
Published in Transactions on Machine Learning Research (12/2024)

Population Priors for Matrix Factorization

Sohrab Salehi sohrab.salehi@columbia.edu
Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer
Center, New York, NY, USA
Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA

Achille Nazaret aon2108@columbia.edu
Department of Computer Science, Columbia University, New York, NY, USA

Sohrab P Shah shahs3@mskcc.org
Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center,
New York, NY, USA

David M Blei david.blei@columbia.edu
Department of Statistics, Columbia University, New York, NY, USA
Data Science Institute, Columbia University, New York, NY, USA
Department of Computer Science, Columbia University, New York, NY, USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= AT9G5s1pOj

Abstract

We develop an empirical Bayes prior for probabilistic matrix factorization. Matrix
factorization models each cell of a matrix with two latent variables, one associated with
the cell’s row and one associated with the cell’s column. How to set the priors of these
two latent variables? Drawing from empirical Bayes principles, we consider estimating the
priors from data, to find those that best match the populations of row and column latent
vectors. Thus we develop the twin population prior. We develop a variational inference
algorithm to simultaneously learn the empirical priors and approximate the corresponding
posterior. We evaluate this approach with both synthetic and real-world data on diverse
applications: movie ratings, book ratings, single-cell gene expression data, and musical
preferences. Without needing to tune Bayesian hyperparameters, we find that the twin
population prior leads to high-quality predictions, outperforming manually tuned priors.

1 Introduction

This paper is about empirical Bayes methods for setting the priors in Bayesian matrix factorization (Mnih
& Salakhutdinov, 2007; Gopalan et al., 2015). Matrix factorization models each cell of a matrix with two
latent variables, one associated with its row and one associated with its column. Matrix factorization
has found broad applications across many fields, including studying consumer behavior, understanding
legislative patterns, assessing pharmaceutical impacts, and exploring social networks (Gopalan et al., 2015;
Koren et al., 2009; Gerrish & Blei, 2011; Jamali & Ester, 2010).

1

https://openreview.net/forum?id=AT9G5s1pOj

Published in Transactions on Machine Learning Research (12/2024)

Suppose Xi,j is the observed entry in row i and cell j, such as user i’s rating of movie j. As a hierarchical
model, a matrix factorization generates the data from the following process:

Ui ∼ πrow(Ui) (1)
Vj ∼ πcol(Vj) (2)

Xi,j ∼ P (Xi,j | Ui, Vj). (3)

Here, Ui and Vj are per row and per column specific latent vectors, and πrow and πcol are the priors
distributions.

This formulation encompasses many factorization models. In Gaussian matrix factorization (Mnih &
Salakhutdinov, 2007), the priors are Gaussians and Xi,j is drawn from a Gaussian with mean U⊤

i Vj and
variance σ2. In Poisson matrix factorization (Canny, 2004; Dunson & Herring, 2005; Gopalan et al., 2015),
the priors are over the positive reals and Xi,j is drawn from a Poisson with rate U⊤

i Vj .

An observed matrix of data X then defines a posterior distribution P (U , V | X) over the row variables
and the column variables. The posterior can provide interpretations of the data and an avenue to form
predictions about missing entries, for example, for a recommendation system.

The prior distributions on the row variables and column variables significantly impact the quality of the
model posterior. How should we set them? Practitioners typically assume a simple parametric family for
the priors, such as a Gaussian or a Gamma, and then find the prior hyperparameters best suited to the
data, e.g., with cross-validation (Salakhutdinov & Mnih, 2008; Schmidt et al., 2009). This approach can be
effective, but it is expensive and only allows for priors from a simple parametric family.

In this paper, we develop an empirical Bayes (EB) methodology for setting the priors (Robbins, 1992;
Efron, 2012), learning them from data. The EB idea is to set the priors using the data, for example by
finding the one that maximizes the marginal log-likelihood of the data. The EB idea is applicable to any
prior distribution from which are repeatedly drawn multiple independent variables. For example, all the
Ui are independently drawn from the same πrow and the Vj are independently drawn from the same
πcol. EB has found applications in applied sciences in diverse fields such as astronomy (Bovy et al., 2011),
actuarial sciences (Bühlmann & Gisler, 2005), genomics (Smyth, 2005; Love et al., 2014), economics (Frost
& Savarino, 1986; Angrist et al., 2017), and survey sampling (Rao & Molina, 2015). EB priors have been
successfully employed in simple hierarchical models, such as in variational autoencoders (Kingma & Welling,
2013; Tomczak & Welling, 2018; Kim & Mnih, 2018).

Matrix factorization, however, provides a different type of application of EB. In matrix factorization, there
are two priors to set, one for the row variables and one for the column variables, and the same data contains
information about them, namely the observed data Xi,j contains information about both Ui and Vj . Thus,
we will find empirical Bayes priors for both row variables and column variables. The result is the twin
empirical Bayes prior (TwinEB), a practical EB method for matrix factorization. Other methods for EB on
matrix factorization include Wang & Stephens (2021) and da Silva et al. (2023); we discuss these in section
2.

Specifically, we model the two priors with mixture distributions, one for each prior. We use mixtures since
they are a flexible family of distributions that can approximate a wide range of distributions (Titterington
et al., 1985; Nguyen et al., 2020). We use variational inference (Blei et al., 2017; Wainwright & Jordan, 2008)
to simultaneously estimate the priors and approximate the corresponding posterior. We verify the efficiency
and the robustness of this approach with real-world data about recommendation systems and computational
biology, and for both Poisson matrix factorization and Gaussian matrix factorization.

We summarize the contributions as follows:

1. We develop the twin population prior, an EB prior for Bayesian matrix factorization.

2. We derive a variational inference algorithm to approximate the matrix factors’ posteriors and learn
the twin population prior simultaneously.

2

Published in Transactions on Machine Learning Research (12/2024)

3. We study the twin population prior on both synthetic and real data and with two types of factoriza-
tion. The automatically learned EB prior performs as well as the best prior chosen retrospectively.

2 Related work

One approach to setting the hyperparameters of priors involves using hierarchical Bayesian models (Gelman,
2006). In this line of work, the prior’s hyperparameters are treated as unknown and assigned a prior with
hyperpriors to be determined. Gopalan et al. (2015) employs this method for introducing hierarchical Poisson
factorization, and Levitin et al. (2019) applies it to gene signature discovery from scRNAseq data. Our work
involves learnable priors (mixtures), which leads to a more flexible class of models while keeping a simpler
model as no extra variables for the hyperparameters are introduced.

A fruitful direction of research for setting priors for matrix factorization has also been the use of empirical
Bayes, a methodology by which one tries to find the prior that matches, in some sense, the population
distribution of the data. In Rukat et al. (2017), the authors set a single and fixed values for the prior
hyperparameter based on the expected value of the observed matrix. In Wang & Stephens (2021), the authors
formulate prior elicitation for matrix factorization (MF) as steps in a variational expectation maximization
algorithm, and in that context, find that it is equivalent to solving the EB normal means (EBNM) problem
(Jiang & Zhang, 2009). Our proposed approach is closely related to Wang & Stephens (2021), but we propose
to update both priors simultaneously which bypasses potentially costly numerical integration required in the
EBNM step. A related line of research makes the connection to EBNM via random-matrix theory, focusing
specifically on denoising principal components (Zhong et al., 2022). Closely related to TwinEB, da Silva
et al. (2023) optimizes hyperparameters to match the prior predictive distribution to statistics computed
from the data, and derives closed-form solutions for PMF and its hierarchical extensions. In Section 4, we
compare our method to Wang & Stephens (2021) and da Silva et al. (2023). In Appendix E, we give a more
detailed review of these methods.

Wang et al. (2024) uses auxiliary information to improve inference in matrix factorization. They assume the
existence of an auxiliary matrix G, comprising per user extra features. Their method is closest to that of
Wang & Stephens (2021), except that they define the per row latent variables as a function of the auxiliary
matrix G. They use an ensemble of regression trees to model the functional dependence of the row-wise
latents on the auxiliary variables. They use a Gaussian likelihood, with a mean as a linear function of the
user and item representations.

Van Linh et al. (2020) incorporate auxiliary information about the items (columns). They assume descrip-
tions of each item exists. They use pre-computed word-embeddings to train a neural network to learn user
representations. They use a Poisson likelihood with a rate computed as the linear combination of the user
and item representations.

Other flexible distribution learning methods can be used to specify expressive priors. For instance, Zhou
et al. (2020) extend variational autoencoders (VAEs) and use normalizing flows (Papamakarios et al., 2021)
to learn flexible priors on the latent embeddings of users and items. They combine user and item auxiliary
information with these latent embeddings to learn user and item representation that are then passed through
multi-layered perceptrons to generate the parameter of a Bernoulli distribution.

Empirical Bayes (EB) priors have been explored in the context of variational autoencoders (VAEs) (Kingma
& Welling, 2013) under the name aggregated posterior, average encoding distribution (Hoffman & Johnson,
2016) or VampPrior (Tomczak & Welling, 2018). The VampPrior learns an amortized posterior and a prior
over the latent variables using a shared neural network. It models a prior on the rows only and was used
to address posterior collapse (Tomczak & Welling, 2018) or to learn disentangled representations (Kim &
Mnih, 2018). Our method focuses on matrix factorization, and we derive EB priors for both row and column
latent variables.

3

Published in Transactions on Machine Learning Research (12/2024)

3 Empirical Bayes priors for probabilistic matrix factorization

Our goal is to develop empirical Bayes (EB) priors for Bayesian matrix factorization models. We will focus
here on Poisson matrix factorization (PMF). In Appendix B, we derive EB priors for Gaussian matrix
factorization (GMF).

