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ABSTRACT

Reward design remains a significant bottleneck in applying reinforcement learning
(RL) to real-world problems. A popular alternative is reward learning, where re-
ward functions are inferred from human feedback rather than manually specified.
Recent work has proposed learning reward functions from human feedback in the
form of ratings, rather than traditional binary preferences, enabling richer and
potentially less cognitively demanding supervision. Building on this paradigm,
we introduce a new rating-based RL method, Ranked Return Regression for RL
(R4). At its core, R4 employs a novel ranking mean squared error (rMSE) loss,
which treats teacher-provided ratings as ordinal targets. Our approach learns from
a dataset of trajectory–rating pairs, where each trajectory is labeled with a dis-
crete rating (e.g., “bad,” “neutral,” “good”). At each training step, we sample a
set of trajectories, predict their returns, and rank them using a differentiable sort-
ing operator (soft ranks). We then optimize a mean squared error loss between
the resulting soft ranks and the teacher’s ratings. Unlike prior rating-based ap-
proaches, R4 offers formal guarantees: its solution set is provably minimal and
complete under mild assumptions. Empirically, using simulated human feedback,
we demonstrate that R4 consistently matches or outperforms existing rating and
preference-based RL methods on robotic locomotion benchmarks from OpenAI
Gym and the DeepMind Control Suite, while requiring significantly less feedback.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable success in games, where well-defined
reward functions are available (Mnih et al., 2015; Schrittwieser et al., 2019). In contrast, real-
world environments often lack clean specifications, making reward design a significant bottleneck to
deploying RL in complex, practical applications (Knox et al., 2023; Knox & MacGlashan, 2024). In
practice, reward design is often an informal trial-and-error process where RL practitioners iteratively
adjust a reward function until the RL agent exhibits acceptable behavior (Booth et al., 2023). This
procedure can be error-prone, resulting in reward misspecification where practitioners inadvertently
define a reward function that does not align with the true task objective. This can result in the agent
learning undesirable or unintended behaviors (Skalse et al., 2022; Pan et al., 2022). Notably, these
challenges have been observed even in tabular domains, illustrating that reward design remains a
core challenge, even in simple settings (Muslimani et al., 2025).

A popular alternative to manual reward engineering is reward learning, where reward functions
are inferred from human feedback rather than explicitly designed. This feedback can take various
forms, including scalar evaluations (Knox & Stone, 2009; MacGlashan et al., 2017), demonstrations
(Taylor, 2018; Arora & Doshi, 2021), or pairwise preferences over agent behaviors (Christiano et al.,
2017b). Of these approaches, preference-based RL has gained particular traction due to its low
human effort and its role in large language models (OpenAI et al., 2024).

Despite its success, learning from binary preferences can be limiting. For one, each binary compar-
ison conveys only a single bit of information, making reward learning sample inefficient in terms of
required preference labels. As a result, more human time may be required compared to collecting
multi-class ratings, increasing the overall feedback burden. Moreover, such feedback is inherently
relative. It indicates which behavior is preferred, but not by how much, nor whether either option is
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good in an absolute sense. For example, if both behaviors under comparison are poor, a human can
at best indicate that they are equally preferable, but cannot express that both are low-quality overall.

Recent work has introduced a new paradigm known as rating-based reinforcement learning (RbRL)
(White et al., 2024), in which humans provide discrete, multi-class ratings rather than binary prefer-
ences to guide reward learning. Instead of comparing two behaviors and selecting the preferred one,
the human observes a single behavior at a time and assigns it a rating from a fixed scale. This shift
enables the collection of richer feedback, as ratings can capture both relative and absolute assess-
ments of trajectory quality. Moreover, compared to preference-based feedback, user studies have
found that participants perceive rating-based feedback as less cognitively demanding, and report
feeling more successful when completing tasks using ratings (White et al., 2024).

The advantages of RbRL motivate the development of more efficient algorithms for learning from
ratings. To this end, we propose a new rating-based RL method: Ranked Return Regression for
RL (R4). It learns reward functions from trajectories labeled with ordinal ratings using a novel
ranking mean squared error (rMSE) loss. At each training step, we sample one trajectory per rating
class, compute their predicted returns under the reward model, and rank them using a differentiable
sorting operator (Blondel et al., 2020) (i.e., soft ranks). We then minimize a mean squared error loss
between the resulting soft ranks and the teacher’s ratings.

Our contributions are as follows:

1. We propose Ranked Return Regression for RL, a rating-based RL algorithm that leverages
a novel ranking mean squared error loss to train reward functions from trajectories labeled
with ordinal ratings.

2. We establish that rMSE is the first rating-based RL objective with provable minimality and
completeness guarantees under mild assumptions.

3. We empirically validate R4 in both offline and online feedback settings, demonstrating it
can outperform RbRL and other preference-based RL algorithms in several robotic locomo-
tion tasks from OpenAI Gym (Brockman et al., 2016) and the DeepMind Control (DMC)
Suite (Tassa et al., 2018).

Taken together, these contributions emphasize rating-based RL methods that are both theoretically
grounded and effective in leveraging teacher feedback.

2 RELATED WORK

Reward learning is a broad field in which reward functions are inferred from various forms of hu-
man feedback, including demonstrations, preferences, scalar evaluations, ratings, or combinations
thereof. One common approach is inverse reinforcement learning (IRL), which learns a reward func-
tion such that the resulting policy produces behaviors similar to those in the provided demonstrations
(Ng & Russell, 2000). Despite recent advances showing that reward functions can be recovered from
suboptimal demonstrations (Shiarlis et al., 2016; Brown et al., 2019), it is still argued that providing
demonstrations can be time-consuming and difficult (Akgun et al., 2012; Lee et al., 2021).

As an alternative to demonstrations, other approaches rely on preference-based feedback (e.g.,
preference-based RL). In this setting, human users typically provide binary preferences over pairs
of agent behaviors (Christiano et al., 2017a; Lee et al., 2021). This form of supervision has gained
recent popularity, as it is often considered more intuitive and less demanding than providing full
demonstrations. However, binary preferences can be limited in the richness of information they
convey. To address this, recent work has explored scaled preferences, where users indicate not just
which behavior they prefer, but also the strength of that preference (e.g., on a scale from “strongly
prefer A” to “strongly prefer B”) (Wilde et al., 2021). These graded comparisons have been shown
to outperform strict binary preferences, offering more informative supervision for reward learning.

Similarly, scalar feedback methods provide rich signals by allowing humans to rate behaviors di-
rectly. For example, the TAMER framework allowed humans to provide binary signals indicating
whether a behavior was judged to be optimal (Knox & Stone, 2009). Later work introduced reward
sketching, where, for a given behavior, humans continuously provide a scalar signal indicating the
agent’s progress toward a goal (Cabi et al., 2019). Recent work on reward modeling for LLMs has
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also moved beyond binary preferences to use ordinal feedback (Liu et al., 2025a;b). Most similar to
our approach is rating-based RL (White et al., 2024). It handles multi-class discrete ratings by using
a novel cross-entropy loss formulation. In this setup, humans assign class labels such as “good,”
“okay,” or “bad” to trajectories, and these labels are then used to train a reward function.

In addition to the type of feedback, reward learning can also be categorized by how feedback is
collected and used. In the offline setting, reward models are trained on static datasets of labeled
trajectories (i.e., labeled with preferences, ratings, etc) and the learned reward is then used to train
an RL agent. In the online setting, the agent interacts with the environment and receives feedback
in real time; trajectories generated by the agent are periodically labeled, and the reward model is
updated continuously as the agent learns its policy.

