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Abstract

We consider a multi-task contextual bandit setting, where the learner is given a
graph encoding relations between the bandit tasks. The tasks’ preference vectors
are assumed to be piecewise constant over the graph, forming clusters. At every
round, we estimate the preference vectors by solving an online network lasso
problem with a suitably chosen, time-dependent regularization parameter. We
establish a novel oracle inequality relying on a convenient restricted eigenvalue
assumption. Our theoretical findings highlight the importance of dense intra-cluster
connections and sparse inter-cluster ones. That results in a sublinear regret bound
significantly lower than its counterpart in the independent task learning setting.
Finally, we support our theoretical findings by experimental evaluation against
graph bandit multi-task learning and online clustering of bandits algorithms.

1 Introduction

Online commercial websites aim to recommend their products to their customers properly, and the
performance of these recommendations depends on the knowledge of users’ preferences. Unlike
traditional collaborative-filtering-based methods [Su and Khoshgoftaar, 2009], such knowledge is
initially unavailable. Therefore, the online recommender systems need to recommend various items
to the users and observe their ratings to explore their preferences. At the same time, the recommender
system should be able to recommend items that attract users’ attention and receive high ratings by
exploiting the learned knowledge. The contextual bandit frameworks [Li et al., 2010] have been
popularly used to formalize and address this exploration-exploitation trade-off.

However, the classical form of contextual bandits [Li et al., 2010, Chu et al., 2011, Abbasi-Yadkori
et al., 2011] ignores the availability of social networks amongst users and solves the problem for
each user separately. Consequently, such algorithms have some drawbacks when applied to problems
with a large number of users. First, such a large number hinders their computational efficiency.
Second, the partial feedback of the bandit settings exposes the algorithms to having weak estimations
and impairing their decision-making ability [Yang et al., 2020]. Consequently, to improve bandit
algorithms’ performance for large-scale applications, structural assumptions that link the different
users are usually integrated within bandit algorithms [Cesa-Bianchi et al., 2013, Gentile et al., 2014,
Li et al., 2019, Herbster et al., 2021].

Cesa-Bianchi et al. [2013] and Yang et al. [2020] use the prior knowledge of social networks into their
contextual bandit algorithms. Both papers propose UCB-style algorithms and exhibit the importance
of using the social network graph to achieve lower regrets using Laplacian regularization. The latter
regularization promotes smoothness among the preference vectors of users, allowing the transfer of
the collected information between them. However, the Laplacian regularization does not account for
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the smoothness heterogeneity introduced by a piecewise constant behavior over the graph [Wang
et al., 2016]. On the other hand, algorithms of online clustering of bandits [Gentile et al., 2014, Li
et al., 2019] tackle such a piecewise constant behavior by explicitly estimating user clusters. However,
their clustering can cause overconfidence in the constructed clusters, potentially leading to error
accumulation.

In this paper, we assume access to a graph encoding relations between bandit tasks, and that the task
parameter vectors are piecewise constant over the graph. We propose an algorithm that integrates the
prior knowledge of the piecewise constant structure to update tasks rather than finding the clusters
explicitly. That way, we mitigate the limitations mentioned above: the piecewise constant smoothness
is naturally integrated into our regularizer, and we do not estimate the clusters so our algorithm does
not suffer from overconfidence drawbacks.

More precisely, we provide the following contributions

• We analyze an instance of the Network Lasso problem [Hallac et al., 2015], estimating every
vertex’s preference vector using data generated during the interaction between users and
the bandit. We provide the first oracle inequality in this setting and link it to fundamental
quantities characterizing the relation between the graph and the true preference vectors of
the users. Our result relies on our novel restricted eigenvalue (RE) condition, which we
assume for our setting. This result is of independent interest and can be applied to i.i.d. data
as a special case.

• We prove that the empirical multi-task Gram matrix of the data inherits the RE condition
from its true counterpart. Both this result and the previous one depend on the sparsity of
inter-cluster connections and the density of intra-cluster ones.

• We provide a regret upper bound for our setting. Our bound highlights the advantage of our
algorithm in high dimensional settings, and for large graphs.

• We support our theoretical findings by extensive numerical experiments on simulated data
that prove the advantage of our algorithm over other related approaches.

The rest of the paper is organized as follows. Section 2 discusses the relation of our work to the
literature. We formulate our problem and state some of our assumptions in Section 3, then present
our bandit algorithm in Section 4. We analyze the problem theoretically in Section 5 and demonstrate
its practical interest experimentally in Section 6.

2 Related work

Lasso contextual bandits. To address the high dimensional setting for linear bandits, several
multi-armed bandit papers solve a LASSO [Tibshirani, 1996] problem under different assumptions
[Bastani and Bayati, 2019, Kim and Paik, 2019, Oh et al., 2021, Ariu et al., 2022]. They all rely
on a previously established compatibility or RE condition [Bühlmann and van de Geer, 2011], that
they adapt to the non-i.i.d case resulting from the context selection procedure across rounds. Such
assumptions were also used in the multi-task setting by Cella and Pontil [2021] with a Group Lasso
regularization [Yuan and Lin, 2006], and to impose a low-rank structure on the task preference vectors
in Cella et al. [2023]. In our case, we establish a novel oracle inequality, rather than only generalize
an existing one to the non-i.i.d setting, with a newly introduced RE assumption, which can be of
independent interest.

Clustering of bandits. Gentile et al. [2014] introduced sequential clustering of bandits with
the CLUB algorithm. The latter starts with a fully connected graph, and then an iterative graph
learning process is performed, where edges between users are deleted if their preference vectors
are significantly different. As a result, any connected component is seen as a cluster and only one
recommendation per cluster is developed. The SCLUB algorithm of Li et al. [2019] generalizes
CLUB via including merging operations in addition to splitting. In contrast to these approaches,
Nguyen and Lauw [2014] groups users via K-means clustering, and Cheng et al. [2023] rely on
hedonic games for online clustering of bandits. Furthermore, Yang and Toni [2018] make use of
community detection techniques on graphs to find user clusters. Gentile et al. [2017] study the
clustering of the contextual bandit problem where their proposed algorithm, named CAB, adaptively
matches user preferences in the face of constantly evolving items. Our work fundamentally differs
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from the previous ones on two aspects. First, we assume access to a graph encoding relations between
users, which is more informative than a complete graph. Second, we do not keep track of a model for
each cluster, but rather we integrate a prior over the graph via a graph total variation regularizer that
enforces a piecewise constant behavior for the estimated preference vectors.

Multi-task learning. Several contributions assume that the bandit tasks share some underlying
structure. In Cella and Pontil [2021], task preference vectors are assumed to be sparse and to share
their sparsity support, implying that they lie in a low-dimensional subspace with dimensions aligning
with the canonical basis vectors. This idea is further generalized in Cella et al. [2023], where the tasks
are assumed to be confined to an arbitrary unknown low-dimensional subspace. That work improves
upon Hu et al. [2021] by not requiring the knowledge of the small dimension of the task space. It can
be considered to solve our problem if the number of clusters is smaller than the dimension, resulting
in a low-rank structure. However, our work does not rely on any assumption between the number
of clusters and the dimension. The underlying structure linking tasks can also be a graph encoding
relations between them [Cesa-Bianchi et al., 2013, Yang and Toni, 2018], which is our case. However,
while they assume smoothness as a prior, we assume piecewise constant behavior.

Homophily and modularity in social networks Given the large number of users on social networks,
one may be able to learn their preferences more quickly by leveraging the similarities between them.
This idea relies on the notion of homophily in social networks [McPherson et al., 2001, Easley et al.,
2010]. In modelling social networks, users’ preferences relationships are encoded in a graph, where
neighboring nodes are users with similar preferences. This graph can be known a priori or it can
be inferred from previously collected feedback [Dong et al., 2019]. Exploiting this information and
integrating them into bandit algorithms can lead to a significant increase in performance Yang et al.
[2020]. Indeed, the knowledge of user relations allows the algorithm to tackle the data sparsity issue
that is inherent to bandit settings. Another fundamental point that can be used to integrate information
from social networks is that, social networks show large modularity measures [Newman, 2006, Borge-
Holthoefer et al., 2011]. This implies that we have high density of edges within clusters and low
density of edges between clusters. As a result, users can be clustered based on the graph topology and
a preference vector can be learned for each cluster, substantially reducing the dimensionality of the
problem. In other words, discovering the clustering structure of users can reduce the computational
burden of large social networks. Consequently, there have been attempts in exploiting the clustered
structures of social networks in bandit algorithms [Gentile et al., 2014, Nguyen and Lauw, 2014,
Yang and Toni, 2018, Li et al., 2019, Nourani-Koliji et al., 2023, Cheng et al., 2023].

3 Problem setting

We consider a linear bandit setting, with a finite number of tasks representing users in a recommenda-
tion system for example. For each task the agent has to choose among K arms, each associated to a
d-dimensional context vector. All interactions over a horizon of T time steps. We further assume
that we have access to an undirected graph G = (V, E), with vertex set V representing the tasks
and edge set E encoding the relationships between them. We identify the vertex set V with the set
of vertex indices [|V|]. Thus, we consider E to be a subset of V2, where every edge (m,n) ∈ E
has weight wmn > 0, with m < n. The tasks’ preference vectors are denoted by {θm}m∈V ⊂ Rd
verifying ∥θm∥ ≤ 1 ∀m ∈ V , which we concatenate as row vectors into matrix Θ ∈ R|V|×d. The
latter represents a graph vector signal, assumed to be piecewise constant over G.

At a round t ∈ N⋆, a user m(t) ∈ V is selected uniformly at random and served an arm with context
vector x(t) from a finite action set A(t) ⊂ Rd with size K, depending on their estimated preference
vector θ̂m(t)(t) ∈ Rd. We assume the expected reward to be linear, with an additive σ-sub-Gaussian
noise conditionally on the past. Formally, denoting by F0 the trivial sigma-algebra, and for all t ≥ 1,
by Ft the sigma-algebra generated by history set {m(1),x(1), y(1), · · · ,m(t),x(t), y(t),m(t+1)},
the received reward y(t) is given by y(t) =

〈
θm(t)(t),x(t)

〉
+ η(t), where η(t) is Ft−measurable

and ∀t ≥ 1,∀s ∈ R,

E [η(t)|Ft−1] = 0, E [exp(sη(t))|Ft−1] ≤ exp

(
1

2
σ2s2

)
. (1)

3



The performance of our policy is assessed by the expected regret over the T interaction rounds for all
tasks:

R(T ) = E

[
T∑
t=1

max
x̃∈A(t)

〈
θm(t), x̃

〉
−
〈
θm(t),x(t)

〉]
. (2)

The Optimization problem in Equation (4) is an instance of the Network Lasso [Hallac et al., 2015].
Several instances of the same type were studied by Jung et al. [2018], Jung and Vesselinova [2019],
Jung [2020], He et al. [2019]. The objective is characterized by its second term which, while being
just the Laplacian regularization without squaring the norms, promotes a piecewise constant behavior
rather than smoothness. For real-valued signals (d = 1), this regularization has been extensively
studied for image and graph signal denoising, for the problem of trend filtering on graphs [Wang
et al., 2016]. According to Wang et al. [2016], that regularization better adapts to the heterogeneity
of smoothness of the signal and induces a cluster structure in the data: similar users will not only
have similar models but the same model, which offers a compression of the overall model over
the graph. Note that our setting is cluster agnostic; our algorithm does not aim to learn the cluster
structure explicitly but to exploit it implicitly using the total variation semi-norm as regularization.
The strength of the latter is controlled via a time-dependent regularization coefficient α(t), which we
will express later in the analysis.

We formalize our assumption on the context generation as follows.
Assumption 1 (i.i.d action sets). Context sets {A(t)}Tt=1 are generated i.i.d. from a distribution p
over RK×d, such that ∥x∥ ≤ 1∀ x ∈ A(t) ∀t ≥ 1.

