Under review as a conference paper at ICLR 2021

META-REINFORCEMENT LEARNING ROBUST TO
DISTRIBUTIONAL SHIFT VIA MODEL IDENTIFICATION
AND EXPERIENCE RELABELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning algorithms can acquire policies for complex tasks au-
tonomously. However, the number of samples required to learn a diverse set of
skills can be prohibitively large. While meta-reinforcement learning methods have
enabled agents to leverage prior experience to adapt quickly to new tasks, their
performance depends crucially on how close the new task is to the previously
experienced tasks. Current approaches are either not able to extrapolate well, or
can do so at the expense of requiring extremely large amounts of data for on-policy
meta-training. In this work, we present model identification and experience rela-
beling (MIER), a meta-reinforcement learning algorithm that is both efficient and
extrapolates well when faced with out-of-distribution tasks at test time. Our method
is based on a simple insight: we recognize that dynamics models can be adapted
efficiently and consistently with off-policy data, more easily than policies and value
functions. These dynamics models can then be used to continue training policies
and value functions for out-of-distribution tasks without using meta-reinforcement
learning at all, by generating synthetic experience for the new task.

1 INTRODUCTION

Recent advances in reinforcement learning (RL) have enabled agents to autonomously acquire policies
for complex tasks, particularly when combined with high-capacity representations such as neural
networks (Lillicrap et al., 2015 [Schulman et al.| 2015} [Mnih et al.| 2015} [Levine et al., 2016).
However, the number of samples required to learn these tasks is often very large. Meta-reinforcement
learning (meta-RL) algorithms can alleviate this problem by leveraging experience from previously
seen related tasks (Duan et al., 2016; Wang et al., 2016} [Finn et al.| [2017a), but the performance
of these methods on new tasks depends crucially on how close these tasks are to the meta-training
task distribution. Meta-trained agents can adapt quickly to tasks that are similar to those seen during
meta-training, but lose much of their benefit when adapting to tasks that are too far away from the
meta-training set. This places a significant burden on the user to carefully construct meta-training
task distributions that sufficiently cover the kinds of tasks that may be encountered at test time.

Many meta-RL methods either utilize a variant of model-agnostic meta-learning (MAML) and
adapt to new tasks with gradient descent (Finn et al.l [2017a; Rothfuss et al.l 2018 Nagabandi
et al.L 2018)), or use an encoder-based formulation that adapt by encoding experience with recurrent
models (Duan et al. |2016; Wang et all [2016)), attention mechanisms (Mishra et al., 2017) or
variational inference (Rakelly et al.l [2019). The encoder-based methods struggle when adapting
to out-of-distribution tasks, because the adaptation procedure is entirely learned and carries no
guarantees for out-of-distribution inputs (as with any learned model). Methods that utilize gradient-
based adaptation have the potential of handling out-of-distribution tasks more effectively, since
gradient descent corresponds to a well-defined and consistent learning process that has a guarantee
of improvement regardless of the task (Finn & Levine, |2018)). However, in the RL setting, these
methods (Finn et al., 2017a; Rothfuss et al., [2018) utilize on-policy policy gradient methods for
meta-training, which require a very large number meta-training samples (Rakelly et al., 2019).

In this paper, we aim to develop a meta-RL algorithm that can both adapt effectively to out-of-
distribution tasks and be meta-trained efficiently via off-policy value-based algorithms. One approach

Under review as a conference paper at ICLR 2021

Model Identification Experience Relabeling

3 Model Meta-Training b Policy Training ; e ! Continued Policy Training :
! 3 | E S~ | Training Task Data E S '
: [' H a !
i s,a s] i ;
' Model (5) > s', T P a ! 5 ;
| B A B i s
o i b i a~m(als, 6

Ll Inner adaptation (Awwa) 1 | - y : (als, ¢7) Model (7) §r

' \\)@ ! | 0| 1C)&clolzjdmorlledlon ! L—
; T} o updated contex E

Add (s,a,s,r) to
Synthetic Experience

Figure 1: Overview of our approach. The model context variable (¢) is adapted using gradient descent, and the
adapted context variable (¢7) is fed to the policy alongside state so the policy can be trained with standard RL
(Model Identification). The adapted model is used to relabel the data from other tasks by predicting next state
and reward, generating synthetic experience to continue improving the policy (Experience Relabeling).

might be to directly develop a value-based off-policy meta-RL method that uses gradient-based
meta-learning. However, this is very difficult, since the fixed point iteration used in value-based
RL algorithms does not correspond to gradient descent, and to our knowledge no prior method has
successfully adapted MAML to the off-policy value-based setting. We further discuss this difficulty
in Appendix [A] Instead, we propose to leverage a simple insight: dynamics and reward models can
be adapted consistently, using gradient based update rules with off-policy data, even if policies and
value functions cannot. These models can then be used to train policies for out-of-distribution tasks
without using meta-RL at all, by generating synthetic experience for the new tasks.

Based on this observation, we propose model identification and experience relabeling (MIER), a
meta-RL algorithm that makes use of two independent novel concepts: model identification and
experience relabeling. Model identification refers to the process of identifying a particular task from
a distribution of tasks, which requires determining its transition dynamics and reward function. We
use a gradient-based supervised meta-learning method to learn a dynamics and reward model and a
(latent) model context variable such that the model quickly adapts to new tasks after a few steps of
gradient descent on the context variable. The context variable must contain sufficient information
about the task to accurately predict dynamics and rewards. The policy can then be conditioned on
this context (Schaul et al., 2015j |[Kaelbling, |1993) and therefore does not need to be meta-trained
or adapted. Hence it can be learned with any standard RL algorithm, avoiding the complexity of
meta-reinforcement learning. We illustrate the model identification process Figure [T] (left).

