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ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance across
various real-world tasks. However, they often struggle to fully comprehend and
effectively utilize their input contexts, resulting in responses that are hallucinated.
This difficulty increases for contexts that are long or contain distracting information,
which can divert LLMs from fully capturing essential evidence. To address this
issue, many works use prompting to help LLMs comprehend contextual information
more reliably. For instance, iterative prompting highlights key information in two
steps that first ask the LLM to identify important pieces of context and then derive
answers accordingly. However, textual prompting methods are constrained to
highlighting key information implicitly in token space, which is often insufficient
to fully steer the model’s attention. To improve model reading comprehension,
we propose SteerPrompt, a method that automatically identifies key contextual
information and explicitly highlights it by steering an LLM’s attention scores. Like
prompting, SteerPrompt is applied at inference time and does not require changing
any model parameters. Our experiments on open-book QA demonstrate that
SteerPrompt effectively enables models to grasp essential contextual information,
leading to substantially improved problem-solving performance, e.g., an average
improvement of 7.95% for LLAMA3-70B-Instruct. Code will be publicly available.

1 INTRODUCTION

Large language models (LLMs) exhibit remarkable performance across various natural language
processing (NLP) tasks and artificial intelligence (AI) applications (Brown et al., 2020; Touvron et al.,
2023; OpenAI, 2023). Despite their remarkable capabilities, recent studies reveal that LLMs often
encounter challenges in fully understanding their input contexts, overlooking or showing insensitivity
to crucial contextual information (Kasai et al., 2023; Li et al., 2023; Si et al., 2023; Zhou et al., 2023;
Yu et al., 2024; Zhang et al., 2024). Consequently, the models tend to fabricate answers (also known
as hallucination), resulting in responses that are inconsistent with the presented contexts (Zhou et al.,
2023; Yu et al., 2024). This becomes particularly problematic when models are presented prompts
containing lengthy background contexts (Liu et al., 2023) or complex questions, such as in open-book
question answering (QA) (Kwiatkowski et al., 2019; Shi et al., 2023b; Peng et al., 2023). In these
information-dense scenarios, lengthy contexts can overwhelm LLMs, which contain many details
with varying degree of relevance (Wan et al., 2024; Zhang et al., 2024). Some sentences are crucial
for providing the correct answer, while others, though irrelevant, can distract models from fully
understanding the essential information.

To improve reading comprehension of models, most prior work explores well-designed prompts
to guide the LLM to use contextual knowledge more reliably (Zhou et al., 2023; Wan et al., 2024;
Radhakrishnan et al., 2023). In particular, iterative prompting in chain-of-thought (COT; Wei
et al., 2022) fashion can help LLMs decompose complex task-solving into more interpretable
and manageable intermediate steps, thus yielding better performance (Radhakrishnan et al., 2023).
Motivated by this, it is natural to design multi-step iterative prompting to guide LLMs to pay more
attention to relevant contextual parts and derive answers accordingly. Specifically, for open-book QA
tasks, iterative prompting can be decomposed into two steps: (i) identifying key information and (ii)
deriving answers using the key information.
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Question
Which term is used to identify having official power 

to act?

Original Evidence
In government , the term authority is often … 
However , their meanings differ : while power is 
defined as `` the ability to influence somebody 
to do something that he / she would not have 
done '' , authority refers to a claim of legitimacy , 
the justification and right to exercise that power 
. For example , while a mob has the power to 
punish a criminal , …

Power.

Key Sentence Prediction

Key Sentence

authority refers to a claim of legitimacy , the 
justification and right to exercise that power

Power.

Original Evidence
In government , the term authority is often … 
However , their meanings differ : while power is 
defined as `` the ability to influence somebody to 
do something that he / she would not have done '' , 
authority refers to a claim of legitimacy , the 
justification and right to exercise that power . 
For example , while a mob has the power to punish 
a criminal , …

Authority.

Pay more attention 
to the key sentence. 

Layer 1

Layer 2

…

Layer L

…

…

Selected attention heads

…

Scale up the attention weight 
of highlighted tokens. 

Direct Prompting

Iterative Prompting

SteerPrompt

Figure 1: The illustration of SteerPrompt and alternative methods given a running example. Responses by
Vicuna-7B are shown in red square where Authority is the label. Prompting methods (direct and iterative
prompting) fail to guide a model to derive correct answers while SteerPrompt successfully steers it to answer
correctly by explicitly highlighting identified key parts.

