
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INITIALIZING THE LAYER-WISE LEARNING RATE

Anonymous authors
Paper under double-blind review

ABSTRACT

Weight initialization schemes have been devised with heavy emphasis in the ini-
tial training dynamics, assuming the optimizer automatically handles appropriate
step sizes in prolonged training. The optimizer typically calculates the step sizes
using a single, global learning rate across all parameters, focusing exclusively on
the (exponentially averaged) in-training time gradient. Motivated from hierarchi-
cal structure inherent in deep networks, this work explores assigning non-adaptive
layer-wise learning rates based on the differences in gradient magnitude at initial-
ization as a practical and effective optimization strategy. The gradient magnitude
used to preset the layer-wise learning rates is measured at fan-in initialization, as
stable activation variance is considered a desirable property during training, and
so is assumed to largely hold true in prolonged training. Experiments on convo-
lutional and transformer architectures show the proposed layer-wise learning rate
can improve training stability and convergence in image classification and autore-
gressive language modeling

1 INTRODUCTION

Gradient descent has become the de-facto method for training deep neural networks, with various
optimizers (e.g., SGD, RMSProp, and Adam) differing in how they determine the step size for up-
dating parameters from the calculated gradients. The weight update process via gradient descent
can be broadly divided into two stages: first, the optimizer determines the per-parameter step sizes,
and second, they are scaled by the learning rate, which is a hyperparameter. This two-stage process
reflects the empirical and theoretical nature of modern neural network training, where the hyperpa-
rameter is empirically determined and theoretically sound techniques are employed by the optimizer
to ensure wide generalizability and minimize unnecessary hyperparameter tuning.

While adjusting the layer-wise learning rate was initially explored as a means to improve neural net-
work training (LeCun et al., 2002), adaptive step size scaling proved to be widely successful in im-
proving neural network training and has become the default gradient descent variation when training
in difficult settings (Duchi et al., 2011; Kingma & Ba, 2015). SGD can show strong performance in
low data regimes but can be more difficult to converge, making it an unattractive option when train-
ing complicated networks on large datasets. Appropriate weight initialization is also important for
successful training (LeCun et al., 2002; Glorot & Bengio, 2010), and both adaptive step-size scaling
and intricate weight initialization schemes have been extensively explored. However, it is unclear
to what extent commonly used theoretical assumptions carry on to empirical optimizer performance
(Tran et al., 2024) and the architectural implications on training continue to be an active area of
research (Kunstner et al., 2023; Zhang et al., 2024a).

Modern architectures are characterized by the use of multiple linear and nonlinear operations before
the final output, and efficient hierarchical learning is an important factor for the success of neural
networks (Chen et al., 2020; Abbe et al., 2021; Allen-Zhu & Li, 2023). Layer depth is known to re-
sult in different convergence speeds for convolutional architectures (Zeiler & Fergus, 2014; Yosinski
et al., 2014), and transfer learning and finetuning settings have made wide use of explicit layer-wise
learning rates to train selected layers for improved performance (Donahue et al., 2014; Sharif Raza-
vian et al., 2014; Girshick et al., 2014; Kumar et al., 2022; Guo et al., 2019; Lee et al., 2019; Ro &
Choi, 2021; Howard & Ruder, 2018; Bao et al., 2022; Lee et al., 2023). The justification is that when
finetuning on a smaller dataset, further training of general-purpose, low-level layers that are close
to the input is likely to overfit and worsen performance compared to only training the specialized,
high-level layers that are close to the output. Given that intermediate feature characteristics are in

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

many respects hard-coded in architecture, it is reasonable to expect that explicit layer-wise learning
rates can also be beneficial when training from scratch.

This work focuses on the simplest version that assigns static learning rates across the entire training
duration, as architectural characteristics such as input-output dimension, nonlinear activation func-
tions, and layer-wise connectivity are static and do not change during training. From the observation
that gradient magnitude at initialization correlates with commonly accepted layer-wise convergence
in convolutional networks, a scheme that assigns relative layer-wise learning rates with respect to
the gradient magnitude at initialization can be devised by interpreting the gradient magnitude at
initialization as a measure of architecture-induced convergence bias that persists during prolonged
training.

The gradient magnitude used as a basis to adjust the layer-wise learning rate is measured when layer
weights are initialized to preserve the activation variance, as stable activation variance is widely
considered a desirable property (Ioffe & Szegedy, 2015; Brock et al., 2021; Roberts et al., 2022).
After measuring the gradient magnitude, the relative layer-wise learning rates are initialized to be
opposite the layer-wise gradient magnitude. By regularizing the architecture-induced convergence
bias, it can be considered as a preventative measure to the exploding gradient problem by extrap-
olating from statistics at initialization, making it of conceptually different approach from methods
that aim to explicitly normalize or clip the gradient during training (Zhang et al., 2018b; 2020).

Experiments show improved performance and training stability on ImageNet-1k classification and
124M GPT-2 autoregressive language modeling. The improved convergence is represented in the
ability to handle higher learning rates and achieve lower training loss, which is an intriguing phe-
nomenon given the simplicity of the method compared to techniques that involve continuous tracking
of per-parameter gradient statistics. Inspecting the actual layer-wise learning rates values shows that
low learning rates are assigned to low-level layers and high learning rates to deeper, high-level layers,
but with additional subtleties and details as they are assigned with per-layer granularity. Altogether,
the empirical results suggest that adjusting the layer-wise learning rate is a simple yet effective
method for improving convergence, requiring negligible in-training time memory and computation
overhead while being compatible with contemporary adaptive methods.

2 RELATED WORK

Weight initialization. Weight initialization schemes were proposed as a solution to the explod-
ing/vanishing activation/gradient problem in vanilla feed-forward networks (Glorot & Bengio,
2010). He et al. (2015) additionally incorporates the effect of subsequent ReLU into weight ini-
tialization, and for residual connections, Zhang et al. (2019b) and De & Smith (2020) suggest
downscaling the branch of residual blocks due to the increasing activation variance with depth. For-
mal explanations have been developed on the trainability of deep networks using mean field theory
(Poole et al., 2016; Schoenholz et al., 2017; Xiao et al., 2018), and orthogonal weight initialization
demonstrated the ability to convolutional networks of extreme depths, albeit it does not necessarily
outperform the shallower counterparts (Saxe et al., 2014; Xiao et al., 2018).

