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ABSTRACT

Reconstructing visual stimuli from fMRI signals is a central challenge bridg-
ing machine learning and neuroscience. Recent diffusion-based methods typi-
cally map fMRI activity to a single neural embedding, using it as static guidance
throughout the entire generation process. However, this fixed guidance collapses
hierarchical neural information and is misaligned with the stage-dependent de-
mands of image reconstruction. In response, we propose MindHier, a coarse-to-
fine fMRI-to-image reconstruction framework built on scale-wise autoregressive
modeling. MindHier introduces three components: a Hierarchical fMRI Encoder
to extract multi-level neural embeddings, a Hierarchy-to-Hierarchy Alignment
scheme to enforce layer-wise correspondence with CLIP features, and a Scale-
Aware Coarse-to-Fine Neural Guidance strategy to inject these embeddings into
autoregression at matching scales. These designs make MindHier an efficient and
cognitively aligned alternative to diffusion-based methods by enabling a hierar-
chical reconstruction process that synthesizes global semantics before refining lo-
cal details, akin to human visual perception. Extensive experiments on the NSD
dataset show that MindHier achieves superior semantic fidelity, 4.67 x faster in-
ference, and more deterministic results than the diffusion-based baselines.

1 INTRODUCTION

Reconstructing visual stimuli from fMRI signals stands as a fundamental challenge at the intersec-
tion of computer vision and cognitive neuroscience. Recent breakthroughs in this field have been
largely dr1ven by diffusion-based methods( s ; s ; , ;

, ), Wh1ch typ1cally ahgn the encoded fMRI embeddlng W1th a smgle
neural representatlon from multimodal models such as CLIP ( , ). Once aligned,
this single neural feature serves as a fixed guidance signal throughout the entire diffusion process,
progressively transforming random Gaussian noise into a reconstructed image (Fig. 1(a)).

Despite impressive results, relying solely on a single, static neural feature to guide the entire genera-
tion pipeline introduces two fundamental limitations. First, fMRI signals are inherently hierarchical,
in which different brain regions capture coarse semantic content as well as fine-grained perceptual
details ( s ). However, current methods collapse this rich, multi-level information
into a single vector, leading to its underutilization. Second, the guidance is temporally invariant, yet
generative models operate in a dynamic multi-stage manner: early stages require global semantic
constraints, while later stages demand precise structural and textural cues (

, ). Fixed neural guidance is often redundant in the early phase and 1nsufﬁc1ent in the
later phase, creating a mismatch between representation and generation. Beyond these limitations,
diffusion models themselves provide limited control points for injecting stage-aware guidance (

s ), which hinders the effective exploitation of hierarchical brain features.
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Figure 1: Comparison of fMRI-to-image reconstruction pipelines. (a) Prior diffusion-based methods
utilize a fixed neural feature to guide the reconstruction. (b) In contrast, MindHier employs scale-
aware guidance, leveraging hierarchical neural features to first establish a low-resolution overview
(“Forest”) before progressively refining local details (“Trees”) at higher resolutions.

To address these challenges, we propose MindHier, a new coarse-to-fine fMRI-to-image reconstruc-
tion framework built upon scale-wise autoregressive modeling (Tian et al., 2024), moving beyond
diffusion-based pipelines (Fig. 1(b)). MindHier integrates three key designs. (i) Hierarchical fMRI
Encoder: a unified encoder that transforms fMRI signals into a hierarchy of embeddings, capturing
the full spectrum of neural information from global semantics to local details. (ii) Hierarchy-to-
Hierarchy Alignment: a dual-objective training scheme that enforces hierarchy-to-hierarchy align-
ment between fMRI embeddings and CLIP features, pairing shallow layers with low-level visual
features for structural fidelity and deeper layers with high-level features for semantic coherence.
(iii) Scale-Aware Coarse-to-Fine Neural Guidance: a principled strategy that injects the hierarchi-
cal embeddings into autoregression at matching scales. Specifically, the high-level semantic em-
beddings from the fMRI encoder supervise the small-scale (low-resolution) stage to establish a se-
mantically coherent global layout, while lower-level embeddings are progressively injected at larger
scales (higher resolution) to refine structures and enrich textures. Together, these components enable
MindHier to leverage the coarse-to-fine nature of visual autoregression, yielding reconstructions that
achieve strong semantic fidelity and competitive structural faithfulness compared to diffusion-based
baselines. MindHier achieves state-of-the-art high-level metrics on the NSD dataset (Allen et al.,
2022), e.g., the highest CLIP score of 96.4% and the lowest SWAV distance of 0.329.

Beyond empirical improvements, MindHier offers several deeper advantages.  First, its
coarse-to-fine generation naturally echoes the “Forest before Trees” principle from cognitive
neuroscience (Navon, 1977), whereby human perception prioritizes global structure before resolv-
ing local details. By seeding reconstructions with high-level semantic embeddings and progres-
sively refining fine-grained cues, MindHier translates this perceptual hierarchy into a computational
framework. Second, the coarse-to-fine autoregressive modeling substantially enhances efficiency:
MindHier achieves significant speedups by allocating most computation to low-resolution scales.
For example, reconstructing a high-fidelity visual stimulus takes just 2.64 seconds per image, which
is 4.67 x faster than MindEye2 (Scotti et al., 2024). Third, MindHier produces more stable and con-
sistent reconstructions. Unlike diffusion-based pipelines that are inherently stochastic due to random
noise initialization, MindHier anchors its generation process directly to fMRI-derived embeddings,
initializing with high-level embeddings and conditioning subsequent scales on lower-level ones.

In a nutshell, our contributions are three-fold:

* We identify a fundamental mismatch between the fixed neural guidance and the dynamic nature
of image reconstruction. To address this, we introduce MindHier, a coarse-to-fine autoregressive
framework that dynamically tailors neural guidance to the specific demands of each generation
stage, from establishing a global semantic layout to rendering fine-grained details.

* We propose Hierarchy-to-Hierarchy Alignment to disentangle the fMRI signal into hierarchical
neural features, and Scale-Aware Guidance to strategically inject these features into the corre-
sponding scales of the autoregressive generator for high-fidelity image reconstruction, resolving
the structural mismatch between the neural representation and image reconstruction.

* MindHier establishes a critical balance among high semantic fidelity, deterministic stability, and
inference speed. These advantages advance fMRI-to-image reconstruction beyond offline analy-
sis, facilitating the future realization of real-time brain-computer interfaces.
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2 RELATED WORK

fMRI-to-Image Reconstruction. The reconstruction of visual stimuli from brain activity is a piv-
otal challenge at the intersection of cogmtlve neuroscience and computer vision. Early works (

, ) correlate fMRI 51gnals with hand-
crafted 1mage features, wh11e subsequent advances ( , ) improve this
brain-visual association by using sparse linear regression to predict features from early CNN lay-
ers. The advent of Variational Autoencoders ( , ) and Generative Adversarial
Networks ( , ) enables more direct pixel-level reconstruction ( ,

; , ). However, these methods often yield ambiguous im-
ages that lack clear semantlcs To bridge this semantic gap, researchers have made notable progress

by mapping brain signals to the latent space of models like IC-GAN ( , ) and
StyleGAN ( , ). More recently, the field has been propelled by Latent Diffusion
Models ( , ) and multi-modal models like CLIP ( , ). These state—of—

the-art methods ( s ; , ) )
; ; , ) map fMRI 51gnals
to the shared embeddlng space of CLIP to gu1de the reconstructlon However, these methods suffer
from a mismatch between the fixed guidance and the dynamic generation process. In light of this,
we propose a distinct framework that adopts a coarse-to-fine generation process with scale-aware
guidance, inherently preserving semantic consistency and structural faithfulness to visual stimuli.