In addition to the i.i.d assumption, we assume more regularity as follows.
Assumption 2 (Relaxed symmetry and balanced covariance). There exists a constant ν ≥ 1 such
that for all X ∈ RK×d, p(−X) ≤ νp(X). Furthermore, there exists ω > 0, such that for any
permutation (a1, · · · , aK) of [K], for any i ∈ {2, · · · ,K − 1}, w ∈ Rd, we have

E
[
xaix

⊤
ai [w

⊤xa1 < · · · < w⊤xaK ]
]
≼ ωE

[
(xa1x

⊤
a1 + xaKx⊤

aK )[w⊤xa1 < · · · < w⊤xaK ]
]
,

where M ≼ N means that N −M is a PSD matrix.

This assumption was introduced in Oh et al. [2021], and has already been used in a multi-task setting
by Cella et al. [2023]. Parameter ν controls the skewness, as ν = 1 corresponds to a symmetric
distribution. ω decreases with increasing positive correlation between arms. It verifies ω = O(1)
for multi-variate Gaussians and uniform distributions over the unit sphere [Oh et al., 2021]. The
piecewise constant behavior of the graph signal Θ is formalized in the next assumption.
Assumption 3 (Piecewise constant signal). There exists a partition P of V , such that for any cluster
C ∈ P , signal Θ is constant on C, and the graph obtained by taking the vertices in C and the edges
linking them is connected.

Assumption 3 basically states that the true preference vectors are clustered and that the given graph
induces the cluster structure. It is required for our approach to be beneficial, as we will detail in the
analysis section. For the sake of clarity, we defer the statement of other technical assumptions to
Section 5.

4 Algorithm

Our policy in Algorithm 1 follows a greedy arm selection rule in a multi-task setting, in the same
vein as those presented in Oh et al. [2021], Cella et al. [2023]. Indeed, as pointed out in Oh et al.
[2021], exploration is implicitly incorporated into regularization parameter α(t)’s time dependence.
It has the following expression

α(t) :=
α0σ

t

√
t+ α1(t) + α2(t), (3)

α1(t) :=

√
2
∑
m∈V

|Tm(t)|2 log 1

δ(t)
,

α2(t) := 2max
m∈V

|Tm(t)| log 1

δ(t)
,
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where α0 > 0. The set of time steps a task m has been selected up to time t is denoted by Tm(t). At
the end of a round t, all preference vectors are updated into a new estimation Θ̂(t) while leveraging
the structure of graph G, formally by solving the following network lasso optimization problem:

Θ̂(t) = argmin
Θ̃∈R|V|×d

1

2t

t∑
τ=1

(〈
θ̃m(τ),x(τ)

〉
− y(τ)

)2
+ α(t)

∑
(m,n)∈E

wmn

∥∥∥θ̃m − θ̃n

∥∥∥, (4)

where ∥·∥ denotes the Euclidean norm for vectors. At each time step the network Lasso problem is
solved via the primal-dual algorithm [Jung, 2020].

Algorithm 1: Network Lasso Policy
Input: T, α0 > 0,G, δ
Initialization: Θ̂(0) = 0 ∈ R|V|×d

for t ∈ {1, ..., T} do
Draw a user m(t) ∈ V uniformly at random
Observe context set A(t)

Select x(t) ∈ argmaxx̃∈A(t)

〈
θ̂m(t−1), x̃

〉
Receive payoff y(t)
Update α(t) via equation 3
Update Θ̂(t) via equation 4

5 Analysis

This section provides the main steps of the analysis. One of the paper’s contribution lies in finding an
oracle inequality of the network lasso problem given a restricted eigenvalue condition holding for the
true multi-task Gram matrix. In this regard, the next major challenge and contribution is to show that
the empirical multi-task Gram matrix, estimated in the algorithm, satisfies the restricted eigenvalue
condition. We start by proving an oracle inequality for the estimation error of Θ. Then, we prove that
the latter assumption holds with high probability given that the true multi-task Gram matrix satisfies
it. We end this section by establishing a regret bound for our algorithm.

5.1 Notation and technical assumptions

We provide additional notations required for the analysis. We denote by ∂P the set of all edges in
E connecting vertices from different clusters from partition P (Assumption 3), and we call it the
boundary of P . Thus, ∂Pc, the complementary set of ∂P , is formed by edges connecting vertices of
the same cluster. The total weight of the boundary, i.e.the sum of its edges’ weights, is referred to as
w(∂P). Given a signal Z ∈ R|V|×d, we denote by ZP the signal obtained by setting row vectors of
Z to their mean-per-cluster value w.r.t. P . For any edge subset I ⊆ E , we denote the following norms:
∥·∥F as the Frobenius norm and ∥Θ∥I :=

∑
(m,n)∈I wmn∥θm − θn∥ as the total variation semi-

norm of Θ ∈ R|V|×d over I . Thus, the regularization term of Problem Equation (4) is equal to ∥Θ∥E .
Also, we define the incidence matrix BI ⊂ R|E|×|V|restricted to I ⊆ E to be null except at rows
with index i ∈ I corresponding to edge (m,n), where it equals wmn(em − en), where em is the mth

canonical basis vector of R|V|. We define AV(t) := diag
(
X1(t)

⊤X1(t), . . . ,X|V|(t)
⊤X|V|(t)

)
∈

Rd|V|×d|V|, and subsequently the empirical multi-task Gram matrix up to time step t is given by
1
tAV(t). The following definition introduces quantities related to the clusters defined by partition P ,
with crucial roles that we will elucidate throughout the analysis.
Definition 1 (Cluster content constants). Let C ∈ P be a cluster.

• We denote by ∂vC the vertices of C that are connected to its complementary. We define the inner
isoperimetric ratio of C as ιG(C) := |∂vC|

|C| .

• By abuse of notation, we denote as BC the incidence matrix restricted to edges linking vertices
of C, its associated Laplacian matrix by LC := B⊤

C BC , and its pseudo-inverse by L†
C . The
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topological centrality index of node m ∈ C w.r.t C is equal to (L†
C)

−1
mm. We define the topological

centrality index of C by cG(C) := minm∈C(L
†
C)

−1
mm.

The inner isoperimetric ratio of a cluster measures how many “interior” nodes a cluster contains, in
the sense that they are not connected to its complementary. It is at most equal to the isoperimetric ratio
for weightless graphs as the size of the inner boundary is at most equal to that of the edge boundary,
the latter being connected to the algebraic connectivity via the Cheeger inequality [Cheeger, 1970].

The topological centrality index measures the overall connectedness of a vertex in a network and
indicates how robust a node is to edge failures [Ranjan and Zhang, 2013]. Also, it can be tied to
electricity spreading in a network according to Van Mieghem et al. [2017]. We refer the interested
reader to the two previously mentioned works for a detailed account of the properties of the topological
centrality index. In the appendix, we show that for binary weights graphs the minimum topological
centrality index is at least equal to the algebraic connectivity theoretically and experimentally, where
we showcase that the difference between the two can be significant.

Remark 1. Both the topological centrality index and inner isoperimetric ratio are key parameters
of the cluster structure and the graph. They determine the ’quality’ of the given graph. An optimal
graph and cluster structure yield many intra-cluster connections and few inter cluster connections i.e.
a high topological centrality index and low inner isoperimetric ratio for any cluster. This will later
be highlighted in the oracle inequality and the regret bound.

To proceed, we will need the following definition that introduces several notations to reduce the
clutter.

Definition 2 (Restricted Eigenvalue (RE) condition and norm). A PSD matrix M ∈ Rd|V|×d|V|

verifies the RE condition with constants κ ≥ 1, ψ > 0 and ϕ > 0 if

ϕ2∥Z∥2RE ≤ vec(Z⊤)⊤M vec(Z⊤) ∀Z ∈ S, (5)

where S is the cone defined by:

S :=

{
Z ∈ R|V|×d; a1

(
G,Θ, 1

ψw(∂P)

)
∥Z∥∂Pc ≤ a2

(
G,Θ, 1

ψw(∂P)

)∥∥ZP
∥∥
F

}
,

a1(G,Θ, α0) := 1−
1
α0

+ 2κw(∂P)

min
C∈P

√
cG(C)

, a2(G,Θ, α0) :=
1

α0
+
√
2κw(∂P)max

C∈P

√
ιG(C),

and the RE semi-norm is defined by ∥Z∥RE :=
∥∥ZP

∥∥
F

.

For the rest of the paper, when we use a1 and a2 without arguments, we set α0 = 1
w(∂P)ψ in order to

reduce clutter. For our main results, we cover the case of κ ≥ 1 but treat the more general case κ > 0
in the proofs in the supplementary material. For such a simplification to be valid, we need to assume
that the graph satisfies min

C∈P

√
cG(C) > 2w(∂P), such that we can always find constants κ ≥ 1 and

ψ > 0 that guarantee a1 > 0

To explain the RE condition, if we had S = R|V|×d and ∥·∥RE = ∥·∥F , then M would be invertible
with minimum eigenvalue at least ϕ2. In comparison, our requirement is weaker since it only needs
to hold for signals Z ∈ S and for the ∥·∥RE semi-norm. It has the same form as the compatibility
assumption for the Lasso problem in [Bühlmann and van de Geer, 2011, Oh et al., 2021] or the
restricted strong convexity assumption [Cella et al., 2023].

We further make the following assumption on the true multi-task Gram matrix:

Assumption 4 (RE condition for the true multi-task Gram matrix). For k ∈ [K], let Σk := E
[
xkx

⊤
k

]
be the Gram matrix of the kth context vector’s marginal distribution, let ΣV be the true multi-task
Gram matrix of the context vector generating distribution, given by

ΣV := I|V| ⊗Σ, where Σ =
1

K

K∑
k=1

Σk. (6)
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We assume that ΣV verifies RE condition (Definition 2) with some problem dependent constants

κ ∈
[
1, 1

2w(∂P) min
C∈P

√
cG(C)

)
, ψ ∈

(
0, 1

w(∂P) min
C∈P

√
cG(C)− 2

)
and ϕ > 0.

This assumption is common to several Lasso-like bandit problems [Oh et al., 2021, Ariu et al., 2022,
Cella et al., 2023].

We will later show that it can be transferred to the empirical multi-task Gram matrix.

We provide further intuition on the constant ϕ within the RE condition. We can show that ϕ has an
upper bound:

Proposition 1 (On the RE constant ϕ). Let Mi ∈ Rd×d be the true multi-task gram matrix of user i.
Assume κ ≥ 1. Then the constant ϕ of the RE condition can be upper bounded as:

ϕ ≤

√
λmin

(∑
i∈C Mi

|C|

)
,

where λmin(·) yields the minimum eigenvalue of a given matrix.

Since the true multi-task gram matrix per cluster is always invertible, we always have a non-null
minimal eigenvalue.

Remark 2. The minimal eigenvalue in Proposition 1 could be further bounded using the trace of the
covariances i.e. the sum of all the eigenvalues over the dimension. This would result into an upper
bound of ϕ2 ≤ 1

d .

5.2 Oracle inequality

This section is dedicated to provide a bound on the estimation error of the Network Lasso problem
given in Equation (4) at a particular step t of Algorithm 1.We assume fixed design, meaning that
the context vectors are given and fixed, and we are not concerned by their randomness (due to the
context generating distribution), nor by the randomness of their number for each user (due to random
selection at each time step).

For a time step t, we deliver the oracle inequality controlling the deviation between the estimated
preference vectors Θ̂(t) and the true ones Θ.

Theorem 1 (Oracle inequality). Assume that the RE assumption holds for the empiri-

cal multi-task Gram matrix
1

t
AV(t) with constants κ ∈

[
1, 1

2w(∂P) min
C∈P

√
cG(C)

)
, ψ ∈(

0, 1
w(∂P) min

C∈P

√
cG(C)− 2

)
and ϕ > 0. Suppose that maxm∈V |Tm(t)| ≤ bt for some b > 0

and α0 ≥ 1
ψw(∂P) . Then, with a probability at least 1− δ(t), we have

∥∥∥Θ− Θ̂(t)
∥∥∥
F
≤ 2

σα0

ϕ2
√
t
f(G,Θ, α0)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)
,

where

f(G,Θ, α0) := a2(G,Θ, α0)

 a2(G,Θ, α0)

a1(G,Θ, α0)min
C∈P

√
cG(C)

+ 1

 .