In practice, basic initialization schemes are widely used in conjunction with normalization layers
(Ioffe & Szegedy, 2015; Ba et al., 2016; Zhang & Sennrich, 2019) to train deep networks. Some
explanations for the success of normalization methods include prevention of activation explosion
(Bjorck et al., 2018), smoothening of the optimization landscape (Santurkar et al., 2018), and pre-
vention of rank collapse (Daneshmand et al., 2020). The rise of recent transformer networks spurred
its dedicated initialization analysis (Xiong et al., 2020; Liu et al., 2020; Huang et al., 2020; Zhang
et al., 2019a), while other works have argued for the need of architecture agnostic initialization
schemes (Dauphin & Schoenholz, 2019; Zhu et al., 2021).

Layer-wise optimization. Many optimizers that involve layer-wise elements have been proposed,
such as directly using the layer-wise gradient history (Singh et al., 2015) or incorporating additional
mechanisms such as gradient normalization and weight norm scaling (You et al., 2017; Yu et al.,
2017; Zhou et al., 2019; You et al., 2020; Heo et al., 2021; Bernstein et al., 2020; Liu et al., 2021a).
Another direction previous works indirectly modified the layer-wise learning rate is through the use
of scale factors, most commonly included at the residual branches (Karras et al., 2018; Hayou et al.,
2021; Liu et al., 2020; Touvron et al., 2021; Noci et al., 2022). Such scale factors can affect both the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

gradient size and effective weight deviation of the layer, resulting in different effects depending on
whether the optimizer scales the step size depending on the gradient magnitude or variance (Balles &
Hennig, 2018). This work differs in that the architecture remains unmodified and instead modifies
the layer-wise learning rates at initialization, so individual layers are updated with different step
sizes even if the gradient or weight statistics at training time were to be identical.

Efficient methods to adapt the Hessian into the optimizer have been explored as a promising candi-
date to improve training (Martens & Grosse, 2015; Gupta et al., 2018; Yao et al., 2021; Liu et al.,
2024) and meta-learning settings made use of layer-wise hyper gradient to improve performance
and efficiency (Antoniou et al., 2019; Baik et al., 2020; Tang et al., 2021; Chen et al., 2023b). Other
contexts for exploring per-layer learning rates include curriculum learning (Croitoru et al., 2024),
efficient hyperparameter transfer (Yang et al., 2021), heavy-tailed self-regularization theory (Zhou
et al., 2023) and for reducing the memory footprint of AdamW (Zhang et al., 2024b).

3 BACKGROUND

Gradient descent is an algorithm derived from the principle that for a smooth and differentiable loss
function L defined with respect to parameters θ, moving in the direction of the negative gradient
of L at θ will decrease the function’s value most rapidly. This negative gradient direction formally
refers to −∇θL(θ).
Many loss functions are defined in convex or pseudoconvex to facilitate convergence to a minimum
when maximizing the negative likelihood of the data distribution. To optimize the parameters to-
wards the minimum, the parameters θk are updated at each iteration step k by moving against the
gradient of the loss function as follows:

θk+1 = θk − γ∇θkL(θk), (1)
where γ ∈ R+ is the learning rate controlling the step size for each update. Typically, well-known
optimizers process the gradient before it is multiplied by the learning rate, as shown below:

θk+1 = θk − γO(∇θkL(θk)), (2)

where O(·) represents the optimizer-specific preprocessing performed to calculate the step size. For
example, for Stochastic Gradient Descent (SGD) with momentum m, the process can be represented
as follows:

O(∇θkL(θk)) = vk; vk = mvk−1 +∇θkL(θk). (3)

Here, the initial v0 is initialized to zero vector.

4 LAYER-WISE LEARNING RATES

The parameters θ in a deep neural network can be naturally grouped into different parameter blocks
according to their layer-wise structure. Let θ = {ω1, · · · , ωL}, where L is the total number of
layers. In this work, we consider layer-wise learning rates defined as multiplying the learning rate
by relative learning rate values ηl for each parameter block ωl, corresponding to the parameters of a
l-th layer as follows:

ωk+1
l = ωk

l − γηlO(∇ωk
l
L(ωk

l )). (4)

Assigning a unique layer-wise learning rate for each l-th layer ηl, which does not change throughout
training, incurs negligible overhead, and is supported by popular frameworks.

4.1 MOTIVATION

Figure 1 shows the averaged per-parameter additional step size scaling performed by AdamW
(Loshchilov & Hutter, 2019) and Lars (You et al., 2017) compared to SGD momentum, and Lamb
compared to AdamW (You et al., 2020). The step size due to the second moment in AdamW shows
a clear layer-wise pattern that is consistent across the entire training duration, showing that there is a
clear per-layer trend in the parameter-wise gradient history. Lars and Lamb multiplies the step size

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 50 100 150
Layers

101

102

103

104
st

ep
 si

ze
 m

ul
tip

lie
r

AdamW

0 50 100 150
Layers

0.0

0.2

0.4

0.6

0.8

1.0
Lars

0 50 100 150
Layers

0.00

0.02

0.04

0.06

0.08

0.10
Lamb

epoch
5

15
30
60
90

Figure 1: Additional per parameter step size multiplier compared to SGD due to AdamW sec-
ond moment (left) and Lars (middle), and Lamb’s step size multiplier compared to AdamW(right)
when training ResNet-50 for 90 epochs. Only showing convolutional/linear layers for visibility. For
LARS, trust coefficient of 0.001 is used and the step size multiplier is clipped to 1. Lamb’s addi-
tional step size multiplier is only performed to the conv/linear layers while batch norm layers are
not modified and are fixed to 1.0, creating a large discrepancy.

by a combination of both a layer-wise weight norm and gradient normalization, and its additional
step size scaling performed upon SGD is surprisingly consistent across layers despite the layer-wise
naming might suggest.

Adaptive methods come at the cost of extra memory used to store the per-parameter gradient history
and treat all parameters in a unified manner. Per-layer analysis can be a convenient middle ground
for interpreting and manipulating neural networks as it has a lower dimension to search compared
to per-parameter analysis (Bengio et al., 2006; Baldock et al., 2021; Pan et al., 2023). Given the
clear layer-wise trend of adaptive methods when training from scratch, it is natural to investigate the
simplest version that assigns static learning rates across the entire training duration.