Visual Autoregressive Modeling. Autoregressive (AR) models have become a cornerstone of gen-
erative modeling. Early visual AR approaches ( ;

) adapt the “next-token prediction” paradigm from language models. To do S0, they employ
discrete tokenizers ( , ) to quantize images into a 1D sequence using a
raster-scan (left to right, top to bottom). However, this process imposes an unnatural 1D bias onto
2D images, often leading to suboptimal performance. A significant shift arrived with Visual Au-
toregressive Modeling (VAR) ( , ), which introduces a novel “next-scale prediction”
paradigm. This paradigm transforms an image into a pyramid of 2D token maps at different scales
(resolutions) using a multi-scale residual VQ-VAE tokenizer. Each token map is generated progres-
sively, conditioned on the previously generated ones. Such a paradigm better preserves spatial struc-
ture and dramatically improves efficiency without sacrificing quality. Spurred by this innovation,
recent works have applied this technique to diverse fields, including depth estimation ( ,

), 3D generatlon( , ; , ), and text-to-image generation (

; , ). Despite its proven power, the value of this
paradlgm for fMRI-to- 1mage reconstruction remains underexplored. Building upon this paradigm,
we propose a coarse-to-fine fMRI-to-image reconstruction framework with scale-aware guidance.
Our framework reconstructs high-fidelity images and achieves inference speeds up to 4.67 x faster.

3 METHOD

We introduce MindHier for fMRI-to-image reconstruction, a framework built upon a coarse-to-fine
process, which can be broken down into three main components. First, we design a Hierarchical
fMRI Encoder (§3.1) to transform brain signals into a hierarchical set of neural features. Second,
we employ a Hierarchy-to-Hierarchy Alignment (§3.2) scheme to train this encoder, ensuring
the features capture both fine-grained details and global semantics. Finally, we detail the Scale-
Aware Coarse-to-Fine Neural Guidance (§3.3), where these learned neural features are used to
hierarchically guide a scale-wise autoregressive model during the reconstruction of visual stimuli.

3.1 HIERARCHICAL FMRI ENCODER

The central challenge in fMRI-to-image reconstruction lies in bridging the representational mis-
match between a static brain signal and the dynamic, multi-stage nature of image reconstruction. A
naive approach relying on a single feature would fail to capture this critical perceptual hierarchy.
Such a feature provides redundant information for initial coarse synthesis while offering insufficient
information for subsequent fine-grained refinement. Our solution is a departure from this approach.
We introduce a Hierarchical fMRI Encoder (HFE), an architecture designed not merely to encode
the fMRI signal, but to disentangle it into a structured multi-level representation. As illustrated in
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Figure 2: Overview of the two-stage training pipeline of MindHier. (a) Stage 1: Hierarchy-to-
Hierarchy Alignment. A hierarchical fMRI encoder (composed of M cascaded blocks) is trained
to map fMRI signals to a feature hierarchy in CLIP space. This mapping is learned by aligning
the encoder’s outputs with corresponding intermediate features from a frozen CLIP vision encoder
using a cascaded MSE loss (Lysg (Eq. 1)). To ensure high-level semantic coherence, the terminal
fMRI feature is further aligned within CLIP’s shared embedding space via a SoftCLIP loss (LsofcLip
(Eq. 2)). (b) Stage 2: Scale-Aware Coarse-to-Fine Neural Guidance. A scale-wise autoregressive
model is finetuned to generate images across K scales (coarse-to-fine), conditioned on features from
the fixed fMRI encoder pretrained in Stage (a). In practice, an attention mask is used to selectively
route features via cross attention, which directs the features for the coarse view to attend to the initial
scale and the features for finer details to guide subsequent scales. For illustration, a simplified case
with block count M =2, fMRI feature dimension Cpyr; = 2, and scale count K =2 is shown.

Fig.2(a), the HFE is realized as a unified stack of M cascaded transformer blocks. Crucially, the
outputs from these blocks, {e1, ..., eps}, are not only intermediate steps but constitute the hierar-
chical representation itself. This design leverages an established principle from Vision Transformers
(ViTs) ( , ) that ViTs progressively shift from processing local information in initial
layers to aggregating purely global information in deeper layers. By explicitly aligning each block’s
output with a distinct level of a pretrained vision model’s feature hierarchy (§3.2), we compel the
HEFE to learn a structured decomposition of the neural signal. This process culminates in a cascade
of features where the terminal output (eps) encapsulates the global, semantic “Forest,” while pre-
ceding outputs (eq,...) preserve the fine-grained “Trees”. This tiered representation provides the
dynamic, scale-aware guidance (§3.3) that is foundational to our reconstruction framework.

3.2 HIERARCHY-TO-HIERARCHY ALIGNMENT

A hierarchical encoder necessitates a hierarchical training objective. To enable the HFE to disen-
tangle the fMRI signal, we introduce a composite loss function that enforces a level-by-level corre-
spondence between the emerging fMRI representations and the feature hierarchy of a frozen CLIP
vision encoder. This is achieved through two complementary objectives that are optimized jointly:
one ensuring structural alignment and the other enforcing semantic coherence.

Structural Alignment. To capture a rich hierarchy of visual percepts, from simple textures to com-
plex object parts, we enforce a direct, structural alignment between the intermediate representations
of the HFE and the CLIP vision encoder. This is implemented via a cascaded Mean Squared Error
(MSE) loss, which promotes a point-to-point correspondence between the feature sets at multiple
levels of abstraction. For each of the M transformer blocks in the HFE, we minimize the distance
between its output, e,,, and the feature map from a corresponding vision encoder layer, v, _:

M

Lyvise = Z'rn:l [€2(em) — £2(vg,,)

where g,,, is a mapping function from an fMRI block to a specific CLIP layer, and both fMRI features
and visual features are /5 normalized for improving training stability ( , ).

13, (1)
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Semantic-Level Alignment. While structural alignment provides the necessary perceptual founda-
tion, it lacks a global semantic anchor to ensure the overall reconstruction is contextually correct.
Since “Trees” are conceptually part of the “Forest”, any initial error will be propagated through the
whole reconstruction process. To address this, we supplement structural alignment with a contrastive
objective to bolster semantic alignment in CLIP’s shared embedding space. Specifically, we align
the terminal HFE feature, e, representing the most abstract semantics, with both its visual feature
Vg, and its text caption feature t. This is accomplished using a SoftCLIP loss, which provides a
robust semantic anchor through both fMRI-to-image and fMRI-to-text alignment:

1 B exp(e; - v;/T) exp(e; - t;/7)
LsoficLip = —— E , <log + log ; ()
B —i=1 2}11 exp(e; - v;/T) Zf=1 exp(e; - t;/7)

where B is the batch size, 7 is a temperature hyperparameter. The explicit feature layer subscripts
are omitted for brevity. The total training objective for the fMRI encoder is the sum of the above loss
terms, which trains the encoder to learn a hierarchical fMRI feature for subsequent reconstruction.

By enforcing a hierarchical correspondence, this dual alignment ensures that information flows from
CLIP to the hierarchical fMRI encoder in a principled manner. The deep-to-deep alignment acts as a
conceptual “blueprint”, establishing the overall layout first. The shallow-to-shallow alignment acts
as a fine-grained “renderer”, populating this blueprint with the precise textures, shapes, and struc-
tural details perceived by the subject. This structured, top-down alignment is key to reconstruction.