3 BACKGROUND

Markov Decision Processes Without Rewards denoted MDP\R, is an MDP where feedback
is provided in the form of teacher ratings (Abbeel & Ng, 2004; White et al., 2024). Formally,
MDP\R is defined as: M = (S,A, T, ρ, γ, n,D), where S and A are the state and action spaces,
T : S × A × S → [0, 1] is the transition probability function, ρ is the initial state distribution, and
γ ∈ [0, 1) is the discount factor. Note that γ is fixed (not learned), as is standard in reward learning.
Specifically, a teacher watches each trajectory τi, where τi = (si1, a

i
1, . . . , s

i
T , a

i
T ), and assigns it a

rating ci ∈ 0, 1, . . . , n− 1, where ci indicates the perceived quality of the trajectory. A rating of
0 represents the lowest quality, while n − 1 represents the highest. We define the function c(τi)
as the function that maps the trajectory τi to the corresponding rating class. Note that the rating
classes can also be assigned descriptive labels to aid interpretation. For instance, with n = 3 rating
classes, the labels might be: 0 — “bad,” 1 — “neutral,” and 2 — “good”. This process is repeated
for all trajectories, and the resulting data is grouped by rating class. Specifically, for each rating
class k ∈ {0, 1, . . . , n − 1}, we define a subset Dk = {τi | c(τi) = k} containing all trajectories
assigned to rating class k. The full dataset is then D =

⋃n−1
k=0 Dk.

Compared to the standard RL setting, the key difference is that the MDP includes a reward function
r : S × A → R, which provides a numerical reward for each state-action pair. This replaces the
teacher ratings component (e.g., n, D) used in our setting. The objective is then to find an optimal
policy π∗ that maximizes the expected discounted return, Gr, defined as:

∑
t γ

tr(st, at). In contrast,
the MDP\R setting lacks an engineered reward function, and thus the goal becomes two-fold: (1) to
learn a parameterized reward function r̂θ from teacher-provided ratings; and (2) to learn a policy that
maximizes the expected discounted return with respect to r̂θ, such that the resulting policy produces
behaviors that statisfy the teacher’s ratings. 1

Differentiable (Soft) Ranking refers to a class of algorithms designed to make the sorting and
ranking process differentiable (Grover et al., 2019; Blondel et al., 2020; Petersen et al., 2022). In
R4, we use the algorithm proposed by Blondel et al. (2020), which assigns continuous ranks to a
set of values. Unlike hard sorting, soft ranking is smooth and differentiable, allowing gradients
to propagate through the ranking operation during optimization. For example, given the values
[3.2, 1.0, 4.5], the algorithm produces approximate soft ranks R̂ = [1.5, 3.0, 1.0]. By contrast, the
true hard ranks are R = [1, 0, 2], with the highest value ranked 2 and the lowest ranked 0.

Rating Based Reinforcement Learning is a form of reward learning introduced by White et al.
(2024), where reward models are trained from discrete ratings via supervised learning, rather than
from preferences. In particular, they introduced a cross-entropy–style loss function defined as:

LRbRL = Eτi

(
−

N−1∑
i=0

µi log(Q(τi))

)
,

where µi is the indicator function for the assigned label (i.e., µi = 1 when the trajectory τi is
assigned the label class i in the dataset, and 0 otherwise). Furthermore, the function Q is defined as:

1Note that reward evaluation is not well defined in the literature, see (Muslimani et al., 2025).
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Q(τi) =
e−k(Ĝi−Bi)(Ĝi−Bi+1)∑
j e

−k(Ĝj−Bj)(Ĝj−Bj+1)

Here, {Bi}N−1
i=0 are class decision boundaries and k is a hyperparameter. For convenience, we write

Ĝi instead of Ĝθ(τi), where Ĝi ∈ [0, 1] denotes the normalized predicted return under the learned
reward model r̂θ. As noted in White et al. (2024) and reproduced in section A.1, LRbRL encourages
the predicted returns of all trajectories within a class to concentrate around the midpoint Bi+Bi+1

2 .

4 RANKED RETURN REGRESSION FOR RL – R4

Given a set of rating classes c0, . . . , cn−1, where i < j implies that trajectories in class ci are rated
lower than those in class cj , we assume that for any τa ∈ Di and τb ∈ Dj , the (unobserved) return
under the the teacher’s implicit reward function, r∗, satisfies G∗(τa) < G∗(τb). Here, G∗(τ) =∑

t γ
tr∗(st, at) denotes the discounted return of trajectory τ with respect to the teacher’s reward

function. While ratings assign trajectories independently to discrete classes, we can construct a
ranking by ordering trajectories according to their assigned classes. Consequently, by sampling one
trajectory from each class, we obtain a perfectly ordered ranking over n trajectories (where n is the
number of rating classes).

We leverage this observation to define a novel ranking mean squared error (rMSE) objective over
a set of trajectories, which serves as a supervised learning loss for training a reward function from
trajectory ratings. We can then use this learned reward function, in place of an engineered reward,
to train an RL policy to maximize the expected return, Ĝθ denoted as E [

∑
t γ

tr̂θ(st, at)]. We refer
to this rMSE-based training pipeline as Ranked Return Regression for RL. We demonstrate that this
algorithm is flexible, applying it in both offline and online feedback settings.

4.1 REWARD LEARNING WITH THE RANKING MEAN SQUARED ERROR OBJECTIVE

To learn the reward function r̂θ from the dataset D, we sample one trajectory τi from each class
dataset Dk. The return for each sampled trajectory is estimated as:

Ĝθ(τi) =
∑
t

γtr̂θ(st, at)

We then rank these returns using a differentiable sorting algorithm (Blondel et al., 2020), yielding
a soft rank R̂θ(τi) for each Ĝθ(τi). The rMSE loss is computed as the mean squared error between
the soft rank and the rating class provided by a teacher:

LrMSE =
1

n

[
n−1∑
i=0

(
R̂θ(τi)− c(τi)

)2]
(1)

For example, suppose the rating classes for the sampled trajectories are c = [2, 3, 1], and the pre-
dicted soft ranks of returns are R̂θ = [1.0, 3.0, 2.0], We compute the rMSE loss as:

LrMSE =
1

3

[
(1.0− 2.0)2 + (3.0− 3.0)2 + (2.0− 1.0)2

]
In this example, the predicted ranks for the first and third trajectories deviate from the corresponding
rating. Since the soft ranks are differentiable with respect to the reward parameters θ, minimizing
this loss allows the model to adjust r̂θ to better align with the ratings provided by a teacher. See
Figure 1 for an overview of the R4 training process.

There are multiple advantages to using the rMSE objective over the RbRL objective:

1. Eliminating hyperparameters: The RbRL objective requires specifying rating class
boundaries B. A trajectory is assigned to class k only if its return lies between Bk and
Bk+1. Our approach does not require such explicitly defined boundaries.

4
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2. Preserving within-class diversity: The RbRL objective encourages all trajectories in a
class to have predicted returns close to the midpoint Bk+Bk+1

2 , thereby ignoring intra-class
diversity. In contrast, the rMSE objective does not enforce such a constraint, allowing
greater flexibility in modeling returns within the same class. In Proposition 1, we show that
enforcing such constraints on intra-class variability can be detrimental.

3. Dynamic rating classes: The rMSE objective allows the number and structure of rating
classes to change dynamically during training. This flexibility means raters are not re-
stricted to a fixed rating scheme; they can introduce new classes if they want finer distinc-
tions or merge existing ones when coarser ratings are more natural. In contrast, extending
the RbRL objective to dynamic classes is non-trivial, as its performance can degrade when
the number of bins deviates from the optimal range (White et al., 2024).2

4.2 DESIGN CHOICES FOR ONLINE FEEDBACK SETTING

For the online feedback experiments, we implement several strategies to use teacher feedback more
effectively. First, we apply a dynamic feedback schedule that collects feedback more frequently
at the start of training and gradually reduces the feedback frequency as training progresses. Next,
to determine which trajectory segments to sample, we maintain a dataset of the most recent 50
trajectories and apply a stratified sampling approach. We select a fraction from high-predicted-
return trajectories and the remainder from lower-predicted-return ones. For each selected trajectory,
we extract a sub-trajectory of fixed length, choosing either a random segment or the segment with
the highest predicted return with equal probability. This heuristic aims to balance exploration of
diverse trajectories with attention to promising ones. Further details about the preference collection
schedule and the sampling strategy are provided in Appendix C.3. We test the impact of these
strategies on learning progress in Section 6.3.