When adapting to out-of-distribution tasks at meta-test time, the adapted context variable may itself be
out of distribution, and the context-conditioned policy might perform poorly. However, since MIER
adapts the model with gradient descent, we can continue to improve the model using more gradient
steps. To continue improving the policy, we leverage all data collected from other tasks during
meta-training, by using the learned model to relabel the next state and reward on every previously
seen transition, obtaining synthetic data to continue training the policy. We call this process, shown in
the right part of Figure[l| experience relabeling. This enables MIER to adapt to tasks outside of the
meta-training distribution, outperforming prior meta-reinforcement learning methods in this setting.

2 PRELIMINARIES

Formally, the reinforcement learning problem is defined by a Markov decision process (MDP). We
adopt the standard definition of an MDP, T = (S, A, p, o, 7, 7), where S is the state space, A is the
action space, p(s’|s, a) is the unknown transition probability of reaching state s’ at the next time step
when an agent takes action a at state s, 10(s) is the initial state distribution, 7 (s, a) is the reward
function, and v € (0, 1) is the discount factor. An agent acts according to some policy 7(al|s) and
the learning objective is to maximize the expected return, Es, a,~[>_, 7'7(st, ar)].

We further define the meta-reinforcement learning problem. Meta-training uses a distribution over
MDPs, p(T), from which tasks are sampled. Given a specific task T, the agent is allowed to collect a

small amount of data Di@pt, and adapt the policy to obtain 7. The objective of meta-training is to

maximize the expected return of the adapted policy E7,(7).s,,a;~rr [2; V7 (S, a¢)].

Under review as a conference paper at ICLR 2021

MIER also makes use of a learned dynamics and reward model, similar to model-based reinforcement
learning. In model-based reinforcement learning, a model p(s’, r|s, a) that predicts the reward and
next state from current state and action is trained using supervised learning. The model may then
be used to generate data to train a policy, using an objective similar to the RL objective above:
arg max, Es, a,~xp5[>_; 7'7(St, a¢)]. Note that the expectation is now taken with respect to the
policy and learned model, rather than the policy and the true MDP transition function p(s’|s, a).

In order to apply model-based RL methods in meta-RL, we need to solve a supervised meta-learning
problem. We briefly introduce the setup of supervised meta-learning and the model agnostic meta-
learning approach, which is an important foundation of our work. In supervised meta-learning,
we also have a distribution of tasks p(7) similar to the meta-RL setup, except that the task 7 is

now a pair of input and output random variables (X7, Y7). Given a small dataset Dgipt sampled

from a specific task 7T, the objective is to build a model that performs well on the evaluation data

Dgil sampled from the same task. If we denote our model as f(X;§), the adaptation process as

A(0, Dg(zpt) and our loss function as L, the objective can be written as:
: T
B [1 (074 (0012,)) 7

Model agnostic meta-learning (Finn et al.,|2017a) is an approach to solve the supervised meta-learning
problem. Specifically, the model f(X;6) is represented as a neural network, and the adaptation
process is represented as few steps of gradient descent. For simplicity of notation, we only write out
one step of gradient descent:

-AMAML (9, D(T)) =0- Ong]E

adapt

X,YNpgim [L(f(X;0),Y)]

The training process of MAML can be summarized as optimizing the loss of the model after few
steps of gradient descent on data from the new task. Note that because Ay, is the standard gradient
descent operator, our model is guaranteed to improve under suitable smoothness conditions regardless
of the task distribution p(7), though adaptation to in-distribution tasks is likely to be substantially
more efficient.

3 META TRAINING WITH MODEL IDENTIFICATION

As discussed in Section[I} MIER is built on top of two concepts, which we call model identification
and experience relabeling. We first discuss how we can reformulate the meta-RL problem into a
model identification problem, where we train a fast-adapting model to rapidly identify the transition
dynamics and reward function for a new task. We parameterize the model with a latent context
variable, which is meta-trained to encapsulate all of the task-specific information acquired during
adaptation. We then train a universal policy that, conditioned on this context variable, can solve all of
the meta-training tasks. Training this policy is a standard RL problem instead of a meta-RL problem,
so any off-the-shelf off-policy algorithms can be used. The resulting method can immediately be used
to adapt to new in-distribution tasks, simply by adapting the model’s context via gradient descent,
and conditioning the universal policy on this context. We illustrate the model identification part of
our algorithm in the left part of Figure|l|and provide pseudo-code for our meta-training procedure in
Algorithm 1]

In a meta-RL problem, where tasks are sampled from a distribution of MDPs, the only varying
factors are the dynamics p(s’|s, a) and the reward function r. Therefore, a sufficient condition for
identifying the task is to learn the transition dynamics and the reward function, and this is exactly
what model-based RL methods do. Hence, we can naturally formulate the meta-task identification
problem as a model-based RL problem and solve it with supervised meta-learning methods.

Specifically, we choose the MAML method for its simplicity and consistency. Unlike the standard
supervised MAML formulation, we condition our model on a latent context vector, and we only
change the context vector when adapting to new tasks. This formulation is previously known as bias
transformation for MAML (Finn et al.l 2017b} [Finn & Levinel 2018} Zintgraf et al.,|2018)). Since all
task-specific information is thus encapsulated in the context vector, conditioning the policy on this
context should provide it with sufficient information to solve the task. This architecture is illustrated
in the left part of Figure[l] We denote the model as p(s’, r|s, a; 6, ¢), where 6 is the neural network
parameters and ¢ is the latent context vector that is passed in as input to the network.