Iterative prompting can work effectively for black-box LLMs of significantly large sizes (e.g., >100B)
(Radhakrishnan et al., 2023). However, for LLMs of smaller sizes (e.g., LLAMA3-70B, Meta, 2024),
it remains unclear if this strategy can guide models to fully attend to the extracted key information and
subsequently improve performance. First, step-by-step generations typically result in longer contexts.
However, key information is only highlighted in token space by appending the short predicted key
sentences, which are often not strong enough to fully steer the model’s attention. As illustrated in the
left part of Figrue 1, even though the model correctly predicts the key sentence which is appened in the
subsequent prompt, it still fails to provide the correct answer. Moreover, errors can propagate across
steps, further compromising performance. Therefore, we aim to develop an alternative inference
method that emulates iterative prompting while addressing these limitations.

Motivated by this, we propose SteerPrompt, an inference-only method that (i) automatically identifies
key contextual parts, and (ii) explicitly highlights them through attention score manipulation for
improving models’ reading comprehension and performance on open-book QA tasks. Specifically,
SteerPrompt integrates iterative question-decomposition prompting and attention steering approaches
(Zhang et al., 2024). Given the original context and question, SteerPrompt first prompts an LLM to
identify the key information (sentences) through free-text generation. Then, instead of appending
those key sentences to the initial prompt, SteerPrompt maps those sentences back to the original
context using semantic embeddings (Figure 1 right). By using the original sentences for highlighting,
it avoids more lengthy input for the next step, and potentially reduces the unreliable key sentences
generations, mitigating the error propagation. Finally, to guide the model to attend to the selected key
sentences, SteerPrompt highlights them through attention steering that upweights their corresponding
attention scores at the selected attention heads as done by Zhang et al. (2024). Unlike existing
attention steering work, our method does not necessitate human annotation on the highlighting part,
rectifying its critical limitation. Additionally, we also design an efficient coarse-to-fine search scheme
for identifying effective attention heads for steering, which reduces the searching overhead by 4.5×
compared to the greedy method of previous work (Zhang et al., 2024).

We conduct experiments to evaluate the effectiveness of SteerPrompt using Vicuna-7B (Chiang
et al., 2023), LLAMA3-8B-Instruct, and LLAMA3-70B-Instruct (Meta, 2024) on both single- and
multi-hop open-book QA tasks from Natural Questions (NQ; Kwiatkowski et al., 2019) and Hot-
potQA (Yang et al., 2018b). Empirical evidence shows that it can be a much easier task for the
LLMs to select the contextual key sentences than comprehending the full context (see analysis in
Section 5.1). SteerPrompt converts the challenging bottleneck of contextual comprehension into
an easier problem of key-sentence selection in a steerable way, consistently providing significant
performance improvements over baseline prompting strategies. For example, SteerPrompt achieves
an average improvement of 8.99% on exact-match (EM) score over iterative prompting for LLAMA3-
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70B-Instruct across both tasks. Remarkably, the attention head sets obtained by SteerPrompt exhibit
outstanding generalization ability, allowing them to be effectively used across different tasks.

2 BACKGROUND

Problem description. In standard LLM prompting, we are given a pre-trained LLM and a text
prompt x consisting of n tokens. In the closed-book setting, the prompt x can only be a question
or instruction to be completed by models. Relying solely on model parametric knowledge poses
challenges in scenarios involving complex questions that entail new knowledge or private information
(Zhou et al., 2023; Yu et al., 2024). Existing methods (Shi et al., 2023b; Peng et al., 2023) resort
to augmenting the prompt with additional background contexts to facilitate question answering,
i.e., open-book question answering. The following box presents a prompt template that we use for
open-book QA:

A direct prompt template for open-book QA

Answer the question below, paired with a context that provides background knowledge. Only output the answer without other context
words.

Context: {context}

Question: {question}

Answer:

Multi-head attention. A typical transformer model consists of L stacked layers, where each layer
contains two submodules: a multi-head attention (MHA) and a fully connected feed-forward network
(FFN). Given the input X ∈ Rn×d, MHA of the layer l performs the attention function in parallel H
heads: MHA(l) (X) = Concat(H(l,1), ...,H(l,H))Wo with

H(l,h) = Softmax(A(l,h))V (l,h)

where A = 1√
dh
QK⊤ ∈ Rn×n is the scaled inner product between query Q and key K.

Q = XWqh ,K = XWkh
,V = XWvh

and Wqh ,Wkh
,Wvh ∈ Rd×dh are learnable projec-

tion matrices of head h. dh is typically set to d/H .