With matrix factorization, the presence of repeated and identically distributed latent variables for each row
and each column provides the opportunity to learn their prior distribution from data. This is a form of
empirical Bayes (Robbins, 1992; Efron, 2012) that prescribes a population prior (see Section 3.1).

This population prior aims to align the model’s marginal distribution of observations with the observed
population distribution. In the special case of matrix factorization, there are two distinct populations: the
populations of row vectors, and the population of column vectors. With TwinEB, we learn one prior for each
population. This is a form of hierarchical modeling without introducing an extra layer of latent variables.

Notations. We employ boldface symbols to distinguish vectors from scalars. We use the notations:

• N the number of rows (e.g., individuals), D the number of columns (e.g., features).

• X ∈ NN×D: the observed data matrix; Xi,j is the entry in row i and column j.

• P ⋆
row(Xi,:) is the unknown distribution of rows vectors, and P ⋆

col(X:,j) the one of columns.

• Ui ∈ RL and Vj ∈ RL are model latent variables for row i and column j; of dimension L.

• πrow and πcol are the prior distribution of the latent variables.

3.1 Background: Population priors for simple hierarchical models

In this paper, we assume to have data X that is drawn from an unkown distribution P ⋆, also called population
distribution, that we would like to model with a probabilistic model consisting of latent variables Z, a prior
over the latent variables π, and a likelihood function P (X | Z).

A crucial step in Bayesian statistics is the choice of the prior distribution; if done arbitrarily, it can lead to
suboptimal posterior inference (Wang et al., 2021). We choose to follow an empirical Bayes principle that
prescribes a population prior (Hoffman & Johnson, 2016; Tomczak & Welling, 2018). This prior, by design,
aligns the model’s marginal distribution of observations with the population distribution P ⋆(X).

We first focus on a family of latent variable models called simple hierarchical models (Agrawal & Domke,
2021). The joint distribution factorizes as follows:

P (Z, X) =
N∏

i=1
π(zi)P (xi | zi), (4)

where π is the prior distribution of zi. To simplify notations, we then focus on the marginal likelihood of a
single observation, x, and its corresponding local latent variable z.

An empirical Bayes criterion is that the marginal distribution of observations under the model, denoted as
Pπ(x), should match with their true population distribution P ⋆(x) (Ignatiadis & Wager, 2022), that is:

P ⋆(x) = Pπ(x)

=
∫

π(z)P (x | z) dz.
(5)

Our goal is to set π such that Equation (5) holds. The expression for the prior π that satisfies this conditions
is:

π(z) ≈
∫

Pπ(z | x)P ⋆(x)dx

= EP ⋆(x)[Pπ(z | x)],
(6)

4

Published in Transactions on Machine Learning Research (12/2024)

where Pπ(z | x) is the (local) posterior distribution of the latent variable z given the observation x under
the model. The definition presents two issues: the unknown true population distribution P ⋆(x), and the fact
that the target prior π is on both sides of Equation (6), explicitly on the left and implicitly via the posterior
on the right. The research literature has approximated Equation (6) with Monte Carlo estimates of P ⋆(x)
and variational inference of Pπ(z | x) (Hoffman & Johnson, 2016; Tomczak & Welling, 2018).

3.2 Population priors for probabilistic matrix factorization

Our goal is to develop population priors for Bayesian matrix factorization models. The challenge is that
unlike simple hierarchical models, there is no distinction between local and global latent variables, rather
latent variables denote row- and column-specific random variables.

3.2.1 Twin population priors

We establish population priors for two latent variables, one for the latent variables of the rows πrow(Ui) and
one for the latent variables of the columns πcol(Vj). These priors will match two different populations, one
of the row vectors and one of the column vectors:

P ⋆
row(Xi,:) := Population distribution of row vectors

P ⋆
col(X:,j) := Population distribution of column vectors

We recall that the populations distributions are unkown distributions, from which we sample the rows and
the columns.

We begin with population priors for row latent variables. As in section 3.1, we specify the prior based on an
empirical Bayes principle such that the true marginal distribution of the rows P ⋆

row(Xi,:) is aligned with the
distribution of the rows under the model, that is:

P ⋆
row(Xi,:) =

∫
πrow(Ui)

D∏
j=1

P (Xi,j | Ui, Vj)dUi, (7)

for a fixed set of column variables V . For Equation (7) to hold, a population prior should be used:

πrow(Ui; V) = EP ⋆
row(Xi,:)[Pπrow(Ui | Xi,:, V)], (8)

where we explicted the dependence of the EB prior on the column latent variables V . Similarly for columns,
for a fixed set of row latent variables U , the empirical Bayes criterion is:

P ⋆
col(X:,j) =

∫
πcol(Vi)

N∏
i=1

P (Xi,j | Ui, Vj)dVj . (9)

The prior that satisfies this criterion is the column population prior:

πcol(Vj ; U) = EP ⋆
col(X:,j)[Pπcol(Vj | X:,j , U)]. (10)

Since there are two populations in need of prior specification, we call Equations (8 and 10) the twin population
priors.

We have established the form of population priors in probabilistic matrix factorization. Next, we focus on
how to estimate the twin population priors and how to approximate posterior inference under them.

In the remainder of the paper, we focus on the Poisson matrix factorization (PMF). We derive the priors for
Gaussian matrix factorization (GMF) in Appendix B.

5

Published in Transactions on Machine Learning Research (12/2024)

3.3 Twin EB prior for Poisson matrix factorization

In Poisson matrix factorization (PMF), the row and column latent variables Ui and Vi are non-negative
L-vectors and the likelihood in Equation (3) is Poisson:

Xi,j | Ui, Vj ∼ Poisson
(
UT

i Vj

)
, (11)

for i ∈ [N], j ∈ [D].

The log-likelihood of the data is:

log P (X | U , V) = log
N∏

i=1

D∏
j=1

P (Xi,j | Ui, Vj)

=
N,D∑
i,j

log Poisson
(
Xi,j | UT

i Vj

)
.

(12)

Some methods place Gamma priors on Vj and Ui (Gopalan et al., 2015). Note that this is a Bayesian
formulation of non-negative matrix factorization (Cemgil, 2009).

To compute the population prior for the rows, πrow(Ui; V) = EP ⋆
row(Xi,:)[Pπrow(Ui | Xi,:, V)], we face two

problems. Namely, we do not know the true population distribution of the rows P ⋆
row(Xi,:), and the popu-

lation prior πcol(Ui) appears on both sides of the equality.

To find the population prior, we first notice that a Monte Carlo estimate of Equation (8) writes as:

πrow(Ui; V) ≈ 1
N

N∑
i′=1

Pπrow(Ui | Xi′,:, V). (13)

When the prior satisfies Equation (13), this property is called self-consistency (Laird, 1978).

The structure of Equations (13) suggests to use families of mixtures of parametric distributions to approxi-
mate the row and column population priors (Tomczak & Welling, 2018). Mixtures can approximate complex
distributions when their number of components increases while having the convenience of remaining para-
metric (Titterington et al., 1985; Nguyen et al., 2020). We choose to model the priors by dropping their
dependence on the other variable and express them as,

πrow(Ui) := Pθrow(Ui) :=
Kr∑
k=1

ωkPµk,σk
(Ui), (14)

πcol(Vj) := Pθcol(Vj) :=
Kc∑

k=1
ρkPνk,ηk

(Vj), (15)

where Kr and Kc are the number of components in the mixtures, θrow = {µ, σ, ω} and θcol = {ν, η, ρ}.
The locations µ ∈ RKr×L and ν ∈ RKc×L, the scales σ ∈ RKr×L and η ∈ RKc×L, and the mixture weights
ω ∈ ∆Kr and ρ ∈ ∆Kc are the parameters of the mixtures priors. As Kr and Kc increase, the priors
become more and more expressive (see Figure 4). Figure 1 shows a graphical model representation of matrix
factorization with EB priors.

In a classical empirical Bayes setup, the idea is to set the priors that maximize the marginal likelihood of
the data:

θ̂row, θ̂col = arg max
θrow,θcol

log P (X; θrow, θcol), (16)

where

log P (X; θrow, θcol) = log
∫

Pθrow(U)Pθcol(V)P (X | U , V) dUdV . (17)

In Section 3.4, we find θrow, θcol at the same time as we approximate the model posterior
P (U , V | X; θrow, θcol).

6

Published in Transactions on Machine Learning Research (12/2024)

Figure 1: Twin population priors for Poisson matrix factorization model. Shaded nodes are
observed while other nodes represent latent random variables. The empty squares indicate that we will fit
these priors to the data.

3.4 Posterior inference in PMF with twin EB priors

Given data X, our goal is to calculate the posterior P (U , V |X; θrow, θcol), which also depends on our choice
of priors θrow, θcol. The challenges are that this posterior is intractable (for any prior) and we simultaneously
want to fit the priors to satisfy the EB criterion in Equation (16).

Our strategy will be as follows. We will use variational inference (VI) (Blei et al., 2017) to approximate the
posterior, taking gradient steps in the variational objective with respect to the posterior approximation (the
variational family). At the same time, however, the variational objective of VI is an approximation (lower
bound) of the log-marginal from Equation (16). So we also take gradient steps with respect to the EB priors
to maximize it. The result is an algorithm that simultaneously approximates the posterior and learns the
EB prior.

The variational posterior. Consider a parameterized mean-field variational family,

qΛ(U , V | X) =
∏
i,l

qλr
i,l

(Ui,l)
∏
j,l

qλc
j,l

(Vj,l), (18)

This family has parameters for each row’s latent vector and each column’s latent vector, λr
i and λc

i respec-
tively. We further define Λr := [λr

i,l], and Λc := [λc
j,l]. The full set of variational parameters is Λ = {Λr, Λc}.