Under review as a conference paper at ICLR 2021

One step of gradient adaptation can be written as follows:

b = Awen (0,6, D500,1) = 0 = OB, o pir [~logh(s'sls,ai0,0). (1)

adapt
We use the log likelihood as our objective for the probabilistic model. We then evaluate the model
using the adapted context vector ¢, and minimize its loss on the evaluation dataset to learn the

model. Specifically, we minimize the model meta-loss function J;(6, ¢, Dggpt, Dggz) to obtain the
optimal parameter 6 and context vector initialization ¢:
arg rggl Jp (6, b, T p)) = arg Iglyi(pn E@,a,s/,r)wgg, [—logp (s',r|s,a;0, d7)]

adapt’ ~ eval
)

The main difference between our method and previously proposed meta-RL methods that also use
context variables (Rakelly et al.l [2019; Duan et al.,[2016)) is that we use gradient descent to adapt
the context. Adaptation will be much faster for tasks that are in-distribution, since the meta-training
process explicitly optimizes for this objective, but the model will still adapt to out-of-distribution tasks
given enough samples and gradient steps, since the adaptation process corresponds to a well-defined
and convergent learning process. However, for out-of-distribution tasks, the adapted context could be
out-of-distribution for the policy. We address this problem in Section 4]

Given the latent context variable from the - - - —
adapted model ¢, the meta-RL problem can be Algorithm 1 Model Identification Meta-Training

effectively reduced to a standard RL problem, as Input: task distribution p(7'), training steps N,

the task specific information has been encoded ~€2rning rate o

in the context variable. We can therefore apply Output: policy parameter ¢, model parameter 6, model
’ . . text

any standard model-free RL algorithm to obtain context ¢ o

a policy, as long as we condition the policy on Randomly initialize ¢, 6, ¢

the latent context variable. Initialize multitask replay buffer R(7) < 0
while 0, ¢, ¥ not converged do

In our implementation, we utilize the soft actor- Sample task 7 ~ p(T)

critic (SAC) algorithm (Haarnoja et al, 2018), Collect Dgip , using 7y, and ¢

though any efficient model-free RL method _ (n

could be used. We briefly introduce the pol- Compute ?TT) B AMAML(G’ ¢ Dadop)

icy optimization process for a general actor- Collect D, using © ;‘nd éT -

critic method. Let us parameterize our pol- R(T) < R(T)U Dédzipt U Diu;z

icy my, by a parameter vector 1. Actor-critic fori =110 N do

methods maintain an estimate of the Q val- Sample tas(];_)T ~ 7(%

ues for the current policy, Q™ (s,a, ¢7) = Sample D, 44,1, Doy ~ R(T)

]E.Stsat"‘/ﬂ'w > 'VtT(StaatMSQ = S,ap = a,T], Update 0 < 0—aVeJ(0, ¢, Dégpwpizzz)

via Bel!m?lr} backups, and improve the policy Update o < ¥ — oV Jx (1, Difa)l, o7)

by maximizing the expected Q values under the

policy, averaged over the dataset D. The policy end

loss can be written as: end

JTr (1/% Da ¢T) = 7ES~D,a~ﬂ' [Qﬂ—w (57 a, QI)T)}

Note that we condition our value function Q™ (s, a, ¢1) and policy 7y (als, ¢7) on the adapted task
specific context vector ¢7, so that the policy and value functions are aware of which task is being
performed (Schaul et al., 2015} [Kaelbling, |1993)). Aside from incorporating the context ¢, the actual
RL algorithm is unchanged, and the main modification is the concurrent meta-training of the model
to produce ¢

4 ADAPTING TO OUT-OF-DISTRIBUTION TASKS VIA EXPERIENCE
RELABELING

At meta-test time, when our method must adapt to a new unseen task 7, it first samples a small batch
of data and obtain the latent context ¢ by running the gradient descent adaptation process on the
context variable, using the model identification process introduced in the previous section. While
our model identification method is already a complete meta-RL algorithm, it has no guarantees of
consistency. That is, it might not be able to adapt to out-of-distribution tasks, even with large amounts
of data: although the gradient descent adaptation process for the model is consistent and will continue

Under review as a conference paper at ICLR 2021

to improve, the context variable ¢ produced by this adaptation may still be out-of-distribution for
the policy when adapting to an out-of-distribution task. However, with an improved model, we can
continue to train the policy with standard off-policy RL, by generating synthetic data using the model.
In practice we adapt the model for as many gradient steps as necessary, and then use this model to
generate synthetic transitions using states from all previously seen meta-training tasks, with new
successor states and rewards. We call this process experience relabeling. Since the model is adapted
via gradient descent, it is guaranteed to eventually converge to a local optimum for any new task, even
a task that is outside the meta-training distribution. We illustrate the experience relabeling process in
the right part of Figure[T] and provide pseudo-code in Algorithm 2]