Generalization. Using high learning rates has been associated with beneficial regularizing effects
at the cost of potential difficulty in convergence (Goyal et al., 2017; Li et al., 2019; Lu et al., 2024),
but is not immediately clear how it can be leveraged to a layer-wise level. Heavier tails in the
empirical spectral density of individual layers have been linked with better generalization Mahoney
& Martin (2019), and Zhou et al. (2023) fits a power law distribution on the layer-wise empirical
spectral density in order to extract a layer-wise generalization measure and adjusts the layer-wise
learning rate accordingly. The assigned learning rates show a low to high trend throughout most of
the training.

Balanced training. Balancing convergence of the weights to ensure stable training is a common
motivation for modifying the learning rate, and convergence has been measured by tracking gradi-
ent, weight, neuron output or loss (Raghu et al., 2017; Bragagnolo et al., 2022; Liang et al., 2022; Du
et al., 2022). The various methods to measure convergence show the difficulty in determining if the
current weight is close to the final value before training has ended since weights considered to have
converged may require further training as the remaining weights are modified (Bragagnolo et al.,
2022). Preemptive freezing of selected weights may also make the network brittle to weight devia-
tions of those frozen prematurely, resulting in reduced generalization. While the use of in-training
time statistics is extensively explored in various literature, it may not appropriately incorporate more
global aspects of the training dynamics that are not apparent from the immediate gradient history
(Micaelli & Storkey, 2021), and leveraging ahead-of-time information can be an effective comple-
mentary method.

Preserving activation. The scale of activations at initialization can be modified by manipulating
the scale of layer weights, and preserving activation variance has been a major motivation for weight
initialization techniques. He et al. (2015) additionally scales the weight initialization by

√
2 in

consideration of the ReLU non-linearity, which, in view of the linear layer, means increasing the
activation variance before it passes through the ReLU. In the context of initialization only, activation
variance could also be preserved by increasing the ReLU slope, essentially introducing an additional
multiplicative constant instead of just scaling the weight. Similarly, introducing an additional 1/

√
2

multiplicative constant when summing the residual block output can prevent exploding variance on

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Layer-wise learning rate initialization of neural networks
Input: Model, layer weights θ = {ω1, ..., ωL} and numbers of parameters {N1, ..., NL}
Output: Relative layer-wise learning rates ηl

1: Set G0
l = 0, l ∈ {1, ..., L}

2: Initialize conv/linear layers from N (0, 1/fin), scale layers to 1, bias layers to 0
3: For t← 1 to T
4: Sample minibatch from training set
5: gt

θ ← ∇θLt(θ)
6: For l← 1 to L
7: Gt

l ← Gt−1
l + 1

Nl

∑
i∈ωl
|gt

i |
8: For l← 1 to L
9: η̃l ← 1√

GT
l

10: Nsum =
∑L

l=1 Nl

11: η̃sum = 1
Nsum

∑L
l=1 η̃lNl

12: For l← 1 to L
13: ηl ← η̃l

η̃sum

ResNets (Balduzzi et al., 2017). In practice, such additional multiplicative factors are not widely
used compared to explicit normalization techniques such as batch normalization.

4.2 REGULARIZING ARCHITECTURE-INDUCED CONVERGENCE BIAS

This work takes on the view that architectural characteristics are reflected in the gradient as it is
back-propagated through the network and that the difference in gradient magnitude when layers are
initialized to preserve its immediate activation variance represents the layer-wise convergence bias
due to architectural factors. After measuring the layer-wise gradient magnitude at initialization,
the relative learning rates can be adjusted to counteract the differences in convergence bias. It
effectively extrapolates from statistics at initialization when the network has not undergone any
training and under the assumption that the activation scale would not deviate far from initialization
during prolonged training.

Algorithm 1 outlines the proposed layer-wise learning rate initialization. It starts by initializing all
convolution/linear weights from random numbers sampled from N(0, 1/fin), where fin is the fan-
in number. It is a basic initialization scheme that preserves the activation variance if the weights
and gradients are i.i.d. (Glorot & Bengio, 2010). As standard, scale layers are initialized to 1 and
bias layers to 0. The class token, position embedding, and relative position layers in transformer
architectures are treated as biased and initialized to 0. The weight-tied embedding/head layer of
language models is initialized with a standard deviation of (1 +

√
1/fin)/2 as a middle ground of

ensuring unit normalized input to the network and the fan-in initialization of the head layer.

Next, the layer-wise gradient magnitude is collected for T iterations while the model weights are
fixed at initialization. The gradient magnitude is collected per parameter as the learning rate is
applied on a per-parameter basis, and the relative layer-wise learning rate is adjusted inversely pro-
portional to the square root of the gradient magnitude and then normalized. As the average per-
parameter gradient magnitude per layer is used, the method is not sensitive to the value of T . For
ResNet-50, using a T of 1 iteration instead of 5004 results in a max 11.02%, average 2.66% de-
viation in the assigned layer-wise learning rates, which would not significantly impact the network
performance compared to other random factors. 5004 is the number of iterations for 1 epoch when
training with a batch size of 256. We would like to note that the square root in line 9 is neces-
sary for the proposed learning rate to be beneficial (see Table 2). The intuition is that architectural
convergence bias is partially represented in the in-training time gradient, thus requiring a weaker
scaling.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Final top-1 validation accuracy (↑) for ImageNet-1k classification. Trained without gradient
clipping and label smoothing. Average and standard deviation of 3 runs reported.

Model #Params Optimizer Data
Augmentation Epochs

Learning Rate

Single Layer-wise

ResNet-50 25.56M

SGD basic
90 76.91±.12 77.03±.09

200 77.24±.08 78.08±.06

AdamW
basic 200 76.57±.08 77.01±.06

strong 300 78.25±.20 78.75±.08

ViT-S/16 22.05M

SGD basic 300 69.01±.32 71.84±.51

AdamW
basic 300 75.46±.36 75.42±.17

strong 300 77.39±.43 78.10±.17

Swin-T 28.29M AdamW strong 300 79.89±.15 79.95±.09

ConvNeXt-T 28.59M AdamW strong 300 80.26±.15 80.43±.03

5 EVALUATION

The proposed layer-wise learning rate scheme is evaluated on ImageNet-1k and CIFAR-100 image
classification and on autoregressive language modeling. The experiments demonstrate that appropri-
ate layer-wise learning rates can improve convergence on both various optimizers and architecture
archetypes despite the simplicity and non-existent overhead of using static relative layer-wise learn-
ing rates over the entire training run. We also inspect the assigned layer-wise learning rates, which
show a trend to increase according to depth along with other intricacies. Ablation studies on the de-
sign choices of the layer-wise learning rate assigning algorithm are performed in small-scale dataset
overfitting experiments in autoregressive language modeling.

