress noisy snippets and often
yields slightly better FID.

Table 4: Model Comparison on Random Sampling Metrics. All models are evaluated under standard
configurations. ↓ indicates lower is better.

Model Average@1 (↓) Random@1 (↓) Random@5 (↓) Random@13 (↓)

LDiT-B/1 + REPA + GMem 8.92 10.62 7.75 7.48

LDiT-XL/1 + REPA + GMem 12.27 7.62 4.15 3.41

SiT-XL/2 + REPA + GMem 6.54 12.90 5.96 5.41

E.2 PROJECTION FROM DIFFUSION TRANSFORMERS TO GMEM

Starting from a converged SiT-XL+REPA checkpoint (4M pre-training steps), we fine-tune for 20K
steps while enabling the GMem framework described in Section 4 . Figure 8 shows the model
adapts rapidly: after 10K steps—roughly 0.25% per cent of pretrainig step—it recovers comparable
FID=5.52 against pretraining checkpoint. By 20K fine-tuning steps, the model reaching the same
FID obtained when GMem is trained for 400K steps.
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Algorithm 1 Training GMem using memory bank M

procedure TRAIN GMEM(vθ,D,M, T, αt, σt)
Initialize model parameters θ
for each training iteration do

Sample a batch of data x0 ∼ D
Sample timesteps t ∼ {0, . . . , T} uniformly
Generate noise ϵ ∼ N (0, I)
Compute noisy data xt = αtx0 + σtϵ
Sample memory snippets s ∼M
Mask s← s⊙mask (in feature dimension)
Predict velocity vθ(xt, t, s)
Compute loss using (1)
Backpropagate and update θ using Optimizer

end for
end procedure

A common concern is whether the fine-tuned model still supports test-time domain adaptation.
We evaluate this using the style-transfer protocol of Appendix G.7 , where lower LPIPS indicates
better adherence to the reference style. Table 13 shows that after 20K steps the retrofitted model
(REPA4M+GMem) achieves LPIPS scores superior to the ImageNet and virtually identical to the
fully trained GMem. Thus, memory fine-tuning restores both image quality and adaptation ability
with negligible computational overhead.

F IMPLEMENTATION DETAILS

F.1 COMPUTING RESOURCES

All models are primarily trained on NVIDIA H800 8-GPU setups, each equipped with 80GB memory
and WCT is measured based on such setup.

F.2 EXTRA METRICS

We categorize the metrics into three groups. (i) quality: we follow (Dhariwal & Nichol, 2021) and
report FID-50K (FID) (Heusel et al., 2017). (ii) diversity: diversity is assessed with LPIPS (Zhang
et al., 2018), SSIM (Wang et al., 2004), and Peak signal-to-noise ratio (PSNR), computed between
each generated image and its nearest neighbours in the training set. We argue that under good
generating quality (guaranteed by lower FID), methods with lower SSIM, PSNR and higher LPIPS
have better diversity. (iii) efficiency: training cost is measured in epochs2, while sampling cost
is measured in the number of function evaluations (NFE). We also quote wall-clock time (WCT),
measured in minutes, to indicating the time taken to sample 50K images for completeness.

F.3 EXTRA BASELINES

For a fair comparison, we compare to the SoTA image generation methods on both training efficiency
and performance. Specifically, for pixel-space image generation, we consider the following three
categories of baselines: First, we compare GMem with traditional generative models, including
Diffusion GAN (Xiao et al., 2021), Diffusion StyleGAN (Wang et al., 2022a), DMD2 (Yin et al.,
2024). We also compare the SoTA diffusion models with UNets, including DDPM (Ho et al.,
2020), Score SDE (Song et al., 2020b), EDM (Karras et al., 2022), DPM-Solver (Lu et al., 2022),
ADM (Dhariwal & Nichol, 2021), EDMv2 (Karras et al., 2024), CTM (Kim et al., 2023), SiD (Zhou
et al., 2024). Finally, we also compare to the SoTA flow-based transformer methods, including
DiT (Peebles & Xie, 2023), SiT (Ma et al., 2024), and the most recent yet contemporaneous work
REPA (Yu et al., 2024).

264 epochs correspond to ∼ 80K steps at batch size 1024; results obtained with other settings are rescaled
accordingly.
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F.4 LATENT DIFFUSION MODEL TRAINING FRAMEWORK

We closely follow the training protocol used in REPA (Yu et al., 2024) and SiT (Ma et al., 2024).
Similar to a Vision Transformer (Dosovitskiy et al., 2021), In this architecture, the input image is
divided into patches, reshaped into a one-dimensional sequence of length N , and then processed by
the model.
For latent space generation, SiT uses a downsampled latent image z = E(x) as input, where x is an
RGB image and E is the vision tokenizer of the Stable Diffusion Variational Autoencoder (VAE) (?).
For pixel space generation, we remove the vision tokenizer and directly use the RGB image as input.
Specifically, we modify the original SiT by changing the number of channels from 4 to 3 and directly
feed the transformed RGB image into the model.

F.5 HYPERPARAMETERS

We detail the hyperparameter configurations for experiments based on different backbones in Table 5
and Table 6 .

Experiments with SiT backbone. For experiments using SiT (Ma et al., 2024) as the backbone,
we follow the hyperparameter settings of the original REPA implementation (Yu et al., 2024) to
ensure consistency and fair comparison. Specifically, we adopt the AdamW optimizer (Kingma & Ba,
2014) with a constant learning rate of 1× 10−4, β1 = 0.9, and β2 = 0.999, and no weight decay. To
accelerate training, we use mixed-precision (fp16) computation and apply gradient clipping. For latent
space generation, we pre-compute compressed latent vectors from raw images using SD-VAE (?),
which are then used as input. For pixel space generation, we directly feed raw pixel data.