Moreover, in R4, we use dynamic rating classes to better accommodate how teachers might pro-
vide feedback. Early in training, when the agent produces mostly low-quality behavior, we use
finer-grained bins to distinguish poor trajectories, allowing teachers to provide more informative
feedback. As higher-quality trajectories emerge, these bins are merged into a single “low quality”
class, and when a trajectory’s return falls outside the current range, a new class is introduced. Both
of these behaviors reflect the concepts of response shift and recalibration, where humans adjust their
internal standards over time (Visser et al., 2000; 2005).

5 THEORETICAL RESULTS

In this section, we present some theoretical results to characterize the solution space of the rMSE
objective. First, we list our set of assumptions under which our theoretical results hold.
Assumption 1 (Deterministic Reward Realizability). The true (unobservable) returns {G∗(τi)}Ki=1

of trajectories {τi}Ki=1 in the dataset D are generated by an underlying (unobservable) deterministic
reward function r∗.
Assumption 2 (Binning). The trajectories are grouped into bins by partitioning the return range
[mini G

∗(τi),maxi G
∗(τi)] into n rating classes {ci}n−1

i=0 and assigning each trajectory to the class
that corresponds to its return. No further assumption about the bin structure is required.
Assumption 3 (Hypothesis Class Realizability). r∗ belongs to the hypothesis class.3

Assumption 4 (Exactness of Differentiable Ranking). The differentiable ranking function used by
rMSE, R̂θ, produces the true rank of each element in a list. For example, given the array [1, 5, 2],
the function outputs [0.0, 2.0, 1.0].

Note that Assumptions 1 and 2 are dictated by the problem formulation, whereas Assumption 3 is a
standard requirement in optimization problems. While Assumption 4 can hold in practice (e.g., using
the differentiable sorting method proposed by Blondel et al. (2020) with suitable regularization, as
illustrated in Appendix A.4); we relax this assumption later in this section.

2We confirm this performance degradation in Appendix B, highlighting this relative advantage of rMSE.
3In our experiments, we use specific neural network architectures as the hypothesis class, but the theory

results are not limited to any specific class of functions.
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Forward Pass:          

Predicted Returns

Soft Rank

Backprop

Ratings

Sample one trajectory per class:                                

  Trajectories   

...

Figure 1: Illustration of the R4 learning process: Given a dataset of trajectory–rating pairs, we
compute the predicted return for each trajectory under r̂θ and apply a differentiable sorting algorithm
to obtain soft ranks. Then, we minimize the MSE between the soft ranks and the original ratings.

Furthermore, the requirement that the ranking operator be differentiable arises solely from the use
of a gradient-based optimizer (Kingma & Ba, 2015); it is not required by the optimization objective
itself. A non-gradient-based optimizer could be used with hard rankings.
Definition 1. The set of reward functions R is the set of feasible solutions that satisfy Assump-
tions 1–3. More formally,

R △
= {rθ|c(τi) < c(τj) =⇒ Gθ(τi) < Gθ(τj) ∀τi, τj ∈ D} (2)

Note that R is the set of reward functions in the hypothesis class that we care to find, as they satisfy
all assumptions imposed by the problem.
Proposition 1 (Consistency). Under Assumptions 1-4, the data-generating reward function r∗ is
always contained in the solution set of the rMSE objective, but is not guaranteed to be in the solution
class of RbRL objective4. Formally,

r∗ ∈ argmin
θ

LrMSE(θ) but r∗ /∈ argmin
θ

LRbRL(θ) in general. (3)

The proof is given in Appendix A.2.1. Next, in Theorem 1 we show that the solution set of the
rMSE objective is complete and minimal under Assumptions 1-4; the set of reward functions, R,
induced by Assumptions 1-3 (in Definition 1) is equivalent to the rMSE solution set. In other words,
there exists no other objective function that can further reduce the rMSE solution set without intro-
ducing additional assumptions. Doing so would risk missing out on some of the potential reward
functions in R. This also means that any reward function outside the rMSE solution set is not the
data generating reward function, r∗.
Theorem 1 (Completeness and Minimality). Under Assumptions 1-4, the solution set of rMSE is
complete and minimal. Formally,

rθ ∈ R ⇐⇒ rθ ∈ argmin
θ

LrMSE(θ), ∀rθ (4)

The proof is given in Appendix A.2.2. Theorem 1 establishes the completeness and minimality of
rMSE under Assumptions 1–4. However, to ensure that the theorem’s guarantees extend to settings
where Assumption 4 may fail, we introduce a relaxed version, Assumption 5, and prove an analogous
result under the weaker condition in Theorem 2.

4In the proof, we characterize exactly when r∗ will be in the solution class of RbRL objective.
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Assumption 5 (Bounded Ranking Error - Relaxed Assumption 4). For any element in the input
array, the rank predicted by the differentiable sorting operator differs from its true rank by at most
ϵ. Formally, for any input vector v and true ranking function R,∣∣R̂(vi)−R(vi)

∣∣ ≤ ϵ, ∀i,

where 0 ≤ ϵ <
√
2n−2
n−2 is a constant and n > 2 is the number of elements in v.

Definition 2. We define the relaxed solution set for LrMSE as:

RrMSE
△
= {rθ|LrMSE(θ) ≤ ϵ2} or simply LrMSE(θ) ≤ ϵ2

Theorem 2 (Completeness and Minimality under Bounded Ranking Error - Relaxed Theorem 1).
Under Assumptions 1-3 and 5, the solution set of rMSE, RrMSE, is complete and minimal. Formally,

rθ ∈ R ⇐⇒ rθ ∈ RrMSE, ∀rθ (5)

The proof is given in Appendix A.3. Theorem 2 shows that, as long as the error of the ranking
operator satisfies the bound in Assumption 5, our guarantees with rMSE still hold.

6 EXPERIMENTAL SETUP AND RESULTS

In this section, we first outline the experimental design and results for the offline feedback setting,
followed by those for the online feedback setting.

6.1 OFFLINE FEEDBACK EXPERIMENTS

Experimental Setup We evaluate RbRL and R4 in the offline feedback setting in OpenAI Gym-
domains Reacher, Inverted Double Pendulum, and Half Cheetah. In this setting, a
reward model is trained on a static dataset of feedback, as opposed to the online feedback set-
ting, where feedback is collected iteratively during RL training. The offline setup avoids additional
choices such as the feedback frequency or trajectory sampling method, reducing the number of hy-
perparameters and allowing us to better isolate the impact of the learning objective. While it also
serves to show that R4 extends to offline settings, our primary goal is to demonstrate the performance
gains that come specifically from replacing the RbRL loss with the R4 loss, rMSE.

To obtain offline trajectories, we train a Soft Actor-Critic (SAC) (Haarnoja et al., 2018) agent from
Stable-Baselines3 (Raffin et al., 2021) using the environment’s reward function and store the result-
ing trajectories along with their ground-truth returns. To systematically evaluate performance, we
then use a simulated teacher that assigns scalar ratings to each trajectory based on its ground-truth
return. Specifically, we define a set of return thresholds, where each trajectory is labeled according
to the return bin it falls into, such that any trajectory τi with return b[k] ≤ G(τi) < b[k + 1] is
assigned rating class c(τi) = k. We then construct a balanced dataset by sampling an equal number
of trajectories from each class, with Dk denoting the subset for class k and D =

⋃n−1
k=0 Dk.