From the perspective of posterior inference, our goal is to set qΛ to minimize the KL divergence to the exact
posterior:

Λ̂ = arg min
Λ

KL(qΛ; P (U , V | X; θrow, θcol)). (19)

In detail, the variational family is a bank of Log-Normals:

λr
i,l := (a′

i,l, b′
i,l), (20)

λc
j,l := (aj,l, bj,l), (21)

qλr
i,l

(Ui,l) := LN (a′
i,l, b′

i,l), (22)
qλc

j,l
(Vj,l) := LN (aj,l, bj,l). (23)

Each Log-Normal is parameterized by its natural parameters a and b:

LN (x; a, b) ∝ exp
(
− a

2b
log(x)− (log x)2

2b

)
.

7

Published in Transactions on Machine Learning Research (12/2024)

To minimize the KL divergence in Equation (19), VI optimizes the variational parameters Λ to, equivalently,
maximize the evidence lower bound (ELBO) (Blei et al., 2017):

L(X; Λ, θrow, θcol) = EqΛ(U ,V | X)[log P (X | U , V)]
+ EqΛ [log P (U ; θrow, θcol) + log P (V ; θrow, θcol)]

− EqΛ [log qΛ(U , V | X)]. (24)

Here, we use gradient ascent to maximize L(X; θ, Λ) with respect to Λ (Ranganath et al., 2014). We
further use stochastic reparameterization gradients to take such steps (Kingma & Welling, 2013; Rezende
et al., 2014).

Maximum marginal likelihood. At the same time, we would like to set the prior parameters to maximize
the marginal likelihood of the data (Equation (16)). The variational objective in Equation (24) conveniently
also provides a lower-bound on the marginal likelihood (Blei et al., 2017):

log P (X; θrow, θcol) ≥ L(X; θ, Λ). (25)
So, we will also follow stochastic gradients of the ELBO with respect to the prior parameters θrow, θcol
to maximize L(X; θ, Λ) with respect to θrow, θcol. This strategy has been used in the context of linear
regression (Mukherjee et al., 2023).

Twin EB. Putting these two pieces together, our algorithm is a stochastic gradient ascent of the ELBO with
respect to two sets of parameters. In optimizing with respect to Λ, we minimize the KL divergence between
qΛ and the posterior; in optimizing with respect to θrow, θcol, we maximize the (approximate) marginal
likelihood of the data.

We use the Adam algorithm for stochastic optimization (Kingma & Ba, 2014) with a batch size of 128, and
using ten particles to obtain unbiased noisy estimates of the gradient of the ELBO via the reparameterization
trick (the particles are samples from qΛ to estimate the expectation EqΛ of the ELBO with Monte-Carlo).

The details of the algorithm are in Algorithm 1. Our implementation is available at https://github.com/
blei-lab/TwinEB.

Algorithm 1 Variational inference for Poisson matrix factorization with twin EB priors
Input: Data X, number of particles S, learning rate ζ, number of iterations T , number of components
Kr, Kc, number of latent dimensions L.
Output: Variational posterior parameters Λ∗, prior parameters θrow

∗, θcol
∗.

Initialize: Λ(0), θrow
(0), θcol

(0).
for t = 1 to T do

for i = 1 to N , l = 1 to L do
for s = 1 to S do

Sample ϵ
(s)
i,l ∼ N (0, 1).

Compute U
(s)
i,l = exp(a′(t−1)

i,l + b′(t−1)
i,l ϵ

(s)
i,l).

end for
end for
for j = 1 to D, l = 1 to L do

for s = 1 to S do
Sample ϕ

(s)
j,l ∼ N (0, 1).

Compute V
(s)

j,l = exp(a(t−1)
j,l + b

(t−1)
j,l ϕ

(s)
j,l).

end for
end for
Estimate L(X; θrow

t−1, θcol
(t−1), Λ(t−1)) using Monte-Carlo in Equation (24) with samples U (s), V (s)

in place of EqΛ .
Λ(t), θrow

(t), θcol
(t) ← Adam(∇(θrow,θcol,Λ)L, ζ).

end for
return Λ(T), θrow

(T), θcol
(T).

8

https://github.com/blei-lab/TwinEB
https://github.com/blei-lab/TwinEB

Published in Transactions on Machine Learning Research (12/2024)

MovieLens-1M

Ru1322b

UserArtists

GoodBooks

Figure 2: Twin population priors induce robustness to prior selection The held-out likelihood is
sensitive to the choice of the prior hyper-parameters. GMF endowed with population priors on both row and
column latent variables, TwinEB (GMF), achieves comparable or better results than other methods. Each
sub-panel displays held-out log-likelihood from adjusting the column prior variance with a fixed row prior,
while the right sub-panel does the opposite, varying the row prior variance with a constant column prior. We
demonstrate four datasets, from the top to bottom, MovieLens 1M, Ru1322b-scRNAseq, UserArtists, and
GoodBooks. In all datasets, we set L = 15. Similar results hold for other values of L (see Appendix D.3).

4 Experiments

We study Algorithm 1 in several real-world matrix factorization settings: book ratings, movie ratings, artist
preferences, and single-cell RNA sequence gene counts. For all datasets, we studied both Gaussian and
Poisson matrix factorization. In all datasets, we set L = 15. Similar results hold for other values of L
(see Appendix D.3). We found that TwinEB performs as well or better than manually searching for a
parameterized prior, and performs as well or better than setting a simple parameterized prior by empirical
Bayes.

4.1 Datasets

In this section we first review four real-world datasets, ranging from user-preferences to genomics, and then
explore the impact of twin population priors on the performance of Gaussian and Poisson matrix factorization.
In our experiments, we fix the number of row and column mixtures to Kr = 70 and Kc = 100 respectively.

9

Published in Transactions on Machine Learning Research (12/2024)

MovieLens 1M. This dataset comprises 1 million ratings from 6,000 users (rows) on 4,000 movies
(columns) (Harper & Konstan, 2015). The ratings are on a scale of 1 to 5. Sparsity of this dataset,
defined as the number of nonzero elements divided by the total number of entries, is 0.04. We can use matrix
factorization to capture different aspects of user preferences and movie characteristics. Specifically, Ui,l may
signify user i’s affinity for aspect l (e.g., genre), while Vj,l may represent the degree to which movie j exhibits
aspect l.

Ru1322b. We analyze single cell gene expression data from a patient with small cell lung cancer (Chan
et al., 2021). This dataset comprises 4,000 highly variable genes (columns) across 5,308 cells (rows). For
the GMF family, we applied a two-step transformation. First, we performed a log transformation on the
counts after adding a pseudo-count of one. Then, we standardized the non-zero elements. Sparsity of this
dataset is 0.16. Each entry of the matrix denotes the number of transcripts of gene j in cell i. We explain
the gene expression matrix via L gene-modules, with Ui,l as the activity of module l in cell i, and Vj,l as
gene j’s contribution to module l. Matrix factorization can be used as exploratory data analysis (finding
gene modules associated with malignancy in cancer) or as a component in a more complex analysis (causal
inference (Wang & Blei, 2019)). See Appendix C for details on preprocessing of the sequencing data.

UserArtists We use the data introduced in Cantador et al. (2011), comprising 92,834 user-listened artist
relations, across 1,892 users and 17,632 artists, with a maximum value of 352, 698. Similar to MovieLens 1M,
we use matrix factorization to explain different aspects of user preferences and artist groupings. Sparsity of
this dataset is 0.003. We note that this dataset was analyzed in da Silva et al. (2023).

GoodBooks Contains 6 million ratings across 51,288 users and 10,000 books1. Ratings range from 1 to 5.
Sparsity of this dataset is 0.01.

4.2 Evaluation Metric and Baselines

We evaluate model performance using the likelihood of unseen interactions, that is, test holdout-likelihood
(HOLL). To build intuition, we will use the example of user-item interactions where rows indicate users and
columns items, and the entries of the input matrix their observed interactions. One approach to testing
performance is to hold-out a fraction of the entries of the input matrix, and to train the model on the
held-in portion, and test performance on the held-out entries. In this approach, all users are observed
during training. To test generalizability to cases when new users are observed, we can further hold-out a
portion of users (rows) during training, and then test the performance on these hold-out users. Specifically,
we will test the performance on masked entries of these hold-out users. This procedure measures strong
generalization (Steck, 2019).

At test time, we need to learn user-specific latents for the held-out rows. For this, we run the model in a
special training step where the column latents are held fixed. Since these held-out users are nevertheless
coming from the same pool as our training users, we use only 30% of the observed entries for this special
training step. This may result in a more accurate measurement of out-of-distribution generalizability by
breaking spurious correlations between items and users due to biases present in the current dataset. These
biases may include the time-period of data collection, platforms used that may not exist in a new dataset.
Finally, we report the model performance on 30% of the unseen entries of the held-out users. See the
supplement for the derivation of Equation (45) and more details on the experiments.

Baseline. We evaluate the performance of the PMF (GMF) model with TwinEB against multiple baselines,
namely (i) TwinEB-Single, (ii) PMF (GMF). TwinEB-Single is a simple form of TwinEB where all latent
dimensions have an identical prior, which we learn. PMF is a prior of the same family as the TwinEB,
but with fixed hyperparameters. We compare TwinEB against a large choice of fixed parameters, akin to
hyperparameter selection.