Experiments with LightningDiT backbone. For experiments using LightningDiT (Yao & Wang,
2025) as the backbone, we implement GMem based on the official LightningDiT codebase and
strictly follow its hyperparameter setup. The main differences between LightningDiT-based setup
and the SiT-based setup lie in the batch size, learning rate, and patch size. GMem uses a larger batch
size of 1024 and a higher learning rate of 2× 10−4 with AdamW optimizer (β1 = 0.9, β2 = 0.95),
consistent with LightningDiT. Moreover, to be compatible with VA-VAE-f32d32 (Yao & Wang,
2025), we use a patch size of 1, ensuring a fixed sequence length of N = 256.

F.6 MEMORY PROJECTION

For projecting memory snippets into the backbone hidden dimension, we utilize a three-layer MLP
with SiLU activations for diffusion transformers, following Yu et al. (2024).

F.7 VISION ENCODER

We adopt a unified vision encoder, Dinov2-B (Oquab et al., 2023), across all our experiments to
facilitate more effective representation learning. This choice brings two key advantages. First, it has
been shown to significantly enhance the learning of better representations in diffusion models (Yu et al.,
2024). Second, using a consistent encoder across tasks enables the memory bank to perform zero-shot
knowledge transfer across different datasets more effectively, as described in Appendix H.4 .

F.8 MEMORY BANK.

We use a memory bank of size 50K for CIFAR-10 and 1.28M for ImageNet 256× 256 and ImageNet
512× 512.
To reduce the memory overhead, we further explore two strategies that enable significant memory
bank size reduction with minimal impact on performance. First, as shown in Figure 4 and Table 11 ,
we find that reducing the memory bank size by 10× only results in a minor FID increase of 0.25%, and
a 2× reduction leads to an almost negligible average increase of 0.08% in FID. Second, we propose
an SVD-based compression method to further lower the memory bank cost without substantial
degradation in generation quality.

G ADDITIONAL EXPERIMENTS

In this section, we include a supplementary experiments that apply GMem to further validate the
effectiveness of GMem on various downstream tasks.
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Table 5: Training settings of CIFAR-10. We provide the training settings for all models and training algorithms
on the CIFAR-10 dataset.

Model Size
B L XL

Model details
Batch size 128 128 128
Training iterations 200K 200k 200k
Learning rate 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Interpolants
αt 1− t 1− t 1− t
σt t t t
ωt σt σt σt

Training Objective v-prediction v-prediction v-prediction
Sampler Euler Euler Euler
Sampling steps 50 50 50
Classifier-free Guidance × × ×
Training details of backbone
Capacity(Mparams) 130 458 675
Input dim. 32×32×3 32×32×3 32×32×3
Num. layers 12 24 28
Hidden dim. 768 1,024 1,152
Num. heads 12 12 16
Training details of GMem
Bank size 50k 50k 50k
Encoder f(x) DINOv2-B DINOv2-B DINOv2-B

Table 6: Training settings for LightningDiT-based GMem. We present the training settings for all models and
training algorithms on the ImageNet 256× 256 dataset (left) and the ImageNet 512× 512 dataset (right).

Model Size
B L XL

Model details
Batch size 1024 1024 1024
Training iterations 200K 80K 600M00K
Learning rate 2e-4 2e-4 2e-4
Optimizer Adam Adam Adam
Adam β1 0.9 0.9 0.9
Adam β2 0.995 0.995 0.995
Image tokenizer VA-VAE VA-VAE VA-VAE
Interpolants
αt 1− t 1− t 1− t
σt t t t
ωt σt σt σt

Training objective v-prediction v-prediction v-prediction
Sampler Heun Heun Heun
Sampling steps 100 100 100
Training details of backbone
Capacity (Mparams) 130 458 675
Num. layers 12 24 28
Hidden dim. 768 1,024 1,152
Num. heads 12 12 16
Training details of GMem
Bank size 1.2M 1.2M 1.2M
Encoder f(x) DINOv2-B DINOv2-B DINOv2-B

Model Size
B L XL

Model details
Batch size 1024 1024 1024
Training iterations 500K 500k 500k
Learning rate 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam
Adam β1 0.9 0.9 0.9
Adam β2 0.995 0.995 0.995
Image tokenizer DC-AE DC-AE DC-AE
Interpolants
αt 1− t 1− t 1− t
σt t t t
ωt σt σt σt

Training objective v-prediction v-prediction v-prediction
Sampler Heun Heun Heun
Sampling steps 100 100 100
Training details of backbone
Capacity(Mparams) 130 458 675
Num. layers 12 24 28
Hidden dim. 768 1,024 1,152
Num. heads 12 12 16
Training details of GMem
Bank size 1.28M 1.28M 1.28M
Encoder f(x) DINOv2-B DINOv2-B DINOv2-B

G.1 PRIVACY RISK WHEN USING EXTERNAL MEMORY

Experimental setup. We consider a conservative threat model in which both a single memory
snippet s and the released GMem checkpoint (ImageNet 256× 256, 650 epochs) are exposed to an
adversary. No further training is performed and the memory bank is disabled during evaluation. To
assess reconstruction risk, we adopt three widely used image inversion metrics: SSIM (↑, structural
similarity), PSNR (↑, dB, pixel fidelity), and LPIPS (↓, perceptual distance). Following prior work,
we regard reconstructions as visually similar if they satisfy SSIM≥ 0.50, PSNR≥ 20 dB, and LPIPS
≤ 0.30. The testing procedure is as follows: (i) generate images conditioned directly on the exposed
snippet using the bank-free generator, (ii) retrieve the nearest neighbor from the training set via 1-NN
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Table 7: Training settings of SiT-based GMem. We provide the training settings for all models and training
algorithms on the ImageNet 256× 256 dataset.