Reward models are trained via supervised learning on D, and we evaluate R4 against RbRL under the
same training procedure. We also include the environment reward function as a baseline. Full details
for reproducibility are provided in Appendix C.4. After training the reward model r̂θ, we train an RL
agent on an unseen environment seed using r̂θ as the reward. This process is repeated for 5 random
seeds to account for variability in both reward learning and policy optimization. Performance is
measured using the environment’s ground-truth reward. We report learning curves with individual
runs shown in light colors and the mean in a darker color. To test for significant differences between
R4 and RbRL, we perform t-tests with a significance level of α = 0.05.

Offline Feedback Results Figure 2 shows that, under otherwise identical conditions, reward func-
tions trained with R4 consistently lead to better downstream RL performance than those learned with
RbRL. In particular, when used to train SAC, R4 reward functions led to statistically faster learning
in Inverted Double Pendulum and Half Cheetah, and higher final returns in Reacher
(p < 0.05) as compared to RbRL (see Appendix B.4).
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Figure 2: Performance of a SAC agent trained with (1) R4, (2) RbRL, and (3) the environment
reward. Budget denotes the number of labeled trajectories used to learn the offline reward function.

6.2 ONLINE FEEDBACK EXPERIMENTS

Experimental Setup In our online experiments, a SAC agent interacts with the environment and
learns from the estimated reward function r̂θ. From these interactions, trajectory segments are
periodically sampled and rated by a simulated teacher, which provides feedback according to the
environment’s ground-truth reward. This feedback is then used to update the reward model, guid-
ing the agent’s future behavior. We evaluate R4 against RbRL and 3 preference learning algo-
rithms: PEBBLE (Lee et al., 2021), SURF (Park et al., 2022), and QPA (Hu et al., 2024), across
6 DMC environments: Walker-walk, Walker-stand, Cheetah-run, Quadruped-walk,
Quadruped-run, and Humanoid-stand. For all methods, we fix a feedback budget: in rating-
based approaches, it counts rated trajectories, while in preference-based approaches, it counts pair-
wise comparisons. Since each comparison involves two trajectories, the same budget requires the
teacher to assess twice as many trajectories in preference-based methods.

Figure 3: This shows online SAC performance evaluated with the true environment reward, using
either the environment reward or learned rewards from different rating/preference-based algorithms.

All implementation details are provided in Appendix C.3. For all online experiments, we follow
the standard SAC implementation from PEBBLE (Lee et al., 2021). Regarding the reward learning
components, the baselines use their default configurations: a uniform feedback schedule and their
respective trajectory sampling strategies (uncertainty-based for all except QPA, which uses a near
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on-policy strategy). For completeness, we tested the baselines with our dynamic feedback schedule;
however, this degraded their performance (see Appendix B, Figure 11). Therefore, we report results
using each method’s strongest configuration. As in the prior section, performance is measured using
the environment’s ground-truth reward, with learning curves showing 5 individual runs (light) and
their mean (dark). To test for significant differences between R4 and the baselines, we perform t-
tests (α = 0.05) with Bonferroni correction. As we conduct 4 comparisons per environment, we use
a corrected significance threshold of α

4 = 0.0125 to control the family-wise error rate.

Online Feedback Results Figure 3 shows that R4 consistently matches or outperforms existing
approaches across all tested environments. In particular, using R4, the SAC agent learns significantly
faster than all baselines in 3 of the 6 environments and achieves higher final returns in 4 of the 6
environments (p < 0.0125). See Appendix B.4 for detailed information on the t-test results.

6.3 ABLATIONS

To assess the impact of our design choices, specifically the dynamic feedback schedule and the
stratified trajectory sampling strategy, we ablate these components and evaluate performance on
Walker-walk, Cheetah-run, and Quadruped-walk in the online feedback setting. As
shown in Figure 4, R4 performs comparably without these additions (red curves) in 2 out of 3
tested domains. Furthermore, using either technique on its own is sufficient to sustain performance,
while combining both yields small but consistent improvements. Moreover, Appendix B (Figures 12
and 13) demonstrates R4’s robustness: it maintains strong performance under high levels of noisy
feedback (80% noise) compared to RbRL at only 10% noise, and it achieves consistent results across
different numbers of rating classes, whereas RbRL is sensitive to the choice of class count.

Figure 4: We evaluate R4 under ablations of our implementation choices: stratified sampling and
the dynamic feedback schedule. We find that both features can improve the base R4 method.

7 CONCLUSION

Reward design remains a fundamental challenge in RL. While preference-based RL has been the
dominant approach for learning rewards from human feedback, rating-based approaches have re-
cently emerged as a promising alternative. By allowing humans to evaluate behaviors individually,
ratings may reduce cognitive load and enable richer supervision than pairwise preferences (White
et al., 2024). Therefore, in this work, we propose R4, a theoretically grounded algorithm for learn-
ing reward functions from multi-class human ratings. Unlike prior work, R4 treats ratings as ordinal
feedback and optimizes a rank-based mean squared error loss, allowing the reward model to bet-
ter exploit the rating structure in the labeled trajectories. To demonstrate the utility of R4, we first
provide a theoretical analysis showing that it yields minimal and complete solutions under mild
assumptions. Next, we empirically demonstrate its effectiveness across both offline and online feed-
back scenarios. In particular, R4 can outperform both rating- and preference-based RL baselines on
robotic locomotion tasks, producing reward models that lead to more performant policies. Overall,
our results represent an important step toward reward learning methods that maintain theoretical
rigor while efficiently leveraging teacher feedback.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference on Machine Learning, ICML ’04, pp.
1, New York, NY, USA, 2004. Association for Computing Machinery. ISBN 1581138385. doi:
10.1145/1015330.1015430. URL https://doi.org/10.1145/1015330.1015430.

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea L. Thomaz. Trajectories and keyframes
for kinesthetic teaching: A human-robot interaction perspective. In 2012 7th ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI), pp. 391–398, 2012.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 2021.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sort-
ing and ranking. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

Serena Booth, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.
The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task
Specifications. In AAAI Conference on Artificial Intelligence, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL http://arxiv.org/abs/1606.01540. cite
arxiv:1606.01540.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating Beyond Subop-
timal Demonstrations via Inverse Reinforcement Learning from Observations . In International
Conference on Machine Learning, 2019.

Serkan Cabi, Sergio Gomez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott E. Reed,
Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerı́k, Oleg O. Sushkov, David
Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, and Ziyun Wang. Scaling data-driven
robotics with reward sketching and batch reinforcement learning. Robotics: Science and Systems
XVI, 2019. URL https://api.semanticscholar.org/CorpusID:211032272.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
Reinforcement Learning from Human Preferences. In Neural Information Processing Systems,
2017a.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In International Conference on Neural Informa-
tion Processing Systems, 2017b.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=H1eSS3CcKX.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.

Xiao Hu, Jianxiong Li, Xianyuan Zhan, Qing-Shan Jia, and Ya-Qin Zhang. Query-policy mis-
alignment in preference-based reinforcement learning. In International Conference on Learning
Representations, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

10

https://doi.org/10.1145/1015330.1015430
http://arxiv.org/abs/1606.01540
https://api.semanticscholar.org/CorpusID:211032272
https://openreview.net/forum?id=H1eSS3CcKX
https://proceedings.mlr.press/v80/haarnoja18b.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

W. Bradley Knox and James MacGlashan. How to Specify Reinforcement Learning Objectives. In
Finding the Frame: An RLC Workshop for Examining Conceptual Frameworks at the Reinforce-
ment Learning Conference, 2024.

W Bradley Knox and Peter Stone. Interactively Shaping Agents via Human Reinforcement. In
International Conference on Knowledge Capture, 2009.