When using data generated from a learned
model to train a policy, the model’s predicted - -
trajectory often diverges from the real dynam- 1nPut: test task 7', multitask replay buffer R(7),
ics after a large number of time steps, due to Ada}ptatlon steps.for context Nyqs¢, Training steps for
accumulated error (Janner et al., 2019). We policy Ny, T.rammg steps for model N,
. .. : Output: policy parameter 1)
can mitigate this issue in the meta-RL case by -
leveraging all of the data from other tasks that Collect D), from 7" using 7, and ¢
was available during meta-training. Although fori =110 N;.q do
new task is previously unseen, the other train- | Update ¢ according to Eq.
ing tasks share the same state space and action end
space, and so we can leverage the large set of ~While ¢ not converged do

Algorithm 2 Experience Relabeling Adaptation

diverse transitions collected from these tasks. fori =117 Ny do

Using the adapted model and policy, we can SAan}Ple T ~Rand D7) ~ R(T)

relabel these transitions, denoted (s, a,s’,r), D7) + Relabel(D'7,0, $+)

by sampling new actions with our adapted pol- Train policy ¥ < 1 — aVyJx (1, D7), ¢7)
icy, and by sampling next states and rewards

from the adapted model. The relabeling pro- end

cess can be written as: end

Relabel(D,0, 1) = {(s,a,s',r)|s € D;a ~ n(als, 1), (s',) ~ p(s',r[s,a;0, 7))}

We use these relabeled transitions to continue training the policy. The whole adaptation process
is summarized in Algorithm[2] Since the learned model is only used to predict one time step into
the future, our approach does not suffer from compounding model errors. We also note that our
experience relabeling method is a general tool for adapting to out-of-distribution tasks, and could be
used independently of our model identification algorithm. For example, we could apply a standard,
non-context-based dynamics and reward model to generate synthetic experience to finetune a policy
obtained from any source, including other meta-RL methods.

Similar to our method, the MQL algorithm (Fakoor et al.,[2020) also reuses data collected during
meta-training time to continue improve the policy during adaptation. However, the way it reuses data

is different. Given a new adaptation dataset D, qq4y¢ and replay buffer R containing data from other

tasks, MQL estimates a density ratio %, where ¢ and ¢’ are the corresponding probability

density on Dy qqp: and R. MQL then re-weight the transitions in the replay buffer using this density
ratio to compute the loss for the policy and value function. This implicitly assumes that the data
distributions of different tasks share the same support, i.e. ¢(s, a,s’,r) > 0 for transitions sampled
from other tasks in the replay buffer. This assumption may not be true in many practical domains.
We will show empirically that indeed when this assumption is violated, MQL is not able to adapt
effectively. Our method avoids this problem by using an adapted model to relabel the data. By
generating a synthetic next state and reward, the relabeled transition would be useful for the new task,
even if the original transition is not. The only assumption for our method is that different tasks share
the same state and action space, which is true for most meta-RL domains.

5 RELATED WORK

Meta-reinforcement learning algorithms extend the framework of meta-learning (Schmidhuber, |1987;
Thrun & Prattl, [1998; Naik & Mammonel [1992; Bengio et al.,[1991) to the reinforcement learning
setting. Model-free encoder-based methods encode the transitions seen during adaptation into a
latent context variable, and the policy is conditioned on this context to adapt it to the new task.

Under review as a conference paper at ICLR 2021

The context encoding process is often done via a recurrent network (Duan et al.,[2016; Wang et al.,
2016; [Fakoor et al., [2020; [Stadie et al.l 2018)), an attention mechanism (Mishra et al., [2017)), or
via amortized variational inference (Rakelly et al., 2019; Humplik et al., 2019). While inference
is efficient for handling in-distribution tasks (Fig. [2)), it is not effective for adaptation to out-of-
distribution tasks (Fig. . On the other hand, MIER can handle out-of-distribution tasks through the
use of a consistent gradient descent learner for the model, followed by a consistent (non-meta-trained)
off-policy reinforcement learning method.

Model-free gradient-based meta-RL methods (Finn et al., 2017a; Rothfuss et al., 2018} Rusu et al.,
2018; [Liu et al., 2019} |Gupta et al., 2018} |Sung et al 2017; [Houthooft et al., 2018) implement
gradient descent as the adaptation process. However, they are based on on-policy RL algorithms, and
thus require a large number of samples for training and adaptation (Fig. [2). There are also works
that combine gradient-based and encoder-based methods (Lan et al., | 2019). However, such methods
still suffer from the same sample efficiency problem as other gradient based methods, because of the
use of on-policy policy gradients. Our method avoids this problem by combining a gradient-based
supervised meta-learning algorithm with an off-policy RL algorithm to achieve sample efficiency
comparable to that of off-policy encoder-based methods.

There has been some work that uses off-policy policy gradients for sample efficient meta-training
(Mendonca et al., [2019), but this still requires quite a few trajectories for policy gradient based
adaptation at test time. MIER avoids this by reusing the experiences collected during training to
enable fast adaptation with minimal amount of additional data.

Model based meta-RL methods meta-train a model rather than a policy (Nagabandi et al.| 2018}
Semundsson et al.| [2018)). At test time, when the model is adapted to a particular task, standard
planning techniques such as model predictive control (Williams et al.,|2015;|Camacho & Albal 2013))
are often applied to select actions. Unfortunately, pure model-based meta-RL methods typically attain
lower returns than their model-free counter-parts, particularly for long-horizon tasks. Our method can
attain comparatively higher final returns because we only use one-step predictions from our model to
provide synthetic data for a model-free RL method (Fig.). This resembles methods that combine
model learning with model-free RL in single-tasks settings (Sutton,|1991};|Janner et al., |2019).