Model Size
B L XL

Model details
Batch size 256 256 256
Training iterations 200K 400k 400k
Learning rate 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Image tokenizer SD-VAE SD-VAE SD-VAE
Interpolants
αt 1− t 1− t 1− t
σt t t t
ωt σt σt σt

Training Objective v-prediction v-prediction v-prediction
Sampler Euler Euler Euler
Sampling steps 250 250 250
Classifier-free Guidance × × ×
Training details of backbone
Capacity(Mparams) 130 458 675
Num. layers 12 24 28
Hidden dim. 768 1,024 1,152
Num. heads 12 12 16
Training details of GMem
Bank size 1.28M 1.28M 1.28M
Encoder f(x) DINOv2-B DINOv2-B DINOv2-B

search, and (iii) compute SSIM, PSNR, and LPIPS between the generated image x̂ and its nearest
neighbor x∗.

Table 8: Privacy risk evaluation under snippet exposure. We report reconstruction quality when exposing a
single DINOv2 [CLS] memory snippet and the pretrained GMem checkpoint. Metrics include SSIM (↑), PSNR
(↑, dB), and LPIPS (↓). Thresholds for visually similar reconstructions are SSIM ≥ 0.50, PSNR ≥ 20, and
LPIPS ≤ 0.30. GMem shows no reconstruction capability and exhibits risk comparable to a standard diffusion
baseline.

Model SSIM (↑) PSNR (↑) LPIPS (↓)

VA-VAE-f16d32 0.79 27.96 0.10
SiT-XL/2 + REPA (1400 epochs) 0.16 9.46 0.70
GMem (650 epochs) 0.17 9.58 0.70

Results. Table 8 reports reconstruction similarity. GMem achieves SSIM = 0.17, PSNR = 9.58,
and LPIPS = 0.70—all far below the operational thresholds for visual similarity, comparable to
a standard diffusion baseline (SiT-XL/2 + REPA, 0.16 / 9.46 / 0.70) and significantly different
from a VAE-based model (VA-VAE-f16d32, 0.79 / 27.96 / 0.10). These findings indicate that
under the evaluated threat model—exposure of a DINOv2 [CLS]memory snippet and a released
checkpoint—GMem does not enable reconstruction of training images and does not introduce privacy
risks beyond those of conventional diffusion models.

Related works. Our empirical findings also align with recent theoretical and empirical analyses
of DINOv2 representations. Specifically, the [CLS]token, while semantically informative, has
been shown to lack sufficient low-level spatial detail for accurate image reconstruction. First, Jose
et al. (2025) report that using the [CLS]token alone for zero-shot segmentation yields very low
mIoU (∼ 8.3%), whereas appending patch-average features substantially increases performance
(∼ 18.2%). This gap suggests that [CLS]omits fine-grained details critical for dense prediction tasks.
Second, Darcet et al. (2023) demonstrate that high-norm “global” tokens—functionally analogous to
[CLS]—are significantly less informative about local pixel values and spatial positions than patch
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Table 9: Efficiency and diversity of GMem. (i) 50× training speedup: GMem delivers a 50× reduction in
training epochs versus the SiT baseline on ImageNet 256× 256. (ii) 10× sampling speedup: with the same
SiT-L/2 backbone, GMem reaches the target FID in as few as NFE=25, cutting sampling cost by 10×. (iii)
Diversity: GMem, based on LightningDiT-XL/1 with REPA loss, retains the diversity of generated images while
generating better quality images.

Method Epoch (↓) FID (↓)
SiT-XL/2 1400 8.61

+ REPA 800 5.90
+ GMem 80 5.27

LightningDiT-XL/1 800 2.17
+ REPA 160 1.84

+ GMem 160 1.53

Model Epoch NFE (↓) WCT (↓) FID (↓)
SiT-XL/2 + REPA 20 250 70 5.9
SiT-L/2 20 250 - 18.8

+ REPA 20 250 40 8.4
+ GMem 20 250 42 5.8
+ GMem 20 50 12 7.5
+ GMem 20 25 6 12.3

Model Epoch FID SSIM (↓) PSNR (↓) LPIPS
LDM-f16d16 - 0.49 0.72 26.10 0.13
DC-AE-f64d128 - 0.81 0.65 23.60 0.09
VA-VAE-f16d32 - 0.28 0.79 27.96 0.10
SiT-XL/2 + REPA 64 8.42 0.18 9.39 0.71
SiT-XL/2 + REPA 1400 5.94 0.16 9.46 0.70
GMem 650 1.43 0.17 9.58 0.70

tokens, further undermining their utility for image reconstruction. Together, these results support
our conclusion that exposing memory snippets based on [CLS]tokens does not materially elevate
privacy risk beyond a standard diffusion baseline.

G.2 DIVERSITY OF GENERATED SAMPLES

GMem does not hurt sample diversity when integrating it into diffusion transformers. To
verify that GMem does not induce mode collapse, we compare the diversity of images generated
by GMem and a vanilla DiT baseline (i.e. REPA). Despite reaching a SoTA FID of 1.43, GMem
matches the baseline on all three perceptual metrics, indicating unchanged diversity.3 In addition to
the quantitative metrics, we also provide a qualitative comparison in 10, where we visualize per-class
grids from the training set, the REPA baseline, and GMem. We observe that both GMem and REPA
preserve the target class semantics while exhibiting diverse backgrounds, poses, and fine-grained
appearance variations comparable to those in the real data, further confirming that GMem does not
hurt sample diversity.

G.3 SAMPLING EFFICIENCY

Beyond training efficiency, GMem also improves inference. Specifically, we show that it accelerates
sampling by (i) enabling smaller networks to match the quality of larger ones, and (ii) reducing the
NFEs required to reach a given FID target.

(i) a smaller network for comparable FID: fixing SiT-L+REPA as the network and matching the FID
of SiT-XL+REPA, GMem executing each step on a network that has roughly half the parameters
(458M and 675M). The resulting wall-clock time is reduced by 1.66×, which reflects the much
lighter network used in GMem. Details are listed in Table 9 .

(ii) fewer NFEs using the same network: using the SiT-L+REPA network, we compare GMem
against two baselines: the original SiT-L and SiT-L+REPA. As summarised in Table 9 , GMem
reaches the target FID=8.4 with only NFE=50: a 5× reduction relative to REPA and still keeps
a lower FID=12.3 when NFE is further reduced to 25 (a 10× speed-up compared to SiT-L).
Wall-clock measurements also suggest a 10× speed-up than SiT-L.