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(Mis)design for Autonomous Driving. Artificial Intelligence, 316(103829), 2023.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Kimin Lee, Laura Smith, and Pieter Abbeel. PEBBLE: Feedback-Efficient Interactive Reinforce-
ment Learning via Relabeling Experience and Unsupervised Pre-training . In International Con-
ference on Machine Learning, 2021.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Dealing with the unknown: Pessimistic
offline reinforcement learning. In Conference on Robot Learning, 2021. URL https://api.
semanticscholar.org/CorpusID:237263626.

Shang Liu, Yu Pan, Guanting Chen, and Xiaocheng Li. Reward modeling with ordinal feedback:
Wisdom of the crowd. In International Conference on Machine Learning, 2025a.

Tianqi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi, Yao Zhao, Mo-
hammad Saleh, Simon Baumgartner, Jialu Liu, Peter J. Liu, and Xuanhui Wang. Lipo: Listwise
preference optimization through learning-to-rank. In Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics, 2025b.

James MacGlashan, Mark K. Ho, Robert Loftin, Bei Peng, Guan Wang, David L. Roberts,
Matthew E. Taylor, and Michael L. Littman. Interactive learning from policy-dependent human
feedback. In Proceedings of the 34th International Conference on Machine Learning, Proceed-
ings of Machine Learning Research, 2017. URL https://proceedings.mlr.press/
v70/macglashan17a.html.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529–533, 2015. URL https://api.semanticscholar.org/
CorpusID:205242740.

Calarina Muslimani, Kerrick Johnstonbaugh, Suyog Chandramouli, Serena Booth, W Bradley Knox,
and Matthew E. Taylor. Towards improving reward design in RL: A reward alignment metric for
RL practitioners. In Reinforcement Learning Conference, 2025.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforement learning. In International
Conference on Machine Learning, 2000.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,

11

https://api.semanticscholar.org/CorpusID:237263626
https://api.semanticscholar.org/CorpusID:237263626
https://proceedings.mlr.press/v70/macglashan17a.html
https://proceedings.mlr.press/v70/macglashan17a.html
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
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APPENDIX

A THEORY RESULTS

A.1 DERIVATIVE OF RBRL LOSS FUNCTION

The RbRL White et al. (2024) loss function is defined as:

LRbRL = Eτ

(
−

N−1∑
i=0

µi log(Q(τi))

)
(6)

Where µi is the indicator function for the assigned label, ie. µi = 1 when the trajectory τi is assigned
the label class i in the dataset, and 0 otherwise. Furthermore, the function Q is defined as:

Q(τi) =
e−k(Ĝi−Bi)(Ĝi−Bi+1)∑
j e

−k(Ĝj−Bj)(Ĝj−Bj+1)
(7)

Here, {Bi}N−1
i=0 are class decision boundaries and k is a hyperparameter. We write Ĝi instead of

Ĝθ(τi) for convenience to denote the the normalized predicted return. The derivative of this loss is:

∂LRbRL

∂Ĝi

= Eτ

k
∑
j

(µj −Q(τi))(2Ĝi −Bj −Bj+1)

 (8)

This result is not new and is presented only because it is used in the proof of proposition 1.

A.2 PROOFS

A.2.1 PROOF FOR PROPOSITION 1

Part 1: Since r∗ is the deterministic data generating reward function, c(τi) < c(τj) =⇒ G∗(τi) <
G∗(τj), where G∗ is the trajectory return using the reward function r∗. Furthermore, If we try
to rank the trajectories according to their corresponding G∗, we will recover their c(τi). Hence,
R̂θ(τi) = c(τi) for all i when r̂θ = r∗. This implies that LrMSE(θ) = 0 when r̂θ = r∗. Hence
r∗ ∈ argminθ LrMSE(θ).

Part 2: To show that r∗ /∈ argminθ LRbRL(θ) in general, providing a counterexample suffices.
Equation 8 shows that LRbRL is minimized when the return for each trajectory in a rating class
is exactly equal to either Bi, Bi+1, or Bi+Bi+1

2 White et al. (2024). Consider the reward func-
tion r∗ to assign the return of Bi+Bi+1

2 + ϵ for some 0 < ϵ < Bi+1−Bi

2 to each trajectory
in the same rating class. Such r∗ would not belong to the solution class of LRbRL. Hence,
r∗ /∈ argminθ LRbRL(θ) in general.

A.2.2 PROOF OF THEOREM 1

First, let us assume that there exists some reward function rθ ∈ R.

Since rθ ∈ R,
c(τi) < c(τj) =⇒ Gθ(τi) < Gθ(τj)

Therefore, if we pick one trajectory from each rating class (without loss of generality):

c(τ0) < c(τ1) < · · · < c(τn−1), where c(τ) ∈ {0, 1, · · · , n− 1}
=⇒ Gθ(τ0) < Gθ(τ1) < · · · < Gθ(τn−1)
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This implies that the predicted ranks {Rθ(τi)}n−1
i=0 of the {Gθ(τi)}n−1

i=0 will also follow the same
order:

Rθ(τ0) < Rθ(τ1) < · · · < Rθ(τn−1), where Rθ ∈ {0, 1, · · · , n− 1} (9)

=⇒ 1

n

n−1∑
i=0

(c(τi)−Rθ(τi))
2
= 0, Both c and Rθ are distinct integers in [0, n-1] (4) (10)

=⇒ rθ ∈ argmin
θ

LrMSE(θ) (11)

Therefore, rθ ∈ R =⇒ rθ ∈ argminθ LrMSE(θ).

Now, let us assume that there exists a reward function rθ ∈ argminθ LrMSE(θ).

Let us pick one trajectory from each bin (without loss of generality):

=⇒ c(τ0) < c(τ1) < · · · < c(τn−1)

Now, since rθ ∈ argminθ LrMSE(θ),

1

N

n−1∑
i=0

(c(τi)−Rθ(τi))
2
= 0

=⇒ c(τi) = Rθ(τi),∀i
=⇒ Rθ(τ0) < Rθ(τ1) < · · · < Rθ(τn−1)

=⇒ Gθ(τ0) < Gθ(τ1) < · · · < Gθ(τn−1)

Therefore, c(τi) < c(τj) =⇒ Gθ(τi) < Gθ(τj), which implies that rθ ∈ R. Hence, using both of
these results, rθ ∈ R ⇐⇒ rθ ∈ argminθ LrMSE(θ)

A.3 RELAXING ASSUMPTION 4

Proof of Theorem 2.
The proof follows a similar structure as the proof for Theorem 1.

First, suppose that there exists some reward function rθ ∈ R.

Since rθ ∈ R, if we pick one trajectory from each rating class (without loss of generality):

c(τ0) < c(τ1) < · · · < c(τn−1), where c(τ) ∈ {0, 1, · · · , n− 1}
=⇒ Gθ(τ0) < Gθ(τ1) < · · · < Gθ(τn−1)

Since {Gθ(τi)}n−1
i=0 follow the same order as {c(τi)}n−1

i=0 , and the predicted ranks {Rθ(τi)}n−1
i=0

differs from the true ranks by at most ϵ,

=⇒ 1

n

n−1∑
i=0

(Rθ(τi)− c(τi))
2 ≤ ϵ2

=⇒ LrMSE(θ) ≤ ϵ2

=⇒ rθ ∈ RrMSE

Now, let us assume that there exists a reward function rθ ∈ RrMSE:

If we pick one trajectory from each rating class (without the loss of generality), then:

c(τ0) < c(τ1) < · · · < c(τn−1)
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Since rθ ∈ RrMSE,

=⇒ LrMSE(θ) ≤ ϵ2 (12)

=⇒ 1

n

n−1∑
i=0

(Rθ(τi)− c(τi))
2 ≤ ϵ2 (13)

To conclude the proof, we must show that the predicted returns {Gθ(τi)}n−1
i=0 preserve the same

ordering as the class labels {c(τi)}n−1
i=0 . If the ordering is preserved, then rθ ∈ R immediately

follows.