6 EXPERIMENTAL EVALUATION

We aim to answer the following questions in our experiments: (1) Can MIER meta-train efficiently on
standard meta-RL benchmarks, with meta-training sample efficiency that is competitive with state-of-
the-art methods? (2) How does MIER compare to prior meta-learning approaches for extrapolation to
meta-test tasks with out-of-distribution (a) reward functions and (b) dynamics? (3) How important is
experience relabeling in leveraging the model to train effective policies for out-of-distribution tasks?

To answer these questions, we first compare the meta-training sample efficiency of MIER to existing
methods on several standard meta-RL benchmarks. We then test MIER on a set of out-of-distribution
meta-test tasks to analyze extrapolation performance. We also compare against a version of our
method without experience relabeling, in order to study the importance of this component for
adaptation. All experiments are run with OpenAl gym (Brockman et al., 2017) and use the mujoco
simulator (Todorov et al., [2012). Additional implementation and experiment details including
hyperparameters are included in Appendix [C]

6.1 META-TRAINING SAMPLE EFFICIENCY ON META-RL BENCHMARKS

We first evaluate MIER on standard meta-RL benchmarks, which were used in prior work (Finn et al.,
2017a; |Rakelly et al., [2019; |Fakoor et al., [2020) and show the result in Figure @ We compare to
PEARL (Rakelly et al.; 2019), which uses an off-policy encoder-based method, but without consistent
adaptation, meta Q-learning (MQL) (Fakoor et al.| 2020), which also uses an encoder, MAML (Finn
et al.,|2017a) and PRoMP (Rothfuss et al.}[2018), which use MAML-based adaptation with on-policy
policy gradients, and RL2 (Duan et al,2016), which uses an on-policy algorithm with an encoder.
We plot the meta-test performance after adaptation (on in-distribution tasks) against the number of
meta-training samples, averaged across 3 random seeds. On these standard tasks, we run a variant
of our full method which we call MIER-wR (MIER without experience relabeling). Note that our
implementation generates two hundred thousand exploration samples from the initial policy during

Under review as a conference paper at ICLR 2021

Half-Cheetah-Fwd-Back Half-Chectah Vel oo Ant-Fwd-Back Humanoid-Direc-2D WialkeERand-Farams
800

= 2000 " e 1200 1000 T oz
5 1 (; £ Wy S AT 5 600

B 1500 m H g 100 mwﬂ \]‘ ERE T | 3

& A £ | 2 a0 | V g o i = o

8, 1000 W 2 J 8, 600 =3 i 2

g f § 0 f £ 400 § w0 2200

g w0 z «“ g z i [~

ol
00 05 10 15 20 25 30 35 40 o 01 02 3 04
Time steps (1e6) Time steps (1e6)

MIER-wR (Ours) = PEARL mQr =—— MAML =—— RL2 =—— ProMP

o i L — o DA

25 00 0

05 1.0 15 20 02 04 06 08 2 3
Time steps (1e6) Time steps (1e6) Time steps (1e6)

Figure 2: Performance on standard meta-RL benchmarks. Return is evaluated over the course of the meta-
training process on meta-test tasks that are in-distribution.

meta-training prior beginning meta-training, following the same convention as PEARL (Rakelly et al.|
2019), whereas MQL does not generate these samples, which explains the difference in terms of
where training begins (most visible in Half-Cheetah-Vel), resulting in a constant offset of the learning
curve along the x-axis. Our method achieves performance comparable to or better than the best prior
methods, indicating that our model identification method provides a viable meta-learning strategy
that compares favorably to state-of-the-art methods. However, the primary focus of our paper is on
adaptation to out-of-distribution tasks, which we analyze next.

6.2 ADAPTATION TO OUT-OF-DISTRIBUTION TASKS

Next, we evaluate how well MIER can adapt to out-of-distribution, both on tasks with varying reward
functions and tasks with varying dynamics. We compare the performance of our full method (MIER),
and MIER without experience relabeling (MIER-wR), to prior meta-learning methods for adaptation
to out-of-distribution tasks. All algorithms are meta-trained with the same number of samples (2.5M
for Ant Negated Joints, and 1.5M for all other domains) before evaluation. For performance of
algorithms as a function of data used for meta-training, see Figure 6 in Appendix

Extrapolation over reward functions: To evaluate extrapolation to out-of-distribution rewards,
we first test on the velocity extrapolation environments of HalfCheetah introduced by [Fakoor et al.
(2020). Half-Cheetah-Vel-Medium meta-trains on tasks where the cheetah is required to run at target
speeds ranging from 0 to 2.5 m/s, while Half-Cheetah-Hard meta-trains on speeds from 0 to 1.5 m/s,
as depicted in Figure[3(a)] In both settings, the meta-test set has target speeds sampled from 2.5 to
3 m/s. In Figure |4} we see that our method matches MQL on the easier Half-Cheetah-Vel-Medium
environment, and outperforms all prior methods including MQL on the Half-Cheetah-Vel-Hard
setting, where the meta-test tasks are further outside the distribution of meta-training tasks. We see
that experience relabeling improves performance in both settings.

We also evaluate reward function extrapolation on the Ant tasks, where meta-training task directions
are sampled from 3 quarters of the circle, and the meta-test set contains the remaining quadrant, as
illustrated in Figure We see in Figure] that our method outperforms PEARL and MAML by a
large margin in this setting, while MQL attains better performance. We provide a more fine-grained
analysis of adaptation performance on different tasks in the test set in Figure[6} We see that while the
performance of all methods degrades as validation tasks get farther away from the training distribution,
MIER and MIER-wR perform consistently better than MAML and PEARL. Note, however, that the
reward extrapolation represents in some sense the easiest setting for extrapolate, since the dynamics
are preserved across all tasks, and our method’s performance would likely improve with better models.
In the next paragraph, we study the more challenging setting, where extrapolation requires adapting
to different dynamics.