Due to the expressions of a1(Θ,G, α0) and a2(Θ,G, α0), the bound significantly decreases with the
products w(∂P)minC∈P

√
ι(C) and w(∂P)maxC∈P cG(C)−

1
2 , which are small enough for dense

intra-cluster edge links and sparse inter-cluster ones. The bound on the oracle inequality clearly
grows with κ and ψ, thus it is most beneficial if κ is close to 1 and ψ close to zero.
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5.3 RE condition for the empirical multi-task Gram matrix

To establish the oracle inequality, we assumed that the RE condition holds for the empirical multi-task
Gram matrix. In this section, we prove that this holds with high probability. To this end, we use the
same strategy as in Oh et al. [2021], Cella et al. [2023]. We prove that on the one hand, the empirical
multi-task Gram matrix inherits the RE condition from its adapted counterpart since it concentrates
around it. On the other hand, we show that the adapted Gram matrix verifies the RE condition due to
Assumption 1, 2 and 4.
Theorem 2 (RE condition holding for the empirical multi-task Gram matrix). Under assumptions 2
and 4, let t ≥ 1, and let κ, ϕ be the constants from Assumption 4. Assume that maxm∈V |Tm(t)| ≤ bt.

Then, for any γ ∈
(
0,
(
1 + a2

a1

)−2
)

, the empirical multi-task Gram matrix
1

t
AV(t) verifies the RE

condition with constants κ, ψ and ϕ̂, where

ϕ̂ = ϕ̃

√
1− γ

(
1 +

a2
a1

)2

, (7)

with a probability at least equal to 1 − 6d|V| exp

(
− 3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
, where

ϕ̃ :=
ϕ

√
2νω

and c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .

The proof follows a similar approach as in Oh et al. [2021], Cella et al. [2023]; we prove that the RE
condition transfers from the true multi-task Gram matrix to its adapted counterpart VV(t), defined as
follows:

VV(t) = diag
(
V1(t), · · · ,V|V|(t)

)
, (8)

where
Vm(t) =

1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|Fτ−1

]
. (9)

This transfer relies on the work of Oh et al. [2021, lemma 10]. The other step of the proof is showing
that the empirical multi-task Gram matrix and VV(t) become close to each other with high probability
after sufficiently many time steps, in the sense of a matrix norm induced by the RE semi-norm and
the restriction to set S (Definition 2). The bound showcases a dependence on minC∈P cG(C) ∧ |C|,
which is of the same order as |C| for a fully connected cluster with vertices C. It is also clear that the
probability of satisfying the RE condition increases with a higher minimum centrality of a cluster.

5.4 Regret bound

To bound the regret, we bound the expected instantaneous regret for each round t ≥ 1. This bound
relies on the oracle inequality holding and the RE condition being satisfied for the empirical Gram
matrix, both with high probability. Thanks to Theorem 1 and Theorem 2, these two conditions are
ensured.
Theorem 3. Let the mean horizon per node be T = T

|V| . Under assumptions 1 to 4, the expected
regret of the Network Lasso Bandit algorithm is upper bounded as follows:

R(T ) ≤ O
(
α0νωf(G,Θ, α0)

√
T

ϕ2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

))
+

1

A
log(d|V|)+

√
|V|
)
,

with

A =
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6 log(|V|)√
|V|

+
√
2γ

, γ =
1

2

(
1 +

a2

a1

)−2

.

Our regret is mainly formed of two parts. The first one is the sublinear time-dependent term and
represents the bulk of horizon dependence. Interestingly, it decreases as the topological centrality
index grows with the graph size, which proves the importance of intra-cluster high connectivity.
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The second significant term comes from ensuring the RE condition for the empirical multi-task Gram
matrix, and can be interpreted as the number of time steps necessary for it to hold, as pointed out by
Oh et al. [2021]. It has a logarithmic dependence in the graph size and in the dimension, which is a
characteristic of regret bound of the "lasso type". Also noteworthy is that the regret grows explicitly
with log(d) only in the time-independent term, making our policy useful in high-dimensional settings.
Though from Proposition 1 we can expect an implicit dependency on the dimension in the RE constant
ϕ. Specifically, the lower bound on ϕ is an open problem that appears unsolved in other lasso based
works such as Oh et al. [2021], Cella et al. [2023].

Both the regret bound and the oracle inequality presented in Theorem 1 hold only for the set of graphs
that at least satisfy the condition min

C∈P

√
cG(C) > 2w(∂P) and even though our results hold for a

large set of graphs, the individual role of graph-related constants, encapsulated in f(G,Θ, α0), is not
obvious. By further restricting the set of graphs, we are able to provide an alternate bound

Corollary 1. Assume w(∂P)(ψ+2κ)

min
C∈P

√
cG(C)

≤ Ω, with some positive constant Ω < 1, then under assumptions

1 to 4, the expected regret of the Network Lasso Bandit algorithm is upper bounded as follows:

R(T̄ ) = O
(

1

ϕ2(1− Ω)

w(∂P)maxC∈P ιG(C)
minC∈P

√
cG(C)

√
T̄

(√
|V|+

√
log
(
T̄ |V|

)
+ 4

√
|V| log (T̄ |V|)

)

+
w(∂P)2 max

C∈P
ιG(C)

(1− Ω)2 minC∈P(c̃G(C) ∧ c̃2G(C))
log(d|V|) +

√
|V|
)

The simplified bound in Corollary 1 exhibits the typical multi-task learning dependency
√
T |V| rather

than the independent task learning case |V|
√
T and highlights the role of graph related properties

such as the total weight of the boundary, the maximal inner isoperimetric ratio and the minimal
topological centrality index. Furthermore with Ω we can see the influence on the regret bound, when
w(∂P) changes relative to min

C∈P

√
cG(C).

6 Experiments

We compare our algorithm with α0 = 1 to several baselines of the literature. On the one hand, we
consider baselines relying on a given graph, GOBLin [Cesa-Bianchi et al., 2013] and GraphUCB
[Yang et al., 2020] that use the Laplacian to smooth the preference vectors. On the other hand, we
compare to clustering of bandits baselines, namely CLUB [Gentile et al., 2014], SCLUB [Li et al.,
2019], OLS-ITL [Bastani et al., 2021] and LOCB [Ban and He, 2021]. We provided CLUB with
graph G rather than a fully connected graph for a fair comparison. We also include the trace norm
bandit algorithm [Cella et al., 2023], which is relevant when the number of clusters is smaller than
d (we explain this point in the appendix). As a sanity check, we compare to the independent task
learning case with LinUCB (LinUcbITL) where each task is solved independently. The graph used is
weightless and generated using a stochastic block model to ensure a cluster structure, where an edge
is constructed with probability p within clusters and q between clusters. We present the experimental
results in Appendix C.1.

7 Conclusion

In this work, we proposed a multi-task bandit framework that solves the case where the task preference
vectors are piecewise constant over a graph. To this end, we used the Network Lasso policy to estimate
the task parameters, which bypasses explicit clustering procedures. We established a sublinear regret
bound and proved a novel oracle inequality that relies on the small size of the boundary and the high
value of the topological centrality index of each node within its cluster. Our experimental evaluations
highlight the advantage of our method, especially when either the number of dimensions or nodes
increases.
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A Some helper results

Proposition 2 (Bounds on norms of matrix products). Let M ∈ Rm×n and N ∈ Rn×p. Then

∥MN∥q,1 ≤ ∥M∥∞,1∥N∥q,1 ∀q ∈ [1,∞]

∥MN∥F ≤ ∥M∥∥N∥F
∥MN∥F ≤

√
∥M⊤M∥∞,∞∥N∥2,1

∥MN∥2,1 ≤ ∥M∥2,1∥N∥

Proof.

First inequality For any q ∈ [1,∞], we have:

∥∥e⊤i MN
∥∥
q
=

∥∥∥∥∥∥e⊤i M
n∑
j=1

eje
⊤
j N

∥∥∥∥∥∥
q

≤ max
1≤j≤n

∣∣e⊤i Mej
∣∣ n∑
j=1

∥∥e⊤j N∥∥q = max
1≤j≤n

|(M)ij |∥N∥q,1

Second inequality We have

∥MN∥2F =

p∑
j=1

∥MNej∥2 ≤
p∑
j=1

∥M∥∥Nej∥2 = ∥M∥∥N∥2F

Third inequality We have

∥MN∥2F = Tr(MNN⊤M⊤) ≤
∥∥M⊤M

∥∥
∞,∞

∥∥NN⊤∥∥
1,1

Elements of (i, j) entry of matrix NN⊤ is the inner product
〈
e⊤i N , e⊤j N

〉
. Hence, we have∥∥NN⊤∥∥

1,1
=
∑
i,j

∣∣〈e⊤i N , e⊤j N
〉∣∣ ≤∑

i,j

∥∥e⊤i N∥∥∥∥e⊤j N∥∥ = ∥N∥22,1.

Fourth inequality We have

∥MN∥2,1 =
m∑
i=1

∥eiMN∥ ≤
m∑
i=1

∥eiM∥∥N∥ = ∥M∥2,1∥N∥

Proposition 3 (Decomposition of a signal over a graph). For any C ∈ P

• Let Z ∈ R|V|×d be a graph signal. Let us denote by ZC the signal obtained from Z by
setting rows of vertices outside of C to zeros, and let Z|C ∈ R|C|×d be the signal obtained
from ZC by removing the rows of vertices outside of C. Also, let B|C ∈ R|EC|×|C| be the
matrix obtained by taking BC , and removing rows of edges that link C to its outside, and the
resulting null columns. It is clear that

BCZ = BCZC = B|CZ|C (10)

• Let QC := B†
CBC . Then

I|V| =
∑
C∈P

JC +QC (11)

Q∂Pc := B†
∂PcB∂Pc =

∑
C∈P

QC (12)
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where JC =
1C1

⊤
C

|C| , QC = B†
CBC ∀C ∈ P and Q∂Pc := B†

∂PcB∂Pc .

While
∑

C∈P JC projects each entry of a graph signal onto the mean vector value of its
respective cluster, its residual Q∂Pc can be interpreted as the projection onto the respective
entries deviation from its cluster mean value.

Proof. Since the proof of the first point is trivial, we directly treat the second point. Denoting B†
|C the

pseudo-inverse of B|C it is a well-known linear algebra result that the matrix Q|C := B†
|CB|C is the

projector onto the null space of B|C . Since C is connected, the null space of B|C is unidimensional,
and is generated by vector 1|C| ∈ R|C| having only ones as coordinates. Since the projector into that
null space is J|C| :=

1|C|1|C|
|C| , we deduce that

Z|C = J|C|Z|C +Q|CZ|C

=⇒ ZC = JCZC +QCZC

= JCZ +QCZ

where in the last line, QC := B†
CBC . Consequently, we have

Z =
∑
C∈P

ZC

=
∑
C∈P

JCZ +QCZ

To prove the second point, we recall that B∂Pc is the incidence matrix obtained by setting rows
corresponding to edges in ∂P to zero. In other words, B∂Pc is the incidence matrix of the graph
after removing the boundary edges, and having exactly |P| connected components. Hence, B∂Pc

has a null space spanned by the set {1C}C∈P , and the orthogonal projector onto this null space is∑
C∈P JC . Combining this fact with the fact that Q∂Pc is the projector onto the orthogonal of the

null space of B∂Pc , we arrive at the second point.

Proposition 4 (On the minimum topological centrality index of a graph vertex). Let G be a connected
graph with incidence matrix B and vertex set size N , and let L := B⊤B. Let c(G) denote the
minimum value of inverses of diagonal element of L†, called its minimum topological centrality index.
Also let a(G) be its algebraic connectivity, defined as the minimum non null eigenvalue of L. Then

• c(G) = ∥L∥−1
∞,∞.

• c(G) ≥ a(G).

• If G is weightless, then c(G) ≤ N2

N−1 .

Proof. Since L is PSD, L† is PSD and hence
∥∥L†

∥∥
∞,∞ is equal to the maximum diagonal entry of

L†. Taking the inverse proves the first point. Also, this implies that

c(G) =
∥∥L†∥∥−1

∞,∞ ≥
∥∥L†∥∥−1

= a(G), (13)

where we used the fact that ∥·∥∞,∞ ≤ ∥·∥ for matrices. This proves the second point of the
proposition.