Post-hoc attention steering. Zhang et al. (2024) propose PASTA, an inference-only method that
applies attention reweighting to steer model attention towards user-highlighted input sets, thereby
improving instruction following and contextual comprehension. Specifically, given the index set of
user-specified tokens as G (G ⊂ [n]), PASTA highlight these tokens by upweighting their attention
scores with a constant attention bias B(l,h):

H(l,h) = Softmax(A(l,h) +B(l,h))V (l,h), B
(l,h)
ij =

{
−δ if (l, h) ∈ H and j /∈ G
0 otherwise. (1)

where δ is a positive constant. After Softmax(·), the attention scores of tokens not in G is scaled
down by exp(δ). Correspondingly, the others in G are upweighted due to the renormalization of
Softmax1, steering the model to pay more attention to the input spans of G. Following Zhang et al.
(2024), we set δ = log 100 in all of our experiments. H is an index set of attention heads selected for
steering. Since various heads function diversely, steering different heads yields dramatically different
performance. To identify the effective heads, Zhang et al. (2024) employ a greedy search approach
that evaluates the steering performance of each head on multiple tasks and selects those with best
accuracy. The resulting head set H can be generalized for steering across different tasks.

PASTA requires the access to user-annotated input spans for highlighting. In the case of context-
specific tasks, it is generally prohibitively expensive to extract and annotate relevant sentences from
lengthy contexts through humans. To address this critical limitation and improve model reading
comprehension by automatic explicit highlighting, we introduce our method – SteerPrompt.

1(1) is a simplified formula from Equation (2) in Zhang et al. (2024), which we elaborate in Appendix A.
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3 METHOD

Our proposed method – Steerable Prompting (SteerPrompt), integrates iterative prompting and at-
tention steering. This integration synergistically combines the advantages of both techniques while
mitigating their respective limitations. For multi-step iterative prompting, incorporating attention
steering externalizes the highlighting of key information through an inference-only operation, effi-
ciently enhancing model reading comprehension with improved reliability and controllability. For
post-hoc attention steering, equipping it with iterative prompting enables the automatic identifica-
tion of contextually relevant key information, thereby addressing its significant reliance on human
annotations.

Algorithm 1 SteerPrompt

Input a question q, a context c, the head set H of an LLM M, prompt templates Pi,Pd and δ.
1: Generate g1 = GenerateM(Pi(q, c)) as in (2);
2: Calculate sk = Matche (g1, {s1, . . . , sm}) as in (3);
3: Steer g2 = SteerH,sk

(GenerateM(Pd(q, c))) as in (4);
Output: The final answer g2

3.1 AUTOMATIC CONTEXTUAL HIGHLIGHTING

In the open-book QA task, an LLM M is prompted to answer a question q paired with a background
context c that consists of m sentences c = s1|| . . . ||sm. Instead of directly prompting an LLM with
(q, c), SteerPrompt first prompts the LLM to generate a key sentence from the context c that supports
answering the question:

g1 = GenerateM(Pi(q, c)), (2)
where Pi is the prompt template of key sentence identification that we show in Section 4.1. Then,
SteerPrompt maps g1 back to a sentence from the original context c to avoid potential token-level
generation errors in g1 and mitigate error propagation. Specifically, it employs a small encoder e
to calculates the semantic embeddings of g1 and every si(1 ≤ i ≤ m), and pick the best-matching
sentence sk with the highest similarity to g1:

sk = Matche
(
g1, {s1, . . . , sm}

)
⊂ c. (3)

In the final step, SteerPrompt steers the attention scores of tokens in sk based on (1) at the specific
attention heads H, when directly prompting the LLM M to derive the answer for (q, c):

g2 = SteerH,sk

(
GenerateM (Pd(q, c))

)
(4)

where Pd is the prompt template of direct answering as shown in Section 2, and SteerH,sk
(·) is

detailed by (1) with G as the index set of sk. As such, the identified key sentence sk is explicitly
highlighted through attention score upweighting, directing the model to grasp the key information
and solve the questions more reliably. Notably, SteerPrompt is applied at inference time and does not
require changing any model parameters. More importantly, it does not involve human annotation on
highlighted parts. The key information is automatically identified by iterative prompting the model
M, addressing the major limitation of existing attention steering approach.

3.2 COARSE-TO-FINE MODEL PROFILING

SteerPrompt requires carefully selecting H, the set of attention heads to be steered in (1), but finding
these heads can be computationally intensive. Zhang et al. (2024) propose a greedy search strategy
that evaluates the steering performance of each head on small validation sets of multiple tasks and
selects the heads that yield the best performance. This greedy strategy requires evaluating L×H
times, resulting in non-trivial overheads especially for large models. To improve the efficiency of
searching heads, we propose an alternative coarse-to-fine model profiling scheme that searches from
the layer level to head level. Specifically, we first evaluate the performance of steering all attention
heads of one single layer, then pick the top-l layers, and further evaluate the steering performance
of each head in these layers. The head set H is obtained by selecting the best-performing heads
from top-l layers. Empirically, we find that a small l (e.g., l = 6 compared to L = 32) is sufficient
for SteerPrompt to achieves superior performance and identify effective attention heads that can
generalize across tasks, substantially reducing the searching overheads to lH+L

LH .
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Table 1: Generation examples of a Vicuna-7B on NQ and HotpotQA. Texts in blue are predicted by
the model for highlighting and texts in bold are highlighted by SteerPrompt.