Extrapolation over dynamics: To study adaptation to out-of-distribution dynamics, we con-
structed variants of the HalfCheetah and Ant environments where we negate the control of randomly
selected groups of joints as shown in Figures and [3(d)] During meta-training, we never negate
the last joint so we can construct out-of-distribution tasks by negating this last joint together with a
randomly chosen subset of the others. For HalfCheetah, we negate 3 joints at a time from among the
first 5 during meta-training, and always negate the 6th joint (together with a random subset of 2 of the
other 5) for testing, such that there are 10 meta-training tasks and 10 out-of-distribution evaluation
tasks. For Ant, we negate 4 joints from among the first 7 during meta-training, and always negate the
8th (together with a random subset of 3 of the other 7) for evaluation, resulting in 35 meta-training
tasks and 35 evaluation tasks, out of which we randomly select 15.

Under review as a conference paper at ICLR 2021

W Training set for Cheetah-Vel Medium Negated Joint
[Training set for Cheetah-Vel Hard — Control Movement
W Test set for both environments, W= Direction Direction

(a) Cheetah Velocity (b) Ant Direction (C) Cheetah Negated Joints (d) Ant Negated Joints

Figure 3: Illustration of out-of-distribution adaptation tasks: (a) Cheetah-Velocity Medium (target velocity
training set in blue, test set in red) and Cheetah-Velocity Hard (target velocity training set in green, test set in
red), (b) Ant Direction (target direction training tasks in green, test tasks in red), (c) Cheetah Negated Joints
and (d) Ant Negated Joints. Training and test sets are indicated in the figure for (a) and (b). In the negated joint
environments, the control is negated to a set of randomly selected joints, and the movement direction when
control is applied is depicted for both negated and normal joints.

Half-Cheetah-Vel-Medium 250 Half-Cheetah-Vel-Hard Ant-Dir

' _ B I

I[I

&
g
3

@
@
3

Average Return
Y
g B
g 8
Average Return
TORNS
g 8
Average Return
- 8 B
H
e

550 X 550 I o
MER MERWR MQL PEARL MAML MER MERWR MaL PEARL MAML MIER MIER-WR MQL PEARL MAML
Cheetah-Negated-Joints Ant-Negated-Joints
1000 20
£ £
5 a0 2 150 ==
5 7]
2w I 2 I
o
E) 0 §|00
o
3 1 2.
" =
o —
0
MIER MIER-WR MQL PEARL GrBAL MAML MIER MIER-WR MQL PEARL MAML
= MIER (Ours) === MIER-WR (Ours) === PEARL MQL MAML —— GrBAL

Figure 4: Performance on out-of-distribution tasks. All algorithms are meta-trained with the same amount of
data, and then evaluated on out-of-distribution tasks. Cheetah-Velocity and Ant-Direction environments have
varying reward functions, while Cheetah-Negated-Joints and Ant-Negated-Joints have different dynamics.

In addition to MQL, PEARL and MAML, we compare against GrBAL (Nagabandi et al.| 2018)), a
model based meta-RL method. We could not evaluate GrBAL on the reward extrapolation tasks, since
it requires the analytic reward function to be known, but we can compare to this method under varying
dynamics. From Figure] we see that performance on Cheetah-Negated-Joints with just context
adaptation (MIER-wR) is substantially better than prior methods, and there is further improvement
by using the model for relabeling (MIER). On the more challenging Ant-Negated-Joints environment,
MIER-wR shows similar performance to MQL and PEARL, and leveraging the model for relabeling
again leads to substantially better performance for MIER. We note that in this harder dynamics
extrapolation setting, the full MIER method attains a significant improvement over MQL, which we
hypothesize is based the shared support assumption described in Section[d]is violated in these two
environments.

7 CONCLUSION

In this paper, we introduce a consistent and sample efficient meta-RL algorithm by reformulating
the meta-RL problem as model identification, and then described a method for adaptation to out-
of-distribution tasks based on experience relabeling. Our algorithm can adapt consistently to
out-of-distribution tasks by adapting the model first, relabeling all data from the meta-training tasks
with this model, and then fine-tuning on that data using a standard off-policy RL method. While model
identification and experience relabeling can be used independently, with the former providing for a
simple meta-RL framework and the latter providing for adaptation to out-of-distribution tasks, we
show that combining these components leads to good results across a range of challenging meta-RL
problems that require extrapolating to out-of-distribution tasks at meta-test time.

Under review as a conference paper at ICLR 2021

REFERENCES

Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. In IJCNN-91-Seattle
International Joint Conference on Neural Networks, volume ii, pp. 969 vol.2—, 1991.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2017.

E. F. Camacho and C. B. Alba. Model predictive control. In Learning to learn. Springer Science and
Business Media, 2013.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and Alexander J. Smola. Meta-g-learning. In
International Conference on Learning Representations, 2020. URL https://openreview!
net/forum?id=SJeD3CEFPH.

Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and gradi-
ent descent can approximate any learning algorithm. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=Hy jCS5yWCW.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126-1135. JMLR. org, 2017a.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imitation
learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017b.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Information
Processing Systems, pp. 5302-5311, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Rein Houthooft, Richard Y Chen, Phillip Isola, Bradly C Stadie, Filip Wolski, Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. arXiv preprint arXiv:1802.04821, 2018.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,
2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. arXiv preprint arXiv:1906.08253, 2019.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, 1993.