5.1 IMAGENET-1K

Experiment settings. We perform experiments on ResNet-50 and ViT-S/16 when training from
scratch on basic Inception-style preprocessing and strong data augmentation. We would like to note
the aim is not to achieve SOTA results but to evaluate on generic settings. For hyperparameters
such as initial learning rate, effective batch size, and stochastic depth, we mostly rely on the values
reported in Chen et al. (2023a). When training ResNet-50 with SGD, we use a batch size of 256
and weight decay of 1e-4 similar to Goyal et al. (2017). For strong data augmentation, we use a
combination of RandAugment with layer 2 and magnitude 10 (Cubuk et al., 2020) and Mixup with
strength 0.5 (Zhang et al., 2018a). More detailed settings are reported in the Appendix.

Results. Table 1 show that the proposed layer-wise learning rates can improve training, even for
SGD which is known to have strong performance when training convolutional networks under sim-
ple data preprocessing pipelines. The accuracy increase is particularly notable when training for 200
epochs, improving by 0.96% from 77.24% to 78.19%. This has significant implications because it
is a setting where SGD is known to already achieve higher accuracy compared to adaptive optimiz-
ers, which is often attributed to the tendency of adaptive optimizers to overfit more easily. The fact
that the performance of SGD can be further improved by a technique indicates the existence of an
unexplored direction for improving optimization. This is further emphasized by the fact that the pro-
posed layer-wise learning rates are also beneficial with AdamW, improving accuracy by 0.50% from
78.25% to 78.75% when training for longer epochs under stronger data augmentation. The train loss
curve in Figure 2 shows that the proposed layer-wise learning rate achieves lower train loss in the
initial stage where the learning rate is high, suggesting it can better handle higher learning rates. It
also suggests the capability of resnets could have been underrepresented when training with a single
learning rate.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 50 100 150 200
Epoch

0.5

1.0

1.5

2.0

2.5

Tr
ai

n 
Lo

ss

single
layer-wise

0 50 100 150 200 250 300
Epoch

0.5

1.5

2.5

3.5

Tr
ai

n 
Lo

ss

single
layer-wise

Figure 2: ResNet-50 (left) and ViT-S/16 (right) train loss (↓) when trained with basic data augmen-
tation and SGD on ImageNet-1k classification.

0 25 50 75 100 125 150
Layers

0.0

0.5

1.0

1.5

Le
ar

ni
ng

 R
at

es
 

l

single
layer-wise

0 50 100 150 200
Layers

0.0

1.0

2.0

3.0

Le
ar

ni
ng

 R
at

es
 

l

single
layer-wise

Figure 3: Assigned learning rates to ResNet-50 (left) and ViT/S-16 (right). We only show convolu-
tion/linear layers for visibility, which comprise 99.8% of total parameter count.

The improved convergence of the proposed layer-wise learning rate is more clearly visible when
training vision transformers with SGD, which is a challenging task where previous works applied
weight reparameterization or exotic optimization techniques (Zhai et al., 2023; Chen et al., 2022).
The train loss curves in Figure 2 show significantly lower and stable training loss throughout the en-
tire training run and is reflected in an accuracy improvement of 2.84%. Interestingly, there does not
seem to be a clear improvement when training with AdamW under basic augmentation, which con-
trasts with ResNet-50, where the layer-wise learning rate was also beneficial for AdamW. Training
transformer architectures are known to be prone to overfitting compared to convolutional architec-
tures when training on image data, possibly diluting the effect of layer-wise learning rates in this
setting. When training with stronger data augmentations, we find that the layer-wise learning rate
achieves more consistent results, resulting in visible accuracy improvements over multiple runs. Ex-
periments on more sophisticated architectures such as ConvNeXt-T (Liu et al., 2022) and Swin-T
(Liu et al., 2021b) demonstrate that the layer-wise learning rates remain competitive despite the
effort involved in modifying the architecture.

Inspecting assigned learning rates. Figure 3 shows the assigned layer-wise learning rates for
ResNet-50, which has a 3-4-6-3 bottleneck block configuration. The layer-wise learning rates show
a clear depth-wise trend except for the last head layer, which is assigned a relatively lower learning
rate. Since numerous layers exist in a typical network, especially when considering scale and bias
as separate layers, only the assigned learning rates to the convolution and linear layers are shown as
they comprise most of the model parameter count. ResNet-50 consists of multiple residual bottle-
neck blocks, which individually have 3 convolution layers, and the repetition of bottleneck blocks
is demonstrated through the pattern of a low learning rate for the first two convolution layers and
a higher learning rate for the third convolution layer in the bottleneck block. We find scale and
bias layer learning rates are generally similar to the directly preceding linear layer, although the
bias layer has a tendency to be assigned higher learning rates, especially for the intermediate stage
that consists of 6 consequent bottleneck blocks. The bias layer of the third convolution layer in
the 6th bottleneck block is assigned 2.13, which is significantly larger than the 1.39 assigned to the
preceding convolution layer.

ViT/S-16 consists of 12 blocks, where each block is comprised of a self-attention block that has 4
linear layers and a multilayer perceptron block that has 2 linear layers. A similar depth-wise trend in
the assigned learning rates can be observed in Figure 3, although it is much weaker than ResNet-50.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.025 0.05 0.1 0.2 0.4 0.8
learning rate 

70.0

75.0

80.0

Va
lid

at
io

n 
Ac

cu
ra

cy

single
layer-wise

0.025 0.05 0.1 0.2 0.4 0.8
learning rate 

0.004

0.006

0.008

Tr
ai

n 
lo

ss

single
layer-wise

Figure 4: Validation accuracy (left ↑) and train loss (right ↓) when training ResNet-50 on CIFAR-
100 for 200 epochs. Results of 5 runs.

The spikes in assigned learning rates correspond to the query and key layers of the self attention
block, which show that their gradient is very low compared to other layers at initialization. Similar
findings have been reported in Noci et al. (2022), where it only analyzed the gradient discrepancy in
the attention block and proposed an inverse temperature scaling. Our approach adjusts the learning
rate and is applied equally to all layers in a network. The first convolution layer in the stem patch
embedding is assigned a low learning rate of 0.347, while the class token layer and the position
embedding layer are assigned a lower 0.012 and 0.17. Figures for ConvNeXt-T and Swin-T are
provided in the appendix.