Task Prompt Baseline SteerPrompt
NQ Answer the question below, paired with a context that provides background knowledge.

Only output the answer without other context words.
Context: Although the delegates were divided early on as to whether to break from Crown
rule, the second Continental Congress on July 2, 1776, passed a resolution asserting
independence, with no opposing vote recorded. The Declaration of Independence was
issued two days later declaring themselves a new nation: the United States of America.
It established a Continental Army, giving command to one of its members, George
Washington of Virginia. It waged war with Great Britain, made a militia treaty with
France, and funded the war effort with loans and paper money.
Question: when did the continental congress vote to adopt the declaration of indepen-
dence?
Answer:

✗ The Continen-
tal Congress voted
to adopt the Decla-
ration of Indepen-
dence on July 4,
1776.

✓ July 2,
1776.

Label: July 2,
1776.

HotpotQAAnswer the question below, paired with a context that provides background knowledge.
Only output the answer without other context words.
Context: [1]: Branford, Connecticut - Branford is a shoreline town located on Long
Island Sound in New Haven County, Connecticut, 8 mi east of New Haven. The
population was 28,026 at the 2010 census. [2]: Long Island Sound - Long Island Sound
is a tidal estuary of the Atlantic Ocean, lying between the eastern shores of Bronx
County, New York City, southern Westchester County, and Connecticut to the north,
and the North Shore of Long Island, to the south. From east to west, the sound stretches
110 miles (177 km) from the East River in New York City, along the North Shore of Long
Island, to Block Island Sound. A mix of freshwater from tributaries and saltwater from
the ocean, Long Island Sound is 21 miles (34 km) at its widest point and varies in depth
from 65 to.
Question: How long is the tidal estuary in which Branford is a shoreline town?
Answer:

✗ Long Island
Sound.

✓ 110
miles.

Label:110
miles.

4 EXPERIMENTS

We conduct experiments to evaluate the effectiveness of SteerPrompt using Vicuna-7B (Chiang et al.,
2023), LLAMA3-8B-Instruct, and LLAMA3-70B-Instruct (Meta, 2024) on both single- and multi-
hop open-book QA tasks from Natural Questions (NA; Kwiatkowski et al., 2019) and HotpotQA
(Yang et al., 2018b).

4.1 EXPERIMENTAL SETUP

Datasets. We study 2 datasets: HotpotQA (Yang et al., 2018a) and the MRQA version Fisch et al.
(2019) of Natural Questions (NQ) (Kwiatkowski et al., 2019). Following the filtering procedures
outlined by Yu et al. (2024), duplicated and low-quality questions are removed from the NQ dataset,
resulting in 7,189 instances remaining in NQ, and 5,190 instances in HotpotQA. For each dataset, we
randomly select 1,000 examples as the profiling set and keep the remaining examples as the test set
(see breakdown in Table 7). For all the experiments, we present two evaluation metrics: Exact Match
(EM), and Token-level F1 score. We apply greedy search decoding for all experiments.

Implementation Details. We implement our experiments using Huggingface Transformers (Wolf
et al., 2019) and PyTorch (Paszke et al., 2019). All the experiments are conducted on NVIDIA A6000
and A100 GPUs.

SteerPrompt Settings. For SteerPrompt, we use the following prompt template Pi to prompt an
LLM M to identify the key information from the context that support answering the question.

Prompt template Pi of key sentence identification

A question, and a passage are shown below. Please select the key sentence in the passage that supports to answer the question
correctly. Only output the exactly same sentence from the passage without other additional words.

Question: {question}

Passage: {context}

Sentence:

Then, we map the predicted key sentence g1 back to the original context by (3), which uses a small
encoder models to calculate the semantic embeddings of the predicted key sentence g1 and every

5
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Table 2: Main evaluation results with Vicuna-7B, LLAMA-8B-Instruct, and LLAMA3-70B-Instruct
on NQ and HotpotQA. ”In-domain” means that the head set is selected based on the profiling set of
the target task. ”Out-of-domain” means that the head set is selected from the other dataset and the
target task is unseen during the profiling.