It is worth mentioning that in the sampling experiments, we used the same sampler (DDIM) and the
same hyperparameters for all methods, as detailed in Table 7 . These two observations show that
GMem can deliver inference acceleration by allowing a smaller network to reach the same image
quality or by shortening the diffusion trajectory.

G.4 HIGH-RESOLUTION IMAGE GENERATION

We conduct additional experiments on the image generation benchmark using the FFHQ 1024× 1024
dataset.

Model Architecture. We employ LightningDiT-XL/1 + DC-AE-f32d32 as the backbone architecture,
starting from a model pretrained on ImageNet at 512×512 resolution. To accommodate the resolution
increase, we double the patch size of LightningDiT-XL from 1 to 2, maintaining the same number of
input tokens as the original 512× 512 training setup.

3Full quantitative results are listed in Table 9 ; qualitative samples are visualised in Figure 9 .
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Training Configuration. We fine-tune the pretrained model (trained for 200 epochs on ImageNet
512 × 512) on the FFHQ 1024 × 1024 training split for 20K steps. All training hyperparam-
eters—including batch size, learning rate, optimizer, and data augmentation strategies—remain
consistent with the pretraining stage. The entire pretrained model undergoes full fine-tuning.

Evaluation Protocol. We evaluate generation quality using FID with 10K generated samples
following (Zhang et al., 2023). We compare our approach against DVDP trained from scratch on
FFHQ 1024× 1024 as a representative baseline for high-resolution image generation.

Table 10: High-resolution image generation on FFHQ 1024× 1024. We compare GMem with DVDP and
Score-SDE (Song et al., 2020b). Training budget is measured in epochs, and NFE denotes the number of
function evaluations during sampling.

Method Training budget (Epoch) NFE FID
GMem 0.3 (finetuning) 50× 2 11.57
DVDP (Zhang et al., 2023) — 1000 10.46
Score-SDE (Song et al., 2020b) 274 2000 52.40

Results. We list the main results in Table 10 . Cross-dataset generalization and resolution
transfer. The successful adaptation from ImageNet 512×512 pretraining to FFHQ 1024×1024 gen-
eration with only 20K fine-tuning steps showcases GMem’s cross-dataset generalization capabilities.
High-resolution generation capability. GMem achieves an FID of 11.57 on FFHQ 1024× 1024.
When compared to DVDP’s competitive performance of 10.46 FID, GMem demonstrates comparable
high-resolution generation quality while using much less training and sampling budget (0.3 epochs
vs. 274 epochs, 50× 2 NFE vs. 2000 NFE).
This efficient transfer—requiring minimal additional training—demonstrates that GMem can rapidly
adapt from low-resolution to high-resolution generation across different domains (natural images
to faces). We hope this could inspire new ideas on leveraging pretrained models to enhance the
efficiency of high-resolution image generation.

G.5 MORE ABLATION STUDIES

Table 11: Ablation study and sensitivity analysis. All models are trained on ImageNet 256 × 256 without
classifier-free guidance. Unless otherwise specified, the backbone is LightningDiT-B/1 (LDiT-B/1), the vision
encoder is DINOv2-B, and training runs for 64 epochs. ↓ indicates lower is better.

Epochs Backbone Vision Encoder Bank size SVD Mask Strategy Solver FID (↓)

64 LDiT-B/1 DINOv2-B 1.2M ✓ (Zero, 0.4) SDE 5.70

64 LDiT-B/1 DINOv2-B 1.2M × (Zero, 0.4) SDE 5.85
64 LDiT-B/1 DINOv2-B 640K ✓ (Zero, 0.4) SDE 5.72

64 LDiT-B/1 DINOv2-B 1.2M ✓ (Noise, 0.4) SDE 6.79
64 LDiT-B/1 DINOv2-B 1.2M ✓ (Random, 0.4) SDE 6.62
64 LDiT-B/1 DINOv2-B 1.2M ✓ (Zero, 0.0) SDE 6.28
64 LDiT-B/1 DINOv2-B 1.2M ✓ (Zero, 0.3) SDE 5.75

64 LDiT-B/1 DINOv2-B 1.2M ✓ (Zero, 0.4) ODE 6.70

64 LDiT-B/1 CLIP 1.2M ✓ (Zero, 0.4) SDE 10.81

80 SiT-L/2 DINOv2-B 1.2M ✓ (Zero, 0.4) SDE 7.90

Choice of visual encoder. To confirm that GMem is encoder–agnostic, we replace the default
DINOv2-B feature extractor (Oquab et al., 2023) with the CLIP ViT-B/14 encoder (Radford et al.,
2021). As in Yu et al. (2024), DINOv2-B remains the strongest option, but the CLIP variant still yields
a competitive FID=10.81 on ImageNet 256, noticeably better than the vanilla LightningDiT-B/1
baseline (FID=15.82). These results indicate that GMem retains its benefit across representation
sources.
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Figure 6: Interpolation between memory snippets. The first and last columns show the original memory
snippets s1 and s2, respectively. The remaining columns show the generated images from the interpolated
memory snippets ŝi.

Larger architectures excel. We examine the scalability of GMem by testing various model sizes
and architectural configurations. Table 12 presents the FID scores of GMem across different model
sizes on ImageNet 256 × 256: larger models not only converge faster but also achieve lower FID.
This trend aligns with findings from Yu et al. (2024) and Ma et al. (2024) on diffusion transformers
and extends to pixel-space generation.

GMem generalize well with various networks and visual tokenizers. We compare different
network and visual tokenizers in Figure 12 . LightningDiT consistently outperforms SiT under
identical configurations, corroborating findings from Yao & Wang (2025). Additionally, DC-AE and
VA-VAE tokenizer yields better results than SD-VAE, likely due to their larger parameter capacity.