5.2 CIFAR-100

Experiment settings. We also evaluate the effect of layer-wise learning rates on CIFAR-100 clas-
sification when training from scratch on ResNet-50 with SGD. We sweep over learning rates when
trained for 200 epochs with 1 epoch warmup under the standard data preprocessing. We use a batch
size of 256, weight decay of 5e-4 and perform cosine learning rate decay schedule. The smaller
dataset compared to ImageNet-1k can make it more sensitive to the initial weights, so both single
and layer-wise learning rates start training from the same fan-in weight initialization scheme.

Results. Figure 4 shows that the single learning rate has higher accuracy in lower global learning
rates, while layer-wise learning rates have an advantage when the global learning rate is higher. With
regard to accuracy, it is unclear which is better as both achieve similar accuracy but with different
optimal hyperparameters. This demonstrates the nuances required when evaluating performance
from small scale datasets, as we previously demonstrated layer-wise learning rates is beneficial
for ImageNet-1k under hyperparameters likely to be tuned for single learning rate. However, it
can be observed in Figure 4 that layer-wise learning rate consistently achieves lower train loss on
high learning rates. It suggests it may be possible to extrapolate performance from small scale
experiments, but perhaps not necessarily from only looking at the highest possible accuracy, and
Wortsman et al. (2024) suggest that techniques that stabilize training in small-scale experiments in
high learning rate regimes can also be carried on to larger scales.

5.3 AUTOREGRESSIVE LANGUAGE MODELING

Experiment settings. Autoregressive language modeling is used to pretrain large models on large
corpus of data, and demonstrates an interesting challenge where both the model and dataset can
become very large, making iterating over the dataset over multiple epochs infeasible. Due to the
costs involved in large scale training, we evaluate on the 124M GPT-2 model. We use a variant that
does not have bias on the linear and layer norm layers, and use β1, β2 of 0.9, 0.95 for AdamW,
0.95, 0.98 for Lion (Chen et al., 2023a) and 0.965, 0.99 for Sophia (Liu et al., 2024). The assigned
layer-wise learning rates are shown in Figure 5 and show similar pattern to ViT-S/16, except for the
large learning rates of 2.74 and 0.66 assigned to the embedding/head and positional encoding layers.

We evaluate two settings. The first setting is where a small subset of data is repeatedly iterated over
multiple epochs, similar to typical image settings, which we argue can still be a reasonable proxy
for long-term training behavior. The second is on 9.89B token training, where each minibatch of
data is seen only once. All experiments start training the same weight initialization that samples
weights from N (0, 0.022) for the linear layers, except for the weights of residual branches which

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Train loss (↓) of small scale overfitting experiments with AdamW optimizer on 124M
next token prediction. Ablation study performed on fan-in and fan-out weight initialization when
calculating the layer-wise learning rates. * denotes when scaling without performing the square root
on the layer-wise gradient magnitude.

Learning rate γ 7.5e-5 1.5e-4 3e-4 6e-4 1.2e-3 2.4e-3 4.8e-3 9.6e-3
Single 3.666 2.672 1.430 2.095 2.334 6.965 – –
Layer-wise (fin) 4.169 3.349 2.114 0.974 0.560 1.163 – –
Layer-wise (fout) 4.099 3.260 2.139 1.299 0.808 1.675 – –
Layer-wise (fin*) – – 3.466 2.775 1.946 1.532 1.573 1.719

Table 3: Train loss (↓) of small scale overfitting experiments with Lion optimizer on 124M next
token prediction.

Learning rate γ 1.5e-5 3e-5 6e-5 1.2e-4 2.4e-4 4.8e-4
Single 2.966 1.833 0.704 1.312 2.559 7.477
Layer-wise (fin) 3.387 1.765 0.542 0.270 0.179 0.346

are sampled fromN (0, 0.022/(2∗B)). B is the number of attention blocks, which for 124M GPT-2
is 12.

Overfitting on small dataset. Full training can be costly in terms of both energy and time, and a
common strategy is to extrapolate from smaller-scale experiments that can be performed in a shorter
time frame. While the setting of interest views each minibatch of data once, the large corpus of
data makes it likely that the underlying data characteristics are shared and reflected across many
minibatch of data, even if the exact sequence of tokens is not identical. A setting where a smaller
subset of the dataset is repeatedly iterated over can be an efficient method to check if it can learn the
characteristics implicitly shared across many minibatches, at the drawback of not explicitly verifying
it on the large, diverse full dataset.

Table 2 shows the final train loss when sweeping over various global learning rates on AdamW.
We repeatedly iterate over 20 minibatch of data for 2000 iterations with a constant learning rate
schedule and measure the average train loss of the respective minibatchs. The layer-wise scheme
achieves lower train loss and can handle higher global learning rates, demonstrating that appropriate
layer-wise rates can improve convergability. We also perform an ablation study on the design choices
of Algorithm 1 and verify that measuring the gradient at fan-in initialization and scaling inversely
proportional to the square root of the gradient magnitude achieves the lowest train loss. We also find
that it improves train loss in the small scale experiments on recently proposed optimizers such as
Lion in Table 3 and also on Adam-mini and Sophia in Table 8 and Table 9 in the Appendix.

Table 4: Final validation loss (↓) on 9.89B token training, 124M GPT2 model.

Learning Rate AdamW Lion Adam-mini Sophia
Single 3.3344 3.2888 3.3707 3.3523
Layer-wise 3.3530 3.2851 3.3844 3.3153

9.89B token training. Next we evaluate on a setting where each minibatch is only seen once
on the Fineweb dataset (Penedo et al., 2024). We use a learning rate that is double the optimal
value found in the previous small dataset overfitting experiment, as a cosine learning rate schedule
is used. This is a setting where we expect fewer improvements, as the advantage of layer-wise
learning rates is in prolonged training where the balanced training of layers allows the network to
maintain its convergability. The single learning rate scheme performs high step sizes to layers with
high gradients, quickly adapting to individual examples but potentially at the cost of further learning
capacity in later stages, as demonstrated in the previous small-scale overfitting experiments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 10000 20000
Iterations

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss single
layer-wise

0 10000 20000
Iterations

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss single
layer-wise

0 25 50 75
Layers

0.0

1.0

2.0

Le
ar

ni
ng

 R
at

es
 

l

single
layer-wise

Figure 5: Validation loss (↓) when training 124M GPT2 model on 9.89B tokens with Lion (left) and
Sophia (middle). The assigned layer-wise learning rates to 124M GPT2 model (right).