Model Method NQ HotpotQA All
EM Token F1 EM Token F1 Ave.

Vicuna-7B

Direct Prompting 5.88 32.21 18.11 38.77 23.74
Iterative Prompting 4.36 31.48 14.04 34.99 21.22
SteerPromptout-of-domain generalize 11.78 35.53 21.94 39.92 27.29
SteerPromptin-domain profiling 15.41 38.59 29.54 47.51 32.76

LLAMA3-8B

Direct Prompting 31.62 54.19 42.58 63.30 47.92
Iterative Prompting 32.62 55.30 42.10 63.07 48.27
SteerPromptout-of-domain generalize 41.21 61.61 51.96 70.97 56.44
SteerPromptin-domain profiling 33.51 56.91 58.08 75.41 55.98

LLAMA3-70B

Direct Prompting 30.00 54.18 42.63 64.26 47.77
Iterative Prompting 30.57 54.92 42.86 65.15 48.38
SteerPromptout-of-domain generalize 33.46 56.59 58.32 76.74 56.28
SteerPromptin-domain profiling 40.51 63.32 50.90 70.59 56.33

sentence si in the context c. Specifically, we use a ”all-MiniLM-L6-v2” model from Sentence-
Transformer (Reimers & Gurevych, 2019) as the encoder to encode sentences. Then, we calculate the
cosine similarity between semantic embeddings of g1 and each sentence si in the context, and select
the contextual sentence sk with the highest similarity score as the final key sentence prediction. For
multi-hop question answering, such as HotpotQA, the key sentences are identified for each individual
hop separately. Finally, we highlight sk by (4) while directly prompting the model to answer the
question paired by the context with the direct prompting template shown in Section 2.

Coarse-to-fine Model Profiling. For the coarse-to-fine search strategy outlined in Section 3.2, we
consider all attention heads in the top-l layers as potential candidates for selection, where l is chosen
from {3, 4, 5, 6}. Subsequently, we either select top-i heads from each individual layer, or top-j
heads from the pool of head candidates. Top-i is chosen from {4, 6, 8}, and top-j is chosen from
{16, 24, 32, 64}. The final head set utilized in the study is determined based on the highest token-F1
performance achieved on the profiling set.

Baselines. We evaluate three open-source LLMs: Vicuna-7B Chiang et al. (2023), Llama3-8B-
Instruct, and Llama3-70B-Instruct under direct prompting, iterative prompting, and SteerPrompt.

• Direct prompting: Models are prompted to directly answer the question q based on the provided
context c. The prompt template Pd is displayed in Section 2.

• Iterative Prompting: Models are first prompted to generate the key sentence that supports answering
the question, using the same prompt template Pi. For multi-hop question answering, such as
HotpotQA, the key sentences are identified for each individual hop separately (see Appendix C). The
predicted key sentences are also mapped back to the original context, similar as that in SteerPrompt.
Then, the model are prompted to answer the question with the key sentences appended to the context.

4.2 MAIN RESULT: STEERPROMPT IMPROVES OPEN-BOOK QA.

We evaluate the performance of SteerPrompt on NQ and HotpotQA in two settings: in-domain and
out-of-domain evaluation. For the in-domain setting, we perform profiling (selecting the head set
to steer) and evaluate performance on the same dataset. For the out-of-domain setting, we perform
profiling and evaluate performance on different datasets, where the target task is unseen during the
profiling to evaluate the generalization ability of SteerPrompt.

In-domain Evaluation. Table 2 suggests that, for all the models, SteerPrompt significantly improves
the model performance compared with other baselines, regardless of model size and datasets. For
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example, SteerPrompt achieves 40.51% EM for LLAMA3-70B-Instruct on NQ, yielding a significant
9.94% improvement compared to the best-performing baseline. We also observe that iterative
prompting can mostly improve upon the direct prompting, showcasing the performance gains from
identifying key sentences and appending them to contexts. However, in certain cases, such as Vicuna-
7B, iterative prompting can actually underperform direct prompting. It suggests that highlighting in
token space by appending key sentences is insufficient to fully steer a model’s attention. In contrast,
SteerPrompt shows a consistently substantial improvement over all baselines, demonstrating the
effectiveness of automatic attention steering to improve model reading comprehension. Table 1
further illustrates this by comparing the generation examples of SteerPrompt and direct prompting.

Out-of-domain Evaluation. In this setting, given an evaluation task (e.g., NQ), we employ the head
sets selected with profiling set of the other task (e.g., HotpotQA) for SteerPrompt to evaluate its gen-
eralization ability across different domains and tasks. The results in Table 2 indicate that SteerPrompt
significantly outperforms all baseline methods for all models and all datasets, achieving better or
comparable performance to that of in-domain profiling. Notably, for LLAMA3-8B-Instruct on NQ,
the cross-domain performance surpasses the in-domain performance, compellingly demonstrating the
robustness and generalization proficiency of our approach.