Masking strategy of memory bank. We also explored two other masking strategies: random mask
and noise mask. Specifically, random mask replaces a randomly selected portion of each batch with
Gaussian noise, while noise mask adds noise to the entire memory snippet. The results for these two
masking strategies are presented in Table 11 . We found that zeroing out part of the snippet (the Zero
mask strategy) consistently performed best across all experiments. Therefore, we adopted Zero mask
for all major experiments.

SDE solver is superior. SDE solvers consistently outperform ODE solvers, reducing FID by 1.0
( Table 11 ). Thus, SDE solvers are used in all main experiments.

G.6 INTERPOLATION ON MEMORY SNIPPETS

In this section, we provide additional observations suggesting that the memory snippets used as input
exhibit a degree of spatial smoothness, rather than degenerating into isolated point-to-point mappings
as in a conventional autoencoder. Specifically, we demonstrate that GMem is capable of generating
coherent and high-quality samples even when conditioned on interpolated memory snippets ŝ that do
not appear in the training set.

Interpolation between memory snippets. To assess this property, we perform an interpolation
experiment on the ImageNet 256×256 using a model checkpoint trained for 140 epochs (see Table 6
for details).
We randomly select two memory snippets s1 and s2 from the memory bank M. We then create nine
interpolated snippets ŝi by linearly interpolating between s1 and s2 with interpolation coefficients αi

ranging from 0.1 to 0.9 in increments of 0.1. The interpolated snippets are defined as:

ŝi = (1− αi)s1 + αis2, αi = 0.1i, i = 1, 2, . . . , 9.

Each interpolated memory snippet ŝi is then fed into the transformer block to generate images.

Interpolation results. The results of this interpolation experiment are presented in Figure 6
and Figure 7 . We observe that the generated images from the interpolated memory snippets ŝi are of
high quality and exhibit smooth transitions between the two original memory snippets s1 and s2.
In the first row of Figure 6 , we interpolate between an ape and a dog. The dog’s face gradually
transforms into a smoother visage, adapting to resemble the ape. This demonstrates representation
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Figure 7: A more elaborate interpolation experiment. The first and last columns show the original memory
snippets s1 and s2, respectively. The remaining columns show the generated images from the interpolated
memory snippets ŝi. Different row stands for different noise applied when generating the images.

Table 12: (Left) GMem consistently generates high-quality samples across different backbones and image
tokenizers. This table reports the FID of GMem with different backbones and visual tokenizers on ImageNet
256 × 256. For a fair comparison, we train all models for 64 epochs. ↓ means lower is better and all results
reported are without classifier-free guidance. (Right) CIFAR-10 generation performance (FID ↓). All models
trained at 32×32 resolution with 2048 epochs.

Network Visual tokenizer Parameters (M) Epoch FID (↓)
SiT-L/2 SD-VAE 458 64 6.49
SiT-XL/2 SD-VAE 675 64 6.31

LightningDiT-B/1 VA-VAE 130 64 5.70
LightningDiT-B/1 DC-AE 130 64 5.97

Model Parameters (M) Epoch FID
SiT-S 33 2048 –
+ REPA 39.1 2048 11.04

+ GMem 39.4 2048 5.12
+ GMem 33.3 2048 9.43

space learned by GMem is semantically smooth. Surprisingly, in the second row, interpolating
between a green snake and a long-faced dog results in a green reptilian creature that resembles both
the snake and the dog. This indicates that when the model encounters unseen memory snippets, it can
utilize the smooth latent space to generate images similar to those it has previously encountered.
The third and last rows showcase even more imaginative interpolations. Interpolating between a
monkey and barbed wire results in an image of a monkey in a cage, while a dog and a red hat can be
interpolated into a dog with a black gentleman’s hat. These outcomes suggest that the similarities
captured by the model are not limited to visual resemblance but also encompass more abstract
semantic similarities in the latent space.
We believe that this semantic similarity arises because our memory bank introduces additional seman-
tic information, enabling the model to better understand the content of images. Consequently, the
model generates images that align more closely with human intuition, rather than merely memorizing
the images corresponding to each snippet.

G.7 QUANTITATIVE RESULTS ON TEST-TIME DOMAIN ADAPTATION

Experimental setup. We adopt the public style_custom_dataset4 which provides six style
domains absent from ImageNet: watercolor, 3D, anime, flat-illustration, oil-painting, and sketch.
For each domain the training split contains 30 reference images paired with concise textual prompts
describing their content (e.g. “a forest in watercolor”).

Evaluation metric. Following Appendix G.7 , we report LPIPS between every reference image
and the model output that shares its prompt; a lower score indicates closer stylistic alignment and
thus stronger test-time adaptation.

Settings. We compare three experimental settings :

4https://modelscope.cn/datasets/iic/style_custom_dataset/summary
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Figure 8: Fine-tuning to GMem. Model adapts fast: by 20K fine-tuning steps, the model reaching the
comparable FID=4.8 obtained when GMem is trained from scratch for 400K steps.
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• GMem : insert a snippet extracted from each reference image into the external memory, then
sample once per image and compute LPIPS with generated image and reference image.

• SiT-XL+REPA : LPIPS is reported as the smallest LPIPS value among all 50K images generated
by REPA with the reference image.

• ImageNet baseline : for each reference we find its closest match (with smallest LPIPS) inside the
ImageNet training set and record the LPIPS, representing an upper bound for a model that cannot
adapt the new style.

Results. Table 13 summarises the outcome. Across all six domains, GMem
(LightningDiT-XL+REPA+GMem) consistently attains the lowest LPIPS, outperforming both the
REPA baseline and the ImageNet reference. The retrofitted model GMem already matches the GMem
within 20K fine-tuning steps, confirming that memory adaptation capability is quickly recovered.
These numbers demonstrate that external snippets enable genuine test-time domain adaptation while
preserving sample diversity.