1Accessed at https://github.com/zygmuntz/goodbooks-10k

10

Published in Transactions on Machine Learning Research (12/2024)

4.3 Experimental Procedure and Results: Gaussian Matrix Factorization

We preprocess the data as follows. We standardize each column by subtracting the mean from non-zero
entries and dividing the result by their standard deviation. We study two scenarios: (i) maintaining a fixed
prior on row-wise variables while varying the prior on column-wise variables, and (ii) holding the prior on
column-wise variables constant and adjusting the prior on row-wise variables. We set the variational family
as well as the mixture components for the population priors to be Gaussian. We set the fixed prior to N (0, 1)
and vary the variance of the non-fixed one over {0.001, 0.01, 0.1, 1.0, 10}. For example, in Figure 2, the left
column of plots corresponds to fixing the prior on the column-wise variables to P (Vj) = N (0, 1) and varying
the prior on the row-wise variables as P (Ui) = N (0, σ2) with σ2 ∈ {0.001, 0.01, 0.1, 1, 10}.

We compared the GMF model to TwinEB (GMF) and TwinEB-Single (GMF). We treat zero entries as
missing values.

Figure 2 displays the outcomes for four real-world datasets. In GoodBooks and MovieLens-1M datasets,
TwinEB achieves the highest test HOLL. For the UserArtists dataset, TwinEB does better than the fixed
prior. Similar results were obtained by varying L to other values and are reported in Supplementary Figures 5,
6 in Appendix D.

We also compare to the method of Wang & Stephens (2021), we used the corresponding package flashr,
that currently supports GMF. We designed an imputation experiment where we held-out 10% of entries of
a standardized matrix, and compare reconstruction accuracy on non-zero entries. We applied flashr to the
above four real-world datasets. Except in Ru1322b, the optimization objective in flashr encounters NaN
values, which halt execution and terminate without results. For the Ru1322b dataset it achieves a mean
absolute error of 0.64 vs 0.51 for the TwinEB. For a comparison on simulated data, please see Supplementary
Table S1. We note that it is not straightforward to compare our method to that of Zhong et al. (2022); the
software implementation does not immediately support missing data and imputation.

4.4 Experimental Procedure and Results: Poisson Matrix Factorization

For the MovieLens 1M and GoodBooks datasets, we binarize the matrix, setting entries to ’one’ if a user has
rated a movie and to ’zero’ otherwise. For the Ru1322b dataset, we normalize the rows such that the sum of
all rows are equal; we then round each value to the nearest integer. This is to account for the effect of library
size (Heumos et al., 2023). We treat zeros as missing data. In all models, we set the variational family to be
Log-Normal, and the prior (or the mixture components for the population priors) to be Gamma. Similar to
GMF, we vary the row or column prior parameters, while keeping the other one fixed. We parameterize the
Gamma prior by its mean and variance Gamma(µ, σ2), where µ = α/β and σ2 = α/β2. In each scenario, we
set the fixed prior to Gamma(1, 10). For the varying prior, we set its mean to µ = 1 and change its variance
along {0.01, 0.1, 0.25, 1.0, 10.0, 100.0}. Figure 3 shows the results.

In datasets except for GoodBooks, TwinEB outperforms TwinEBSingle. In the UserArtists dataset, TwinEB
outperforms other methods. TwinEB, on average, takes about 1.5X the runtime of PMF (ranging form 1.1X
to 2.1X). We point out that finding a good prior using grid-search incurs the sum of the cost of evaluations
of the individual points in the grid, over 6.5X the running time of the PMF with TwinEB prior. We note
that using a grid to find fixed priors (or alternatively, learning the scalar prior) does not guarantee reaching
a best test HOLL. Indeed in the UserArtists dataset, TwinEB yields the best test HOLL.

We also compared TwinEB to the method of da Silva et al. (2023); given the data, it estimates values for
the shape and rate parameters of the Gamma prior for both the row and column r.v.s. Table 1 displays the
estimated hyperparameters and the resulting test HOLL.

PMF equipped with fixed priors values calculated from this methods yields Test HOLL that are on par or
slightly worse than the TwinEB method. This method yielded negative hyperparameter estimates for the
MovieLens-1M and GoodBooks datasets. These parameters are effectively not usable, since the parameters
of a Gamma must be positive. Hence, we emphasize that unlike ours, this methods cannot be used on all
datasets. We explore additional baselines in Appendix D.2.

11

Published in Transactions on Machine Learning Research (12/2024)

MovieLens-1M

Ru1322b

UserArtists

GoodBooks

Figure 3: Twin population priors induce robustness to prior selection. As in Figure 2, but for
PMF.

Table 1: Test Heldout Loglikelihood from running PMF with prior hyperparameters sets using the method
of da Silva et al. (2023). For MovieLens-1M and GoodBooks datasets, da Silva et al. (2023) yielded
inadmissible hyperparameters.

test HOLL
Dataset da Silva et al. (2023) TwinEB
Ru1322b -9.53 -9.46
UserArtists -1,583 -1,481
MovieLens-1M NA -3.04
GoodBooks NA -3.95

4.5 Simulation: Complexity of the Prior

Here, we examine the performance of the population priors as the number of mixture components are varied.
To this end, we simulate a 1, 000 by 1, 500 dataset, with L = 64 dimensional row and column-wise r.v.s. We
sample the row- and column-wise r.v.s from a mixture of 15 and 20 Gamma distributions respectively, the

12

Published in Transactions on Machine Learning Research (12/2024)

Simulated Data - Study of K

Figure 4: Increasing the number of mixtures improves the model performance. Each line shows
the average test-HOLL over 10 seeds for a fixed value for Kc, the number of column mixtures, and varying
values of Kr, the number of row mixtures. Here, we set L = 64 to its true simulated value. The results are
similar for L = 32 (see supplement).

rate and shape parameters of which are sampled from a Gamma(1, 1). The mixture weights are sampled
from a Dirichlet(e0, . . . , e0) where the concentration parameter is e0 = 10.

Performance Increase with Number of Mixture Components. The more mixture components, the
more flexible the EB prior is. If learning a EB prior is beneficial, then we expect the performance to increase
with the number of mixture components. We run PMF with population priors with varying number of row
and column mixtures, setting the dimension of the latent variable to its true value, and, to avoid model
misspecification, set the mixture prior family to Gamma. We then report the average of the test HOLL
across ten different seeds. Figure 4, the log-likelihood of test held-out data increases with the number of
mixture components in the row prior.

5 Discussion

We introduced the twin population priors for probabilistic matrix factorization. We derived a method to
estimate the corresponding posterior using Monte Carlo and variational inference. On real-world data, this
method finds a prior as good as the best parametric prior chosen retrospectively.

Our method uses the widely applicable black box variational inference (BBVI); the availability and ease of use
of automatic differentiation, our implementation brings flexible priors in the context of matrix factorization
to a wider audience. For example, our proposed method works on multiple data types, both Gaussian
and Poisson likelihoods, and it is easy to extend it to other reparameterizable likelihoods. In contrast, the
methods of Wang et al. (2024) and da Silva et al. (2023) are tailored for only Gaussian and only count data
only.

With TwinEB, the latent dimensions L of the row-and column-wise variables is a hyperparameter. In
practice, we found that setting L at about 15 was generally good enough (used across all our experiments)
and ablation studies showed that the results were stable with the choice of L (GFM: Supplementary Figure 5
, PMF: Supplementary Figure 6). However, an attractive property of the method of da Silva et al is that it
can automatically set this value in closed form. Methods based on prior predictive statistics suggested by
da Silva et al. (2023) could optimize the selection of L.

A limitation of our model compared to others, is that it does not leverage auxiliary information. Auxiliary
information is information in addition to the observed interaction matrix. For instance, for movie ratings,
the additional information could be user-specific attributes including age, race, and occupation, while item-

13

Published in Transactions on Machine Learning Research (12/2024)

specific attributes could include description of the items. Methods like Wang et al. (2024) and Van Linh
et al. (2020) propose ways to integrate auxiliary information to improve the inference in matrix factorization.

We use a linear function to model the dependence of the observed interactions on the per-row per-column
latent variables. This has the advantage of being interpretable and prevent overfitting (e.g., in the analysis of
single cell gene expression data (Svensson et al., 2020)). However, in the presence of non-linear interactions,
this model would be misspecified. In that case, the link function could be changed, e.g., Zhou et al. (2020)
use a multi-layered perceptron (MLP) to model the dependence of the observed interactions on the per-row
per-column latent variables.

Other flexible distribution learning methods can be used to specify expressive priors, such as normalizing
flows used in Zhou et al. (2020), and one of our baseline methods, TwinNF (Appendix D.2). The model
begins with a simple base distribution and iteratively transforms it into a complex distribution that can
capture more intricate patterns in the data.

One area of further work is to extend this algorithm to tensor factorization (Kolda & Bader, 2009; Schein
et al., 2015). While in matrix factorization, each entry of the observed matrix is explained via two latent
variables, tensor factorization models will involve more. One detail to address is how to formally define the
population distribution associated with each latent variable.

Investigating theoretical properties of the twin population prior a la da Silva et al. (2023) would offer insights
into the behavior of the priors before data is observed that can be a possible future research direction.

Broader Impact Statement

As a data-driven approach, our method is subject to potential pitfalls inherent in such methods, including
a tendency to inherit and amplify biases present in the data. If employed without proper supervision, this
can lead to serious consequences including biased and/or discriminatory outcomes in real-world applications.
These biases implicitly discriminate based on protected attributes (e.g., race, gender). One line of research
assumes specific protected features are known, and enforces fairness by decoupling these features from learnt
latent variables (Togashi & Abe, 2022). If fairness criteria can be formulated in terms of a regularization
term, it can be reinterpreted as learning fairness-aware priors and incorporated in our framework (Zhu et al.,
2018).

6 Acknowledgements

This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748 (list
all MSK authors); NIH grant 5K99CA277562-02 (S.S.), the Eric and Wendy Schmidt Center at the Broad
Institute of MIT and Harvard (A.N.), the Africk Family Fund (A.N.), the National Science Foundation (NSF)
grants IIS-2127869 and DMS-2311108 (D.B.), the Office of Naval Research grant N000142412243 (D.B). and
the Simons Foundation (D.B.). SPS was partially supported by the Halvorsen Center for Computational
Oncology and the MacMillan Center for the Non-Coding Cancer Genome.