5 ANALYSIS

5.1 ISOLATING THE EFFECT OF STEERPROMPT’S TWO COMPONENTS

SteerPrompt consists of two primary components: automatic key sentence identification, and explicit
highlighting key sentences. To underscore the necessity of both components, we conduct the
comparison between following methods: (i) direct prompting with the original context; (ii) iterative
prompting that appends the identified key sentences appended to the context; (iii) highlighting the
entire context by attention steering approach but without key-sentence identification; (iv) SteerPrompt
that highlights the identified key sentences. Moreover, we present additional results about iterative
prompting to provide comprehensive evaluation for it. Specifically, within each context of the NQ
dataset, there is one gold sentence that entails the answer. We also evaluate the performance of
iterative prompting when appending the gold sentence.

The results in Table 3 indicate that SteerPrompt can benefit from using the identified key sentence,
yielding significant performance gains. Specifically, highlighting the entire context via attention
steering can improve upon direct prompting but underperforms SteerPrompt, suggesting the impor-
tance of key sentence identification. Meanwhile, the comparison between (ii) and (iv) illustrates the
performance gains yielded by explicitly highlighting via attention steering. Therefore, these results
suggest that both components are essential for SteerPrompt to achieve its best performance.

Table 3: Performance comparison among appending identified key sentences or gold sentence, and
highlighting different parts of contexts. N.A. means that it cannot identify the gold sentence from
HotpotQA that entails answers.

Method LLAMA3-8B on HotpotQA Vicuna-7B on NQ
EM Token F1 EM Token F1

Direct prompting 42.58 63.30 5.88 32.21
Iterative prompting w. identified key sentences 42.10 63.07 4.36 31.48
Iterative prompting w. gold sentences N.A. N.A. 5.01 33.67
Highlight the entire context 54.88 73.23 – –
SteerPrompt highlights identified key sentences 58.08 75.41 15.41 38.59

Moreover, we can see that, even appending the fully correct gold sentences to prompts, iterative
prompting still faces challenges in effectively improving model’s reading comprehension and QA
performance. Therefore, the performance of prompting methods is bottlenecked by LLMs’ capability
of comprehending full contexts and grasping key information from them. By contrast, SteerPrompt
addresses this bottleneck by explicitly highlighting key information through attention steering. As
such, the QA performance will be upper bounded by the accuracy of key sentence identification.
Notably, it is a much easier task for LLMs to select the contextual key sentences than comprehending
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the full context. LLMs can achieve much higher accuracy of selecting key sentences than directly
generating correct answers. Moreover, SteerPrompt proposes to map the key sentence generated
by the model to a sentence from the original context, further mitigating the error propagation. To
showcase it, we evaluate the accuracy of SteerPrompt to identify the gold sentences on the NQ dataset
with Vicuna-7B and LLAMA3-8B-Instruct.

Table 4: Accuracy of gold sentence identification by SteerPrompt

Vicuna-7B LLAMA3-8B-Instruct

64.02% 67.07%

We can tell that SteerPrompt achieves much higher accuracy of key sentence selection compared to
the models’ question answering accuracy (e.g., 64.02% of gold sentence identification v.s. 5.88%
NQ EM by Vicuna-7B). As such, SteerPrompt converts the challenging bottleneck of contextual
comprehension into an easier problem of key-sentence selection in a steerable way. The 64.02%
accuracy of key sentence selection achieved by SteerPrompt is sufficient for it to significantly improve
models’ QA performance as shown in Table 3.

5.2 COMPARISON BETWEEN PROFILING STRATEGIES

To illustrate the effectiveness of the coarse-to-fine profiling strategy introduced in Section 3.2, we
evaluate several different profiling approaches as follows:

• Greedy search proposed by Zhang et al. (2024): This strategy involves selecting the top-k heads
from all the attention heads in the models. The evaluation times for this strategy is L×H .

• Group search inspired by Ainslie et al. (2023): Here, 8 adjacent heads from one layer form a group.
Then, we evaluate them group-wise, and select the top-k head groups. The evaluate times for this
strategy is LH/8.

• Coarse-to-fine search: This strategy initially selects the top-l layers and then chooses the head set
only from the heads within these layers. The evaluation times for this strategy is L+ lH .

where L is the number of layers, and H is the number of attention heads per layer. We compare them
with a Vicuna-7B (Chiang et al., 2023) that has 32 layers, and 32 heads per layer. The results in Table
5 show that coarse-to-fine profiling significantly outperforms all the other strategies while reducing
the total evaluation times by 4.5× compared to the original greedy search in Zhang et al. (2024).