Table 13: Test-time domain adaptation on six unseen styles (LPIPS ↓, lower is better) at 256× 256. GMem
denotes LightningDiT-XL+REPA+GMem trained for 200 epochs without classifier-free guidance.

Model 3D Anime Flatillus. Oil-paint Sketch Watercolor

ImageNet reference 0.67 0.66 0.71 0.66 0.61 0.65
SiT-XL+REPA4M 0.69 0.68 0.73 0.68 0.67 0.67
SiT-XL+REPA4M+GMem 0.65 0.63 0.67 0.59 0.61 0.60
GMem 0.64 0.62 0.67 0.60 0.56 0.61

H ADDITIONAL APPLICATIONS

In this section, we present experimental results demonstrating that the Memory Bank employed by
GMem exhibits both cross-dataset transferability and adaptability to downstream T2I tasks.

H.1 HIGH-RESOLUTION T2I GENERATION AND UNIFIED MULTIMODAL MODELS

To comprehensively evaluate GMem’s capability at high-resolution generation, we additionally
conduct experiment on high-resolution T2I generation. Together with Appendix G.4 , jointly demon-
strate that GMem can maintain high fidelity when scaling to higher resolutions.

Datasets. All experiments are conducted on the same 23M image–text pairs used in OpenUni. For
GMem, Stage 1 pretraining uses the image-only subset obtained by discarding textual annotations,
while Stage 2 fine-tuning employs the full paired dataset.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Evaluation metric. We follow the official GenEval(Ghosh et al., 2023) protocol, which evaluates
compositional T2I alignment at high resolution and uses it as the primary metric. The procedure
strictly matches the OpenUni setting, including the prompt set, sampling strategy, and evaluation
scripts.

Experimental setup. The unified multimodal architecture of OpenUni (3.6B parameters) is retained
for both the baseline and GMem. For 1024× 1024 generation, the patch size is doubled relative to
the 512× 512 configuration. GMem introduces an additional MLP adapter to perform text-to-snippet
mapping, enabling end-to-end T2I generation without a memory bank.
The training schedules are as follows:

• OpenUni baseline: batch size = 512, 100K steps (2.226 epochs) on the full paired dataset.
• GMem: two-stage training procedure:

1. Stage 1 (image-only pretraining): global batch size = 64, 32K steps (0.089 epochs).
2. Stage 2 (fine-tuning): global batch size = 64, 3.2K steps (0.009 epochs) on image–text pairs.

Other hyperparameters, including optimizer, learning rate schedule, and sampling configuration, are
kept identical to those in OpenUni (Wu et al., 2025), ensuring a fair comparison.

H.2 DOWNSTREAM TASK ADAPTATION

We evaluate GMem’s adaptability to novel domains by fine-tuning the ImageNet-pretrained model
on three datasets that are different from natural images. In all cases, the pretrained GMem (650
epochs on ImageNet) is used as initialization. Fine-tuning is conducted for 20K steps per dataset,
with hyperparameters (optimizer, learning rate schedule, and batch size) kept identical to those used
in pretraining. For each target dataset, a new memory bank is extracted from the training data and
employed during sampling.

Datasets. We select three representative benchmarks:

• FFHQ (Karras et al., 2019): a large-scale human face dataset designed for high-fidelity face
synthesis.

• MJHQ (Li et al., 2024a): a dataset containing high-quality artistic and stylized images, challenging
due to its distributional shift from natural photographs.

• ACDC (Bernard et al., 2018): a medical imaging dataset that is visually and semantically far from
ImageNet, making it a stringent test for cross-domain adaptation.

Table 14: ACDC adaptation with minimal fine-tuning. We report FID (↓) after Stage 1 memory-bank
pretraining, with an optional short fine-tune (20K steps) on the target domain.

Setting Train (steps/epochs) FID (↓)

ACDC (medical)

GMem 0 40.92
GMem 20K 32.17
SD 1.4 (Rombach et al., 2022) – 35.32

Additional results. Medical image generation adaptation: even though ACDC images were com-
pletely unseen during pre-training, 2h of fine-tuning lets GMem reach an FID=32.17 on par with an
CogView baseline trained from scratch (FID=35.32).

H.3 BANK-FREE T2I GENERATION

Datasets. We construct a high-quality subset of text–image pairs following the Micro-Diffusion (Se-
hwag et al., 2024). Specifically, we collect the top 1% quality slice from CC-12M (Changpinyo et al.,
2021), DiffusionDB (Wang et al., 2022b), and JDB (Sun et al., 2023), resulting in 203,592 pairs. All
images are resized to 512× 512 and center-cropped.

Evaluation metric We adopt GenEval (Ghosh et al., 2023) as the primary evaluation metric,
strictly following the official protocol. No classifier-free guidance is used across all runs. As a
secondary reference, we also report FID on MJHQ-30K.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

generated images Top-5 similar images in training set generated images Top-5 similar images in training set

Figure 9: Demonstration of diverse generation by GMem. Selected samples from ImageNet 256 × 256
generated by the GMem. This figure demonstrates the diversity of images generated by GMem, which differ
from the original training set in form, style, and color. This shows that GMem does not simply memorize images
from the training set, but rather generates novel variations.

Architecture: We add a lightweight two-layer MLP adapter on top of a pretrained Gemma-2b text
encoder, enabling text-to-snippet mapping. Combined with GMem ’s snippet-to-image pathway, this
achieves end-to-end T2I generation without reliance on an external memory bank.

Training procedure: Stage 1 pretraining uses 1.28M unlabeled images following the standard
setup. Stage 2 fine-tuning uses 0.20M text–image pairs for 20K steps, with hyperparameters identical
to pretraining. During both fine-tuning and inference, the memory bank is strictly disabled.

Baselines. We study two variants to isolate where the T2I capability resides: (i) GMem (full
fine-tune): jointly fine-tune both the adapter and the diffusion network, (ii) GMem (network frozen):
fine-tune only the adapter, keeping the network fixed. We also compare against CLIP retrieval (a
memory-based upper bound) and PixArt-α (a two-stage method without memory-based fine-tuning).
Results are summarized in Table 15 .