3.3 SCALE-AWARE COARSE-TO-FINE NEURAL GUIDANCE

Given the hierarchical neural embeddings E'={e1, ..., ey }, our objective is to devise a generation
process that can leverage these structured embeddings. An ideal generative framework should there-
fore be able to accept distinct guidance signals at different stages of synthesis. To this end, we build
upon scale-wise autoregressive modeling ( , ), a method uniquely suited for our task, as
its “next-scale prediction” paradigm provides natural and discrete control points for our scale-aware
guidance. In this paradigm, the fundamental regression unit is a 2D token map at a specific scale,
where an input image [ is first mapped by an encoder £ to a continuous representation f =&(I), and
then discretized by a quantizer Q into K multi-scale token maps R = Q(f)={r1,...,rkx}. Each
token map consists of discrete indices, where the index at a given position (7, j) is determined by
mapping its corresponding input vector to the closest entry in a learned codebook Z € RV*C":

r,(f’j): arg min Hf,iw) — lookup(Z, n)H . 3)
ne{l,...,N} 2

Here, f,g” ) represents the input feature for the k-th quantization stage (where f; = f and subsequent
inputs are residuals), N =4096 is the codebook size, and lookup(Z, n) retrieves the n-th vector from
the codebook. The standard autoregressive likelihood is then factorized across these scales, where
each token map is generated conditional on all previously generated, lower-resolution maps:

K
p(ri,ra,. .. 7TK):Hk:1P(Tk | 71,72, TE—1),s “4)

where each token map 73, € {1, ..., N}"***%r is conditioned on the previously generated maps.

Our key innovation lies in how we condition this scale-wise generation process on our learned fMRI
embeddings F={ey, ..., ey }. We propose a novel, Scale-Aware Coarse-to-Fine Neural Guidance
strategy where the generation of each token map r, at scale k is conditioned not on a single, fixed
embedding, but on a scale-specific conditional feature s, from our fMRI hierarchy E:

p(RIE)=T]"

kzlp(m\kmsk% (5)

where r. denotes the previously generated token maps. The guidance sy, is dynamically selected
from E according to two cognitively inspired phases:

* Seeding “Forest” (k = 1): The initial, low-resolution scale is responsible for establishing the
coarse, overall structure of an image. We therefore provide the embedding (ejs), which captures
the most abstract, semantic information, as the special Start Token [S] (s;) to initialize the gener-
ation. This ensures the whole reconstruction process begins with a coherent “Forest” foundation.
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Table 1: Quantitative performance comparison on the new NSD test set ( , ). The
best and second best results are highlighted in bold and underlined respectively. The Wall-clock
inference time for one image is reported. t: an auxiliary low-level feature is used.

Reconstruction Low-Level High-Level Inference
‘ Methods H PixCorr 1 SSIM 1T  Alex(2) T (%) Alex(5) 1 (%) Incep 1 (%) CLIP 1 (%) Eff | SwAV | |Time | (s)
TBrainDiffuserisi rep2023 0.273 0.365 94.4 96.6 91.3 90.9 0.728 0.421 4.87
TMindEyel neuipsa003] 0.319 0.360 92.8 96.9 94.6 93.3 0.648 0.377 12.29
TNeuroPictor(rccvao 0.229 0.375 96.5 98.4 94.5 933 0.639 0.350 8.68
TMindEye2iicn o0 0.322 0431 96.1 98.6 95.4 93.0 0.619 0.344 12.14
fMindTunerisasnos 0.322 0.421 95.8 98.8 95.6 93.8 0.612 0.340 -
TMindHier(Ours) 0.326. 007> 0.461 . 005  93.1.( 07 98.0.0 959 001 954,039 0.613.(0021 034500057 2.64
Takagi et al.icvero3 0.246 0.410 78.9 85.6 83.8 82.1 0.811 0.504 15.08
MmdBndgen % 0.151 0.263 87.7 95.5 92.4 94.7 0.712 0.418 15.98
Wills Aligner(aaaios 0.271 0.328 95.8 98.0 94.3 94.8 0.649 0.373 -
MindHier (Ours) 0.235. g 0060 038100017 94.010.99 98.4 3 959 019 96435 0.606. 0021 0.329. 0034 2.64

* Refining “Trees” (1 < k < K): The subsequent, higher-resolution scales are responsible for
further refinement by adding finer details. At these steps, the model is progressively conditioned
on intermediate, detail-focused features, sy, = ey, , through a multi-head cross-attention operation.
The feature index hy, is defined as hy, =M — | M (k—1)/K)|, where M < K. The design cleverly
provides fMRI features from early transformer blocks to guide the later generation process.

In practice, this scale-aware guidance strategy is implemented via a selective attention mask, as
illustrated in Fig. 2(b). This mechanism governs the information flow: initial, coarse scales are
constrained to attend only to deep, semantic fMRI features, while subsequent, fine-grained scales
are directed towards the shallower, detail-oriented ones. To obtain the final image I, the quantized
vectors for each generated token map 7 are summed to approximate a continuous feature map,
f= Zle lookup(Z, #;), and a decoder D then generates the final image I = D(f). The entire
generative model is trained with a standard Cross Entropy loss to predict the ground-truth token
maps at each scale. Ultimately, this pipeline operationalizes our core principle: the image is seeded
by a coarse representation of the “Forest” and progressively refined with the detailed “Trees”, all
guided by a representation learned directly from a unified, hierarchical fMRI encoder.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We use the Natural Scenes Dataset (NSD) ( s ), a publicly available
fMRI dataset containing the brain responses of 8 human subjects viewing naturahstlc stimuli from
COCO( s ). Following prior work ( , ), we

use these shared 1,000 images as our test set, averaging the three fMRI repetmons The training set
consists of the remaining 30, 000 non-averaged, single-trial fMRI-image pairs.

Training. Our framework is trained in a two-stage process. First, we train a hierarchical fMRI

encoder, with a frozen CLIP ViT/L-14 serving as the visual/textual encoder. Second, we freeze

the fMRI encoder and train a scale-wise autoregressive model, pretrained by Switti ( ,
). Due to limited space, more implementation details are provided in Appendix E.

Testing. Following a recent work ( s ), we use the recently updated NSD, which
includes 1, 000 testing images. The empirical results of MindHier are obtained on this new test set.

Evaluation Metrics. The evaluation spans multiple metrics: low-level similarity (PixCorr = pix-
elwise correlation between ground truth and reconstructions, SSIM = structural similarity index

metric ( s ), AlexNet ( )); high-level semantic features
(Incep ( , ), CLIP ( , ) Eff ( , ), SWAV (
, )). Most metrics are reported as two-way identification accuracy, where higher scores are

better (1). Two-way identification accuracy refers to the percent correct if the original image embed-
ding is more similar to its paired fMRI embedding than to a randomly selected fMRI embedding.
Eff and SwAV, however, measure the average correlation distance, where a lower score is superior
({). All results are averaged across subjects 1, 2, 5, and 7, who completed all 40 scanning sessions.
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4.2 QUANTITATIVE RESULTS

Performance Comparison. Table 1 presents the quantitative comparison of reconstructions of
MindHier against several fMRI-to-image baselines. Our evaluation includes the strong MindEye
series (Scotti et al., 2023; 2024) and other leading methods (Takagi & Nishimoto, 2023; Ozcelik &
VanRullen, 2023; de” et al., 2024; Quan et al., 2024; Bao et al., 2025). The results demonstrate
that MindHier achleves SOTA on several critical metrics. Notably, MindHier surpasses all com-
petitors in semantic fidelity, achieving the top scores for InceptionV3 (95.9%), CLIP (96.4%), and
Eff/SwAV distance. This superiority indicates the ability to more accurately capture the core seman-
tic content of visual stimuli. With the addition of the low-level feature used in MindEye2, MindHier!
achieves comparable low-level metrics while maintaining SOTA performance on high-level metrics.

Efficiency Comparison. Addressing the computational overhead of diffusion models is a key moti-
vation for MindHier. We analyze the computational efficiency of MindHier in Table | by comparing
its inference time against the leading diffusion-based methods. The results reveal that MindHier is
substantially efficient, requiring only 2.64 seconds to generate a 512 x 512 image, marking a 4.67x
speed-up over the MindEye2 model. This computational efficiency is attributable to two key de-
signs: (i) The hierarchical fMRI encoder generates all neural features in a single forward pass.
(i) The coarse-to-fine autoregressive model shifts the majority of computation to lower resolu-
tions. This stands in stark contrast to diffusion models, which must perform many iterative de-
noising steps across the full-resolution space, making our framework fundamentally more efficient.