Table 4 shows the final validation loss for 4 optimizers, and shows that there is indeed a less re-
markable improvement in the final validation loss. In fact, there is a slight degradation for AdamW
and Adam-mini, which considers its similarity to AdamW as a strength. The layer-wise scheme is
beneficial to more modern optimizers such as Lion and Sophia, with the benefit with Sophia being
particularly noticeable. The training curves Figure 5 shows that the layer-wise learning rate initially
lags behind but later catches up in the later stages. Given that this setting is comparatively much
shorter compared to typical image settings, we expect there will be a more significant improvement
when training for longer iterations: a single epoch of 9.89B tokens training is 18,865 iterations
on a 124M parameter model, which is significantly lower than the 93,825 iterations taken to train
ImageNet-1k on a smaller 22M ViT-S/16 model.

Table 5: Train loss (↓) of small scale overfitting experiments using Lion optimizer on 774M model.
β indicates with residual downscaling as a constant multiplicative scaler that is not trained.

Learning rate γ 3.75e-5 7.5e-5 1.5e-5 3e-5 6e-5 1.2e-4 2.4e-4
Single 2.647 0.840 0.316 0.092 0.301 4.952 -
Layer-wise (fin) 2.528 0.452 0.105 0.241 0.488 7.174 -
Single-β - 2.513 0.367 0.059 0.156 6.403 7.537
Layer-wise-β (fin) - 0.748 0.034 0.019 0.026 0.056 7.492

Scaling with depth. Downweighting the residual branches h(x) = x + βf(x) is a prevalent
modification investigated in various initialization works (De & Smith, 2020; Hayou et al., 2021;
Noci et al., 2022), and downscaling by β = O(1/

√
depth) < 1 is suggested to prevent rank collapse

at initialization when scaling with depth. We experiment using Lion optimizer on a 774M model
which has 36 attention blocks using a β of 1/

√
72, and compare between the single and layer-wise

learning rate with and without the multiplicative residual downscaling. Table 5 shows that without
the residual downscaling the single learning rate achieves slightly lower train loss in small scale
experiments, but with β downscaling the layer-wise scheme has both the lowest train loss and wider
range of learning rates that achieve low training loss. It shows that the layer-wise learning rate
scheme is scalable with depth and can benefit further from advances in initialization schemes.

6 DISCUSSION

The proposed layer-wise learning rate adjusting scheme is conceptually simple and incurs very lit-
tle overhead, and empirical results demonstrate that it can substantially improve convergence when
used in conjunction with widely used optimizers. However, it is based on the assumption that extrap-
olating from statistics at initialization can be used to model long-term behaviors that are difficult to
measure exclusively from in-training time gradients. While there are reports that extremely large ac-
tivations exist in fully trained large models (Sun et al., 2024), such activations are relatively scarce
and most activations are reported to be stable. We believe that the simplicity and efficacy of the
method make it a promising direction for analyzing and improving modern neural network training.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Enric Boix-Adsera, Matthew S. Brennan, Guy Bresler, and Dheeraj Nagaraj. The
staircase property: How hierarchical structure can guide deep learning. Advances in Neural In-
formation Processing Systems, 34:26989–27002, 2021.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
(hierarchical) learning. In The Thirty Sixth Annual Conference on Learning Theory, pp. 4598–
4598. PMLR, 2023. ISBN 2640-3498.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. In Interna-
tional Conference on Learning Representations, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-
learning with adaptive hyperparameters. Advances in neural information processing systems,
33:20755–20765, 2020.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34:10876–10889, 2021.

David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian
McWilliams. The shattered gradients problem: If resnets are the answer, then what is the ques-
tion? In International Conference on Machine Learning, pp. 342–350. PMLR, 2017. ISBN
2640-3498.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404–413. PMLR, 2018. ISBN
2640-3498.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT Pre-Training of Image Trans-
formers. In International Conference on Learning Representations, 2022.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19, 2006.

Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between two neural
networks and the stability of learning. Advances in Neural Information Processing Systems, 33:
21370–21381, 2020.

Nils Bjorck, Carla P. Gomes, Bart Selman, and Kilian Q. Weinberger. Understanding batch normal-
ization. Advances in neural information processing systems, 31, 2018.

Andrea Bragagnolo, Enzo Tartaglione, and Marco Grangetto. To update or not to update? neurons
at equilibrium in deep models. Advances in neural information processing systems, 35:22149–
22160, 2022.

Andy Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning, pp.
1059–1071. PMLR, 2021. ISBN 2640-3498.

Minshuo Chen, Yu Bai, Jason D. Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and Richard Socher.
Towards understanding hierarchical learning: Benefits of neural representations. Advances in
Neural Information Processing Systems, 33:22134–22145, 2020.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When Vision Transformers Outperform
ResNets without Pre-training or Strong Data Augmentations. In International Conference on
Learning Representation, 2022.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, and Cho-Jui Hsieh. Symbolic discovery of optimization algorithms.
Advances in Neural Information Processing Systems, 36, 2023a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yixiong Chen, Li Liu, Jingxian Li, Hua Jiang, Chris Ding, and Zongwei Zhou. MetaLR: Meta-
tuning of Learning Rates for Transfer Learning in Medical Imaging. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pp. 706–716, 2023b.

Florinel-Alin Croitoru, Nicolae-Cătălin Ristea, Radu Tudor Ionescu, and Nicu Sebe. Learning Rate
Curriculum. International Journal of Computer Vision, pp. 1–24, 2024.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. Batch
normalization provably avoids ranks collapse for randomly initialised deep networks. Advances
in Neural Information Processing Systems, 33:18387–18398, 2020.

Yann N. Dauphin and Samuel Schoenholz. Metainit: Initializing learning by learning to initialize.
Advances in Neural Information Processing Systems, 32, 2019.

Soham De and Sam Smith. Batch normalization biases residual blocks towards the identity function
in deep networks. Advances in Neural Information Processing Systems, 33:19964–19975, 2020.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In Inter-
national Conference on Machine Learning, pp. 647–655. PMLR, 2014.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. Advances in Neural Information Processing Systems, 35:23439–23451, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 580–587, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris.
Spottune: Transfer learning through adaptive fine-tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 4805–4814, 2019.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018. ISBN
2640-3498.