For the last point, assume G is weightless, let Lcomp be the Laplacian of complete graph built on the
vertices of G. Then we have Lcomp = N(IN − JN ), where J is the square matrix of dimension N
having 1/N as entries. From Fontan and Altafini [2021, Lemma 4], we have

L†
comp = (Lcomp +NJN )−1 − 1

N
JN =

IN
N

− 1

N
JN (14)
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which has diagonal elements 1
N − 1

N2 .

On the other hand, L ≼ Lcomp Hence, by Fontan and Altafini [2021, lemma 4] we have for any
u ̸= 0

L† = (L+ aJN )−1 − JN/a ≽ (Lcomp + aJN )−1 − JN/a = L†
comp

This implies that the maximum diagonal entry of L† is at least equal to that of L†
comp, i.e.to 1

N − 1
N2 .

Taking the inverse of that entry finishes the proof.

B Proofs of the different claims

B.1 Additional notation

The regularization term can be written more compactly using the incidence matrix of the graph
B ∈ R|E|×|V| corresponding to an arbitrary orientation under the following form∑

1≤m<n≤|V|

wmn∥θm − θn∥ = ∥BΘ∥2,1 = ∥Θ∥E (15)

where the ∥·∥2,1 norm denotes the sum of the L2 norms o the rows of a matrix.2 We provide notations
that we use in the proofs of the different statements, in order to reduce the clutter. We define
E := Θ̂−Θ as the error signal and its rows by {ϵm}|V|

m=1.

While
∑C
k=1 JC projects each entry of a graph signal onto the mean vector value of its respective

cluster, its residual Q∂Pc can be interpreted as the projection onto the respective entries deviation
from its cluster mean value.

Let ηm be a vector, vertically concatenated by noise terms of rewards received by node m, then we
define K ∈ R|V|×d as the matrix of vertically concatenated row vectors η⊤

mXm.

N.B. Except for the results concerning the regret bound, we consider the case κ ≥ 0 rather than
κ ≥ 1 in our proofs.

B.2 Oracle inequality

In this section, we present all intermediary theoretical results leading to Theorem 5 stating the oracle
inequality. To reduce clutter, we omit the dependence on t of several quantities. For instance, we
write α and Θ̂ instead of α(t) and Θ̂(t).
Definition 3 (Restricted Eigenvalue (RE) condition and norm, generalization of Definition 2). Let
{Mi}|V|

i=1 ⊂ Rd×d be a set of positive semi-definite matrices. We say that the matrix MV :=
diag(M1, · · · ,M|V|) verifies the restricted eigenvalue condition with constants κ ≥ 0 and ϕ > 0 if

ϕ2∥Z∥2RE ≤
∑
i∈V

∥zi∥2Mi
∀Z ∈ S with rows {zi}i∈V ,

where S is the cone defined by:

S := {Z ∈ R|V|×d; a1

(
G,Θ, 1

ψw(∂P)

)
∥Z∥∂Pc ≤ a2

(
G,Θ, 1

ψw(∂P)

)∥∥ZP
∥∥
F
+ (1− κ)+∥Z∥∂P},

a1(G,Θ, α0) := 1−
1
α0

+ 2κw(∂P)

min
C∈P

√
cG(C)

, a2(G,Θ, α0) :=
1

α0
+

√
2κw(∂P)max

C∈P

√
ιG(C),

and the RE semi-norm is defined by ∥Z∥RE :=
∥∥ZP

∥∥
F

∨ (1 − κ)+
∥∥∥B†

∂PB∂PZ
∥∥∥ We have

the structure dependent unknown constants ψ and κ, for which we assume they guarantee
a1

(
G,Θ, 1

ψw(∂P)

)
> 0.

2It is possible that the notation ∥·∥2,1 denotes the sum of 2−norms of columns in the literature.
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Table 1: Notation table.
Notation Meaning

Independent of time t

V set of graph vertices
E set of graph edges
BI ∈ R|E|×|V|, I ⊆ E Graph incidence Matrix obtained by setting rows of edges outside I to

zeros
BC ∈ R|E|×|V| cf. Definition 1
L ∈ R|V|×|V| B⊤B
θm ∈ Rd true preference vector of user/bandit m
Θ ∈ R|V|×d matrix of true vertically concatenated row preferences vectors
∂P ⊆ E Boundary of P: set of edges connecting nodes from different clusters
cG(C) Minimum topological centrality index of a node in C restricted to the

graph in C
w(∂P) Total weight of ∂P , i.e. sum of weights of edges in P
∥·∥ Euclidean norm for vectors, largest singular value for matrices
∥·∥A Semi-norm defined by PSD matrix A: ∥x∥2A := x⊤Ax
∥·∥F matrix Frobenius norm
∥·∥p,q q-norm of the vector with coordinates equal to the p−norm of rows
∥·∥I , I ⊆ E Total variation norm of signal over edges of I
A† Moore-Penrose pseudo-inverse of matrix A
vec vectorization operator consisting in concatenating the columns verti-

cally
⊗ Kronecker product
1C ∈ R|V| Vector with entries corresponding to vertices in C equal to 1 and 0

elsewhere
JC ∈ R|V|×|V| equal to 1C1

⊤
C

|C|
QC ∈ R|V|×|V| equal to B†

CBC
QI ∈ R|V|×|V|, I ⊆ E equal to B†

IBI

ek elementary vectors of dimension depending on the context
σ Subgaussianity constant / variance proxy

Dependent on time t

Tm(t) set of time steps user m has been encountered before time t
θ̂m ∈ Rd estimated preference vector of user/bandit m
ϵm ∈ Rd estimation error for user/bandit m : θ̂m − θm
E ∈ R|V|×d vertical concatenation of row vectors ϵm
ηm ∈ R|Tm(t)| vector of subgaussian noise of user m
x(t) ∈ Rd context vector received at time t
m(t) ∈ N user at time t
Xm ∈ R|Tm(t)|×d data matrix of user m
X ∈ Rt×d data matrix of context vectors of all users
Am ∈ Rd×d X⊤

mXm (potentially associated to time t)
AV ∈ Rd|V|×d|V| diag(A1, · · · ,Am)
K ∈ R|V|×d matrix of vertically concatenated row vectors η⊤

mXm

Proof of Proposition 1. Let Z = 1Cv
⊤ be a constant per cluster signal, with 1C ∈ R|V| as indicator

vector with the ith entry equal to 1 if i ∈ C and 0 otherwise. Then Z is contained in any cone S
defined in the RE condition and we have:
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∥∥ZC
∥∥2
F
= ∥Z∥2F =

∥∥1Cv
⊤v1⊤

C
∥∥

= 1⊤
C 1C∥v∥2

= |C|∥v∥2

For the right hand side of the RE condition we have:

∑
i∈V

∥zi∥2Mi
= vec(Z⊤)⊤M vec(Z⊤)

= vec(1Cv
⊤)⊤M vec(1Cv

⊤)

= (1C ⊗ v)
⊤

(∑
i∈V

eie
⊤
i ⊗Mi

)
(1C ⊗ v)

=
(
1⊤
C ⊗ v⊤)(∑

i∈V
eie

⊤
i ⊗Mi

)
(1C ⊗ v)

=
∑
i∈V

1⊤
C eie

⊤
i 1C ⊗ v⊤Miv

=
∑
i∈C

v⊤Miv = v⊤

(∑
i∈C

Mi

)
v

Plugging the results into the RE condition, we get:

=⇒ ϕ2|C|∥v∥2 ≤ v⊤

(∑
i∈C

Mi

)
v

=⇒ ϕ2 ≤
v⊤ (∑

i∈C Mi

)
v

∥v∥2|C|

=⇒ ϕ ≤

√
λmin

(∑
i∈C Mi

|C|

)

Lemma 1 (A first deterministic inequality). Let t be a time step. We have

1

2tα

∑
m∈V

∥Xmϵm∥2 + ∥E∥∂Pc ≤ 1

tα
⟨K,E⟩+ ∥E∥∂P (16)

Proof. By optimality of Θ̂, we have

1

2t

∑
m∈V

∥∥∥Xmθ̂m − ym

∥∥∥2 + α∥Θ∥E ≤ 1

2t

∑
m∈V

∥Xmθm − ym∥2 + α∥Θ∥E (17)

where the second line holds by definition of the observed rewards.

On the one hand, given a user index m ∈ V , and since by definition of the observed rewards we have
we have for the least squared terms∥∥∥Xmθ̂m − ym

∥∥∥2 =
∥∥∥Xmθ̂m −Xmθm − ηm

∥∥∥2
= ∥Xmϵm − ηm∥2

= ∥Xmϵm∥2 + ∥Xmθm − ym∥2 − η⊤
mXmϵm
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where we used the fact that ym = Xmθm + ηm, which holds by definition of the observed rewards.
Summing over the users, and using the definition of K, we have

1

2t

∑
m∈V

∥∥∥Xmθ̂m − ym

∥∥∥2 − 1

2t

∑
m∈V

∥Xmθm − ym∥2 =
1

2t

∑
m∈V

∥Xmϵm∥2 − 1

t
⟨K,E⟩ (18)

On the other hand, we have for the estimated preference vectors

∥Θ∥E =
∑

(m,n)∈E

wmn

∥∥∥θ̂m − θ̂n

∥∥∥
=

∑
(m,n)∈∂P

wmn

∥∥∥θ̂m − θ̂n

∥∥∥+ ∑
(m,n)∈∂Pc

wmn

∥∥∥θ̂m − θ̂n

∥∥∥
=
∥∥∥Θ̂∥∥∥

∂P
+
∥∥∥Θ̂∥∥∥

∂Pc
,

For the true ones, and for any C ∈ P , let EC denote the edges linking the nodes of set of nodes C. It is
clear that ∂Pc =

⋃
C∈P EC as a disjoint union, hence

∥Θ∥E =
∑

(m,n)∈E

wmn∥θm − θn∥

=
∑

(m,n)∈∂P

wmn∥θm − θn∥+
∑

(m,n)∈∂Pc

wmn∥θm − θn∥

= ∥Θ∥∂P +
∑
C∈P

∑
(m,n)∈EC

wmn∥θm − θn∥

= ∥Θ∥∂P
where the last equality holds due to the cluster assumption.

Hence, we have

∥Θ∥E − ∥Θ∥E = ∥Θ∥∂P −
∥∥∥Θ̂∥∥∥

∂P
−
∥∥∥Θ̂∥∥∥

∂Pc

≤ ∥E∥∂P −
∥∥∥Θ̂∥∥∥

∂Pc
, (19)

where the first inequality holds due to the triangle inequality, and the last one since ∥Θ∥∂Pc = 0.
Combining Equations (17) to (19), we obtain the result of the statement.

In the proof for the oracle inequality, we utilize projection operators on the graph signal, which we
define as follows:

While
∑C
k=1 JC projects each entry of a graph signal onto the mean vector value of its respective

cluster, its residual Q∂Pc can be interpreted as the projection onto the respective entries deviation
from its cluster mean value.
Lemma 2 (Bounding the error restricted to the boundary). The total variation of E restricted to the
boundary verifies

∥E∥∂P ≤ w(∂P)

√
2max

C∈P

√
ιG(C)

∥∥EP
∥∥
F
+ 2

∥E∥∂Pc

min
C∈P

√
cG(C)

 (20)

Proof. The proof relies on a decomposition of the ∥E∥∂P term from Proposition 3. We have

∥E∥∂P =

∥∥∥∥∥∑
C∈P

JCE +QCE

∥∥∥∥∥
∂P

=
∥∥∥EP +B†

∂PcB∂PcE
∥∥∥
∂P

≤
∥∥EP

∥∥
∂P +

∥∥∥B†
∂PcB∂PcE

∥∥∥
∂P

(21)
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where EP is obtained by setting the error signal on every cluster to its mean.