4.3 QUALITATIVE RESULTS

High-Fidelity Reconstruction. We qualita-
tively evaluate visual reconstruction fidelity by
comparing MindHier against leading diffusion-
based methods in Fig. 3. Our framework
demonstrates superior semantic fidelity across
a diverse range of categories, evident in its
reconstruction of both simple and complex
scenes. For isolated subjects like the giraffe and
the teddy bear, MindHier accurately preserves
defining characteristics and posture. While
other methods may capture the general con-
cept, MindHier often reconstructs a more simi-
lar pose and shape. For instance, it successfully
renders the distinct long neck of the giraffe, a
feature less accurately captured by competitors.
More impressively, MindHier excels at preserv-
ing key structural and chromatic properties, as

Seen Image |8

MindHier [

MindEye
(Scotti et al
2023)

MindEye2
(Scotti et al
2024)

MindBridge .
(Wang et al
2024)

Figure 3: Qualitative comparison of fMRI-to-image
. reconstructions. The stimuli include a diverse range
shown by the reproduction of the yellow fire  of classes, from animals and objects to complex indoor
hydrant and the teddy bear. Moreover, Mind- and outdoor scenes. All data shown is from Subject 1.
Hier accurately recovers the position, orientation, and trajectory of a running train relative to its
environment, while other diffusion-based methods struggle to produce such a coherent result.

Seen Image Trial 1 Trial 2 Trial 3 Trial 4

Beyond @

MindHier }%

\(..
MlndBndge ‘!‘
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(Scotti et al
2024))

Stable and Consistent Reconstruction.
reconstruction fidelity, a key advantage of our ap-
proach is its stability and consistency across mul-
tiple generation trials. This stability stems from
our model’s deterministic nature. Unlike stochas-
tic diffusion models that begin with a random Gaus-
sian noise seed, our generation process is initiated
directly from the encoded fMRI features. As il-
lustrated in Fig. 4, MindHier consistently produces
virtually similar reconstructions of the teddy bear

Wi

across four trials, reliably capturing its core features,
such as its shape and posture. In stark contrast, a
leading diffusion-based method like MindBridge ex-

Figure 4: Comparison of reconstruction consis-
tency across four trials. MindHier demonstrates
more stable and consistent outputs, in contrast to
the stochastic diffusion models.
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hibits significant variability; its generations, while semantically related to the “stuffed animal” con-
cept, vary wildly in appearance and color across trials. This high level of consistency underscores
the robustness of our method, ensuring that the generated image is a faithful and repeatable decoding
of the specific fMRI signal, rather than one of many possible interpretations.

Faithful Reconstruction. To further evalu-

ate the ability of MindHier to faithfully recon-

struct visual stimuli with high semantic and  Small-Size
spatial accuracy, we perform a brain grounding ~ ObJect
task across a broad range of objects. Follow-

ing the UMBRAE pipeline (Xia et al., 2024b),

this evaluation involves feeding MindHier’s re-
constructed images into a pretrained Shikra Middle-Size
model (Chen et al., 2023a), which then per-
forms localization based on ’known’ object la-
bels from the original image’s COCO anno-
tation. As illustrated in Fig. 5, the results
demonstrate that MindHier consistently gener-
ates outputs that are both semantically coherent
and spatially accurate. The model successfully
localizes not only salient, large-scale objects
(g.g.’ airplane and giraffe) but also smaller, con- Figure 5: Qualitative results of brain grounding. For
textual items within a larger scene (e.g., bottle ~Visualization, a bounding box generated from each re-
and mouse). Notably, the model successfully construction is overlaid on the opgl_nal visual stimu-
reconstructs objects that are partially occluded lus, highlighting the precise localization of the target.
in the original stimulus (e.g., surfboard and keyboard). These results affirm that MindHier’s re-
constructions are highly faithful to the original stimuli in both structure and spatial arrangement,
showcasing a superior capacity to recover critical visual information from brain signals.

Large-Size &
Object

4.4 DIAGNOSTIC EXPERIMENT

To deconstruct our framework and validate its principal components, we perform three targeted diag-
nostic experiments. Our analysis is designed to quantify the efficacy of three pivotal design choices:
(1) the impact of hierarchical features, (ii) the specific mapping strategy between fMRI encoder
blocks and layers of the frozen CLIP vision encoder, and (iii) the role of the scale-aware guidance
strategy. To ensure a fair and controlled comparison, all diagnostic experiments are performed on
data from Subject 1 while keeping other hyperparameters unchanged.

Impact of Hierarchical Features. We first investigate the effectiveness of our core idea to obtain hi-
erarchical features for guiding the coarse-to-fine scale-wise autoregressive reconstruction. As shown
in Table2, our full model, which uses “Hierarchical Feature with our full cascaded supervision (i.e.,
training with Eq. 1+Eq.2 for each block)” achieves a substantial performance gain compared with
the other two baselines. The first baseline, “Single Feature”, only leverages the terminal, high-level
fMRI feature for guidance, and the second one, “Hierarchical Feature (final supervision)”, uses the
same hierarchical architecture as MindHier but omits the MSE loss supervision for intermediate
blocks. The empirical results in Table2 suggest that, although “Hierarchical Feature (final supervi-
sion)” shows a modest improvement over “Single Feature” (e.g., 95.1% — 95.4% in CLIP score), our
full framework is more favored (e.g., 95.4% — 97.2% in CLIP score). These results suggest that (i)
a rich, hierarchical representation that captures both semantic and detailed visual cues is necessary,
and (ii) explicit, scale-aware neural guidance is crucial to translating the known representational
hierarchy of the pretrained CLIP model to our hierarchical fMRI encoder.

Selection of CLIP Vision Encoder Layers. We next validate the design of our CLIP layer mapping
strategy. The results are summarized in Table 3. Our method adopts CLIP ViT-L/14 as the visual
backbone. Based on the proposed mapping (gm = 8+4m), which maps the fMRI signal to the {12,
16, 20, 24}-th layers, we first derive a late-layer mapping variant, g, = 16+2m, which aligns fMRI
features with visual feature that encode more semantic information from the deeper layers of the
vision encoder (the {18, 20, 22, 24}-th layers). We then provide an alternative, g, =6m, an earlier-
layer mapping to the {6, 12, 18, 24}-th layers. We observe consistent trade-offs between low-level
and high-level fidelity. The early-layer mapping yields marginal improvements in low-level metrics
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Table 2: Comparison of different fMRI encoder designs using fMRI data from Subject 1.

[ Neural Representation || PixCorr ] SSIM ] _ Alex(2) T Alex(5) T | Incep] CLIP] EN ] SWAV | |
Single Feature 0.188 0358  89.2% 96.6% | 957% 95.1% 0610 0346
Hierarchical Feature (final supv.) | 0.201 0363  90.8% 97.0% | 959% 954% 0.608  0.339
Hierarchical Feature (full supv.) 0.273 0394  97.0%  993% | 96.7% 97.2% 0.598 0321

Table 3: Comparison of different CLIP layer mapping mechanisms using fMRI data from Subject 1.

[CLIP VIT-L/14 Layer Mapping || PixCorr | __SSIMT__Alex() T Alex(5) ] | Incep] CLIPT B ] SwAV ] |
gm=16+2m  {18,20,22, 24} 0226 0377 923% 980% | 95.7% 954% 0.600 0335
I =6m {6,12,18,24 } 0283 0399  97.6% 994% | 963% 94.8% 0612 0325
gm=8+4m  {12,16,20,24} 0.273 0394  97.0% 993% | 967% 972% 0.598  0.321

(e.g., 0.283 vs. 0.273 in PixCorr), while the late-layer mapping degrades overall performance. This
indicates that (i) aligning with earlier layers provides more foundational visual features at the cost
of high-level semantic accuracy, and (ii) aligning with excessively late layers results in features
that are too semantically similar and lack the distinctiveness needed for fine-grained reconstruction.
In contrast, our balanced mapping achieves strong high-level similarity (i.e., 97.2%in CLIP) while
maintaining excellent low-level similarity (i.e., 99.3% in Alex(5)). This reveals the effectiveness of
correlating fMRI signals with a balanced range of intermediate-to-final CLIP layers.