References
Abhinav Agrawal and Justin Domke. Amortized Variational Inference for Simple Hierarchical Models.

NeurIPS, 34:21388–21399, 2021.

Joshua D Angrist, Peter D Hull, Parag A Pathak, and Christopher R Walters. Leveraging lotteries for school
value-added: Testing and estimation. QJE, 132(2):871–919, 2017.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians. JASA,
112(518):859–877, 2017.

Jo Bovy, David W. Hogg, and Sam T. Roweis. Extreme deconvolution: Inferring complete distribution
functions from noisy, heterogeneous and incomplete observations. AOAS, 5(2B):1657 – 1677, 2011.

14

Published in Transactions on Machine Learning Research (12/2024)

Hans Bühlmann and Alois Gisler. A course in credibility theory and its applications, volume 317. Springer,
2005.

John Canny. GaP: a factor model for discrete data. In SIGIR, pp. 122–129, 2004.

Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. Second workshop on information heterogeneity and
fusion in recommender systems (hetrec2011). In ACM RecSys, pp. 387–388, 2011.

Ali Taylan Cemgil. Bayesian inference for nonnegative matrix factorisation models. COMPUT INTEL
NEUROSC, 2009.

Joseph M Chan, Álvaro Quintanal-Villalonga, Vianne Ran Gao, Yubin Xie, Viola Allaj, Ojasvi Chaudhary,
Ignas Masilionis, Jacklynn Egger, Andrew Chow, Thomas Walle, et al. Signatures of plasticity, metastasis,
and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell, 39(11):1479–1496, 2021.

Eliezer de Souza da Silva, Tomasz KuĹ, Marcelo Hartmann, Arto Klami, et al. Prior specification for
Bayesian matrix factorization via prior predictive matching. JMLR, 24(67):1–51, 2023.

David B Dunson and Amy H Herring. Bayesian latent variable models for mixed discrete outcomes. Bio-
statistics, 6(1):11–25, 2005.

Bradley Efron. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction,
volume 1. Cambridge University Press, 2012.

Peter A Frost and James E Savarino. An empirical Bayes approach to efficient portfolio selection. JFQA,
21(3):293–305, 1986.

Andrew Gelman. Prior distributions for variance parameters in hierarchical models (comment on article by
Browne and Draper). 2006.

Sean M Gerrish and David M Blei. Predicting legislative roll calls from text. In ICML, 2011.

Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with hierarchical Poisson
factorization. In UAI, pp. 326–335, 2015.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. TiiS, 5(4):1–19,
2015.

Lukas Heumos, Anna C. Schaar, et al. Best practices for single-cell analysis across modalities. Nat. Rev.
Genet., 24(8):550–572, 2023. ISSN 1471-0064.

Matthew D Hoffman and Matthew J Johnson. ELBO surgery: yet another way to carve up the variational
evidence lower bound. 1(2), 2016.

Nikolaos Ignatiadis and Stefan Wager. Confidence intervals for nonparametric empirical Bayes analysis.
JASA, 117(539):1149–1166, 2022.

Tommi S Jaakkola and Michael I Jordan. Bayesian parameter estimation via variational methods. Statistics
and Computing, 10:25–37, 2000.

Mohsen Jamali and Martin Ester. A matrix factorization technique with trust propagation for recommen-
dation in social networks. In RecSys, pp. 135–142, 2010.

Wenhua Jiang and Cun-Hui Zhang. General maximum likelihood empirical Bayes estimation of normal
means. Ann. Stat., 2009.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In ICML, pp. 2649–2658. PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-Encoding variational Bayes. arXiv:1312.6114, 2013.

15

Published in Transactions on Machine Learning Research (12/2024)

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500,
2009.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

Nan Laird. Nonparametric maximum likelihood estimation of a mixing distribution. JASA, 73(364):805–811,
1978.

Hanna Mendes Levitin, Jinzhou Yuan, Yim Ling Cheng, Francisco JR Ruiz, Erin C Bush, Jeffrey N Bruce,
Peter Canoll, Antonio Iavarone, Anna Lasorella, David M Blei, et al. De novo gene signature identification
from single-cell RNA-seq with hierarchical Poisson factorization. Molecular systems biology, 15(2):e8557,
2019.

Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome biology, 15(12):1–21, 2014.

Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. NeurIPS, 20, 2007.

Sumit Mukherjee, Bodhisattva Sen, and Subhabrata Sen. A mean field approach to empirical Bayes estima-
tion in high-dimensional linear regression. arXiv:2309.16843, 2023.

T Tin Nguyen, Hien D Nguyen, Faicel Chamroukhi, and Geoffrey J McLachlan. Approximation by finite
mixtures of continuous density functions that vanish at infinity. Cogent Mathematics & Statistics, 7(1):
1750861, 2020.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. JMLR, 22(57):1–64, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. NeurIPS, 32, 2019.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In AISTATS, pp. 814–822.
PMLR, 2014.

John NK Rao and Isabel Molina. Small area estimation. John Wiley & Sons, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In ICML, pp. 1278–1286. PMLR, 2014.

Herbert E Robbins. An empirical Bayes approach to statistics. Springer, 1992.

Tammo Rukat, Chris C Holmes, Michalis K Titsias, and Christopher Yau. Bayesian boolean matrix factori-
sation. In ICML, pp. 2969–2978. PMLR, 2017.

Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using Markov chain
Monte Carlo. In ICML, pp. 880–887, 2008.

Aaron Schein, John Paisley, David M Blei, and Hanna Wallach. Bayesian poisson tensor factorization for
inferring multilateral relations from sparse dyadic event counts. In SIGKDD, pp. 1045–1054, 2015.

Mikkel N Schmidt, Ole Winther, and Lars Kai Hansen. Bayesian non-negative matrix factorization. In ICA
2009, pp. 540–547. Springer, 2009.

Gordon K Smyth. Limma: linear models for microarray data. In Bioinformatics and computational biology
solutions using R and Bioconductor, pp. 397–420. Springer, 2005.

Harald Steck. Embarrassingly shallow autoencoders for sparse data. In WWW, pp. 3251–3257, 2019.

Valentine Svensson, Adam Gayoso, Nir Yosef, and Lior Pachter. Interpretable factor models of single-cell
RNA-seq via variational autoencoders. Bioinformatics, 36(11):3418–3421, 2020.

16

Published in Transactions on Machine Learning Research (12/2024)

David Michael Titterington, Adrian FM Smith, and Udi E Makov. Statistical analysis of finite mixture
distributions. 1985.

Riku Togashi and Kenshi Abe. Fair matrix factorisation for large-scale recommender systems. arXiv, 2022.

Jakub Tomczak and Max Welling. VAE with a VampPrior. In AISTATS, pp. 1214–1223. PMLR, 2018.

Ngo Van Linh, Duc Anh Nguyen, Thai Binh Nguyen, and Khoat Than. Neural poisson factorization. IEEE
Access, 8:106395–106407, 2020.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference.
Now Publishers, Inc., 2008.

Wei Wang. Applications of adaptive Shrinkage in Multiple Statistical Problems. The University of Chicago,
2017.

Wei Wang and Matthew Stephens. Empirical Bayes matrix factorization. JMLR, 22(1):5332–5371, 2021.

Yixin Wang and David M. Blei. The Blessings of multiple causes. JASA, 114(528):1574–1596, 2019. Publisher:
Taylor & Francis.

Yixin Wang, David Blei, and John P Cunningham. Posterior collapse and latent variable non-identifiability.
NeurIPS, 34:5443–5455, 2021.

Zhiwei Wang, Fa Zhang, Cong Zheng, Xianghong Hu, Mingxuan Cai, and Can Yang. MFAI: A Scalable
Bayesian Matrix Factorization Approach to Leveraging Auxiliary Information. JCGS, pp. 1–11, 2024.

F Alexander Wolf, Philipp Angerer, and Fabian J Theis. SCANPY: large-scale single-cell gene expression
data analysis. Genome biology, 19:1–5, 2018.

Xinyi Zhong, Chang Su, and Zhou Fan. Empirical Bayes PCA in high dimensions. J. R. Stat. Soc., 84(3):
853–878, 2022.

Fan Zhou, Yuhua Mo, Goce Trajcevski, Kunpeng Zhang, Jin Wu, and Ting Zhong. Recommendation via
collaborative autoregressive flows. Neural Networks, 126:52–64, 2020.

Ziwei Zhu, Xia Hu, and James Caverlee. Fairness-aware tensor-based recommendation. In ACM CIKM, pp.
1153–1162, 2018.

17

Published in Transactions on Machine Learning Research (12/2024)

A Introduction

This is the supplement for the manuscript titled "Population priors for matrix factorization". The figures in
this document supplement Figures 2, 3, and 4 in the main text. We provide derivations for twin population
priors for Gaussian matrix factorization, as well as computing the likelihood of the held-out data in section B.
We then give more details about our experimental setup, including the parameters used in training (e.g.,
batch-size) in section C. Finally, we provide results for additional experiments in section D: for additional
values of the latent dimension L for the datasets studied in the main text.

Note that this document is accompanied by an archive file code.zip, that contains the source code, in-
structions to install and run the code, and scripts to recreate the experiments and plot the figures in the
manuscript. All scripts have been de-identified.

B Derivations

In this section, we give more details and derivations for the quantities defined in the main text. Specifically, in
section B.1 we derive the twin population priors for the Gaussian matrix factorization (GMF). In section B.2,
we derive the variational approximation to the twin population priors in GMF. Finally, in section B.3, we
derive the expression for held-out likelihood in matrix factorization.