For the first term on the right-hand side, let us denote by ϵC the value of any row of EP belonging to
cluster C, which is equal to the mean of errors E over that cluster. Also, we denote by (EP)∂P the
signal obtained from EP by setting its rows corresponding to nodes that are not adjacent to any edge
in the boundary ∂P to zeros. Also, let ∂vC denote the inner boundary of set of nodes C,i.e. nodes of
C that connect it to its complementary. Then it holds that:∥∥EP

∥∥
∂P =

∥∥B∂PEP
∥∥
2,1

=
∥∥B∂P(EP)∂P

∥∥
2,1

≤ ∥B∂P∥2,1
∥∥(EP)∂P

∥∥ (by Proposition 2)

≤ ∥B∂P∥2,1
∥∥(EP)∂P

∥∥
F

= ∥B∂P∥2,1
√∑

C∈P
|∂vC|∥ϵC∥2

= ∥B∂P∥2,1

√∑
C∈P

|∂vC|
|C|

|C|∥ϵC∥2

≤ ∥B∂P∥2,1 max
C∈P

√
ιG(C)

√∑
C∈P

|C|∥ϵC∥2

=
√
2w(∂P)max

C∈P

√
ιGC
∥∥EP

∥∥
F

(22)

For the second term, we have∥∥∥B†
∂PcB∂PcE

∥∥∥
∂P

=
∥∥∥B∂PB

†
∂PcB∂PcE

∥∥∥
2,1

≤
∥∥∥B∂PB

†
∂Pc

∥∥∥
∞,1

∥E∥∂Pc

≤
∥∥∥B∂PB

†
∂Pc

∥∥∥
F
∥E∥∂Pc

≤
∥∥∥(B†

∂Pc)⊤B⊤
∂P

∥∥∥
F
∥E∥∂Pc

≤
∥∥B⊤

∂P
∥∥
2,1

√∥∥∥B†
∂Pc(B

†
∂Pc)⊤

∥∥∥
∞,∞

∥E∥∂Pc (by Proposition 2)

=

∥∥B⊤
∂P
∥∥
1,1

min
C∈P

√
cG(C)

∥E∥∂Pc .

= 2
w(∂P)

min
C∈P

√
cG(C)

∥E∥∂Pc . (23)

The result is obtained by combining Equations (21) to (23).

Theorem 4 (Theorem 2.1 of Hsu et al. [2012]). At time step t, let A ∈ Rb×t where b ∈ N∗, and let
v ∈ Rt be a random vector such that for some σ ≥ 0, we have

E [exp(⟨u,v⟩)] ≤ exp

(
∥u∥2σ

2

2

)
∀u ∈ Rt.

Then for any δ ∈ (0, 1), we have with a probability at least 1− δ:

∥Av∥2 ≤ σ2

(
∥A∥2F + 2

∥∥A⊤A
∥∥
F

√
log

1

δ
+ 2∥A∥2 log 1

δ

)
.
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Lemma 3 (Empirical process bound). Let Xm ∈ R|Tm|×d denotes the matrix of collected context
vectors for task m ∈ V , then, given collected context matrices {Xm}m∈V , for any δ ∈ (0, 1) we
have with probability of at least 1− δ:

∥K∥F ≤ αδ(t)

α0
t,

where

αδ(t) :=
α0σ

t

√√√√t+ 2

√∑
m∈V

|Tm(t)|2 log 1

δ
+ 2max

m∈V
|Tm(t)| log 1

δ
, (24)

Proof. We recall that K ∈ Rt×d is the matrix obtained by stacking the row vectors η⊤
mXm vertically.

On the one hand, we have

∥K∥2F =
∑
m∈V

∥∥X⊤
mηm

∥∥2 =
∥∥X⊤

V η
∥∥2, (25)

where XV := diag(X1, · · · ,X|V|) ∈ Rt×d|V| .

On the other hand, for any u = (u1, · · · , ut) ∈ Rt, denoting P (t) := exp
(∑t

τ=1 uτητ

)
, we have

E [P (t)] = E [E [exp{utηt}P (t− 1)|Ft−1]] (by the law of total expectation)

= E [P (t− 1)E [exp(utηt)|Ft−1]] (because {ηs}t−1
s=1 are Ft−1 measurable.)

≤ exp

(
1

2
σ2u2t

)
E [P (t− 1)] (by the conditional subgaussianity assumption)

≤
t∏

s=1

exp

(
1

2
σ2u2s

)
(by induction)

= exp

(
1

2
σ2∥u∥2

)
. (26)

From Equations (25) and (26), we can apply Theorem 4 to matrix XV and random vector η, which
implies that with a probability at least 1− δ, we have

∥XVη∥ ≤ σ

√√√√Tr

(∑
m∈V

Am

)
+ 2

√∑
m∈V

∥Am∥2F log
1

δ
+ 2max

m∈V
∥Am∥ log 1

δ
,

where we used the equalities ∥XV∥F =
∑
m∈V Tr(Am), ∥XV∥2 = max

m∈V
∥Am∥ and

∥∥XVX
⊤
V
∥∥2
F
=∥∥X⊤

V XV
∥∥2
F
=
∑
m∈V ∥Am∥2F . To arrive the the statement of the theorem, we use the fact that the

context vectors have Euclidean norms of at most 1.

Proposition 5 (Probabilistic inequality). With a probability at least 1− δ, we have

1

2tα

∑
m∈V

∥Xmϵm∥2 + a1(G,Θ, α0)∥E∥∂Pc ≤ a2(G,Θ, α0)
∥∥EP

∥∥
F
+ (1− κ)∥E∥∂P , (27)

where 0 ≤ κ <
min
C∈P

√
cG(C)

2w(∂P) .
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Proof. The proof is a combination of the results of Lemmas 1 to 3. We have

1

2tαδ

∑
m∈V

∥Xmϵm∥2 + ∥E∥∂Pc

≤ 1

tαδ
⟨K,E⟩+ ∥E∥∂P (by Lemma 1)

≤ 1

α0
∥E∥F + κ∥E∥∂P + (1− κ)∥E∥∂P (by Lemma 3)

≤
∥∥EP

∥∥
F

α0
+

∥E∥∂Pc

α0 min
C∈P

√
cG(C)

+ κw(∂P)

√
2max

C∈P

√
ιG(C)

∥∥EP
∥∥
F
+ 2

∥E∥∂Pc

min
C∈P

√
cG(C)

+ (1− κ)∥E∥∂P ,

where the last line is an application of Lemma 2. Grouping the terms by the type of norm applied to
E finishes the proof.

Theorem 5 (Oracle inequality, generalization of Theorem 1). Assume that the RE assumption

holds for the empirical multi-task Gram matrix with constants κ ∈
[
1, 1

2w(∂P) min
C∈P

√
cG(C)

)
,

ψ ∈
(
0, 1

w(∂P) min
C∈P

√
cG(C)− 2

)
and ϕ > 0. Suppose that maxm∈V |Tm(t)| ≤ bt for some b > 0

and α0 ≥ 1
ψw(∂P) . Then, with a probability at least 1− δ(t), we have

∥∥∥Θ− Θ̂(t)
∥∥∥
F
≤ 2

σα0

ϕ2
√
t
f(G,Θ, α0)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)
,

where

f(G,Θ) :=
(
a2(G,Θ) +

√
21≤1(κ)w(∂P)

)a2(G,Θ) +
√
21≤1(κ)w(∂P)

a1(G,Θ)min
C∈P

√
cG(C)

+ 1

 .

Proof. Using the previously established results, we obtain

1

2t

∑
m∈V

∥Xmϵm∥2 + α∥E∥∂Pc

≤αδa2(Θ,G)∥EP∥F + αδ(1− κ)+∥E∥∂P (by Proposition 5)

=αδa2(Θ,G)∥EP∥F + αδ(1− κ)+
∥∥∥B∂PB

†
∂PB∂PE

∥∥∥
2,1

(by properties of the pseudo-inverse)

≤αδa2(Θ,G)∥EP∥F + αδ∥B∂P∥2,11≤1(κ)(1− κ)+
∥∥∥B†

∂PB∂PE
∥∥∥ (by Proposition 2)

≤αδ(a2(Θ,G) + 1≤1(κ)
√
2w(∂P))∥E∥RE (by definition of the ∥∥RE norm)

≤αa2(Θ,G) + 1≤1(κ)
√
2w(∂P)

ϕ
√
t

√∑
m∈V

∥ϵm∥2Am
(using the RE assumption)

≤
βα2

δ(a2(Θ,G) + 1≤1(κ)∥B∂P∥2,1)2

2ϕ2
+

1

2βt

∑
m∈V

∥Xmϵm∥2, (28)

where the last inequality holds for any β > 0, and is a consequence of the property that uv ≤
u2 + v2

2
for any u, v ∈ R. In the second to last inequality we used the RE assumption, here it is important
to mention that the assumption does not hold for any choice of α0. In the definition of S i.e. the
set matrices for which the RE condition holds, we have α0 = 1

ψw(∂P) . We can also observe that
this set is non increasing for the inclusion operator i.e. the RE condition would become weaker, for
increasing α0. Thus for any α0 ≥ 1

ψw(∂P) the respective set of the RE assumption is contained in S
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and any matrix contained in the smaller set is automatically contained in S , allowing us to use the RE
condition in the proof due to our lower bound on α0 ≥ 1

ψw(∂P) .

As a result, we can bound the norm of Q∂PcE as follows:

∥Q∂PcE∥F =
∥∥∥B†

∂PcB∂PcE
∥∥∥
F

≤
√∥∥∥L†

∂Pc

∥∥∥
∞,∞

∥E∥∂Pc

≤
2αδ(a2(Θ,G, α0) + 1≤1(κ)∥B∂P∥2,1)2

ϕ2a1(Θ,G, α0)min
C∈P

√
cG(C)

(Equation (28) with β = 1). (29)

We can also bound the norm of EP as follows:∥∥EP
∥∥2
F

≤ 1

tϕ2

∑
m∈V

∥Xmϵm∥2 (by RE assumption on empirical multi-task Gram matrix)

≤
4α2

δ(a2(Θ,G, α0) + 1≤1(κ)∥B∂P∥2,1)2

ϕ4
(by Equation (28) with β = 2). (30)

The result is then obtained by combining Equations (29) and (30) along with using the fact that
E = EP +Q∂PcE and the expressions of a1(Θ,G, α0) and a2(Θ,G, α0), and bounding αδ(t) as
follows:

αδ(t)
2

α2
0

=
σ2

t2

∑
m∈V

∥Xm∥2F + 2

√∑
m∈V

∥XmX⊤
m∥2F log

1

δ
+ 2max

m∈V
∥Xm∥2 log 1

δ


≤ σ2

t2

t+ 2

√∑
m∈V

|Tm(t)|2 log 1

δ
+ 2max

m∈V
|Tm(t)| log 1

δ


≤ σ2

t2

(
t+ 2t

√
log

1

δ
+ 2t log

1

δ

)

≤ 2
σ2

t

(
1 +

√
log

1

δ

)2

B.3 Inheriting the RE condition from the true to the empirical data Gram matrix

B.3.1 From the adapted to the empirical multi-task Gram matrix

Lemma 4 (Bounding a quadratic form using projections). Let M1, · · · ,Mp ∈ Rd×d be symmetric
matrices, and let J := 1

p11
⊤, and Q = I − J . Then, for any Z ∈ Rp×d with rows {zi}pi=1, we

have:∣∣∣∣∣
p∑
i=1

z⊤
i Mizi

∣∣∣∣∣ ≤ 1

p

∥∥∥∥∥
p∑
i=1

Mi

∥∥∥∥∥∥Z∥2J + 2

√√√√∥∥∥∥∥1p
p∑
i=1

M2
i

∥∥∥∥∥∥Z∥Q∥Z∥J + max
1≤i≤p

∥Mi∥∥Z∥2Q

Proof. We have∣∣∣∣∣
p∑
i=1

z⊤
i Mizi

∣∣∣∣∣ =
∣∣∣∣∣
p∑
i=1

z̄⊤Miz̄ + 2

p∑
i=1

(zi − z̄)⊤Miz̄ +

p∑
i=1

(zi − z̄)⊤Mi(zi − z̄)

∣∣∣∣∣
≤

∣∣∣∣∣z̄⊤
p∑
i=1

Miz̄

∣∣∣∣∣+ 2

∣∣∣∣∣
p∑
i=1

e⊤i QZMiz̄

∣∣∣∣∣+
∣∣∣∣∣
p∑
i=1

e⊤i QZMiZ
⊤Qei

∣∣∣∣∣ (31)
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where we used the fact that zi − z̄ = Z⊤ei −Z⊤Jei = Z⊤Qei.