Consider the cases where the ordering is violated because of the reward function5. For ϵ < 0.5 , the
“least harmful” violation (i.e., the one that produces the smallest possible LrMSE while still breaking
the ordering because of the returns from the reward function) occurs when exactly two adjacent
elements swap their order, while all other predictions are correct. Without loss of generality, suppose
these elements are at indices k and k + 1, and that Rθ(τi) = c(τi) for all i /∈ {k, k + 1}.

For example, if the true class labels are [0, 1, 2], then the smallest-error misordering happens when
the predictions are [1− ϵ, 0+ ϵ, 2]: the first two items are swapped but deviate from their true labels
by only ϵ.

This case gives the minimum possible LrMSE under an incorrect ordering, which equals 2(1−ϵ)2

n ,
determined as follows:

1

n

n−1∑
i=0

(
Rθ(τi)− c(τi)

)2
=

1

n

[
k−1∑
i=0

(
Rθ(τi)− c(τi)

)2
︸ ︷︷ ︸

=0

+(Rθ(τk)− c(τk))
2

+ (Rθ(τk+1)− c(τk+1))
2 +

n−1∑
i=k+2

(
Rθ(τi)− c(τi)

)2
︸ ︷︷ ︸

=0

]

=
(Rθ(τk)− c(τk))

2 + (Rθ(τk+1)− c(τk+1))
2

n

=
(1− ϵ− 0)2 + (ϵ− 1)2

n

=
2(1− ϵ)2

n
. (14)

Therefore, to exclude such incorrect orderings from the relaxed solution set RrMSE, we require that
the lower bound on the error of an invalid solution exceed ϵ2. More specifically:

2(1− ϵ)2

n
> ϵ2

=⇒ 0 ≤ ϵ <

√
2n− 2

n− 2

which is the bound on ϵ in assumption 5. Now, since ϵ satisfies this bound, continuing from 13, we
can be sure that:

Gθ(τ0) < Gθ(τ1) < · · · < Gθ(τn−1)

=⇒ rθ ∈ R

5Since we only want to exclude the reward functions where the returns from the reward function do not
follow the ordering, we consider the cases with ϵ < 0.5. Otherwise the ranking function loses its meaning and
we start misordering things because of the ranking function

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Combining these two results, we have shown that under assumptions 1, 2, 3 and 5:

rθ ∈ R ⇐⇒ rθ ∈ RrMSE

A.4 SAMPLE OUTPUTS FROM FAST-SOFT RANK

Here, we present a few outputs from the fast-soft ranking algorithm, to justify Assumption 4. With an
appropriate value of regularization strength, the ranking operator outputs the true ranks
of all elements in most cases.

1 for _ in range(10):
2 x = np.random.uniform(0,10,10)
3 print(soft_rank(x, regularization_strength=0.01))
4

5 ’’’
6 Outputs:
7 [ 4. 5. 10. 3. 6. 2. 9. 1. 7. 8.]
8 [ 9. 4. 10. 8. 2. 1. 7. 3. 5. 6.]
9 [ 5. 7. 6. 9. 4. 2. 3. 8. 10. 1.]

10 [ 8. 4. 10. 6. 7. 5. 1. 3. 9. 2.]
11 [ 8. 5. 6. 4. 1. 7. 9. 3. 10. 2.]
12 [ 7. 5. 9. 1. 2. 6. 10. 4. 8. 3.]
13 [ 5. 8. 9. 3. 2. 10. 1. 7. 6. 4.]
14 [ 1. 7. 10. 4. 9. 3. 6. 5. 8. 2.]
15 [ 7. 9. 10. 5. 6. 1. 3. 8. 4. 2.]
16 [ 8. 9. 4. 7. 10. 3. 6. 2. 5. 1.]
17 ’’’

Listing 1: Sample Outputs From Soft Rank

B ADDITIONAL RESULTS

B.1 HUMAN STUDIES

In this section, we describe our human-subject pilot study. We conducted the study with five partic-
ipants (two authors/experts and three non-authors/non-experts). Each rater was shown trajectories
from OpenAI Gym’s reacher environment sequentially and asked either to rate each trajectory or
skip it. Each rater could decide how many bins to use, choosing any value between 3 and 10. The
raters were asked to collect ratings for 100-200 trajectories in total. After collecting the data, we
trained an offline reward function using 100 randomly selected trajectories from each participant’s
dataset. Using the learned reward function, we then trained a SAC agent on the same environment.
We repeated this process five times to account for randomness in reward-function learning and SAC
training.

We report the aggregated learning curves in Figure 5. The mean performance of the policies derived
from each individual rater is shown in lighter colors, while the average across all raters is shown in
darker colors. These results indicate that R4 performs better than RbRL despite any rater-specific
biases and inconsistencies that may have occurred. Furthermore, on average, R4 with human ratings
performs similarly to R4 with perfect simulated ratings.

Finally, Figures 6 through 10 show the SAC learning curves for each rater’s reward function (left).
Different seeds are shown in lighter colors, while the mean is shown in a darker color. The mid-
dle plot shows each rater’s distribution of labels. It reveals that (i) the distributions are highly
non-uniform for all raters, and (ii) the distributions vary substantially across raters, with different
individuals using different numbers of rating classes. The right plot shows the distribution of undis-
counted environment returns associated with each label in the rated dataset. This confirms that the
human ratings are highly imperfect, with substantial overlap in true returns across labels. These
results further support our claim that R4 is robust to rater bias and variance.
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Figure 5: Combined performance of policies trained on reward models learned from five human
raters. Light curves show the average performance across five SAC training runs for each rater;
the dark curve shows the overall mean across raters. R4 consistently outperforms RbRL despite
substantial variation in individual rating behavior. Furthermore, on average, R4 with human ratings
performs similarly to R4 with perfect simulated ratings.

Figure 6: (Left) Learning curves for Participant 1’s reward function, with individual random seeds
shown in lighter colors and the mean in darker color. (Middle) Histogram of Participant 1’s labeling
distribution. (Right) Violin plot of undiscounted environment returns conditioned on each label,
showing substantial overlap in returns and highlighting the noisiness and imperfection of the ratings.

Figure 7: Participant 2’s results and data distribution.

B.2 SIMULATED EXPERIMENTS

To assess the impact of the dynamic feedback schedule and sampling tricks on the baselines, we
tested them with these modifications included. Figure 11 shows that the baselines’ performance
either remains similar or degrades compared to Figure 3.

Second, we evaluate the resilience of R4 to noisy feedback on the Inverted Double
Pendulum task in the offline setting, where both R4 and RbRL achieve similar final performance
under noiseless conditions. We focus on the offline setting because it isolates the effect of noise on
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Figure 8: Participant 3’s results and data distribution.

Figure 9: Participant 4’s results and data distribution.

Figure 10: Participant 5’s results and data distribution.

Figure 11: Mean undiscounted return (computed using the environment’s reward function) versus
the number of episodes when training a SAC agent with R4 and various baselines in the online
setting. The baselines are allowed to use our dynamic feedback schedule and their respective query
sampling tricks.

reward learning. To simulate noisy human feedback, we randomly select η% of the trajectories in
the dataset D and reassign them to true bin±1 with probability 0.5 each.

Figure 12a shows R4 performance under varying noise levels. While performance naturally de-
creases as η increases, R4 remains robust even at high noise levels. Figure 12b compares R4 with
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RbRL under the same conditions, showing that RbRL fails even at small noise levels. Notably, R4
with 80% noise achieves performance comparable to RbRL with only 10% noise.

(a) (b)

Figure 12: (a) R4 objective under varying levels of noise. (b) Comparison of R4 (reds) and RbRL
(blues) under different noise levels.