Table 5: Performance of SteerPrompt on NQ with Vicuna-7B when searching effective attention
heads with different strategies. ”# Eval” refers to the total evaluations with the profiling set.

Method # Eval EM Token F1

Baseline N.A. 8.13 33.79
Greedy search all heads 1,024 14.81 35.63
Group search (size of 8) 128 12.12 36.13
Coarse-to-fine search 224 15.41 38.59

5.3 PERFORMANCE OF STEERPROMPT WHEN RETRIEVING SEVERAL PASSAGES

In this work, our primary objective is to enhance model reading comprehension to the provided
evidence, and the gold evidence is always provided. Nonetheless, in practical applications, a retriever
may simultaneously supply multiple similar and relevant passages. To demonstrate the effectiveness
of SteerPrompt in such scenarios, we utilize DRP (Karpukhin et al., 2020) to retrieve an additional
four passages, each ranked within the top four in relevance scores to the question. Along with
the gold evidence, these five passages are then presented to the model. SteerPrompt is tasked
with automatically extracting and highlighting the key sentence from this set. Table 6 displays the
results using Vicuna-7B on NQ. Although the inclusion of more noisy passages generally leads to a
performance decline, we still observe consistent improvements with SteerPrompt, underscoring the
effectiveness of our approach.
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Table 6: Performance of SteerPrompt on NQ with Vicuna-7B when additional passages are provided.

Model Method NQ with Gold Evidence NQ with 5 Evidence
EM Token F1 EM Token F1

Vicuna-7B
Direct Prompting 5.88 32.21 2.50 22.18
Iterative Prompting 4.36 31.48 1.74 21.99
SteerPromptin-domain profiling 15.41 38.59 6.82 25.60
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Figure 2: Ablation study of SteerPrompt performance on HotpotQA when steering different numbers
of heads (2a and 2b) and setting different δ (2c). Dashed line in red refers to the baseline performance
of direct prompting.

5.4 ABLATION STUDY

We conduct ablation study to discuss the performance of SteerPrompt given different number of
attention heads for steering and different δ.

Varying the number of steered heads. Figure 2a presents the performance variation of SteerPrompt
with Vicuna-7B on HotpotQA dataset when steering different number of attention heads. Figure 2b
illustrates the EM results for LLAMA3-8B-Instruct on the HotpotQA dataset under similar conditions.
We see that steering more heads for SteerPrompt may result in slight performance degeneration, for
example, the performance of LLAMA3-8B-Instruct on HotpotQA. This observation is similar to
findings in previous work (see Figure 3 in Zhang et al. (2024)), where overemphasizing too many
heads can lead models to focus on solely on highlighted information while ignoring other parts,
potentially degenerating performance. In practice, we recommend applying SteerPrompt to steer a
moderate number of heads. The optimal number of steered heads in our study is determined based on
the performance metrics on the profiling data.

Analyzing the sensitivity of δ. Figure 2c presents the sensitivity analysis for varying δ in (1) using
LLAMA3-8B-Instruct on HotpotQA. We can see that the performance of SteerPrompt is not sensitive
to the attention bias constant δ. Changing its logarithm values (i.e., the scaling-down coefficient
for non-highlighted tokens as elaborated in Appendix A) from 50 to 3000 does not induce dramatic
performance variation. Therefore, we set δ as its default value log(100), which is the same as Zhang
et al. (2024).

6 RELATED WORK

Large language models exhibit remarkable performance on (context-free) knowledge-intensive tasks,
such as open-domain question answering (QA) (Kwiatkowski et al., 2019) and commonsense reason-
ing (Mihaylov et al., 2018; Clark et al., 2018), indicating that they encode substantial knowledge about
open-world facts (Zhou et al., 2023) in their parameters. Despite their proficiency in memorization,
different kinds of hallucinations in the output are observed, including factual knowledge hallucination
(Huang et al., 2023; Yu et al., 2024), hallucination in summarization (Maynez et al., 2020; Pagnoni
et al., 2021), hallucination in logical operations (Lyu et al., 2023; Huang et al., 2023). In this work,
we focus on the factual knowledge hallucination due to models’ unawareness of relevant knowledge
or overlooking contextual information.