The Role of the Scale-Aware Guidance.
Finally, we validate the design of our
scale-aware neural guidance by conduct-
ing an experiment that inverts the informa-
tion flow. In this variant, the generation is
seeded with the first fMRI feature (e;) and
progressively guided by coarser semantic
features (eo,...,epr). As summarized in
Table 4, this inversion leads to a clear degradation in high-level metrics, e.g., the CLIP score falls
from 97.2% to 96.1%, and the SwAV distance worsens from 0.321 to 0.330. The performance
gap confirms that a principled coarse-to-fine information flow is critical for achieving high-fidelity
results, where global context precedes fine details. At the same time, the model’s resilience is note-
worthy; the fact that performance degrades but does not collapse entirely highlights the inherent
robustness of the scale-wise autoregressive architecture. We attribute this to the flexibility of the
transformer’s attention mechanism, which can partially compensate for the suboptimal guidance.
Therefore, while the MindHier framework is remarkably robust, our results confirm that its optimal
performance is unlocked through the cognitively inspired scale-aware neural guidance strategy.

Table 4: Ablation study on the scale-aware neural guid-
ance. The proposed coarse-to-fine strategy is compared
against an inverted variant on Subject 1.

Method
MindHier (Coarse-to-Fine)
Inverted (Fine-to-Coarse)

||Incep 1| CLIP 1| Eff | [SWAV | |

96.7% | 97.2% |0.598| 0.321
96.2% | 96.1% |0.606| 0.330

5 CONCLUSION

In this work, we identify a primary obstacle to high-quality fMRI-to-image reconstruction: the mis-
match between fixed guidance and the dynamic generation process in prevailing diffusion-based
methods. To address this, we introduce MindHier, a framework that reframes this task as a coarse-
to-fine, scale-wise fMRI-guided autoregressive problem. MindHier maps fMRI signals to a hierar-
chy of neural features that are strategically used to guide a reconstruction process, first establishing
global semantics at small scales before progressively refining finer details at larger scales. Empiri-
cally, this cognitively aligned framework yields reconstructions with superior semantic consistency
and structural faithfulness. Furthermore, MindHier achieves a significant 4.67 x acceleration in in-
ference speed over leading diffusion-based methods such as MindEye2. Looking forward, we plan
to extend MindHier to cross-subject fMRI-to-image reconstruction via multi-subject pretraining and
fMRI-to-video reconstruction by incorporating temporal dynamics. It also comes with new chal-
lenges and avenues for future research, in particular enhancing the generation of faithful textures,
improving the fidelity of facial features, and exploring resource-efficient schemes. Given the rapid
evolution in computer vision and cognitive neuroscience over the past few years, we expect more
innovations towards these promising directions.
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A SUMMARY OF THE APPENDIX

We provide additional details in this supplementary material, which are organized as follows:

» §B elaborates on the data and code availability.

» §C presents more experimental results.

* §D offers more qualitative results.

* §E introduces more implementation details.

» §F provides a deeper analysis of inference time.

§G details the visual question answering evaluation.

» §H displays expanded subject-specific visualizations.

* §1 shows quantitative results on a new Thing-fMRI dataset.
 §J discloses the use of Large Language Model in this work.

B DATA & CODE AVAILABILITY

Data. This work is conducted on the Natural Scenes Dataset (NSD), a large-scale, publicly available
fMRI dataset. NSD contains high-resolution, whole-brain fMRI recordings from eight subjects who
viewed thousands of colored nature scenes over 30 to 40 scan sessions. The full dataset is accessrble
upon completion of the NSD Data Access Agreement. Following , We
use preprocessed flattened fMRI voxels in 1.8-mm native volume space. The data is ﬁltered using
the unique “nsdgeneral” mask in NSD, which isolates a subset of voxels that exhibit the strongest
response to visual stimuli within the posterior cortex.

Code. The supplementary material provides the source code for the core components (fMRI encoder
and scale-wise neural guidance) of our proposed method. The complete codebase for both training
and inference will be made publicly available upon acceptance. We hope that our findings will
encourage more innovations in this research field.

Pseudo Code. To guarantee reproducibility, we provide the pseudo codes in PyTorch style for
MindHier’s key modules, which are given in Algorithm | and Algorithm2.

Algorithm 1 Pseudo-code for Hierarchical fMRI Encoder of MindHier in a PyTorch-like style.

Models:
fMRI_encoder: The fMRI encoder with M blocks.
visual_e Jer: Frozen CLIP ViT/L-14 visual encoder
text_encoder: Frozen CLIP ViT/L-14 text encoder.
def train_fmri_ encoder (fmri_signals, images, text_captions):
# 1. Extract features from CLIP encoders
multi_tier_visual_ feats = wvisual_encoder (images, output_hidden_states=True)
text_feats = text_encoder (text_captions)
# 2. Map fMRI signals to a hierarchy of predicted features.
fmri_feats_hierarchy = fMRI_encoder (fmri_ SLgnals) # M features
# 3. Compute alignment losses between predicted and ground-truth features.
loss_mse = 0
for m in range (M) :
e_m = l2normalize (fmri_feats_hierarchy([m])
v_gm = l2 normalize (multi_tier_visual_feats[m])
loss_mse += MSELoss (e_\text{M}, v_gm) # Enforces structural correspondence (Eg. 1)
# Align final fMRI feature with both visual and text features in shared space.
e M = fmri_feats_hierarchy[-1]
v_gM = multi_tier_visual_feats[-1]
t = text_feats
loss_softclip = SoftCLIPLoss (e_\text{M}, v_gM) + SoftCLIPLoss (e_\text{M}, t) #
Enforces semantic correspondence (Eq. 2)
# 4. Combine losses and update the fMRI encoder.
total_loss = loss_mse + loss_softclip
total_loss.backward/()
optimizer.step ()
return total_loss

H= H W 4

C MORE EXPERIMENTS

We conduct two additional experiments to demonstrate the advantages of the MindHier framework:
strong per-subject performance and its resource-free nature.
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Algorithm 2 Pseudo-code for the Scale-Wise Neural Guidance for Image Reconstruction of Mind-

Hier in a PyTorch-like style.

# Models:
# fMRI_encoder:
# ar_trans
# tokenizer_d

The trained fMRI encoder.

= decoder part

~oder: of
def reconstruct_image (fmri_signal) :
# Extract multi-tier features from the fMRI

fmri_features =
# Stage 1: Seeding the "Forest"
start_token = mean (fmri_features[-1])
# Generate the initial, low-resolution
rl_hat = ar_transformer (S=start_token)
generated_token_maps = [rl_hat]

# ——— Stage 2: the "Trees"
# K is the total number of
for k in range(l, K):

Rendering

scales for

# Select the appropriate fMRI feature to guide the current

feature_idx = M - floor(M * k / K)

scale_cond =

fMRI_encoder (fmri_signal)

se autoregressive
the multi

# Batch of M

(Progressive,

fmri_features|[feature_idx]

transformer.
scale VQ-VAE.
signal using the trained encoder.
feature tensors

token.

detailed refinement)

the autoregressive model.

scale k+1.

# Predict the next token map conditioned on previous maps and the fMRI feature.

ar_transformer (prefix=generated_token_maps, condition=scale_cond)

rk_hat =
generated_token_maps.append (rk_hat)
# Final Image Decoding
# lookup retrieves vectors from the codebook Z.

f_hat = sum(lookup (Z,
reconstructed_image =
return reconstructed_image

r_hat)

for r_hat in generated_token_maps)
tokenizer_decoder (f_hat)

Single-Subject Evaluations. Table S1 shows
exhaustive evaluation metrics computed for
each subject. The empirical results demon-
strate the model’s strong and consistent perfor-
mance across the cohort. While a non-trivial
inter-subject variance is present, which we at-
tribute to the inherent heterogeneity in the un-
derlying data, the model’s efficacy is not com-
promised. Crucially, the reconstruction perfor-
mance for every subject significantly surpasses

Table S1: Quantitative results of each subject.