Let us now examine every term on the right-hand side of Equation (31). For the first term, we have∣∣∣∣∣z̄⊤
p∑
i=1

Miz̄

∣∣∣∣∣ ≤
∥∥∥∥∥

p∑
i=1

Mi

∥∥∥∥∥∥z̄∥2 =

∥∥∥∥∥1p
p∑
i=1

Mi

∥∥∥∥∥∥Z∥2J . (32)

For the second term, we have∣∣∣∣∣
p∑
i=1

e⊤i QZMiz̄

∣∣∣∣∣ ≤
∥∥∥∥∥

p∑
i=1

MiZ
⊤Qei

∥∥∥∥∥∥z̄∥
=

∥∥∥∥∥
p∑
i=1

(e⊤i ⊗Mi) vec(Z
⊤Q)

∥∥∥∥∥∥z̄∥
≤

∥∥∥∥∥
p∑
i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥∥vec(Z⊤Q)
∥∥∥z̄∥

=

∥∥∥∥∥
p∑
i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√∥∥∥∥∥(
p∑
i=1

(e⊤i ⊗Mi))⊤
p∑
i=1

(e⊤i ⊗Mi)

∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√√
∥∥∥∥∥∥

p∑
i=1

p∑
j=1

(e⊤i ⊗Mi))(ej ⊗Mj)

∥∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√√
∥∥∥∥∥∥

p∑
i=1

p∑
j=1

(e⊤i ej ⊗MiMj)

∥∥∥∥∥∥∥QZ∥F ∥z̄∥

=

√√√√∥∥∥∥∥
p∑
i=1

M2
i

∥∥∥∥∥∥QZ∥F ∥z̄∥. (33)

Finally, for the last term, we have∣∣∣∣∣
p∑
i=1

e⊤i QZMiZ
⊤Qei

∣∣∣∣∣ ≤
p∑
i=1

∥Mi∥
∥∥Z⊤Qei

∥∥2
≤ max

1≤i≤p
∥Mi∥

p∑
i=1

∥∥Z⊤Qei
∥∥2

= max
1≤i≤p

∥Mi∥∥QZ∥2F . (34)

Combining Equations (32) to (34) yields the result.

We also define an operator norm that is induced by the ∥∥RE introduced in Definition 3.

Definition 4 ((RE,S)-induced operator norm). Let {Mm}m∈V ⊆ Rd×d be symmetric matrices
associated to the graph nodes V , and let MV := diag

(
M1, · · · ,M|V|

)
∈ Rd|V|×d|V|. For any

cluster C ∈ P , let the cluster mean and mean of squares associated to those matrices be given by

MC :=
1

|C|
∑
m∈C

Mm, M2C :=
1

|C|
∑
m∈C

M2
m.

The RE-induced operator norm of MV is defined as

∥M∥RE,S := max
C∈P

∥∥MC
∥∥ ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥M2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
m∈V

∥Mm∥. (35)
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B.3.2 Linking the adapted to the empirical Gram

We first start by establishing that given the closeness of two PSD matrices in a certain sense, the RE
condition can be transferred between them. For the sake of readability we remove the arguments of
the constants: a1 = a1

(
G,Θ, 1

ψw(∂P)

)
, a2 = a2

(
G,Θ, 1

ψw(∂P)

)
,

Proposition 6 (Restricted spectral norm). Let Z ∈ R|V|×d verifying

a1∥Z∥∂Pc ≤ a2
∥∥ZP

∥∥
F
+ (1− κ)+∥Z∥∂P

Let {Mm}m∈V ⊆ Rd×d be symmetric matrices associated to the graph nodes V , and let MV :=
diag(M1, · · · ,M|V|) ∈ Rd|V|×d|V|. Then we have:∣∣∣∣∣∑

m∈V
z⊤
mMmzm

∣∣∣∣∣ ≤ ∥M∥2RE,S

(
1 +

a2 + (1− κ)+∥B∂P∥2,1
a1

)2

∥Z∥2RE. (36)

Proof. For any cluster C, we denote by BC the incidence matrix obtained by setting the rows of B
outside the edges linking nodes in C to null vectors. The latter’s null space is the span of the vector
1C having coordinates 1 at nodes in C and zeros elsewhere. Hence, the projector onto the orthogonal
of 1C is QC := B†

CBC .

On the one hand, for any signal Z ∈ R|V|×d we have

∥Z∥∂Pc =
∑
C∈P

∥BCZ∥2,1

≥
∑
C∈P

∥∥∥B†
CBCZ

∥∥∥
F√∥∥∥L†

C

∥∥∥
∞,∞

≥ min
C∈P

√
cG(C)

∑
C∈P

∥Z∥QC

Hence, by the proposition’s assumptions, Z verifies

min
C∈P

√
cG(C)a1

∑
C∈P

∥Z∥QC
≤ (a2

∥∥ZP
∥∥
F
+ (1− κ)∥Z∥∂P)

≤ a2
∥∥ZP

∥∥
F
+ (1− κ)+∥B∂P∥2,1

∥∥∥B†
∂PB∂PZ

∥∥∥
≤ (a2 + (1− κ)+∥B∥2,1)∥Z∥RE

From Lemma 4, we have∣∣∣∣∣∑
m∈V

z⊤
mMmzm

∣∣∣∣∣
≤
∑
C∈P

∣∣∣∣∣∑
m∈C

z⊤
mMmzm

∣∣∣∣∣
≤
∑
C∈P

∥∥MC
∥∥∥Z∥2JC

+ 2
∑
C∈P

√ ∥∥∥M2C

∥∥∥∥Z∥QC
∥Z∥JC

+
∑
C∈P

max
m∈C

∥Mm∥∥Z∥2QC
, (37)

where we used Equation (10).
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This allows us to bound every term in Equation (37). For the second term on the right-hand side, we
have ∑

C∈P

√∥∥∥M2C

∥∥∥∥Z∥QC
∥Z∥JC

≤max
C∈P

√∥∥∥M2C

∥∥∥∥∥ZP
∥∥
F

√∑
C∈P

∥Z∥2QC

≤
min
C∈P

cG(C)−
1
2

a1
max
C∈P

√∥∥∥M2C

∥∥∥(a2 + (1− κ)+∥B∥2,1)∥Z∥2RE (38)

As for the third term, we have∑
C∈P

max
m∈C

∥Mm∥∥Z∥2QC
≤ max

m∈V
∥Mm∥

(∑
C∈P

∥Z∥QC

)2

≤ max
m∈V

∥Mm∥
min
C∈P

cG(C)−1

a21
(a2 + (1− κ)+∥B∥2,1)

2∥Z∥2RE (39)

Consequently, denoting v =
a2 + (1− κ)+∥B∥2,1

a1
, and combining Equations (37) to (39), we obtain∣∣∣∣∣∑

m∈V
z⊤
mMmzm

∣∣∣∣∣(
max
C∈P

∥∥MC
∥∥+ 2vmax

C∈P

√∥∥∥M2C

∥∥∥+ v2 max
i∈V

∥Mi∥

)
∥Z∥2RE

≤
(
max
C∈P

∥∥MC
∥∥) ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥M2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
i∈V

∥Mi∥
)
(1 + v)2∥Z∥2RE,

which finishes the proof.

Proposition 7 (Inheritance of a RE condition from a close matrix). Assume that the matrix VV

verifies the RE condition with constant ϕ > 0, and that
∥∥∥∥AV

t
− VV

∥∥∥∥
op,RE

≤ γϕ2 for some γ ∈(
0,
(
1 + a2+(1−κ)+

√
2w(∂P)

a1

)−2
)

. Then
AV

t
verifies the RE condition with constant

ϕ̂ = ϕ

√√√√1− γ

(
1 +

a2 + (1− κ)+
√
2w(∂P)

a1

)2

(40)

Proof. From Proposition 5, we know that

1

t
ϵ⊤VAVϵV =

1

|V|
ϵ⊤VVVϵV + ϵ⊤V∆VϵV

≥ 1

|V|
ϵ⊤VVVϵV −

∣∣ϵ⊤V∆VϵV
∣∣

≥

ϕ2 −max
m∈V

∥∆V∥op,RE

(
1 +

a2 + (1− κ)+∥B∂P∥2,1
a1

)2
 ∥E∥2RE

≥

ϕ2 − γϕ2

(
1 +

a2 + (1− κ)+∥B∂P∥2,1
a1

)2
 ∥E∥2RE

where the third inequality is an applicaiton of Proposition 6.
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Theorem 6 (Matrix Freedman Inequality, Tropp [2011]). Consider a matrix martingale {M(t)}t≥1

with dimension d1 × d2. Let {N(t)}t≥1 be the associated difference sequence. Assume that for some
A > 0, we have ∥N(t)∥ ≤ A ∀t ≥ 1 almost surely. Define for any t ≥ 1:

Wcol(t) :=

t∑
τ=1

E
[
N(τ)N(τ)⊤|Fτ−1

]
Wrow(t) :=

t∑
τ=1

E
[
N(τ)⊤N(τ)|Fτ−1

]
.

Then, for any u, v > 0,

P [∃t ≥ 1; ∥M(t)∥ ≥ u and ∥Wcol∥(t) ∨ ∥Wrow(t)∥ ≤ v] ≤ (d1 + d2) exp

(
− 3u2

6v + 2Au

)
Corollary 2. Let {N(τ)}tτ=1 by a sequence of matrices of dimension d1 × d2, adapted to filtration
{Fτ}tτ=1. Let {ti}Ni=1 an increasing sequence with elements in [t] for some N ≤ t. Consider the
sequence {M(n)}Nτ=1 of random matrices defined by

M(n) =

n∑
i=1

N(ti)− E [N(ti)|Fti−1] (41)

Then {M(n)}Nn=1 is a martingale adapted to the filtration {Ftn}Nn=1.

Moreover,if ∥N(τ)∥ ≤ b ∀τ ∈ [t] for some b > 0, then we have

P [∥M(N)∥ ≥ u] ≤ (d1 + d2) exp

(
− 3u2

6Nb2 + 2
√
2bu

)
. (42)

Proof. We denote E [·|Fs] as Es [·] for any s ∈ N. Also, let C(s) := Es−1 [N(s)], which is
Fs−1-measurable by construction. We have for any n ∈ [N ],

Etn−1
[C(tn)] = Etn−1

[Etn−1 [N(tn)]] = Etn−1
[N(tn)] (43)

=⇒ Etn−1 [N(tn)−C(tn)] = 0 (44)

where the first equality is due to the tower rule since Ftn−1
⊂ Ftn−1. Also, we have for any τ ≥ 1

∥N(τ)−C(τ)∥2 =
∥∥(N(τ)−C(τ))2

∥∥ (45)

≤ Tr
(
(N(τ)−C(τ))2

)
(46)

= Tr
(
(N(τ)−C(τ))2

)
(47)

= ∥N(τ)∥2F − 2Tr(C(τ)N(τ)) + Tr
(
C(τ)2

)
(48)

≤ ∥N(τ)∥2F +Tr
(
C(τ)2

)
≤ 2b2 (49)

Hence N(τ) −C(τ) is integrable for any τ ≥ 1. This shows that M(n) is a sequence of partial
sums of matrix martingale differences, hence it is a matrix martingale.

The second part of the corollary statement is a consequence of Theorem 6. The boundedness of
the sequence of martingale differences has already been established above. To verify the second
requirement of the theorem, let us compute bounds on the norms of Wcol and Wrow from Theorem 6.
Notice that the two matrices are equal since the difference sequence matrices N(ts) are symmetric.
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Hence, for any n ∈ [N ], we have

∥Wcol(N)∥ ∨ ∥Wrow(N)∥ ≤ Tr(Wcol(N)) ∨ Tr(Wrow(N)) (50)

= Tr

(
N∑
n=1

Etn−1

[
(N(tn)−C(tn))

2
])

(51)

=

N∑
n=1

Etn−1

[
∥N(tn)∥2F

]
− Etn−1 [2 Tr(C(tn)N(tn))] + Tr

(
C(tn)

2
)

(52)

=

N∑
n=1

Etn−1

[
∥N(tn)∥2F

]
− Tr

(
C(tn)

2
)

(53)

≤
N∑
n=1

Etn−1

[
∥N(tn)∥2F

]
≤ Nb2. (54)

By Theorem 6, we have for any u > 0

2d exp

(
− 3u2

6Nb2 + 2
√
2bu

)
≥ P

[
∃n ≥ 1; ∥M(n)∥ ≥ u and ∥Wcol(n)∥ ≤ Nb2

]
(55)

≥ P
[
∥M(N)∥ ≥ u and ∥Wcol(N)∥ ≤ Nb2

]
(56)

= P [∥M(N)∥ ≥ u] (57)

where the last line holds because we showed that the inequality ∥Wcol(N)∥ ≤ Nb2 holds almost
surely.