Table 15: Bank-free T2I generation. GenEval ↑ is higher-better; FID ↓ is lower-better.

Method Total training (GPU-days) Data size MJHQ FID ↓ GenEval ↑

GMem (full fine-tune) 75 + 3.5 1.28M (unlabeled) + 0.2M 7.36 0.52
GMem (network frozen) 75 + 3.5 1.28M (unlabeled) + 0.2M 10.34 0.32

Results. Full fine-tuning substantially outperforms the frozen network variant (0.52 vs 0.32
GenEval), suggesting that compositional capability resides in the pretrained network rather than
being solely attributable to the adapter. These results confirm that GMem can internalize knowledge
into network parameters and achieve efficient bank-free T2I generation.

H.4 TRANSFERABILITY OF THE MEMORY BANK

In this section, we demonstrate the transferability of the Memory Bank across different models.
Specifically, we show that the Memory Bank can be transferred between GMem models trained
on different datasets. While applying a Memory Bank extracted from low-resolution images to
high-resolution models (e.g., Latent Diffusion Models) may result in decreased image sharpness due
to information bottlenecks, it can still enhance the diversity of the generated image.

Experimental setup. To investigate the transferability, we trained a Memory Bank MCIFAR on the
CIFAR-10 dataset and directly transferred it to a model trained on ImageNet 256× 256 GMemIN256

to guide image generation. We used the checkpoint from the ImageNet model at 140 epochs for
generation. The detailed experimental settings are provided in Table 5 and Table 6 .

Method. Appendix H.4 demonstrates the transferability and generalization of the memory bank
used to guide GMem across different datasets. Specifically, we train GMemIN256 and GMemCIFAR
models on ImageNet 256 × 256 and CIFAR-10, respectively, corresponding to memory banks of
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GMem generated Top-3 similar images in training setREPA generated Top-3 similar images in training set

Figure 10: Qualitative comparison of per-class sample diversity on ImageNet. For each class, we show samples
from the REPA baseline, and samples from GMem and nearest training images, Both REPA and GMem preserve
the main class semantics while exhibiting diverse backgrounds, poses, and fine-grained details, yielding intra-
class variability comparable to that of the training data.

MIN256 and MCIFAR. We then directly apply MIN256 to guide the sampling process of GMemCIFAR.
Our results show that GMemCIFAR is still able to generate information consistent with the knowledge
provided by MIN256.

Results Figure 11 presents the generation results of our method on the ImageNet 256×256 dataset.
The images demonstrate that the transferred Memory Bank can effectively guide the high-resolution
model. Though sharpness is limited due to information bottlenecks in memory snippets, it can
improving the diversity of the generated images.

I DERIVATION OF DIFFUSION PROCESS

In this section, we provide a concise introduction to the training and sampling processes of flow-based
and diffusion-based models. See Appendix I for more details.
Both diffusion-based (Ho et al., 2020; Dhariwal & Nichol, 2021) and flow-based models (Ma et al.,
2024) derive their training procedures from a deterministic T -step noising process applied to the
original data (Ma et al., 2024), formalized as:

xt = αtx0 + σtϵ, ϵ ∼ N (0, I) , (5)

where xt represents the noisy data at time t, x0 ∼ p(x) is a real data sample from the true distribution,
αt and σt are time-dependent decreasing and increasing functions respectively satisfying α2

t +σ2
t = 1.

As shown in (5), each marginal probability density pt(xt) represents the distribution of a Probability
Flow Ordinary Differential Equation (Song et al., 2020b) (PF ODE). Its velocity field v(x, t) is
defined as:

v(x, t) = α̇t E[x0 | xt = x]− σ̇t E[ϵ | xt = x] , (6)

where α̇t =
dαt

dt and σ̇t =
dσt

dt . Solving this ODE with initial condition xT = ϵ ∼ N (0, I) yields
the probability density function p0(x0), which approximate the ground-truth data distribution p(x).
Alternatively, the aforementioned noise-adding process can be formalized as a Stochastic Differential
Equation (Song et al., 2020b;a) (SDE):

dxt = m(xt, t) dt+ g(t) dWt , (7)
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Figure 11: Transferability of the memory bank. Each row corresponding to a specifical class in CIFAR-10.
Specifically, the class is from top to bottom: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck.

where Wt is a Wiener process (Hitsuda, 1968), m(xt, t) is the drift coefficient defined as m(xt, t) =

− 1
2β(t)xt, and g(t) is the diffusion coefficient, set as g(t) =

√
β(t) with β(t) being a time-dependent

positive function controlling the noise schedule.
The corresponding reverse process is represented by the reverse-time SDE:

dxt =
[
m(xt, t)− g(t)2s(xt, t)

]
dt+ g(t) dW̄t , (8)

where W̄t is a reverse-time Wiener process, and s(xt, t) is the score function, defined by the gradient
of the log probability density:

s(xt, t) = ∇xt
log pt(xt) = −

1

σt
E [ϵ | xt = x] . (9)

By solving the reverse-time SDE in (8), starting from the initial state xT = ϵ ∼ N (0, I), we can
obtain p0(x0), thereby estimating the true data distribution p(x).