S1 S2 S5 S7
PixCorr t | 0.273 0237 0.218 0213
Low SSIM 1 0.394 0383 0378 0372
Alex(2) 1 | 970% 95.1% 91.4% 92.3%
Alex(5)1 | 993% 988% 97.8% 97.6%
Incep 1 96.7% 96.1% 97.0% 94.0%
High CLIP ¢ 972% 96.0% 97.4% 95.0%
Eff | 0.598 0.611 0.576  0.640
SwWAV | 0.321 0328 0316 0.352

established baselines. This indicates that our model exhibits strong robustness and generalization
capabilities across diverse individuals, a critical property for real-world deployment.

Finetuning with One Session of Data. Ta-
ble S2 shows that the coarse-to-fine scale-wise
autoregressive modeling is resource-efficient.
To assess this, we finetune the scale-wise au-
toregressive model using a single fMRI ses-
sion as training data and compare it with the
results of MindEye2 ( , ) train-
ing with one session of data. We select the
two best-performing subjects (S1, S5) on Mind-
Eye2 for comparison and find that our results
significantly outperform MindEye2 on multiple
metrics (e.g., CLIP and Eff scores).

Preliminary Cross-Subject Experiments. Ta-
ble S3 presents quantitative results under a
cross-subject generalization protocol, where
the model is pretrained on a pooled dataset
and finetuned on a held-out target subject.
In the data-rich regime (40-hour finetuning),
MindHier demonstrates superior transferability,

Table S2: Quantitative results with one session of
training data. E the results from MindEye?2.

S1 S1% S5 S5%
PixCorr T | 0.198  0.235 0.166  0.175
Low SSIM + 0.382 0428 0.365 0.405
Alex(2) T | 86.9% 88.0% 84.2% 83.1%
Alex(5)1 | 94.8% 93.3% 93.4% 91.0%
Incep 1 934% 83.6% 94.2% 84.3%
High CLIP 1 922% 80.8% 92.7% 82.5%
Eff | 0.646  0.798  0.644 0.781
SwAV | 0350 0459 0359 0444

Table S3: Quantitative results for cross-subject

generalization.

\ Method [TncepT CLIPT Eff| SwAV ] |
MindEye2 (40 hour) || 96.1% 93.5% 0.609  0.338
MindHier (40 hour) 95.7% 958% 0.607  0.335
MindEye2 (1 hour) 83.5% 80.7% 0.798  0.459
MindHier (1 hour) 754%  80.2% 0.860  0.527

achieving a CLIP score of 95.8% and surpassing the MindEye?2 baseline (93.5%). This confirms the
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Table S4: Brain Grounding Accuracy (IoU) comparison under single-subject setup.

Grounding Eval All Salient Salient Creatures | Salient Objects | Inconspicuous
Methods Subject || acc@0.5 IOU | acc@0.5 1IOU | acc@0.5 IOU | acc@0.5 IOU | acc@0.5 I0OU
MindEye S1 15.34 18.65 23.83 26.96 29.29 31.64 17.88  21.86 4.74 8.28
UMBRAE-S1 S1 13.72 17.56 2152 25.14 26.00 29.06 16.64  20.88 4.00 8.08
MindHier S1 15.87 18.69 | 2494 2630 | 33.00 32.17 16.17 19.90 4.55 8.97

architecture’s capacity to learn robust, transferable representations across individuals. However, in
the few-shot regime (1-hour), we observe a performance dip compared to the baseline, which we
attribute to overfitting inherent in applying a large-scale autoregressive model to sparse data without
specialized regularization, marking a clear direction for future optimization.

Quantitative Results for Brain Grounding. TableS4 assesses the spatial fidelity of reconstructions
by comparing Brain Grounding Accuracy against established baselines. We benchmark MindHier
against MindEye and the specialized grounding method UMBRAE-S1 under the same single-subject
setup. In addition to metrics for all classes denoted ‘All’, UMBRAE groups the 80 classes of COCO
according to their prominence into: ‘Salient’, being the union of ‘Salient Creatures’ (people and an-
imals) and ‘Salient Objects’ (e.g., car, bed, table), and ‘Inconspicuous’ (e.g., knife and toothbrush).
The results indicate that MindHier consistently outperforms baselines across most categories, partic-
ularly in localizing salient creatures. This quantitative evidence corroborates our qualitative findings,
suggesting that our hierarchical guidance mechanism facilitates more precise object localization and
superior spatial faithfulness compared to methods relying on global or static conditioning.

Single-Shot vs Best-of-N. Tab1§ S5 iIlYeSti- Table S5: Comparison of Single-Shot (N=1) gen-
gates the trade-off between sampling efficiency  ration versus Best-of-N selection.

and reconstruction quality. While our primary

evaluation utilizes a Best-of-N (N=4) selec- (S [ PixCorr7__SSIMT_CLIPT_SwAV | | Time (5) |
tion strategy to ensure rigorous compgrison, ‘ N=1 H 0234 0380 950% 0333 ‘ 092 ‘
the single-shot (N=1) performance remains re- LN=4 0235 0381 964% 0329 | 264
markably robust, achieving a CLIP score of 95.0% with a sub-second inference time of 0.92s. This
indicates that MindHier exhibits high determinism and stability, capable of generating high-fidelity
reconstructions without reliance on stochastic over-sampling.

D MORE QUALITATIVE RESULTS

Neuroscience Interpretability. To evaluate the neuroscience interpretability of the Mind-
Hier framework, we follow MindDiffusion ( , ) and employ the pycortex library (

, ) for brain activity visualization. We utilize L2-regularized linear regression models to
predict fMRI voxel responses from features extracted from different blocks of our proposed fMRI
encoder. As mentioned in Appendix B, there exists a partial overlap between voxels selected via the
manually defined “nsdgeneral” mask and those within anatomically defined visual cortex regions.

To specifically probe the relationship between Block 1 > Block 4
the model’s hierarchy and the brain’s visual 1
processing stream, we focus our analysis on
this overlapping subset of voxels. Fig.S1 (first
row) visualizes the results on a flattened cor-
tical surface, where the early visual cortex is
demarcated in red and higher-order visual cor-
tices are in blue. The analysis reveals that dif-
ferent model blocks exhibit functional special-
ization in predicting brain activity across the vi-
sual hierarchy. Specifically, early blocks are
more predictive of activity in the early visual
cortex, whereas deeper blocks show a corre-
spondence with activity in higher-order visual Figure S1: The importance of different regions in de-
regions. This functional gradient demonstrates coding fMRI features from each transformer block.

a clear hierarchical alignment between the model’s successive layers and the progressive stages
of the primate ventral visual stream. Intriguingly, non-visual brain regions (depicted in yellow;
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Fig.S1, second row) also exhibit a similar response profile, suggesting that features from interme-
diate model layers may also reflect the importance of other information in brain activity. Although
MindHier does not utilize explicit ROI-based supervision, the model spontaneously learns these
functional specializations solely from the data within the “nsdgeneral” mask.