Soufiane Hayou, Eugenio Clerico, Bobby He, George Deligiannidis, Arnaud Doucet, and Judith
Rousseau. Stable resnet. In International Conference on Artificial Intelligence and Statistics, pp.
1324–1332. PMLR, 2021. ISBN 2640-3498.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. AdamP: Slowing Down the Slowdown for Momentum Op-
timizers on Scale-invariant Weights. In International Conference on Learning Representations,
2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text Classifica-
tion. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 328–339, 2018.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer opti-
mization through better initialization. In International Conference on Machine Learning, pp.
4475–4483. PMLR, 2020. ISBN 2640-3498.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456.
PMLR, 2015.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of GANs for
Improved Quality, Stability, and Variation. In International Conference on Learning Representa-
tions, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
Tuning can Distort Pretrained Features and Underperform Out-of-Distribution. In International
Conference on Learning Representations, 2022.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise Is Not the
Main Factor Behind the Gap Between Sgd and Adam on Transformers, But Sign Descent Might
Be. In International Conference on Learning Representations, 2023.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural Networks: Tricks of the Trade, pp. 9–50. Springer, 2002.

Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090, 2019.

Yoonho Lee, Annie S. Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
Finn. Surgical Fine-Tuning Improves Adaptation to Distribution Shifts. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. Advances in Neural Information Processing Systems,
32, 2019.

Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu
Chen, and Tuo Zhao. No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for
Training Large Transformer Models. In International Conference on Learning Representations,
2022.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A Scalable
Stochastic Second-order Optimizer for Language Model Pre-training. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the Diffi-
culty of Training Transformers. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 5747–5763, 2020.

Yang Liu, Jeremy Bernstein, Markus Meister, and Yisong Yue. Learning by turning: Neural archi-
tecture aware optimisation. In International Conference on Machine Learning, pp. 6748–6758.
PMLR, 2021a. ISBN 2640-3498.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations, 2019.

Miao Lu, Beining Wu, Xiaodong Yang, and Difan Zou. Benign Oscillation of Stochastic Gradient
Descent with Large Learning Rate. In International Conference on Learning Representations,
2024.

Michael Mahoney and Charles Martin. Traditional and heavy tailed self regularization in neural
network models. In International Conference on Machine Learning, pp. 4284–4293. PMLR,
2019. ISBN 2640-3498.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International Conference on Machine Learning, pp. 2408–2417. PMLR, 2015.

Paul Micaelli and Amos J. Storkey. Gradient-based hyperparameter optimization over long horizons.
Advances in Neural Information Processing Systems, 34:10798–10809, 2021.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Stitchable Neural Networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16102–16112, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, and Luca Antiga. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro
Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text data at
scale. arXiv preprint arXiv:2406.17557, 2024.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. Advances in neural
information processing systems, 30, 2017.

Youngmin Ro and Jin Young Choi. Autolr: Layer-wise pruning and auto-tuning of learning rates in
fine-tuning of deep networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 2486–2494, 2021. ISBN 2374-3468.

Daniel A. Roberts, Sho Yaida, and Boris Hanin. The Principles of Deep Learning Theory, vol-
ume 46. Cambridge University Press Cambridge, MA, USA, 2022.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in neural information processing systems, 31, 2018.

A. Saxe, J. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in
deep linear neural networks. In International Conference on Learning Representations, 2014.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep Information
Propagation. In International Conference on Learning Representations, 2017.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN features
off-the-shelf: An astounding baseline for recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 806–813, 2014.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-specific
adaptive learning rates for deep networks. In 2015 IEEE 14th International Conference on Ma-
chine Learning and Applications (ICMLA), pp. 364–368. IEEE, 2015. ISBN 1-5090-0287-1.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Shixiang Tang, Dapeng Chen, Jinguo Zhu, Shijie Yu, and Wanli Ouyang. Layerwise optimization
by gradient decomposition for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9634–9643, 2021.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 32–42, 2021.

Hoang Tran, Qinzi Zhang, and Ashok Cutkosky. Empirical Tests of Optimization Assumptions in
Deep Learning. arXiv preprint arXiv:2407.01825, 2024.

Ross Wightman. PyTorch Image Models, 2019.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D.
Co-Reyes, Izzeddin Gur, Abhishek Kumar, and Roman Novak. Small-scale proxies for large-
scale Transformer training instabilities. In The Twelfth International Conference on Learning
Representations, 2024.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla con-
volutional neural networks. In International Conference on Machine Learning, pp. 5393–5402.
PMLR, 2018. ISBN 2640-3498.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020. ISBN 2640-
3498.

Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. Advances in Neural Information Processing Systems, 34:17084–17097,
2021.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 10665–10673, 2021. ISBN 2374-
3468.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large Batch Optimization for Deep
Learning: Training BERT in 76 minutes. In International Conference on Learning Representa-
tions, 2020.

Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Block-
normalized gradient method: An empirical study for training deep neural network. In arXiv
Preprint arXiv:1707.04822, 2017.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European Conference on Computer Vision, pp. 818–833. Springer, 2014.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M. Susskind. Stabilizing transformer training by preventing at-
tention entropy collapse. In International Conference on Machine Learning, pp. 40770–40803.
PMLR, 2023. ISBN 2640-3498.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Biao Zhang, Ivan Titov, and Rico Sennrich. Improving Deep Transformer with Depth-Scaled Initial-
ization and Merged Attention. In 2019 Conference on Empirical Methods in Natural Language
Processing and 9th International Joint Conference on Natural Language Processing, pp. 898–
909. Association for Computational Linguistics (ACL), 2019a.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empir-
ical Risk Minimization. In International Conference on Learning Representations, 2018a.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Fixup Initialization: Residual Learning Without
Normalization. In International Conference on Learning Representations, 2019b.

Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Train feedfoward neural network with layer-wise
adaptive rate via approximating back-matching propagation. arXiv preprint arXiv:1802.09750,
2018b.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why Gradient Clipping Accelerates
Training: A Theoretical Justification for Adaptivity. In International Conference on Learning
Representations, 2020.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. arXiv preprint arXiv:2402.16788, 2024a.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo,
and Ruoyu Sun. Adam-mini: Use Fewer Learning Rates To Gain More. arXiv preprint
arXiv:2406.16793, 2024b.

Yefan Zhou, Tianyu Pang, Keqin Liu, Michael W. Mahoney, and Yaoqing Yang. Temperature Bal-
ancing, Layer-wise Weight Analysis, and Neural Network Training. In Thirty-Seventh Conference
on Neural Information Processing Systems, 2023.