I.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Diffusion models (Ho et al., 2020) aim to model a target distribution p(x) by learning a gradual
denoising process that transitions from a Gaussian distribution N (0, I) to p(x). The core idea is to
learn the reverse process p(xt−1|xt) of a predefined forward process q(xt|x0), which incrementally
adds Gaussian noise to the data starting from x0 ∼ p(x) over T time steps.
The forward process q(xt|xt−1) is defined as:

q(xt|xt−1) = N
(
xt;
√
1− βt x0, β

2
t I
)
,

where βt ∈ (0, 1) are small, predefined hyperparameters.
In the DDPM framework introduced by Ho et al. (2020), the reverse process p(xt−1|xt) is parameter-
ized as:
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p(xt−1|xt) =

N

(
xt−1;

1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
,Σθ(xt, t)

)
where αt = 1− βt, ᾱt =

∏t
i=1 αi, εθ(xt, t) is a neural network parameterized by θ and Σθ(xt, t)

represents the learned variance.
The model is trained using a simple denoising autoencoder objective:

Lsimple = Ex0,ε,t

[
∥ε− εθ(xt, t)∥22

]
,

where ε is sampled from a standard normal distribution and t is uniformly sampled from {1, . . . , T}.
For the variance Σθ(xt, t), Ho et al. (2020) initially set it to σ2

t I with βt = σ2
t . However, Nichol

& Dhariwal (2021) demonstrated that performance improves when Σθ(xt, t) is learned jointly with
εθ(xt, t). They propose optimizing the variational lower bound (VLB) objective:

Lvlb = exp
(
v log βt + (1− v) log β̃t

)
,

where v is a per-dimension component from the model output and β̃t =
1−ᾱt−1

1−ᾱt
βt.

By choosing a sufficiently large T and an appropriate schedule for βt, the distribution p(xT ) ap-
proaches an isotropic Gaussian. This allows for sample generation by starting from random noise
and iteratively applying the learned reverse process p(xt−1|xt) to obtain a data sample x0 (Ho et al.,
2020).

I.2 STOCHASTIC INTERPOLATING

In contrast to DDPM, flow-based models (Esser et al., 2024; Liu et al., 2023) address continuous
time-dependent processes involving data samples x∗ ∼ p(x) and Gaussian noise ε ∼ N (0, I) over
the interval t ∈ [0, 1]. The process is formulated as:

xt = αtx0 + σtε, with α0 = σ1 = 1, α1 = σ0 = 0,

where αt decreases and σt increases as functions of t. There exists a probability flow ordinary
differential equation (PF-ODE) characterized by a velocity field ẋt = v(xt, t), ensuring that the
distribution at time t matches the marginal pt(x).
The velocity v(x, t) is expressed as a combination of two conditional expectations:

v(x, t) = E[ẋt | xt = x] = α̇t E[x∗ | xt = x] + σ̇t E[ε | xt = x],

which can be approximated by a model vθ(xt, t) through minimizing the training objective:

Lvelocity(θ) = Ex∗,ε,t

[
∥vθ(xt, t)− α̇tx

∗ − σ̇tε∥2
]
.

This approach aligns with the reverse stochastic differential equation (SDE):

dxt = v(xt, t) dt−
1

2
wts(xt, t) dt+

√
wt dW̄t,

where the score function s(xt, t) is similarly defined as:

s(xt, t) = −
1

σt
E[ε | xt = x].

To approximate s(xt, t), one can use a model sθ(xt, t) with the training objective:

Lscore(θ) = Ex∗,ε,t

[
∥σtsθ(xt, t) + ε∥2

]
.

Since s(x, t) can be directly computed from v(x, t) for t > 0 using the relation:
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s(x, t) =
1

σt
· αtv(x, t)− α̇tx

α̇tσt − αtσ̇t
,

it is sufficient to estimate either the velocity v(x, t) or the score s(x, t).
According to Albergo et al. (2023), stochastic interpolants satisfy the following conditions when αt

and σt are chosen such that: (i) α2
t + σ2

t > 0 for all t ∈ [0, 1], (ii) Both αt and σt are differentiable
over the interval [0, 1], (iii) Boundary conditions are met: α1 = σ0 = 0 and α0 = σ1 = 1.
These conditions ensure an unbiased interpolation between x0 and ε. Consequently, simple in-
terpolants can be utilized by defining αt and σt as straightforward functions during training and
inference. Examples include linear interpolants with αt = 1− t and σt = t, or variance-preserving
(VP) interpolants with αt = cos

(
π
2 t
)

and σt = sin
(
π
2 t
)
.

An additional advantage of stochastic interpolants is that the diffusion coefficient wt remains indepen-
dent when training either the score or velocity models. This independence allows wt to be explicitly
chosen after training during the sampling phase using the reverse SDE.
It’s noteworthy that existing score-based diffusion models, including DDPM (Ho et al., 2020), can be
interpreted within an SDE framework. Specifically, their forward diffusion processes can be viewed
as predefined (discretized) forward SDEs that converge to an equilibrium distribution N (0, I) as
t→∞. Training is conducted over [0, T ] with a sufficiently large T (e.g., T = 1000) to ensure that
p(xT ) approximates an isotropic Gaussian. Generation involves solving the corresponding reverse
SDE, starting from random Gaussian noise xT ∼ N (0, I). In this context, αt, σt, and the diffusion
coefficient wt are implicitly defined by the forward diffusion process, potentially leading to a complex
design space in score-based diffusion models (Karras et al., 2022).

J SOCIAL IMPACT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

K CODE

We release the code in supplementary material.

L LIMITATIONS

Test-time domain adaptation. Although GMem enables on-the-fly style and concept transfer
( Figure D.1 ), adaptation can still fail when the inserted snippet lies far outside the training distribu-
tion. Preliminary evidence suggests that success correlates with visual and semantic proximity to
seen data. A richer, modular memory organisation (Wu et al., 2022; Nichani et al., 2024; Mahdavi
et al., 2023) may improve robustness, but we leave such design to future work.

GMem →DT conversion. Our training-free reduction compresses a 1.28M-snippet bank to 1000
embeddings ( Section E.1 ). This aggressive shrinkage inevitably raises FID; exploring mixture or
hierarchical embedding strategies that allocate several representatives per class could retain more
information at the same memory budget. Developing principled criteria for selecting or distilling
snippets is a promising research avenue.

Scope of this work. Our goal is to introduce external, editable memory to diffusion transformers and
to characterise the resulting trade-offs in efficiency, quality, and adaptability. Many implementation
details—bank settings, advanced model conversion schemes, programmatic snippet editing—are
deliberately kept simple and are left for future research to refine.
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