Lin Lan, Zhenguo Li, Xiaohong Guan, and Pinghui Wang. Meta reinforcement learning with task
embedding and shared policy. arXiv preprint arXiv:1905.06527, 2019.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334-1373, 2016.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2015.

Hao Liu, Richard Socher, and Caiming Xiong. Taming maml: Efficient unbiased meta-reinforcement
learning. In International Conference on Machine Learning, pp. 4061-4071, 2019.

Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Guided meta-policy search. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32,
pp- 9656-9667. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9160-guided-meta-policy—-search.pdfl

https://openreview.net/forum?id=SJeD3CEFPH
https://openreview.net/forum?id=SJeD3CEFPH
https://openreview.net/forum?id=HyjC5yWCW
http://papers.nips.cc/paper/9160-guided-meta-policy-search.pdf
http://papers.nips.cc/paper/9160-guided-meta-policy-search.pdf

Under review as a conference paper at ICLR 2021

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Devang K Naik and RJ Mammone. Meta-neural networks that learn by learning. In [Proceedings
1992] IJCNN International Joint Conference on Neural Networks, volume 1, pp. 437-442. IEEE,
1992.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. arXiv preprint arXiv:1903.08254,
2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Steindér Semundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta reinforcement learning
with latent variable gaussian processes. arXiv preprint arXiv:1803.07551, 2018.

Tom Schaul, Dan Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In Proceedings of the 32nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pp. 1312-1320. JMLR.org, 2015.

Jiirgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universitidt Miinchen, 1987.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization, 2015.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
Meta-critic networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160-163, 1991.

O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Magazine, 36(1):42-47,
Feb 2011. URL http://www.gnu.orqg/s/parallell

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn,
pp. 3—17. Springer, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matthew M Botvinick. Learning to reinforcement learn.
ArXiv, abs/1611.05763, 2016.

10

http://www.gnu.org/s/parallel

Under review as a conference paper at ICLR 2021

Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. Model predictive path integral
control using covariance variable importance sampling. CoRR, abs/1509.01149, 2015. URL
http://arxiv.org/abs/1509.011409.

Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Caml:
Fast context adaptation via meta-learning. arXiv preprint arXiv:1810.03642, 2018.

11

http://arxiv.org/abs/1509.01149

Under review as a conference paper at ICLR 2021

Appendices

A THE DIFFICULTY OF COMBINING GRADIENT-BASED META-LEARNING
WITH VALUE-BASED RL METHODS

One straightforward idea of building a sample efficient off-policy meta-RL algorithm that adapts well
to out-of-distribution task is to simply combine MAML with an off-policy actor-critic RL algorithm.
However, this seemingly simple idea is very difficult in practice, mainly because of the difference
between Bellman backup iteration used in actor-critic methods and gradient descent. Consider the
Bellman backup of Q function Q™ for policy 7,

Q7 (s,a) < r(s,a) + YEg wp(s/[s,a),a/~r(a]s) Q7 (s, @")]

which backs up the next state Q value to the current state Q value. One iteration of Bellman backup
can only propagate value information backward in time for one timestep. Therefore, given a trajectory
with horizon 7', even if we can perform the backup operation exactly at every iteration, at least T’
iterations of Bellman backup is required for the Q function to converge. Therefore, it cannot be used
as the inner loop objective for MAML, where only a few steps of gradient descent is allowed. In
practice 7" is usually 200 for MuJoCo based meta-RL domains, and applying MAML with 200 steps
of inner loop is certainly intractable. If we only perform K steps of Bellman backup for the inner
loop, where K is a small number, we would obtain a Q function that is greedy in K steps, which
gives us very limited performance. In fact, we realized this limitation only after implementing this
method, where we were never able to get it to work in even the easiest domain.

B SAMPLE EFFICIENCY AND ANALYSIS FOR EXTRAPOLATION TASKS

Half-Cheetah-Vel-Medium Half-Cheetah-Vel-Hard %0 Ant-Dir
=200
-100 250 _
c = =
5 200 5 -300 2 20
[D 350 = 150
5 300 —_ °
= @ 400 2 100
® 400 S s Suem e 5
g g /\/ z®
Z -500 Z -500 0
~ -550 /
600 o
00 02 04 06 08 10 12 14 16 000 025 050 075 1.00 125 150 1.75 2.00 00 02 04 06 08 10 12 14
Time steps (1e6) Time steps (1e6) Time steps (1e6)
Cheetah-Negated-Joints 20 Ant-Negated-Joints
1000 200
£ £
3 2 180
[[
2 o [
o g 160 i
® 400 ®
[} o 140
2w | ——
120
0 >
100
00 02 04 06 08 10 12 14 00 05 10 15 20 25
Time steps (1e6) Time steps (1e6)
= MIER (Ours) === MIER-WR (Ours) - PEARL MQL = MAML

Figure 5: Extrapolation performance on OOD tasks. In all experiements, we see our method exceeds or matches
the performance of previous state-of-the-art methods. We also observe that experience relabeling is crucial to
getting good performance on out-of-distribution tasks.