B.1 Twin population priors for Gaussian matrix factorization

In this section we derive population priors for Gaussian matrix factorization (GMF). In the classical GMF,
the likelihood and priors on the latent variables are Gaussian (Mnih & Salakhutdinov, 2007). The generative
model is as follows:

Wj,l ∼ N (0, σ2
W), j = 1 . . . D, l = 1 . . . L,

Zi,l ∼ N (0, σ2
Z), i = 1 . . . N, l = 1 . . . L,

Xi,j | Ui, Vj ∼ N (
L∑

l=1
Zi,lWjl, σ2), i = 1 . . . N, j = 1 . . . D,

(26)

where U = [Zi,l] ∈ RN×L and [Wj,l] ∈ RD×L, with Ui and Vj and are L-vectors representing the row and
column wise latent variables, and σ, σW and σZ are constant.

For TwinEB, our goal is to learn the prior for the row and column latent variables, so, as in the main text,
we construct mixture priors (Equations 14 and 15), where Pµk,σk

and Pνk,ηk
are Gaussian parameterized by

their mean and scale parameters. That is,

Pθr (Ui) =
Kr∑
k=1

ωkN (Ui; µk, σk), (27)

Pθc(Vj) =
Kc∑

k=1
ρkN (Vj ; νk, ηk), (28)

(29)

where Kr and Kc are the number of components in the mixtures, θr = {µ, σ, ω} and θc = {ν, η, ρ}. The
locations µ ∈ RKr×L and ν ∈ RKc×L, the scales σ ∈ RKr×L and η ∈ RKc×L, and the mixture weights
ω ∈ ∆Kr and ρ ∈ ∆Kc are the parameters of the mixtures priors.

B.2 Posterior inference in GMF with twin population priors

Our goal is to calculate the posterior P (U , V | X.θr, θc), given data X, which also depends on our choice
of priors θr, θc. Our strategy is the same as in the main text, namely, to simultaneously optimize for the

18

Published in Transactions on Machine Learning Research (12/2024)

parameters of the variational distribution and the TwinEB prior. We substitute the variational family in
Equations (19) and (19) with Gaussian, as follows:

λr
i,l := (a′

i,l, b′
i,l), (30)

λc
j,l := (aj,l, bj,l), (31)

qλr
i,l

(Ui,l) := N (a′
i,l, b′

i,l), (32)
qλc

j,l
(Vj,l) := N (aj,l, bj,l). (33)

Each Gaussian is parameterized by its natural parameters a and b:

N (x; a, b) ∝ exp
(
ax + bx2)

The log-likelihood of the data is:

log P (X | Z, W) = log
N∏

i=1

D∏
j=1

Pσ(Xi,j | Zi, Wj)

=
N∑

i=1

D∑
j=1

logN
(

Xi,j ;
L∑

l=1
Zi,lWj,l, σ2

)

= −
N∑

i=1

D∑
j=1

log σ
√

2π + 1
2

(
Xi,j −

∑L
l=1 Zi,lWj,l

σ

)2
 .

(34)

B.3 Held-out likelihood for matrix factorization

We use the log likelihood of held-out data as the score for each model. Let Xout = {Xi,j} denote Nout

entries of the held-out rows that were masked. We compute the likelihood of the masked entries via the
posterior predictive distribution:

log P (Xout | X in) = log
Nout∏
i=1

P (Xout
i | X in) (35)

=
Nout∑
i=1

log P (Xout
i | X in). (36)

For Bayesian matrix factorization we expand the summand in Equation (36) as follows:

log P (Xout
i | X in) ≈ log

∫∫
P (Xout

i | U , V)P (U , V | X in)dUdV (37)

≈ log
∫∫

P (Xout
i | U , V)qΛ(U , V | X in)dUdV (38)

= log E
U ,V ∼qΛ(.)

[P (Xout
i | U , V)] (39)

≈ log 1
M

M∑
m

P (Xout
i | U (M), V (M)), (40)

where M is the number of Monte Carlo samples from qΛ(U , V | X in). In Equation (38) we approximate
the true posterior P (U , V | X in) with its variational counterpart qΛ. The log-likelihood score for the entire
held-out data is then:

Nout∑
i

log P (Xout
i | X in) ≈

Nout∑
i

log 1
M

M∑
m

P (Xout
i | U (M), V (M)). (41)

19

Published in Transactions on Machine Learning Research (12/2024)

C Experimental details

In this section we give more details on our experimental studies in the main manuscript. In section C.1
we describe preprocessing for the gene expression in the Ru1322-scRNAseq dataset. In section C.2, we
specify the parameters used during training. In section C.4 we give a brief description of the artifacts that
accompany this supplementary material.

C.1 Preprocessing of the Ru1322-scRNAseq gene expression dataset

We use CellRanger version 6.0.1 to process the FASTQ and generate the unique molecular identifier (UMI)
count matrices. We use scanpy to preprocess the data, and the seuratv3 algorithm to select highly variable
genes Wolf et al. (2018).

C.2 Training details

We set a batch size of 128 in all our experiments. We ran Poisson and Gaussian matrix factorization
experiments for a maximum of 20, 000 iterations. By this step, all runs had converged.

We initialized the learning rate for the row and column variables, rlr and clr separately. We fix the initial
learning rate rlr ∈ {0.01} and clr ∈ {0.01}. In the experiments in the main text, we use 10 Monte Carlo
samples to approximate the ELBO, while in the supplemental experiments, we use a single particle.

For the PMF experiments in the supplement, we subsample zeros as is standard (Gopalan et al., 2015).
We uniformly randomly subsample the same number of zeros as non-zero values to estimate the likelihood.
Concretely, let L(Xout) denote the log-likelihood of the masked entries of the held-out rows, Xout = {Xi,j}.
Then L(Xout) can be decomposed as the sum of non-zero and zero Xi,j :

L(Xout) = L(Xout
xi,j ̸=0) + L(Xout

xi,j=0), (42)

where Xout
xi,j ̸=0 and Xout

xi,j=0 have cardinalities Nout
non-zero and Nout

zero respectively.

We approximate Equation (42) by subsampling Nsub = min(Nout
zero, Nout

non-zero) of the zeros. Let Xzero
Nsub

denote
a multiset of zeros of cardinality Nsub, then:

L̂(Xout) ≈ L(Xout
xi,j ̸=0) + Nout

zero
Nsub

Xzero
Nsub

. (43)

We ran our experiment on a machine equipped with an NVIDIA A100 GPU with 80GB memory. We imple-
mented all methods in pytorch (Paszke et al., 2019).

C.3 Evaluation

We evaluate each model based on the likelihood of held-out data.

For a given row-wise data split into held-in and held-out rows, let Xout = {Xout
i } denote the set of Nout

masked entries of the held-out rows. We estimate the held-out log-likelihood as follows:

1
Nout

Nout∑
i=1

log P (Xout
i | X in) ≈ (44)

1
Nout

Nout∑
i=1

log 1
M

M∑
m=1

P (Xout
i | U (m), V (m)), (45)

where M is the number of Monte Carlo samples from qΛ(U , V).

We randomly assign 20% of the rows as the test set, and the rest as training data. We then mask 20% of the
entries at random, and train the model on this train set using ten random restarts. We use the 20% masked

20

Published in Transactions on Machine Learning Research (12/2024)

entries as a validation set. At test time, we put aside 30% of the entries of the test rows at random - these
entries constitute the test set - then we train the model on 40% of the rest of the entries. This procedure
measures strong generalization (Steck, 2019).

To compute the held-out likelihood, after training the model on the held-in data, we fix its column parameters
and then learn row parameters of the held-out rows. We then report the likelihood of the masked entries
in the test set. For each model, we report the test HOLL of the random restart that achieved the best
validation HOLL. In our experiments, we set M = 500.

C.4 Implementation

Please refer to the code directory for the source code and instructions on how to run the model. The file
README.md contains instructions for installing the software, and running it. Under the data directory, we
included preprocessed data for the MovieLens-100K dataset, a smaller version of the MovieLens-1M studied
in the main text. In the notebooks directory, we put notebooks used for preprocessing the data, and plotting
the figures in the manuscript. Finally, in the pipelines directory, we put nextflow scripts that recreate
experiments that we have run for the manuscript.

D Additional experiments

In this section we present additional experimental results. We show results for additional values of the
latent dimension L. Concretely, section D.3 studies the effects of the twin population priors on Poisson and
Gaussian matrix factorization, on three real world datasets, while section D.4 examines the sensitivity of the
twin population priors to the choice of its hyper-parameters. We find that these results corroborate those
that were presented in the main manuscript, that is, matrix factorization with traditional priors is sensitive
to the choice of the hyper-parameters of the prior, and twin population priors is a robust way to set the
prior in this family of models.

D.1 Simulated studies

We compare our method to that of Wang & Stephens (2021) on a synthetic dataset, namely that used in
Figure 4 in the main manuscript. Table S1 shows the mean absolute error of non-zero entries, averaged over
10 different repeats. The results are comparable, where TwinEB does slightly better.

Table S1: Comparison of methods based on Mean Absolute Error.

Method Mean Absolute Error
Wang & Stephens (2021) 0.37
TwinEB (GMF) 0.35

D.2 Additional baselines

Here, we introduce two additional baseline methods. One is based on normalizing flows (Papamakarios et al.,
2021), and the other is based on learning the hyper-parameters of Gamma priors for our PMF experiments
(close to Hierarchical Poisson Factorization of Gopalan et al. (2015)). We call both Twin, since we are
simultaneously learning the hyperparameters of the priors on the row and column latents.