Furthermore, we study the impact of the number of rating classes on R4 in the Reacher environ-
ment. Figure 13 shows that although RbRL’s performance depends significantly on the number of
bins, R4 remains consistent.

Finally, we study the impact of the fast-soft-ranking (Blondel et al., 2020) regularization strength in
R4 for the Inverted Double Pendulum environment. In Figure 15, we plot the undiscounted
return averaged over the last 100 episodes as a function of the regularization strength. The plot
shows that 83% of the runs with regularization strengths between 0.065 and 1 learn a successful
policy.

Overall, these results highlight that R4 is robust to dynamic feedback schedules, resilient to noisy
feedback, and largely insensitive to the choice of rating classes, in contrast to RbRL, which is sensi-
tive to all three.

Figure 13: Undiscounted return vs number of episodes for reacher with varying number of bins.

B.3 QUALITY OF LEARNED REWARD FUNCTIONS

To assess the quality of the reward functions learned by R4 relative to the baselines, we first present
a scatter plot comparing undiscounted returns from the learned reward functions against the undis-
counted environment returns encountered during a single online run (Figure 14). We show this for
three environments and for all methods. The plots indicate that R4 consistently captures a meaning-
ful relationship between learned and actual returns across environments.

Furthermore, to evaluate reward quality quantitatively, we report the Trajectory Alignment Coeffi-
cient (TAC) Muslimani et al. (2025) in Table 1. TAC is a reward alignment metric that measures
how similarly two reward functions rank a set of trajectories, where a TAC of 1 indicates perfect
alignment and a TAC of 1 indicates perfect negative correlation. We compare the reward functions
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learned by each method with the ground truth reward functions using TAC. For this comparison,
we consider the trajectories encountered during training. Table 1 shows that R4 produces reward
functions that are more aligned to the ground-truth reward in two out of three environments.

Figure 14: Qualitative results

Environment PEBBLE SURF RbRL QPA R4
walker walk 0.4681 0.5386 0.2643 0.6521 0.7168
cheetah run 0.8828 0.8366 0.0200 0.8107 0.5956
humanoid stand 0.3537 0.1640 -0.0116 0.1452 0.6312

Table 1: Average TAC scores across environments and methods.

Figure 15: Regularization strength of fast-soft ranking (Blondel et al., 2020) vs final learned policy
return for Inverted Double Pendulum.

B.4 STATISTICAL SIGNIFICANCE

To assess the statistical significance of our main results presented in Figures 2 and 3, we applied
Welch’s t-test to two key metrics: the average return over the last 100 episodes and the area under
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the learning curve (AUC). These metrics capture both the ultimate performance and the overall
learning dynamics of each method across multiple random seeds. Table 2 reports the results for the
offline feedback runs shown in Figure 2, while Tables 3–6 present analogous results for the online
feedback setting in Figure 3. Across nearly all environments, our method demonstrates statistically
significant improvements over the baselines in both final return and AUC, indicating not only higher
ultimate performance but also more efficient learning.

Environment Metric R4 (Mean ± SD) RbRL (Mean ± SD) t-stat p-value

Reacher Return −19.91± 3.45 −39.13± 13.03 2.85 0.0398
AUC −10331.49± 1448.88 −18863.86± 6327.05 2.63 0.0527

Inverted DP Return 9212.41± 272.56 8485.79± 1239.53 1.15 0.3108
AUC 441942.60± 58656.92 206676.88± 82616.80 4.64 0.0022

Half Cheetah Return 3638.23± 1115.80 1746.10± 1380.16 2.13 0.0671
AUC 282021.30± 98623.15 75385.09± 90477.05 3.09 0.0151

Table 2: Comparison of final return and AUC between R4 and Baseline with Welch’s t-test results.

Environment Metric R4 (Mean ± SD) PEBBLE (Mean ± SD) p-value

walker-walk
Return 736.78± 173.37 246.13± 213.81 0.000
AUC 59428.38± 11858.29 18832.11± 15324.24 0.003

walker-stand
Return 594.24± 223.85 154.46± 31.18 0.000
AUC 52901.37± 17831.47 16072.85± 1370.81 0.014

cheetah-run
Return 747.68± 61.25 463.69± 187.02 0.000
AUC 59464.45± 3505.70 36415.47± 13841.43 0.027

quadruped-walk
Return 500.64± 197.69 107.07± 184.75 0.000
AUC 76601.70± 28181.97 25782.51± 7008.07 0.021

quadruped-run
Return 451.30± 85.90 214.81± 234.10 0.000
AUC 70808.57± 14600.77 26447.09± 6189.97 0.002

humanoid-stand
Return 537.04± 157.46 30.30± 32.46 0.000
AUC 43349.13± 16132.70 3171.91± 2630.79 0.007

Table 3: Comparison of final return and AUC between R4 and PEBBLE across environments with
Welch’s t-test p-values.

Environment Metric R4 (Mean ± SD) SURF (Mean ± SD) p-value

walker-walk
Return 736.78± 173.37 366.89± 205.47 0.000
AUC 59428.38± 11858.29 30528.74± 16237.83 0.023

walker-stand
Return 594.24± 223.85 292.50± 114.15 0.000
AUC 52901.37± 17831.47 28487.92± 10485.57 0.053

cheetah-run
Return 747.68± 61.25 496.27± 105.96 0.000
AUC 59464.45± 3505.70 39690.18± 8243.98 0.006

quadruped-walk
Return 500.64± 197.69 142.08± 193.82 0.000
AUC 76601.70± 28181.97 28346.64± 5380.05 0.025

quadruped-run
Return 451.30± 85.90 119.98± 177.57 0.000
AUC 70808.57± 14600.77 23723.68± 3381.69 0.002

humanoid-stand
Return 537.04± 157.46 4.51± 2.73 0.000
AUC 43349.13± 16132.70 1113.39± 67.12 0.006

Table 4: Comparison of final return and AUC between R4 and SURF across environments with
Welch’s t-test p-values.

C IMPLEMENTATION DETAILS

This section includes the details necessary to replicate our results. Code will be released if the paper
is accepted.
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Environment Metric R4 (Mean ± SD) RBRL (Mean ± SD) p-value

walker-walk
Return 736.78± 173.37 77.18± 60.08 0.000
AUC 59428.38± 11858.29 6359.18± 3429.20 0.000

walker-stand
Return 594.24± 223.85 238.70± 132.50 0.000
AUC 52901.37± 17831.47 21555.53± 8995.78 0.020

cheetah-run
Return 747.68± 61.25 111.43± 210.31 0.000
AUC 59464.45± 3505.70 9548.40± 16798.53 0.003

quadruped-walk
Return 500.64± 197.69 437.97± 338.88 0.267
AUC 76601.70± 28181.97 51671.65± 24218.54 0.217

quadruped-run
Return 451.30± 85.90 467.09± 27.19 0.225
AUC 70808.57± 14600.77 64727.11± 8174.64 0.493

humanoid-stand
Return 537.04± 157.46 4.91± 3.09 0.000
AUC 43349.13± 16132.70 928.10± 63.57 0.006

Table 5: Comparison of final return and AUC between R4 and RBRL across environments with
Welch’s t-test p-values.