9
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Retrieval-augmented LLMs. To address the problem of missing relevant knowledge, one popular
method is to use retrieval-augmented LMs that supplement missing knowledge from external sources
(Shi et al., 2023b; Peng et al., 2023). Retrieval augmentation requires that LLMs are sensitive to
the input context and reliably understand the contexts. However, recent work shows that even if the
relevant knowledge is presented, the model may still not fully comprehend the given evidence (Zhou
et al., 2023; Yu et al., 2024; Wan et al., 2024).

Prompt-based strategies. To improve the reading comprehension of the models, various prompting
strategies are designed to guide the model to detect the key information (Wei et al., 2022; Radhakr-
ishnan et al., 2023), or focus on the given evidence (Zhou et al., 2023), while these extracted key
information is only added as additional tokens in the input, and models still cannot grasp these new
tokens.

Model-based strategies. Besides using prompting to improve the reading comprehension, some
works augment an LLM’s training data (Köksal et al., 2023; Hu et al., 2024; Chen et al., 2024).
Alternatively, Shi et al. (2023a) proposes a context-aware decoding method to downweight the output
distribution associated with the model’s prior knowledge.

To the best of our knowledge, we are the first work to integrate key information prompting and
explicit token highlighting during inference without any additional training.

7 CONCLUSION

In this paper, we address the challenge of contextual reading comprehension in open-book QA tasks
and introduce SteerPrompt, an inference-only method that automatically identifies crucial information
pieces within contexts and explicitly highlights them through steering a model’s attention scores.
SteerPrompt guides the model to focus on the essential information within contexts, leading to
substantially improved model reading comprehension and performance. Remarkably, by integrate
iterative prompting and attention steering techniques, SteerPrompt synergistically combines their
advantages while mitigating their respective limitations.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 4895–4901, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yanda Chen, Chandan Singh, Xiaodong Liu, Simiao Zuo, Bin Yu, He He, and Jianfeng Gao. Towards
consistent natural-language explanations via explanation-consistency finetuning. arXiv preprint
arXiv:2401.13986, 2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen. MRQA 2019
shared task: Evaluating generalization in reading comprehension. In Proceedings of 2nd Machine
Reading for Reading Comprehension (MRQA) Workshop at EMNLP, 2019.

Minda Hu, Bowei He, Yufei Wang, Liangyou Li, Chen Ma, and Irwin King. Mitigating large language
model hallucination with faithful finetuning. arXiv preprint arXiv:2406.11267, 2024.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023.
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A DERIVATION FOR EQUATION 1

In this section, we present the derivation to show why (1) is equivalent to equation (2) in Zhang et al.
(2024).

For the token that are not highlighted j /∈ G, Zhang et al. (2024) downweight their attention scores by
scaling down their scores post-softmax by a coefficient α (0 ≤ α ≤ 1): α · Softmax(Ai·)j/Ci where
Ci =

∑
j∈G Softmax(Ai·)j +

∑
j /∈G α · Softmax(Ai·)j . Now we show that:

α · Softmax(Ai·)j/Ci =
α

Ci

exp(Aij)∑
j′ exp(Aij′)

(5)

=
exp(Aij + log(α))

Ci

∑
j′ exp(Aij′)

(6)

For the tokens in G:

Softmax(Ai·)j/Ci =
exp(Aij)

Ci

∑
j′ exp(Aij′)

(7)

Therefore, after the renormalization, it is equivalent to condut the softmax among Aij + log(α) for
j /∈ G and Aij for j ∈ G, which is our simplified equation in (1).

B EVALUATION DETAILS

B.1 DATASET STATISTICS

Profiling Test

Natural Questions 1,000 6,189
HotpotQA 1,000 4,190

Table 7: Natural Questions and HotpotQA data statistics after the preprocessing.

B.2 THE DETAILED NUMBER OF ATTENTION HEADS FOR STEERING

Model NQ HotpotQA
Vicuna-7B top 64 heads from top 4 layers top 96 heads from top 6 layers

LLAMA3-8B top24 heads, 4 from each of top 6 layers top24 heads, 4 from each of top 6 layers

LLAMA3-70B top20 heads, 4 from each of top 5 layers top 64 heads from top 5 layers

Table 8: The detailed number of attention heads for steering
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C PROMPT TEMPLATE DETAILS

Prompt Templates of Two-Round Iterative Prompting

[First Round]: A question, and a passage are shown below. Please select the key sentence in the passage that supports to answer the
question correctly. Only output the exactly same sentence from the passage without other additional words.

Question: {Question}

Passage: {Evidence}

Sentence:
———————————————————————————
[Second Round]: Answer the question below, paired with a context that provides background knowledge, and a key sentence. Only
output the answer without other context words.

Context: {Evidence}

Key Sentence:{Predicted key sentence}

Question: {Question}

Answer:
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