Proposition 8 (Concentration of the empirical multi-task Gram matrix around the adapted one). Let
t ≥ 1, b > 0. Then we have:

P

[∥∥∥∥AV(t)

t
− VV

∥∥∥∥
op,RE

> γ
∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ d(2|P|e−A1t+(|V|+|P|)e−A2t+2|V|e−A3t),

where

A1 :=
3γ2 min

C∈P
|C|t

6b+ 2
√
2γ

A2 :=
3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√√√√min
C∈P

cG(C)
min
C∈P

|C|

A3 :=
3γ2 min

C∈P
cG(C)2t

6b+ 2
√
2γmin

C∈P
cG(C)

Proof. For γ > 0, let us define

∆m :=
AV

t
− VV and GGram,γ :=

{
1

t
∥∆V∥RE,S ≤ γ

}
,

where ∆V is block diagonal matrix formed by {∆m}m∈V . We also define ∆C and ∆2C in the same
pattern of Definition 4. We can express the complementary of this event as the disjunction of a finite
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number of events as follows:

GcGram,γ (58)

=

{
max
C∈P

∥∥∆C
∥∥ ∨√min

C∈P
cG(C)−1 max

C∈P

∥∥∥∆2C

∥∥∥ ∨min
C∈P

cG(C)−1 max
m∈V

∥∆m∥ > tγ

}
(59)

=
⋃
C∈P

{∥∥∆C
∥∥ > tγ

}
∪
⋃
C∈P

{∥∥∥∆2C

∥∥∥ > t2γ2 min
C∈P

cG(C)
}
∪
⋃
m∈V

{
∥∆m∥ > tγmin

C∈P
cG(C)

}
(60)

The first and third event can be bounded by considering the sequence xx⊤(τ) adapted to the filtration
{Fτ}, verifying

∥∥xx⊤(τ)
∥∥ ≤.

Bounding the probability of the first event Let C ∈ P be a cluster. By definition, we have

|C|∆C(t) =
∑
m∈C

∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

=
∑

τ∈
⋃

m∈C Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

We will apply Corollary 2 for the sequence of time indices in C, i.e.
⋃
m∈V Tm(t). Hence |C|∆C is a

martingale sequence, and we have

P
[∥∥∆C(t)

∥∥ > γt
∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ 2d exp

(
−3γ2|C|2t2

6
∑
m∈C |Tm(t)|+ 2

√
2γ|C|t

)

≤ 2d exp

(
−3γ2|C|2t2

6|C|bt+ 2
√
2γ|C|t

)

= 2d exp

(
−3γ2|C|t
6b+ 2

√
2γ

)

≤ 2d exp

−3γ2 min
C∈P

|C|t

6b+ 2
√
2γ

 (61)

Bounding the probability of the third event Let m ∈ V be a task index. We apply Corollary 2 for
the sequence of time steps in Tm(t). We have

∆m(t) =
∑

τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

is a martingale sequence, hence

P
[
∥∆m(t)∥ > γmin

C∈P
cG(C)t

∣∣max
m∈V

|Tm(t)| ≤ bt

]
≤ 2d exp

 −3γ2 min
C∈P

cG(C)2t2

6|Tm(t)|+ 2
√
2γmin

C∈P
cG(C)t


≤ 2d exp

 −3γ2 min
C∈P

cG(C)2t2

6bt+ 2
√
2γmin

C∈P
cG(C)t


= 2d exp

 −3γ2 min
C∈P

cG(C)2t

6b+ 2
√
2γmin

C∈P
cG(C)

 . (62)
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Bounding the probability of the second event Let C ∈ P be a cluster, and let us denote em the
mth canonical vector of R|C|. We have

∥∥∥∆2C(t)
∥∥∥ =

1

|C|

∥∥∥∥∥∥∥
∑
m∈C

 ∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

2
∥∥∥∥∥∥∥

=
1

|C|

∥∥∥∥∥∥
∑
m∈C

e⊤m ⊗

 ∑
τ∈Tm(t)

xx(τ)− E [xx(τ)|Fτ−1]

∥∥∥∥∥∥
2

=
1

|C|

∥∥∥∥∥∥
∑

τ∈
⋃

m∈C Tm(t)

e⊤m(τ) ⊗ (xx(τ)− E [xx(τ)|Fτ−1])

∥∥∥∥∥∥
2

=
1

|C|

∥∥∥∥∥∥
∑

τ∈
⋃

m∈C Tm(t)

e⊤m(τ) ⊗ xx(τ)− E
[
em(τ) ⊗ xx(τ)|Fτ−1

]∥∥∥∥∥∥
2

,

where the last equality holds since m(τ) is measurable w.r.t. Fτ−1. We will apply the Corollary 2 to
the set of time steps

⋃
m∈C Tm(t) and the adapted sequence e⊤m(τ) ⊗ xx(τ) of matrices in Rd×d|C|.

Hence we have

P

[√∥∥∥∆2C(t)
∥∥∥ > γtmin

C∈P

√
cG(C)

∣∣max
m∈V

|Tm(t)| ≤ bt

]

≤ d(1 + |C|) exp

 −3γ2|C|min
C∈P

cG(C)t2

6
∑
m∈C |Tm(t)|+ 2

√
2γ
√
|C|min

C∈P
cG(C)t


≤ d(1 + |C|) exp

 −3γ2|C|min
C∈P

cG(C)t

6|C|b+ 2
√
2γ
√

|C|min
C∈P

cG(C)



= d(1 + |C|) exp


−3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√
min
C∈P

cG(C)
|C|



≤ d(1 + |C|) exp


−3γ2 min

C∈P
cG(C)t

6b+ 2
√
2γ

√√√√min
C∈P

cG(C)
min
C∈P

|C|

 (63)

Union bound We conclude the result of the statement via a union bound using Equation (60).

Proposition 9 (Concentration of the empirical multi-task Gram matrix around the adapted one,
simplified). Let t ≥ 1, b > 0. Assume that maxm∈V |Tm(t)| ≤ bt. Then we have:

P

[∥∥∥∥AV

t
− VV

∥∥∥∥
op,RE

> γ

]
≤ 6d|V| exp

(
−3γ2(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γ

)
,

where c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .
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Proof. The proof will rely on simple calculus inequalities. Hence, let u = minC∈P cG(C), v =

minC∈P |C|, f = 3γ2, g = 6b, h = 2
√
2γ, which are all positive. Then, we have

A1 =
fu

f + g
≥ (u ∧ v)f

f + g
≥ (u ∧ v) (1 ∧ u ∧ v)f

f + g(1 ∧ u ∧ v)

A2 =
fv

f + g vu
≥ (v ∧ u)f
f + g v∧uu

≥ (v ∧ u)f
f + g

≥ (u ∧ v) (1 ∧ u ∧ v)f
f + (1 ∧ u ∧ v)g

A3 =
fv2

f + gv
≥ (v ∧ u)2

f + (v ∧ u)g
≥ (u ∧ v) (1 ∧ u ∧ v)f

f + (1 ∧ u ∧ v)g
where we used the fact that functions of the form x 7→ x

β1x+β2
for positive β1, β2 are increasing on

R+.

As a final step, we use the inequality
(1 ∧ x)f

f + (1 ∧ x)g
≥

x ∧ 1

f + g
taken for x = u ∧ v, we apply the

exp(− · t) function and we use the result of Proposition 8, we deduce the result.

B.3.3 From the true to the adapted Gram matrix

For all of the proofs in this subsection, we follow an approach similar to that of Oh et al. [2021]. In
particular, we use their Lemma 10.
Theorem 7 (Lemma 10 of Oh et al. [2021]). Under Assumption 2 on the context generating distribu-
tion, let t ≥ 1. We have for any θ ∈ Rd:∑

x∈A(t)

E

[
xx⊤

1

{
x ∈ argmax

x̃∈A(t)

⟨θ, x̃⟩

}]
≽

1

2νω
Σ (64)

Proposition 10 (RE condition from the true to the adapted Gram matrix). Under Assumption 2, for
any t ≥ 1, the adapted Gram matrix VV(t) verifies the compatibility condition with constants κ and
ϕ

√
2νω

.

Proof. For t ≥ 1, we have

E
[
x(t)x(t)⊤|Ft−1

]
= E

 ∑
x∈A(t)

x(t)x(t)⊤|Ft−1

 (65)

Let m ∈ V . We have

Vm(t) =
1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|Fτ−1

]
=

1

t

∑
τ∈Tm(t)

E
[
E
[
x(τ)x(τ)⊤|θm(τ − 1),Fτ−1

]
|Fτ−1

]
(law of total expectation)

=
1

t

∑
τ∈Tm(t)

E
[
x(τ)x(τ)⊤|θm(τ − 1)

]
(x(τ) is fully determined by θm(τ − 1))

=
1

t

∑
τ∈Tm(t)

E

 ∑
x∈A(τ)

xx⊤
1

{
x ∈ argmax

x̃∈A(t)

⟨θ, x̃⟩

}
|θm(τ − 1)


≽

1

2νω
Σ (by Theorem 7). (66)

Now, let Z ∈ S, where S is defined with constant κ of Assumption 4. Then∑
m∈V

∥z∥Vm(t) ≥
1

2νω

∑
m∈V

∥zm∥Σ by Equation (66)

≥ ϕ2

2νω
∥Z∥2RE (by Assumption 4),

which finishes the proof.
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Theorem 8 (RE condition holding for the empirical multi-task Gram matrix, generalization of
Theorem 2). Under assumptions 2 and 4, let t ≥ 1, and let κ, ϕ be the constants from Assumption 4.

Assume that maxm∈V |Tm(t)| ≤ bt. Then, for any γ ∈
(
0,
(
1 + a2+(1−κ)+

√
2w(∂P)

a1

)−2
)

, the

empirical multi-task Gram matrix verifies the RE condition with constants κ and ϕ̂, with

ϕ̂ = ϕ̃

√√√√1− γ

(
1 +

a2 + (1− κ)+
√
2w(∂P)

a1

)2

, (67)

with a probability at least equal to 1 − 6d|V| exp

(
− 3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
, where

ϕ̃ :=
ϕ

√
2νω

and c̃G(C) := cG(C) ∧ |C| ∀C ∈ P .

Proof. For the sake of readability, let ϕ̃ = ϕ√
2νω

the compatibility constant of the adapted Gram
matrix, according to Proposition 10. Then:

1− 6d|V| exp

(
−3γ2ϕ̃4(minC∈P(c̃G(C) ∧ c̃G(C)2)t

6b+ 2
√
2γϕ̃2

)
(68)

≤P

[∥∥∥∥AV

t
− VV

∥∥∥∥
op,RE

≤ γϕ̃2

]
(by Proposition 9) (69)

≤P
[
AV

t
satisfies the RE condition with constant κ and ϕ̂

]
(by Proposition 7), (70)

where ϕ̂ = ϕ̃

√
1− γ

(
1 + a2+(1−κ)+

√
2w(∂P)

a1

)2
.