TwinHP In TwinHP, we infer the hyper-parameters of the two Gamma priors. This represents a more
exhaustive search in the hyper-parameter space of a model with uni-modal priors. Table S2 shows the
results (a positive value indicates that TwinEB performs better). We note that in the Ru1322b dataset
this method has the worst performance (as measured by Test Hold-Out likelihood), suggesting that the
uni-modal prior is not well specified for that dataset. On the other hand, it achieves the best HOLL in the
MovieLens-1M dataset, suggesting that a uni-modal prior is more appropriate in this dataset.

21

Published in Transactions on Machine Learning Research (12/2024)

Table S2: Comparison of TwinEB to TwinHP in Test Heldout Loglikelihood (Delta-Test HOLL) across
various real-world datasets. Delta-Test HOLL = Test HOLLTwinEB − Test HOLLTwinHP.

Dataset Delta-Test HOLL
Ru1322b 0.54
UserArtists 211.74
MovieLens-1M -0.61
GoodBooks 0.01

TwinNF We implement a Normalizing Flow (NF) (Papamakarios et al., 2021) prior by stacking 10 Planar
flows (similar to the method of Zhou et al. (2020)) to define a flexible prior distribution. Each Planar flow
applies an affine transformation to the latent variables z through the mapping:

fz = z + u · tanh(wT z + b),

where u, w are learnable parameters and b is a bias term. The determinant of the Jacobian is computed as:

det(∇fz) =
∣∣1 + uT

(
(1− tanh2(wT z + b)) ·w

)∣∣ .
We do not claim that this implementation cannot be improved. Nevertheless, we find that TwinEB compares
well with this NF prior, out-performing it in 3 out of the 4 real-world datasets. We show the result in the
following table, where the second column shows the difference between Test-HOLL of TwinEB and TwinNF
(a positive value indicates that TwinEB performs better). We have used the same training procedure as in
the main text, with 10 seeds.

Table S3: As in Table S2, but for TwinNF. Delta-Test HOLL = Test HOLLTwinEB − Test HOLLTwinNF.

Dataset Delta-Test HOLL
Ru1322b -0.12
UserArtists 350.46
MovieLens-1M 0.18
GoodBooks 0.40

D.3 Additional values of latent dimensions

In the main text, we study the effects of twin population priors on the Poisson and Gaussian matrix factor-
ization over four real datasets, with the dimension of the latent variables set to L = 15. Here, we present
results for additional values of L.

D.4 Performance Increases, then Plateaus with the Number of Mixture Components,

We show the performance of TwinEB on simulated data as we vary the number of row and column mixture
components . Here, we add results for additional values of L, and also study the MovieLens 100K dataset.
The result in Figures 7 suggests that as the number of mixture components increases, the performance of
TwinEB improves. The gain is apparent when the number of row components Kr increases. This is expected,
as our evaluation procedure, measures the generalizability for held-out rows, but not held-out columns.

In Figure 8 we show the performance on real-world datasets as we vary the number of row and column
mixtures. Again we find that, overall, as the performance first increases, until plateauing.

E Extended literature review

Here we review, in detail, the methods of Wang & Stephens (2021) and da Silva et al. (2023). These methods
are closest to ours in methodology.

22

Published in Transactions on Machine Learning Research (12/2024)

GMFTwinEB (GMF)

Figure 5: As in Figure 2, but with additional values of latent dimension L.

E.1 Method of Wang & Stephens (2021)

Given the following model for observations X = [Xi,j] ∈ RN×D we can find the row and column factors by
solving a empirical Bayes normal means (EBNM) problem:

Xi,j =
L∑

l=1
ui,lvj,l + Ei,j

ui,l ∼ gul
∈ Gu

vj,l ∼ gvl
∈ Gv

Ei,j ∼ N (0, 1/τi,j).

(46)

We set τi,j = 1 for all i, j to simplify notation.

To solve for u and v, empirical Bayes (EB) prescribes that (1) we learn the gu and gv by maximizing the
marginal log likelihood of the data, and (2) then return inference of u and v amounts to learning the induced
posterior by ĝu and ĝv.

We use mean-field variational EM, to solve this problem.

23

Published in Transactions on Machine Learning Research (12/2024)

PMFTwinEB (PMF)

Figure 6: As in Figure 3, but with additional values of latent dimension L.

Define the ELBO, F (qu, gu, qv, gv) our objective to be maximized as follows:

F (qu, gu, qv, gv) =
∫

q(u, v) log p(X, u, v | gu, gv)
q(u, v) dudv (47)

Assume L, the dimension of the row and column factors is 1. Initialize gu, gv, u, and v, set t = 0 and until
convergence do:

t← t + 1 (48)
q(t)

u , g(t)
u ← arg max

qu,gu

F (qu, gu, q(t−1)
v , g(t−1)

v) (49)

q(t)
v , g(t)

v ← arg max
qv,gv

F (q(t)
u , g(t)

u , qv, gv) (50)

24

Published in Transactions on Machine Learning Research (12/2024)

L = 32 L = 64

Figure 7: As in Figure 4, but with additional column components as well as latent dimension L = 32.

E.2 Empirical Bayes normal means

For known s = [si], observations x = [xj] are assumed to be distributed as follows:

θ ∼ g, g ∈ G

xi | θi
iid∼ N (xi; θi, si).

(51)

Empirical Bayes procedure prescribes a two step process for inference over θ = [θj]:

1. Find a prior g(.) that maximizes the marginal likelihood of the data L(x):

ĝ = arg max
g′

L(x) = arg max
g′

N∏
i=1

∫
g′(θi)psi

(xi | θi)dθi. (52)

2. Compute the induced posteriors by ĝ:

ps(θ | x, ĝ) ≈
N∏

i=1
ĝ(θi)psi(xi | θi). (53)

Solving this problem can be seen as a mapping from the observations x and s to the estimated prior ĝ and
induced posteriors ps(θ | x), that is:

(ĝ(θ), ps(θ | x))← EBNM(x, s) (54)

It turns out that in the variational EM algorithm, only the first two moments of the induced posterior are
necessary, so we define them:

θ̄j = Es[θj | x, ĝ]
θ̄2

j = Es[θ2
j | x, ĝ].

(55)

25

Published in Transactions on Machine Learning Research (12/2024)

E.3 Main proposition

arg max
gu,qu

F (qu, gu, q(t−1)
v , g(t−1)

v) = EBNM(û(Y, v̄, v̄2), ŝ(v̄2)), (56)

where

û(Y, h, w) =
∑D

j Yijhj∑D
j wj

(57)

ŝ(w) =

 D∑
j

wj

−0.5

. (58)

Intuitively, the ûi is normally distributed centered at ui, since for a fixed v we have:

Xi,: = uiv + Ei,: ⇒
ûi = Xi,:v

T (vvT)−1

ûi =
∑D

j Xijvj∑D
j v2

j

,

(59)

where we have computed i independent regressions of the D-vector Yi,: on the D-vector v. Given the normally
distributed noise E, ûi | ui ∼ N (ûi; u, 1).

E.4 Proof sketch

We show that maximizing the prior in EBNM is maximizing some F NM objective. We then show that by
completing the square, we are solving the EBNM problem.

For the EBNM model of Equation (51), define the ELBO:

F NM (qθ, g) =
∫

qθ(θ) log p(x, θ, | g

qθ(θ) dθ. (60)

Note that since

F NM (qθ, g) = log ps(x | g)−KL ((∥ q)θ , ps(θ | x, g), (61)

then

max
qθ

F NM (qθ, g) = log p(x | g), (62)

arg max
g

max
qθ

F NM (qθ, g) = arg max
g

log p(x | g). (63)

Now we show that the complete log likelihood of the data in the EBNM model has a squared form:

log ps(x, θ | g) = −1
2

D∑
j=1

s−2
j (xj − θj)2 + log g(θ) + const. (64)

Therefore

F NM (qθ, g) = Eqθ

−1
2

D∑
j=1

(Ajθ2
j − 2Bjθj)

+ Eqθ
log g(θ)

qθ(θ) + const. (65)

26

Published in Transactions on Machine Learning Research (12/2024)

Now to find the updates in Equation (50), we write down F (.) (the ELBO), then complete the square for u
(v) as needed to find the form of xj = Bj

Aj
for the input to the EBNM problem. That is where functions û(.)

and ŝ(.) come from.

In their experiments, they set Gu = Gv = G, and try two settings for the family of the prior, namely,
G ∈ {SN, PN}, the scale mixture of normals, and a mixture of point mass at zero and a standard normal
distribution. G = SN =

∑B
b πbN (0, σb) and G = PN = π0δ0 + (1 − π0)N (0, σb). For SN ,

∑B
b πb = 1 and

σb are B values lying on a user specified grid.

This paper is somewhat sparse in details. For instance, the scale mixture of normals is not explicitly defined
anywhere in the paper. More details are found in the first author’s PhD thesis Wang (2017). The framework
is implemented in the flashr R package.

Extensions to Binary, Binomial and Poisson data are explored in the first author’s thesis Wang (2017) as
follows.

E.5 Extension to binary observations

The trick is to reparameterize the mean as log-odds, and then use a lower-bound trick for ELBO Jaakkola
& Jordan (2000).

Assuming that Xi,j ∈ {−1, +1}:

Xij = 2× Bern(pij)− 1
pij = p(Xi,j = 1 | zij)

log pij

1− pij
= zij

zij = uivj

ui ∼ gu(.)
vj ∼ gv(.).

(66)

We write the likelihood as:

P (Xij | u, v) = P (Xij | zij) = h(Yij , zij) = 1
1 + exp(−Yijzij) (67)

where h(z) has a (tight) lower bound with parameter ξz:

h(z) ≥ h(ξz) exp(z − ξz

2 − τ(ξz)(z2 − ξ2
z))

τ(ξz) = 1
2ξz

(h(ξx)− 1
2)

= 1
4ξz

tanh(ξz/2).