Illustration of the Coarse-to-Fine Reconstruction
Process. Fig. S2 provides a qualitative illustra-
tion of the coarse-to-fine generative process inte-
gral to the MindHier framework. This procedure
is designed in principled alignment with the “For-
est before Trees” tenet from cognitive neuroscience,
which posits that human perception begins with a
global, coarse overview before proceeding to finer
details. As depicted, the reconstruction for each
stimulus commences not from random noise, but
from an initial low-resolution base that establishes
the overall semantic context and foundational struc-
ture. Through a scale-wise autoregressive modeling
paradigm, the framework progressively refines this
initial representation by rendering details at succes-
sively higher-resolution scales. This refinement is

Comparison of Reconstructions Across Sub-
jects. Fig.S3 provides a qualitative comparison
of image reconstructions generated from the
fMRI data of four different subjects (S1, S2, S5,
and S7). The results demonstrate a high degree
of consistency in reconstruction quality across
these individuals, indicating that the model ro-
bustly captures the salient semantic and struc-
tural features of the visual input. For instance,
across all four subjects, the model successfully
reconstructs the defining characteristics of di-
verse objects, such as the octagonal shape of a
stop sign, the stripes of a zebra, and the form of
an airplane. Although minor inter-subject vari-
ability is present in the finer details, which is
expected given the inherent differences in neu-

Figure S2: Illustration of the coarse-to-fine
reconstruction process of MindHier.
fundamentally distinct from the current dominant diffusion-based methods that typically recover an
image from unstructured Gaussian noise through an iterative denoising process.

S1 S2 S5

P

S7

T

ral activity patterns, the core semantic content Figure S3: Qualitative comparison of reconstruc-
is consistently and faithfully preserved. This tions from four different subjects (S1, S2, S5, S7).

suggests that the proposed framework effectively handles different individuals, decoding shared

visual information from distinct brain signals.

Speed vs. Quality. To verify that our reported

speedup is a result of fundamental architectural —Seen Image

efficiency rather than a simple reduction in gen-
eration steps, we conduct a controlled ablation
study. In our primary evaluation, we utilize
the official recommended settings for Mind-
Eye2 (38 denoising steps) to ensure it performs
at its optimal reconstruction quality. Here, we
forcibly restrict the diffusion baseline to 10 de-
noising steps to match the 10 autoregressive
scales used by MindHier, thereby aligning the
number of generation passes. As illustrated in
Fig.S4, this constraint exposes a critical limita-

MindHier
(10 steps)

MindEye2
(38 steps)

MindEye2
(10 steps)

tion in diffusion-based decoding. While Mind- Figure S4: Qualitative comparisons within stan-
Eye2 produces high-quality results at 38 steps, dard and equalized generation steps.
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reducing the step count causes a severe degradation in semantic fidelity. For instance, the fire hydrant
(Column 5) loses its structural integrity in the 10-step MindEye2 output, hallucinating a distorted,
clown-like figure rather than a distinct object. Similarly, the teddy bear (Column 3) suffers from
a loss of identity, resulting in a generic, less coherent animal form. This comparison demonstrates
that MindHier’s efficiency is not a trade-off between quality and speed; rather, it represents a more
effective utilization of computational steps.

E MORE IMPLEMENTATION DETAILS

The MindHier frameworks follow a standard two-stage training pipeline by first training a hierar-
chical fMRI encoder, and then finetuning scale-wise AR with the frozen fMRI encoder.

For optimization of the hierarchical fMRI encoder, we employ AdamW with betas of (0.9,0.999)
and a mini-batch size of 512. We adopt a cosine annealing policy with a warmup period to schedule
the learning rate, which is initialized to 1 x 10~%. The model is trained for a total of 300 epochs.

Regarding the alignment mechanics, the mapping is established between the fMRI feature maps
(shape: batch, seq_len, dim) and the corresponding full patch token outputs from CLIP ViT-L/14. To
ensure robust optimization, both sets of features undergo L2-normalization prior to the computation
of the Mean Squared Error (MSE) loss. For the loss configuration, the total objective is a weighted
sum of the MSE loss and the SoftCLIP loss. To ensure training stability, we assign a higher weight
to the MSE term (2 x 10°) to balance the loss terms, as it presents a more challenging optimization
landscape. The SoftCLIP temperature parameter 7 is set to a fixed value of 0.005.

The architecture of the scale-wise autoregressive model in MindHier incorporates modern designs of
Switti ( R ). The model consists of 30 non-causal transformer layers, each of which
is mainly composed of a multi-head self-attention block, a multi-head cross-attention block, and a
feed-forward network employing the SwiGLU activation function ( , ). For enhanced
training stability and efficiency, the model applies RMSNorm ( , ) before and
after the attention and FFN blocks. It is also employed for query-key (QK) normalization within the
attention mechamsm To accommodate variable input resolutions, the model incorporates RoPE (

, ) as positional encoding. Finally, the fMRI embedding is integrated
to condmon the model via AdalLN ( , ). Second, we freeze the fMRI encoder and
train a scale-wise autoregressive model, pretrained by Switti ( , ). We use the
AdamW (3; =0.9, B2 = 0.95) for optimizer and initialize the learning rate with 1 x 10~4, which is
also scheduled via cosine annealing with warmup. Training images are augmented using random
crops of 512 x 512 resolution. There are 10 progressive scales for the autoregressive model. At
this stage, we use a mini-batch size of 80 and train for 9K iterations. During inference, we follow
MindBridge ( , ) and MindEye ( , ) to reconstruct 4 candidates of each
sample for selecting the best one based on CLIP similarity.

All inference tasks are conducted on a single NVIDIA RTX 4090 GPU. Unlike prior state-of-the-art
methods, MindHier does not require auxiliary retrieval submodules or separate captioning networks,
relying solely on the unified encoder and autoregressive generator.

F A DEEPER ANALYSIS OF INFERENCE TIME

In this section, we conduct two experiments to analyze the efficiency gains of the MindHier model.
Component-wme Efficiency ApalySIS- ) To in-  Table S6: Quantitative results for visual question
vestigate the source of our efficiency gains, we  answering evaluation.

analyze the stage-wise inference latency com-

pared to the diffusion-based baseline, Mind- | Model || Encoding Reconstruction Refinement |
Eye2. As summarized in Table S6, the total in- MindEye2 0.785s 7.864s 3.323s
ference process is dominated by the reconstruc- MindHier 0.008s 2.295s N/A

tion phase. MindHier achieves a significant speed up through two structural advantages:

* Elimination of Refinement Stage. Unlike diffusion-based methods such as MindEye2, which
rely on a separate, computationally expensive refinement stage (3.32s) to enhance image quality,
MindHier generates high-fidelity outputs in a single autoregressive pass. This structural difference
alone removes a major computational bottleneck, eliminating the refinement time.
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Table S7: Stage-wise inference time breakdown across autoregressive scales. The latency correlates
with image resolution and the majority of inference time is spent on the final high-resolution scales.

| Stage | 0 (Coarse) 1 2 3 4 5 6 7 8 9 (Fine) |
Resolution 16 32 48 64 96 144 202 288 384 512
Time (s) 0.028 0.031 0.038 0.040 0.074 0.216 0.126 0.283 0.474 0.985

* Efficient Encoding and Reconstruction. Beyond the refinement stage, MindHier demonstrates
superior efficiency in the core encoding and reconstruction steps. The encoder operates faster than
the baseline (0.008s vs. 0.785s). Furthermore, the reconstruction phase is accelerated (2.295s vs.
7.864s) by employing a discrete, scale-wise paradigm rather than iterative diffusion sampling.

Scale-wise Latency Breakdown. We further dissect the reconstruction time across different res-
olutions in Table S7. The results reveal that the computational cost is non-uniform and heavily
back-loaded. The coarse stages (Stages 0—4), which establish the semantic structure of the image,
are executed with negligible latency (under 0.1s combined). The majority of the inference time
is incurred during the final high-resolution upscaling (Stage 9, 0.985s), where the model resolves
fine-grained pixel details. This confirms that while pixel-level generation at 512 x 512 resolution re-
mains the most demanding step, the hierarchical approach efficiently offloads the semantic planning
to lower, faster resolutions.

GT (ID: 334208) o 00: 46372) n GT (ID: 21826)

T (ID: 570543) con con GT (ID: 491611)

Figure S5: Qualitative results of visual question answering.