B.4 Regret bound

Lemma 5 (Concentration of the fraction of observations per task). Assume that |V| ≥ 2. Then for
δ ∈ (0, 1), we have with a probability at least 1− δ:

max
m∈V

|Tm(t)|
t

≤ 1

|V|
+ 2

√
1

t|V|
log

|V|
δ

+
4

3t
log

|V|
δ
. (71)

Proof. We have |Tm(t)| :=
∑t
τ=1[m(τ) = m], where ∀t, ∀m ∈ V,P [m(t) = m] = 1

|V| , meaning
that the binary variable [m(t) = m] follows a Bernoulli distribution B( 1

V ). Then, the random variable
Xt := [m(t) = m] − 1

|V| has mean 0, variance 1
|V| (1 − 1

|V| ), and verifies |Xt| ≤ 1 − 1
|V| since

|V| ≥ 2. As a result, via the Bernstein inequality, we have for any m ∈ V , and for any w ≥ 0,

P
[
|Tm(t)|

t
≥ 1

|V|
+ w

]
≤ exp

(
− tw2

2(1− 1
|V| )(

1
|V| +

w
3 )

)
≤ exp

(
− tw2

2( 1
|V| +

w
3 )

)

For the right-hand side to hold with a probability at most δ ∈ (0, 1), it is sufficient to have

t
w2

2( 1
|V| +

w
3 )

≥ log
1

δ

⇐=
w2

2
≥

2 1
|V| log

1
δ

t
and

w2

2
≥

2w log 1
δ

3t

⇐= w = 2

√
1
|V| log

1
δ

t
+

4 log 1
δ

3t
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Hence, and via a union bound, we get

P

[
|Tm(t)|

t
≥ 1

|V|
+ 2

√
1

|V|
log

1

δ
+

4

3t
log

1

δ

]
≤ δ

=⇒ P

max
m∈V

|Tm(t)|
t

≥ 1

|V|
+ 2

√
1
|V| log

1
δ

t
+

4 log 1
δ

3t

 ≤ |V|δ

The result is obtained by adjusting the value of δ.

Theorem 9 (Regret bound, generalization of Theorem 3). Let the mean horizon per node be T = T
|V| .

Under assumptions1 to 4 and κ > 0, the expected regret of the Network Lasso Bandit algorithm is
upper bounded as follows:

R(T ) = O

(
α0f(G,Θ, α0)

√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

))
+

1

A
log(d|V|) +

√
|V|

)
,

with A =
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6 log(|V|)√
|V|

+ 2
√
2γ

.

Proof. For any time step t, we will define a list of good events under which the Oracle inequality and
the RE condition for the empirical multi-task Gram matrix both hold with high probability. Then, we
will use those bounds to sum up over time steps until horizon T .

Good events We formalize these requirements as three families of time-depending "good" events.

• Gpro(t) is the event that the mean of the empirical process bounded by α(t) up to a constant c,
which is equivalent to saying that it converges:

Gpro(t) :=

{
1

t
∥K∥F ≤ α(t)

α0

}
(72)

• Gsel(t) is the event that the number of selections of all tasks is bounded by its expected value up
to a small constant ρ(t)

Gsel(t) :=

{
max
m∈V

|Tm(t)|
t

≤ 1

|V|
+
ρ(t)

t

}
(73)

• GRE(t) is the event that the empirical multi-task Gram matrix 1
tAV(t) satisfies the RE condition.

GRE(t) :=

{
1

t
AV(t) verifies the RE condition with constants κ, ϕ̂

}
(74)

Event Gpro(t) is the most straightforward to cover since our bound on the empirical process given in
Lemma 3 holds with a probability of at least 1− δ(t), thus:

P [Gpro(t)
c|Gsel(t)] ≤ δ(t), (75)

where we included the time dependency on δ(t) in contrast to the previous section. This way we
emphasize to adjust δ(t) after each round, to guarantee a sub linear regret bound. The probability of
event Gsel(t) can be determined using Bernstein’s inequality:

From Lemma 5 we can select ρ(t) = 2
√

t
|V| log

|V|
δsel(t)

+ 4
3 log

|V|
δsel(t)

as well as P [Gsel(t)
c] ≤ δsel(t).
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B.4.1 Instantaneous regret decomposition

Now, given the event probabilities, we condition the instantaneous regret r(t) on the good events at a
time t > t0. We have for its expectation:

E [r(t)] ≤ E [r(t)|Gsel(t)] + 2P [Gsel(t)
c]

≤ E [r(t)|Gpro(t) ∩GRE(t) ∩Gsel(t)]

+ 2 (P [Gpro(t)
c|Gsel(t)] + P [GRE(t)

c|Gsel(t)] + P [Gsel(t)
c]) , (76)

where we used the worst case bound r(t) ≤ 2 if any one of the good events does not hold.

Bounding the regret Inserting our results of the event probabilities, the oracle inequality and the
decomposition of the expected instantaneous regret in Equation (76) and bounding the sum over
rounds, yields the final result. Thus, we start by bounding the sum over the first term i.e. the expected
regret in case all good events hold:

T∑
t=1

E [r(t)|Gpro(t) ∩GRE(t) ∩Gsel(t)] ≤
T∑
t=1

∥∥∥Θ− Θ̂(t)
∥∥∥
F

Taking the result of our oracle inequality in Theorem 5, we point out that only α(t) is time dependent
such that the rest of the terms can be pulled outside the sum:

T∑
t=1

∥∥∥Θ− Θ̂(t)
∥∥∥
F
≤

T∑
t=1

2
α0σ

ϕ̂2
√
t
f(G,Θ, α0)

√√√√1 + 2b

√
|V| log 1

δ(t)
+ 2b log

1

δ(t)

=
2α0σ

ϕ̂2
f(G,Θ, α0)

T∑
t=1

√
1

t
+

2b

t

√
2|V| log(t) + 4b

t
log(t)

≤ 2α0σ

ϕ̂2
f(G,Θ, α0)

∫ T

0

1√
t
+

√
2b

t

(√
2|V| log(T ) + 2 log(T )

)
dt

≤ 2α0σ

ϕ̂2
f(G,Θ, α0)

(
2
√
T +

(√
8T

|V|
+ 4 4

√
32 log(|V|T )T

|V|
+

√
16

3
log(|V|T ) log(T )

)
(

4
√
2|V| log(T ) +

√
2 log(T )

))
= O

(
α0f(G,Θ, α0)

√
T

ϕ̂2

(√
|V|+

√
log
(
T |V|

)
+ 4

√
|V| log

(
T |V|

)))
,

where

f(G,Θ, α0) :=
(
a2(G,Θ, α0) +

√
21≤1(κ)w(∂P)

)a2(G,Θ, α0) +
√
21≤1(κ)w(∂P)

a1(G,Θ, α0)min
C∈P

√
cG(C)

+ 1

 .

We upper bounded the sum with an integral i.e.
∑T
t=1 g(t) ≤

∫ T
0
g(t)dt for monotonically decreasing

functions g(t) in the last inequality. Also b is the bound on the concentration of the fraction of
observation per task provided by Lemma 5. For t0 =

√
|V| we find by inserting the result to

Lemma 5 for all t > t0:
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1

|V|
+ 2

√
1
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log

|V|
δ

+
4

3t
log

|V|
δ

≤ 1

|V|
+ 2

√√√√2 log
(
|V|
√
|V|
)

√
|V||V|

+
8 log

(
|V|
√
|V|
)

3
√

|V|

=
1

|V|
+

2√
|V|

[√
3√
|V|

log(|V|) + 2 log(|V|)

]

= O

(
log(|V|)√

|V|

)
= b.

Finally we bound the sum over the instantaneous regret term for the bad events:

T∑
t=1

2 (P [Gpro(t)
c|Gsel(t)] + P [GRE(t)

c|Gsel(t)] + P [Gsel(t)
c])

By construction, we have max(P [Gpro(t)
c|Gsel(t)] ,P [Gsel(t)

c]) ≤ δ(t) = 1
t2 . Hence,

T∑
t=1

P [Gpro(t)
c|Gsel(t)] + P [Gsel(t)

c] ≤ 2

T∑
t=1

1

t2
≤ 2

(
1 +

∫ T

1

dt

t2

)
≤ 4 (77)

As for the RE condition event, letting A :=
3γ2 minC∈P(c̃G(C) ∧ c̃2G(C))

6b+ 2
√
2γ

, we have for any t0 ≥ 1

T∑
t=t0

P [GRE(t)
c|Gsel(t)] ≤ 6d|V|

T∑
t=t0

exp(−At) (by Theorem 8)

≤ 6d|V| e
−At0

1− e−A
≤ 6d|V|e−At0

(
1 +

1

A

)
≤ 6d|V|e−At0

(
1 +

1

A

)

where in the last line, we used the inequality exp(A) ≥ A+ 1. Hence, for any u > 0, choosing

t0 =
⌈√

|V|
⌉
∨
⌈
1

A
log

(
6d|V|(1 + 1

A )

u

)⌉

implies that
∑T
t=t0

P [GRE(t)
c|Gsel(t)] ≤ u. Now, we simply have to insert all our results into the

sum of instantaneous regrets:
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R(T ) ≤ t0 + 2u+ 8 +O
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where we set u = 1
2A in the third inequality.

Proof of Corollary 1. Assuming w(∂P)(ψ+2κ)

min
C∈P

√
cG(C)

≤ Ω, with some positive constant Ω < 1 and setting

α0 = 1
ψw(∂P) then the term f(G,Θ, α0) can be bounded as:

f

(
G,Θ, α0 =

1

ψw(∂P)

)
= a2

 a2

a1 min
C∈P

√
cG(C)

+ 1



=

(
w(∂P)

(
ψ +

√
2κmax

C∈P

√
ιG(C)

))w(∂P)

(
ψ +

√
2κmax

C∈P

√
ιG(C)

)
min
C∈P

√
cG(C)− w(∂P)(ψ + 2κ)

+ 1
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= O

 w(∂P)2 max
C∈P

ιG(C)

(1− Ω)min
C∈P

√
cG(C)

 .

Ω acts as a threshold for the quality of any graph the satisfy this bound. Similarly we can find a
bound on the term 1

A :
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

Inserting the terms into the regret bound yields the final result.

C Additional experimental details

C.1 About experiments of the main paper

The experiments have been conducted with an intel i7 CPU with 12 2.6 GHz cores and 32 GB of
RAM. The two experiments with the highest number of tasks (200) and dimension (80) take about 8
hours, parallelized over the 12 cores.

To generate clusters, we generate |P| variables vii∈P from the uniform distribution, then we use
them to construct a categorical distribution with probabilities proportional to evi . These probabilities
defines the cluster proportions.
We included the algorithm of [Cella et al., 2023] as a baseline for the experiments to cover the
particular case that the number of clusters is lower than the number of dimensions. Indeed, the cluster
structure of Θ can be mathematically written as Θ =

∑
C∈P 1Cθ

⊤
C , where 1C is the indicator vector

of cluster C (coordinates equal to 1 on the nodes belonging to C and zeros elsewhere) and θC is the
true vector of every node in C. The range of Θ is equal to the span of 1C ;C ∈ P , implying that its
rank is at most equal to min(d, |P|). It will then satisfy the low-rank assumption for |P| < d.

Our results clearly demonstrate an improvement compared to the other baselines. Our policy performs
significantly better than the rest beyond the error margins, covering one standard deviation at ten
repetitions. We provide results for up to |V| = 200 nodes showing the effective transfer of knowledge
between nodes within the graph.
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(a) |V| = 200, |P| = 25, d = 10, p = 0.5, q = 0.05
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(b) |V| = 50, |P| = 5, d = 80, p = 0.8, q = 0.2

Figure 1: Synthetic data experiments showing the cumulative regret of Network Lasso Policy as a
function of time-steps compared to other baselines, for different choices of |V|, |P|, d, p
and q.

C.2 Solving the Network Lasso problem

We implement the Primal-Dual algorithm proposed in Jung [2020] to solve the Network Lasso
problem but we do not vectorize the matrices (in the sense of stacking their columns into a vector),
which speeds up computation.

C.3 Algebraic connectivity vs topological centrality index

Given two fully connected graphs weightless G1 and G2 with size 100 each, we progressively link
them by edges and construct the Laplacian L of the resulting graph G. We measure the minimum
topological centrality index min1≤i∈200(L

†
C)

−1
ii , and the algebraic connectivity, i.e. the minimum

non-null eigenvalue of L.
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Figure 2: Minimum Topological centrality index vs Algebraic Connectivity, for a graph formed by
connecting two fully connected initial graphs G1,G2 with size 100 each.
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D Technical Appendices and Supplementary Material

Technical appendices with additional results, figures, graphs and proofs may be submitted with
the paper submission before the full submission deadline (see above), or as a separate PDF in the
ZIP file below before the supplementary material deadline. There is no page limit for the technical
appendices.
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