Zhiming Zhou, Qingru Zhang, Guansong Lu, Hongwei Wang, Weinan Zhang, and Yong Yu.
AdaShift: Decorrelation and Convergence of Adaptive Learning Rate Methods. In International
Conference on Learning Representations, 2019.

Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong, W. Ronny Huang, and Tom Goldstein. Gradinit:
Learning to initialize neural networks for stable and efficient training. Advances in Neural Infor-
mation Processing Systems, 34:16410–16422, 2021.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

ImageNet-1k setting details. The experiments were run using pytorch (Paszke et al., 2019) and
timm (Wightman, 2019) for transformer model architectures and data preprocessing. Pytorch auto-
matic mixed precision training with bfloat16 was used, which we found to significantly improve ViT-
S/16 performance when training with AdamW and basic augmentation compared to using float16
with loss scaling. We do not perform gradient clipping or label smoothing but include strong data
augmentations to demonstrate the effectiveness of appropriate layer-wise learning rates under more
difficult training settings.

All experiments were trained using a cosine decay learning rate schedule with a warmup, image res-
olution of 224× 224, and default momentum/beta hyperparameters for SGD and AdamW. Gradient
accumulation was performed to simulate larger effective batch sizes. When adjusting the layer-wise
learning rates, the gradient was collected over an epoch, which corresponds to a T of 312∼5004,
depending on the batch size. All reported ImageNet-1k experiments took ∼150 GPU days of train-
ing.

0 50 100 150 200 250 300
Epoch

1.5

2.5

3.5

Tr
ai

n 
Lo

ss

single
layer-wise

0 50 100 150 200 250 300
Epoch

1.5

2.5

3.5

Tr
ai

n 
Lo

ss
single
layer-wise

Figure 6: Swin-T (left) and ConvNeXt-T (right) train loss when trained with strong data augmenta-
tion and AdamW on ImageNet-1k classification.

0 50 100 150 200
Layers

0.0

1.0

2.0

Le
ar

ni
ng

 R
at

es
 

l

single
layer-wise

0 50 100 150
Layers

0.0

0.5

1.0

1.5

Le
ar

ni
ng

 R
at

es
 

l

single
layer-wise

Figure 7: Assigned learning rates to Swin-T (left) and ConvNeXt-T (right). We only show convolu-
tion/linear layers for visibility, which comprise 99.7% of total parameter count.

Swin-T and ConvNeXt-T. Figure 7 shows the assigned learning rates on ImageNet-1k classifi-
cation. Swin-T has a 2-2-6-2 block configuration, and the learning rates of Swin-T follow a similar
pattern to ViT-S/16, except that the relative position layers in each block are assigned noticeably
large learning rates from 3.99 to 7.77. ConvNeXt-T has a 3-3-9-3 block configuration, where each
block consist of a depthwise separable convolution layer and then a multilayer perceptron block.
Low learning rates are assigned to the depthwise seperable convolution layer and the second linear
layer of the mlp block, while the first layer mlp block is assigned larger learning rates.

GPT2 experimental details. We adopt a pytorch implementation from a publicly available code-
base1. Weight decay of 0.1 for AdamW, 1.0 for Lion and 0.2 for Sophia is performed on the lin-
ear layers only. We use the same hyperparameters of AdamW for Adam-mini. For 9.89B token
training a learning rate of 6e-4/2.4e-3, 1.2e-4/4.8e-4 and 1.5e-4/6e-4 is used for AdamW, Lion and
Sophia respectively with a cosine learning rate schedule and 700 iteration warmup. When perform-
ing multiplicative residual downscaling we remove the 1/sqrt2 ∗B additional weight sampling in

1https://github.com/karpathy/llm.c

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: ImageNet-1k hyperparameters

Model Dropout Stoch
Depth

Data
Augmentation Optimizer Batch

Size lr wd

ResNet-50

- - basic SGD 256 0.1 1e-4

- - basic AdamW 1024 3e-3 0.1

- - strong AdamW 1024 3e-3 0.1

ViT-S/16

0.1 0.1 basic SGD 4096 0.8/1.6 1e-4

0.1 0.1 basic AdamW 4096 1e-2 0.1

- - strong AdamW 4096 1e-2 0.1

Swin-T - 0.2 strong AdamW 1024 1e-3 5e-2

ConvNeXt-T - 0.1 strong AdamW 4096 4e-4 5e-2

Table 7: ImageNet-1k real, v2 performance improvement due to layer-wise learning rate.

Model #Params Optimizer Data
Augmentation Epochs

Accuracy

ReaL V2

ResNet-50 25.56M

SGD basic
90 83.63(+0.20) 72.56(+0.33)

200 84.18(+0.77) 73.24(+0.58)

AdamW
basic 200 82.94(+0.43) 72.24(+0.71)

strong 300 85.24(+0.46) 74.65(+0.47)

ViT-S/16 22.05M

SGD basic 300 77.96(+2.59) 65.99(+2.85)

AdamW
basic 300 81.44(-0.02) 70.36(-0.24)

strong 300 84.19(+0.82) 73.61(+1.28)

Swin-T 28.29M AdamW strong 300 85.13(-0.06) 74.98(+0.31)

ConvNeXt-T 28.59M AdamW strong 300 85.61(+0.33) 75.98(+0.18)

the residual branches. The 124M model has vocabulary size of 50257, context size of 1024 and
embedding dimension of 768, and is trained on bfloat16. A single batch consists of 524288 tokens
which translates to a batch size of 512. We use a T of 100 for Algorithm 1.

Table 8: Train loss (↓) of small scale overfitting experiments with Adam-mini optimizer on 124M
model next token prediction.

Learning rate γ 7.5e-5 1.5e-4 3e-4 6e-4 1.2e-3 2.4e-3
Single 3.800 2.755 1.903 3.350 2.845 7.315
Layer-wise (fin) 4.362 3.409 2.183 1.136 0.838 2.093

Table 9: Train loss (↓) of small scale overfitting experiments with Sophia optimizer on 124M model
next token prediction.

Learning rate γ 1.875e-5 3.75e-5 7.5e-5 1.5e-4 3e-4 6e-4
Single 3.071 2.012 0.989 2.722 7.232 7.494
Layer-wise (fin) 3.577 2.541 1.410 0.742 0.538 3.525

18


	Introduction
	Related Work
	Background
	Layer-wise Learning Rates
	Motivation
	Regularizing Architecture-induced Convergence Bias

	Evaluation
	ImageNet-1k
	CIFAR-100
	Autoregressive Language Modeling

	Discussion
	Appendix