12

Under review as a conference paper at ICLR 2021

Half-Cheetah-Vel 500 Ant-Dir
-100 400
c
g 200 E 0 /
© -300 o 0 N S
['4 @ 100
© -400 g 0
g-soo g 100 = MIER (Ours)
© -600
2 -700 Z 20 =~ MIER-wR (Ours)
-300
800 . — PEARL
175 20 225 25 275 30 325 35 375 40 15 1.56 1.61 1.67 1.72 1.78 1.83 1.89 1.94 20 MAM:
Target Velocity (m/s) Direction (r Radians) - L

Figure 6: Performance evaluated on validation tasks of varying difficulty. For Cheetah Velocity, the training
distribution consists of target speeds from 0 to 1.5 m/s, and so tasks become harder left to right along the x axis.
Ant Direction consists of training tasks ranging from 0 to 1.5 7 radians, so the hardest tasks are in the middle.

C IMPLEMENTATION DETAILS

Please see the released codebase for code to meta-train models and extrapolate to out-of-distribution
tasks. We also include code for the simulation environments included in the paper.

C.1 DATASETS

All experiments are run with OpenAl gym (Brockman et al.,2017), use the mujoco simulator (Todorov
et al.,[2012) and are run with 3 seeds (We meta-train 3 models, and run extrapolation for each). The
metric used to evaluate performance is the average return (sum of rewards) over a test rollout. The
horizon for all environments is 200. For the meta-RL benchmarks (Fig. E]), performance on test tasks
is plotted versus number of samples meta-trained on. The out-of-distribution plots (Fig. [and [6)
report performance of all algorithms meta-trained with the same number of samples (2.5M for Ant
Negated Joints, and 1.5M for all other domains). For the standard meta-RL benchmark tasks, we
use the settings from PEARL (Rakelly et al.,2019) for number of meta-train tasks, meta-test tasks
and data points for adaptation on a new test task. For the out-of-distribution experiments, the values
used for datasets are listed in Table[T] The description of the meta-train and meta-test task sets for
out-of-distribution tasks is included in Section

C.2 EXTRAPOLATION EXPERIMENT DETAILS

For the settings with varying reward functions, the state dynamics does not differ across tasks, and
so we only meta-train a reward prediction model. We only relabel rewards and preserve the (state,
action, next state) information from cross task data while relabelling experience in this setting. For
domains with varying dynamics, we meta-learn both reward and state models.

When continually adapting the model to out of distribution tasks, we first take a number of gradient
steps (N) that only affect the context , followed by another number of gradient steps (M) that affect
all model parameters. We also note that if the model adaptation process overfits to the adaptation
data, using generated synthetic data will lead to worse performance for the policy. To avoid this, we
only use 80% of the adaptation data to learn the model, and use the rest for validation. The model is
used to produce synthetic data for a task only if the total model loss on the validation set is below a
threshold (set to -3).

Table 1: Settings for out-of-distribution environments

Environment Meta-train tasks ~ Meta-test tasks Data points for adaptation N M
Cheetah-vel-medium 100 30 200 10 100
Cheetah-vel-hard 100 30 200 10 100
Ant-direction 100 10 400 20 0
Cheetah-negated-joints 10 10 400 10 O
Ant-negated-joints 10 10 400 10 O
Walker-rand-params 40 20 400 10 100

13

Under review as a conference paper at ICLR 2021

C.3 HYPER-PARAMETERS

For the MIER experiments hyper-parameters are kept mostly fixed across all experiments, with the
model-related hyperparameters set to default values used in the Model Based Policy Optimization
codebase (Janner et al.l 2019), and the policy-related hyperparameters set to default settings in
PEARL (Rakelly et al., 2019), and their values are detailed in Table We also ran sweeps on some
hyper-parameters, detailed in Table 3]

For the baselines, we used publicly released logs for the benchmark results, and ran code released by
the authors for the out-of-distribution tasks. Hyper-parameters were set to the default values in the
codebases. We also swept on number of policy optimization steps and context vector dimension for
PEARL, similar to the sweep in Table[3]

Table 2: Default Hyper-parameters

(a) Model-related (b) Policy-related
Hyperparameter Value Hyperparameter Value
Model arch 200-200-200- Critic arch 300-300-300
200 Policy arch 300-300-300
Meta batch size 10 Discount factor 0.99
Inner adaptation steps 2 Learning rate 3e-4
Inner learning rate 0.01 Target update interval 1
Number of cross tasks for rela- | 20 Target update rate 0.005
belling Sac reward scale 1
Batch-size for cross task sam- | le5 Soft temperature 1.0
pling Policy training batch-size 256
Dataset train-val ratio for model | 0.8 Ratio of real to synthetic data | 0.05
adaptation for continued training
Number of policy optimization | 250
steps per synthetic batch genera-
tion

Table 3: Hyper-parameter sweeps

Hyper-parameter Value Selected Values
Number of policy optimization steps per meta-training iteration 1000, 2000, 4000 1000
Context vector dimension 5,10 5
Gradient norm clipping 10, 100 10

All experiments used GNU parallel (Tangel 2011) for parallelization, and were run on GCP instances
with NVIDIA Tesla K80 GPUS.

14

	Introduction
	Preliminaries
	Meta Training with Model Identification
	Adapting to Out-of-Distribution Tasks via Experience Relabeling
	Related Work
	Experimental Evaluation
	Meta-Training Sample Efficiency on Meta-RL Benchmarks
	Adaptation to Out-of-Distribution Tasks

	Conclusion
	Appendices
	The Difficulty of Combining Gradient-Based Meta-Learning with Value-Based RL Methods
	Sample Efficiency and Analysis for Extrapolation Tasks
	Implementation Details
	Datasets
	Extrapolation Experiment Details
	Hyper-parameters