(68)

Then replace P (X | u, v) in F with its lower bound H(u, v, X, ξ) and call this function Q(.) where H(.) is
defined as:

H(u, v, X, ξ) = exp

∑
ij

[Xijuivj − ξij

2 + log(h(ξij))− τ(ξij)(u2
i v2

j − ξ2
ij)]

 , (69)

where ξ = [ξij] ∈ RN×D are variational parameters. This new objective Q(.) has the following form:

Q(u, v, X, ξ) = Eq log H(u, v, X, ξ) + Eq log p(u | gu)p(v | gv)− Eq log qu(u)qv(v). (70)

27

Published in Transactions on Machine Learning Research (12/2024)

We now maximize Q(.) with the following updates for the EBNM problem:

xj =
0.5
∑

j(XijEvvi)
2
∑

j(τ(ξij)Evv2
j) ,

s2
j = 1

2
∑

j(τ(ξij)Evv2
j) .

(71)

E.6 Extension to Binomial observation

For Binomial data, they use a similar generative model to the Bernoulli case, Equation (66), but change the
likelihood function to Binomial:

Xij = 2× Bin(nij , pij). (72)

They use an augmentation strategy with the Polya-Gamma random variable. It turns out this augmentation
gives a closed form for the expected values of the augmented r.v.s. and the updates are identical to that of
the Binary case.

E.7 Extension to Poisson observation

This is appendix B.2 in the author’s PhD thesis. The details are not given.

The generative model is as follows:

Xij | nij , pij = Bin(nij , pij)

log pij

1− pij
= zij

nij ∼ Poisson(λij).

(73)

F Prior matching da Silva et al. (2023)

Summary. Given some target virtual statistics (say empirical moments of the observations), (da Silva et al.,
2023) picks the hyper-parameters of the prior (λ) such that the difference between the virtual statistics of
the prior predictive distribution and the given virtual statistics are minimized.

Generic Bayesian matrix factorization takes the following form:

Row parameters θik ∼ F (µθ, σ2
θ),

Row parameters βjk ∼ F (µβ , σ2
β),

Likelihood Yij ∼ FY

(
K∑

k=1
θikβjk

)

E[Yij] =
K∑

k=1
θikβjk.

(74)

Poisson matrix factorization with Gamma priors takes the following form:

θik
iid∼ F (µθ, σ2

θ) = Gamma(a, b),

βjk
iid∼ F (µβ , σ2

β) = Gamma(c, d),

Yij
iid∼ Poisson

(
K∑

k=1
θikβjk

)
,

(75)

28

Published in Transactions on Machine Learning Research (12/2024)

where µθ = a
b , σ2

θ = a
b2 , µβ = c

d , σ2
β = c

d2 .

A hierarchical Bayesian model p(Y, Z; λ), has the following predictive distribution (PPD):

p(Y ; λ) =
∫

p(Y | Z; λ)p(Z; λ)dZ. (76)

Idea. Use Equation (76) to integrate out the parameters and search for hyper-parameters that match the
data distribution well. Specifically, find a point estimate of λ to be used in posterior inference later.

Let p†(Y) denote the true population distribution of the observations.

p†(Y) = p(Y ; λ) (77)

=
∫

p(Y | Z; λ)p(Z; λ)dZ. (78)

Note: in exponential family models with conjugate priors, an analytical form of PPD is available and the
marginal likelihood of the data can be directly optimized to find a solution for λ.

Algorithm. Instead of using the true observation distribution p†(Y), use the observations virtual statistics
of Y , T̂λ.

Find λ such that T̂λ match target statistic T ∗.

In the paper, the authors use moments (mean and variance) of the observed data Y . First show closed form
solution for PMF. Then provide a more general case based on gradient descent.

F.1 Analytical solution for Poisson matrix factorization

Given the PMF model in Equation (75), define:

Mean := E[Yij ; λ] (79)
Variance := V[Yij ; λ] (80)

Covariance := ρ[Yij , Ytl; λ] (81)
hyper-parameters λ = {K, µθ, σ2

θ , µβ , σ2
β}. (82)

Proposition 1 For any entry of the virtual data matrix Y = {Yij} ∈ RN×M , the mean and variance is
given by:

E[Yij ; λ] = Kµθµβ (83)
V[Yij ; λ] = K

[
µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2] . (84)

Proposition 2 For any pair of entries Yij and Ytl Y, their correlation is given by:

ρλ[Yij , Ytl] =

0 if i ̸= t and j ̸= l

1 if i = t and j = l

ρ1 if i = t and j ̸= l

ρ2 if i ̸= t and j = l

(85)

where ρ1 = K(µβσθ)2

Vλ[Yij] and ρ2 = K(µθσβ)2

Vλ[Yij] .

This yields the following for K:

K = τVλ[Yij]− Eλ[Yij]
ρ1ρ2

(
Eλ[Yij]
Vλ[Yij]

)2
, (86)

29

Published in Transactions on Machine Learning Research (12/2024)

for τ = 1− (ρ1 + ρ2).

For the Gamma hyper params, we’ll have:

a = ρ2Vλ[Yij]
τVλ[Yij]− Eλ[Yij]

c = ρ1Vλ[Yij]
τVλ[Yij]− Eλ[Yij]

bd = Eλ[Yij]
Vλ[Yij]

√
ac

ρ1ρ2
.

(87)

Given an observed data matrix Y , the methods can be used as follows:

1. Compute empirical mean V̂λ[Yij] and variance Êλ[Yij] and covariances ρ̂λ[Yij , Ytl] from Y .

2. Replace the virtual statistics in Equations (86 and 87) with their empirical ones to compute the
Gamma hyperparameters a, b, c, and , d.

Computing ρλ[Yij , Ytl] from the single observed matrix Y is not obvious, so we use the following estimator
(Algorithm 1 in da Silva et al. (2023)):

1. A ∈ RS×2 and B ∈ RS×2.

2. For s ∈ {1, . . . , S}:

3. Randomly pick a row i, then randomly select two distinct indices in that row j, k:

4. As,1 ← Yi,j , As,2 ← Yi,k,

5. Randomly pick a column j, then randomly select two distinct indices in that column i, k:

6. Bs,1 ← Yj,i, Bs,2 ← Yj,k,

7. ρ1 ← cor(A:,1, A:,2) and ρ2 ← cor(B:,1, B:,2).

8. Return ρ1 and ρ2

F.2 Gradient based optimization

When closed form solutions of the moments of the PPD are not available, the hyper-parameter optimization
can be done as follows:

min
λ

d(T ∗, T̂λ), (88)

for a given (expert determined) T ∗ and T̂λ = Eλ[g(Y)], and specified discrepancy measure d.

For instance, for target mean E∗ and variance V ∗:

d := (E∗ − E[Y])2 + (V ∗ − (E[Y 2]− E[Y]2))2,

g(Y) = (Y, Y 2),
T̂ (E1, E2) = (E1, E2 − E2

1)
(89)

The idea of optimization is: iteratively, draw samples from the PPD to estimate the virtual statistics T̂λ,
and solving for λ by optimizing Equation (88).

To approximate the PPD moments, use Monte Carlo estimation and stochastic gradient descent, with repa-
rameterization gradients (or REINFORCE), assuming that both d(.) and T̂λ are differentiable.

30

Published in Transactions on Machine Learning Research (12/2024)

For PMF, they have:

Eλ[Yij] ≈ 1
SθSβ

∑
ϵθ∼p0

∑
ϵβ∼p0

E[Y | θ(ϵθ, λ)T β(ϵβ , λ)],

Eλ[Yij | θT β] ≈ 1
C

∑
y∼Poisson(θT β)

y.
(90)

For a given dataset, estimate E∗ and V ∗ from the data, then optimize Equation (88) iteratively using GSD,
where d(., .) is defined in Equation (89) and the moments in Equation (90).

31

Published in Transactions on Machine Learning Research (12/2024)

Figure 8: TwinEB is robust to the number of mixture components on real-world datasets. Test hold-out
likelihood as a function of Kr, the number of row components (x-axis) and Kc, the number of column
components (hue) for TwinEB with the Poisson likelihood. Each experiment is from 10 seeds. The test
hold-out likelihood is centered at the result of (Kr, Kc) = (70, 100), highlighted by the gray dashed lines.
Note that the range of the vertical axis is orders of magnitude smaller than the range of the real world
experiments, suggesting that TwinEB is not sensitive to the choice of the number of mixture components.

32

	Introduction
	Related work
	Empirical Bayes priors for probabilistic matrix factorization
	Background: Population priors for simple hierarchical models
	Population priors for probabilistic matrix factorization
	Twin population priors

	Twin EB prior for Poisson matrix factorization
	Posterior inference in PMF with twin EB priors

	Experiments
	Datasets
	Evaluation Metric and Baselines
	Experimental Procedure and Results: Gaussian Matrix Factorization
	Experimental Procedure and Results: Poisson Matrix Factorization
	Simulation: Complexity of the Prior

	Discussion
	Acknowledgements
	Introduction
	Derivations
	Twin population priors for Gaussian matrix factorization
	Posterior inference in GMF with twin population priors
	Held-out likelihood for matrix factorization

	Experimental details
	Preprocessing of the Ru1322-scRNAseq gene expression dataset
	Training details
	Evaluation
	Implementation

	Additional experiments
	Simulated Studies
	Additional baselines
	Additional values of latent dimensions
	Performance Increases, then Plateaus with the Number of Mixture Components,

	Extended literature review
	Method of wang2021empirical
	Empirical Bayes normal means
	Main proposition
	Proof sketch
	Extension to binary observations
	Extension to Binomial observation
	Extension to Poisson observation

	Prior matching dasilvaprior2022
	Analytical solution for Poisson matrix factorization
	Gradient based optimization