G VISUAL QUESTION ANSWERING EVALUATION

To assess faithfulness beyond object detection,
we extend our evaluation to a Visual Ques-
tion Answering (VQA) task. Utilizing the pre-
trained BLIP-2-OPT-2.7B model, we interro- | [ GroundTruth _MindHier _MindEye? |
gate the reconstructed images to determine if [Accuracy || 58.68% 3.29% 71% |
the semantic content preserved by the brain de-
coding pipeline is sufficient for a Vision-Language Model (VLM) to interpret correctly.

Table S8: Quantitative results for visual question
answering evaluation.

Quantitative Results. As shown in Table S8, we measure the top-3 accuracy of the VQA model’s
responses to the reconstructed images against the ground truth answers. The original Ground Truth
(GT) images yield a VQA accuracy of 58.68%, establishing the upper bound for the model’s reason-
ing capabilities. MindHier achieves an accuracy of 43.29%, surpassing the previous state-of-the-art
MindEye?2 (41.71%). This performance gap indicates that MindHier is more effective at faithfully
decoding and preserving the distinct semantic features.
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Qualitative Results. Fig. S5 reveals that MindHier excels at retaining the “gist” and categorical
identity of the scene, though fine-grained discrepancies remain:

* Semantic Retention: In distinct scenarios, such as the fruit display (ID: 334208) and the zebras
(ID: 491611), the reconstructions successfully trigger correct VQA responses regarding object
presence (“fruits and vegetables”), attributes (“stripes”), and location (“Africa”). This suggests
high fidelity in faithfully decoding dominant subjects.

» Texture and Material Ambiguity: While object classes are generally preserved, specific material
properties can be altered during reconstruction. For instance, in the tower scene (ID: 323182),
the VQA model correctly identifies the “clock,” but misidentifies the building material as “brick”
rather than “stone” in the reconstruction, pointing to a loss of high-frequency textural information.

* Fine-Grained Counting Limitations: The evaluation also highlights challenges with precise
counting and small details. In the skiing example (ID: 21826), while the action (“skiing”) is cor-
rectly classified, the reconstruction fails to preserve the exact number of ski poles held. Similarly,
in the harbor scene (ID: 570543), the reconstruction distorts the vessel enough that the model fails
to count “one” sailboat, despite correctly identifying the context as a harbor containing a boat.

Overall, while pixel-perfect reconstruction remains a challenge for fMRI decoding, MindHier
demonstrates a superior capacity for faithfully reconstructing brain signals into semantically co-
herent visuals that align closer to the ground truth interpretation than competing methods.

H EXPANDED SUBJECT-SPECIFIC VISUALIZATIONS

To provide a comprehensive qualitative assessment of MindHier, we present an expanded gallery
of reconstructions of Subj 1, 2, 5, and 7 in Fig. S6-S9. This diverse collection covers a wide spec-
trum of semantic categories—including wildlife, transportation, food, sports, and indoor environ-
ments—demonstrating the model’s ability to generalize across varied visual stimuli.

Semantic Consistency and Object Identity. The results highlight MindHier’s strength in semantic
grounding. For distinct, salience-heavy objects, the reconstructions are remarkably accurate.

* Animals: In images of animals (e.g., zebras, giraffes, bears), the model successfully captures not
only the species but also the pose and context (e.g., a bear in water, a zebra grazing).

» Transportation: Rigid structures like airplanes, trains, and buses are reconstructed with correct
orientation and scale relative to the background.

* Food: Culinary items like pizza and cakes are generated with appetizing fidelity, preserving the
general category and color palette, though specific toppings may vary.

Scene Layout and Atmosphere. Beyond single objects, the model shows competence in scene un-
derstanding. In complex indoor environments (e.g., bedrooms, bathrooms), the spatial arrangement
of furniture, such as the placement of a bed relative to a window, is generally preserved. Similarly,
the global lighting conditions and color histograms (e.g., the blue hues of a surfing scene vs. the
warm tones of a dining room) are consistently matched, indicating effective decoding of low-level
visual features alongside high-level semantics.

Limitations and Failure Cases. Despite these successes, a closer inspection reveals characteristic
failure modes common in fMRI decoding:

* Fine-Grained Details: While the “gist” is preserved, specific high-frequency details often hallu-
cinate. For example, while a “pizza” is correctly reconstructed, the exact arrangement of pepperoni
slices differs from the ground truth.

* Text and Symbols: The model struggles to reconstruct legible text or specific logos (e.g., on
signage or vehicles), treating them instead as generic texture patterns.

* Human Identity: While the presence and posture of humans are detected, facial features remain
generic or blurred, lacking the precision required for identity recognition.

I GENERALIZABILITY ON THE THINGS DATASET

To demonstrate the robustness and generalizability of MindHier beyond the NSD benchmark (
, ), we extend our evaluation to the THINGS-fMRI dataset ( , ). This
dataset presents a challenging scenario due to its distinct acquisition protocols compared to NSD.
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Table S9: Quantitative results on THINGS-fMRI test set. The best results are highlighted in bold.

Method || PixCor 7 _SSIMT_Alex(2)T__Alex(3) T | IncepT CLIPT BN | SwAV | |

BrainFlorapvoos) 0.079 0.348 0.595 62.2% 604%  57.6% 0812  0.661
MindHier (Ours) 0.109 0.357 0.710 81.9% 719% 731% 0900  0.589

Experimental Setup. The THINGS-fMRI dataset includes fMRI recordings from three subjects
viewing 720 concepts (12 images per concept) during training and 100 concepts (1 image per con-
cept) during testing. To ensure a rigorous and fair comparison with the state-of-the-art method on
this benchmark, BrainFlora( , ), we adopt their exact experimental setting.

Specifically, we employ a joint-subject training strategy where fMRI voxels from all three subjects
are padded to a unified dimension (7000). This padding strategy accommodates the varying voxel
counts across subjects, allowing our hierarchical encoder to be trained simultaneously on data from
all three individuals. We use the same hyperparameters described in the main text (§4.1), adapted
only for the input dimension changes required by the THINGS dataset.

Quantitative Analysis. Table SO presents the quantitative comparison between MindHier and the
baseline BrainFlora on the THINGS dataset. The results demonstrate that our hierarchical autore-
gressive approach generalizes effectively to new data distributions and multi-subject settings.

Most notably, MindHier exhibits substantial improvements in high-level semantic retrieval metrics.
We observe a 19.7% increase in AlexNet(5) accuracy (62.2% — 81.9%) and a 15.5% increase in
CLIP identification accuracy (57.6% — 73.1%) compared to the baseline. These gains confirm that
our Scale-Aware Coarse-to-Fine Neural Guidance successfully captures and generates the semantic
“gist” of diverse concepts found in the THINGS dataset. Furthermore, our method improves low-
level structural fidelity, as evidenced by higher PixCorr (0.079 — 0.109) and SSIM (0.348 — 0.357)
scores. The reduction in SWAV distance (0.661 — 0.589) further indicates that our generated images
are more perceptually aligned with the ground truth in deep feature spaces.

J THE USE OF LARGE LANGUAGE MODEL

In the preparation of this manuscript, a Large Language Model (LLM) was employed as a writing
assistant to aid in polishing the text and improving clarity. The authors fully developed all concepts,
arguments, and conclusions presented. Following the LLM’s assistance, every portion of the text
was meticulously reviewed, fact-checked, and rewritten by the authors to ensure the final content
accurately and entirely reflects our own work and intended meaning.
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GT Ours GT

Figure S6: Visualizations of fMRI-to-image reconstruction for Subject-1.
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GT 'Ours GT Ours GT Ours GT _Ours __GT Ours GT Ours

Figure S7: Visualizations of fMRI-to-image reconstruction for Subject-2.
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GT Ours GT Ours

Figure S8: Visualizations of fMRI-to-image reconstruction for Subject-5.
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GT Ours GT _ Ours GT Ours GT  Ours GT Ours GT __ Ours

Figure S9: Visualizations of fMRI-to-image reconstruction for Subject-7.
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