Environment Metric R4 (Mean ± SD) QPA (Mean ± SD) p-value

walker-walk
Return 736.78± 173.37 627.46± 199.33 0.005
AUC 59428.38± 11858.29 54360.80± 17751.89 0.649

walker-stand
Return 594.24± 223.85 214.50± 101.02 0.000
AUC 52901.37± 17831.47 21386.02± 8224.46 0.020

cheetah-run
Return 747.68± 61.25 501.78± 112.86 0.000
AUC 59464.45± 3505.70 39251.21± 6357.56 0.001

quadruped-walk
Return 500.64± 197.69 58.50± 138.00 0.000
AUC 76601.70± 28181.97 12646.85± 5822.67 0.009

quadruped-run
Return 451.30± 85.90 62.94± 119.64 0.000
AUC 70808.57± 14600.77 14861.70± 8587.97 0.000

humanoid-stand
Return 537.04± 157.46 6.04± 3.04 0.000
AUC 43349.13± 16132.70 1115.85± 131.49 0.006

Table 6: Comparison of final return and AUC between R4 and QPA across environments with
Welch’s t-test p-values.
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C.1 BATCH UPDATES

While computing the loss using a single sampled trajectory per class dataset Dk provides a valid
training signal, it can lead to a biased gradient estimate and hinder learning. To improve stability,
we perform the soft ranking procedure B times per update step. In each iteration, we sample one
trajectory per class dataset, compute predicted returns using r̂θ, and apply the differentiable sorting
algorithm (Blondel et al., 2020) to obtain soft ranks. The resulting B soft rank vectors (of size n)
are then stacked to form a stacked soft ranks matrix. Correspondingly, we stack the class labels
associated with each sampled trajectory into a ratings matrix. We compute the rMSE loss as the
mean squared error between the stacked soft ranks and the stacked ratings.

C.2 POSSIBLE REGULARIZATION

C.2.1 L2 REGULARIZATION

For training our reward functions, we use an L2 regularization loss (with coefficient β) defined as:
LL2 = Eτi

[
|r̂θ(τi)|2

]
C.2.2 OUT OF DISTRIBUTION REGULARIZATION

Even though we do not use OOD regularization in our experiments, offline RL literature (Kumar
et al., 2020; Li et al., 2021) tells that it might be a good tool to have when learning from an under-
specified dataset. The idea is to penalize high predicted rewards (under r̂θ) for state-action pairs not
present in the dataset, D:

LOOD = Es,a∼p [r̂θ(s, a)]− Es,a∼D [r̂θ(s, a)]

Here, p is a distribution used to sample out-of-distribution state-action pairs. The first term in LOOD
penalizes high predicted reward values for out-of-distribution pairs, while the second term prevents
the learned reward function from collapsing to large negative values. Without the second term,
the learned reward function could trivially assign large negative values to all the state-action pairs,
including those in the dataset.

C.3 ONLINE IMPLEMENTATION DETAILS

C.3.1 STRATIFIED SAMPLING HUERISTIC

In the online feedback setting with a limited budget, it is crucial to ask for feedback on the tra-
jectories that maximally increase the information provided to the reward function. To achieve this,
we maintain a dataset of the latest 50 trajectories and propose the following trajectory sampling
heuristic:

1. Sorting: We first sort the trajectories according to their predicted returns.
2. Sampling: We then sample 1/3 of the trajectories from the top 30% of this sorted set, and

2/3 of the trajectories are sampled from the remaining 70%.
3. Sub-trajectory selection: For each sampled trajectory, we extract a sub-trajectory of

length δ. This sub-trajectory is either chosen (1) uniformly at random, or (2) as the sub-
trajectory with the highest predicted return. Each of these option is applied with equal
probability (0.5).

Such a querying mechanism ensures that the queries capture both the typical behavior of the agent
and highly informative segments.

C.3.2 DYNAMIC FEEDBACK SCHEDULE

We apply a dynamic feedback schedule, collecting feedback more frequently at the beginning of
training to provide an initial bias to the reward function. Early feedback helps ground the reward
model in the environment and mitigates the impact of random neural network initialization on the
agent’s learning. Then, as training progresses, we gradually reduce the feedback frequency. This
ensures that the reward model is updated with more informative trajectory segments as the RL agent
is given more time to adapt to the new reward model after each update.
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C.3.3 ENSEMBLE OF REWARD FUNCTIONS

As is standard practice in many of our baselines (Lee et al., 2021; Park et al., 2022; White et al.,
2024), we learn an ensemble of reward functions rather than a single reward function. Each func-
tion is trained independently on the same data provided by the simulated teacher. When providing
rewards to the agent, we use the mean of the ensemble’s outputs.

C.3.4 REPLAY BUFFER UPDATE

As in previous preference learning methods (White et al., 2024; Lee et al., 2021; Park et al., 2022;
Hu et al., 2024), after each reward update, we relabel all samples in the replay buffer with the newly
estimated reward. This technique helps reduce the non-stationarity of the RL task and assists the
agent’s learning process.

C.4 HYPERPARAMETERS

C.4.1 SAC HYPERPARAMETERS

Offline Setting Using SB3 SAC: We use the default SB3 SAC parameters for the offline experi-
ments.

Table 7: Hyperparameters of SB3 SAC

Hyperparameter Value Hyperparameter Value
Policy MLP Critic target update freq 1
Init temperature 0.1 Critic EMA 0.005
Learning rate 3e-4 Discount 0.99
Batch size 256

Online Setting Using PEBBLE SAC: We use the default SAC parameters mentioned in Hu et al.
(2024):

Table 8: Hyperparameters of PEBBLE SAC

Hyperparameter Value Hyperparameter Value
Discount 0.99 Critic target update freq 2
Init temperature 0.1 Critic EMA 0.005
Alpha learning rate 1e-4 Actor learning rate 5e-4 (Walker walk,

Cheetah run)
Critic learning rate 5e-4 (Walker walk, 1e-4 (Other tasks)

Cheetah run) Actor hidden dim 1024
1e-4 (Other tasks) Actor hidden layers 2

Critic hidden dim 1024 Batch size 1024
Critic hidden layers 2 Optimizer Adam Kingma & Ba

(2015)

C.5 REWARD LEARNING HYPERPARAMETERS

Offline Setting:

Table 9: Common Hyperparameters

Hyperparameter Value Hyperparameter Value
B 64 Ranking regularization Blondel et al. (2020) 1.0
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Table 10: Model Architecture

Model #Hidden layers #Hidden units Intermediate Ac-
tivation

Final Activation

Medium 1 10 ReLU Agarap
(2018)

N/A

Large (Offline) 1 100 ReLU N/A
Large (Online) 1 100 ReLU Tanh

Table 11: Offline Hyperparameters

Environment #Reward Updates Model #Bins
Reacher 15000 Medium 4
InvertedDoublePendulum 3000 Medium 4
HalfCheetah 1000 Large (Offline) 6

Online Setting: As mentioned in the main text, we collect the initial (first 40) feedback in finer
bins. Later, we merge the bins to be coarser. Here, we mention the return ranges the simulated
teacher uses to assign trajectories into bins:

Walker-walk: {start:[0, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, 300, 400, 500, 600, 800, 1000],
end:[0, 30, 60, 100, 200, 300, 400, 500, 600, 800, 1000] }
Walker-stand: {start:[0, 100, 130, 140, 150, 160, 170, 200, 300, 400, 500, 600, 800, 1000],
end: [0, 100, 140, 160, 200, 300, 400, 500, 600, 800, 1000]}
Humanoid-stand: [0, 0.01, 10, 30, 50, 80, 100, 150, 200, 300, 400, 500, 600, 800, 1000]

Cheetah-run, Quadruped-walk/run: {[0, 5, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, 300,
400, 500, 600, 800, 1000], end:[0, 30, 60, 100, 200, 300, 400, 500, 600, 800, 1000]}

D LLM USE

We used an LLM to edit writing at the sentence level.

Table 12: Online Hyperparameters

Hyperparameter Value Hyperparameter Value
Training Steps 2M (Humanoid, Quad- Reward Updates 500 (Humanoid),

-ruped), 1M (Other
Tasks)

1000 (Others)

#Preference per session 20 (Humanoid),
Reward L2 (β) 0.005 (Humanoid), 10 (Other tasks)

0.01 (Other tasks) #Bins Dynamic
δ 50 Reward Learning Rate 3e-4
Model Large (Online) Reward Optimizer Adam
Ensamble size 3
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