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Figure 1: Schematic illustration of the agentic system for GPU-accelerated quantum chemistry calculation

ABSTRACT
Many chemically relevant phenomena occur in solution or at com-
plex interfaces, yet quantum chemical calculations of such systems
involve intricate workflows and extensive parameter tuning, posing
challenges for non-specialists and even experts. Interpreting the
results of these simulations requires deep knowledge of computa-
tional chemistry, from model setup to post-processing. In this work,
we introduce an autonomous agentic system specifically designed
for solution-phase quantum chemistry. Built on an agentic archi-
tecture, the system supports flexible tool integration, resource man-
agement, I/O handling, and post-wavefunction analysis. Through
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representative case studies, we show that this agent significantly
reduces the complexity and expertise required to perform and in-
terpret advanced simulations, making them more accessible to both
theorists and experimentalists.
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1 INTRODUCTION
Quantum chemistry plays a central role in understanding molecular
behavior, enabling insights into electronic structure, reactivity, and
spectroscopy that are essential for fields ranging from drug design
to materials science [4, 16]. With the advent of GPU-accelerated
computing and increasingly accurate electronic structure methods,
the computational capabilities of quantum chemistry have advanced
rapidly [13, 17]. However, the practical utility of these tools remains
largely confined to experts due to their steep learning curve and the
complexity of setting up and interpreting calculations. Bridging this
gap is crucial for democratizing access to high-accuracy molecular
simulations in experimental and interdisciplinary research settings.

Several automated workflow systems have been developed to
simplify quantum chemistry tasks such as geometry optimization
and property prediction [7, 18]. These tools effectively reduce the
user burden for routine applications, but are typically rigid and dif-
ficult to adapt to novel scientific questions. Tasks like excited-state
modeling or Quantum Mechanics/Molecular Mechanics (QM/MM)
simulations often require expert intervention to adjust parameters
or recover from failures. More fundamentally, we identify three
persistent challenges that limit the broader usability of quantum
chemistry: (1) the complexity of protocol design, as selecting an
appropriate model chemistry that balances physical accuracy and
computational cost, along with configuring relevant options such
as density fitting, convergence thresholds, or active space defini-
tions, requires specialized expertise; (2) the lack of adaptive control,
since most workflows cannot recover from convergence failures or
dynamically adjust strategies based on intermediate outcomes; and
(3) the opacity of computational outputs, as interpreting simulation
results and diagnosing numerical issues remains difficult without a
strong foundation in computational molecular science.

To address these challenges, we propose an agentic system pow-
ered by large language models (LLMs), capable of autonomously
assisting users throughout the quantum chemistry workflow. To
mitigate the complexity of protocol design, the system interprets
high-level user intent and translates it into detailed, tool-specific in-
puts using embedded chemical knowledge. To overcome the rigidity
of conventional workflows, the agent dynamically adapts to run-
time feedback. This includes recovering from SCF failures, adjusting
parameters, or switching methods when necessary. Finally, to im-
prove the interpretability of results, the system offers interactive
explanations, facilitates postprocessing, and integrates visualization
and analysis tools, all through a natural language interface.

Our contributions are summarized as follows:

• Agentic Framework for Quantum Chemistry: We de-
velop a domain-specialized agentic system built on large
language models, designed to orchestrate complex quantum
chemical workflows. This framework enables flexible task
composition, decision making, and interaction with external
simulation tools through natural language.

• Protocol Reasoning and Generation Module: We imple-
ment a reasoning engine that maps high-level user queries
to executable simulation protocols, drawing on chemical
knowledge embedded in the LLM and augmented with ex-
ternal knowledge bases. This empowers non-expert users to

configure sophisticated simulations without requiring deep
theoretical expertise.

• DynamicWorkflow Control: The agent supports adaptive
execution by monitoring runtime states, detecting failure
modes (e.g., SCF convergence issues), and autonomously
modifying the workflow. This improves robustness in chal-
lenging scenarios and reduces the need for manual interven-
tion.

• Post-processing and Interpretation Interface: We pro-
vide a natural language interface for interpreting results
through both text and visualizations, enabling tasks such as
population analysis, orbital visualization, and energy decom-
position. This lowers the barrier to understanding quantum
chemical output, especially for experimentalists and inter-
disciplinary researchers.

• End-to-End Evaluation Across Diverse Tasks: We vali-
date our system on representative quantum chemistry appli-
cations, including spectral analysis and solvation modeling.
The results demonstrate that our agent achieves expert-level
outcomes while significantly reducing setup time and im-
proving result accessibility.

In summary, our work aims to bridge the gap between power-
ful quantum chemical tools and real-world usability through an
autonomous, LLM-driven agentic system. By embedding domain
knowledge and enabling adaptive reasoning, we make complex
simulations more accessible, interpretable, and robust for a wider
range of users.

2 RELATEDWORK
Recent advances in large-language models (LLMs) have spurred the
development of intelligent agents for automating computational
chemistry and molecular simulation workflows. Campbell et al. [2]
proposed MDCrow, an LLM-based assistant that unifies molecular
dynamics tasks, including tool selection, simulation setup, analysis,
and literature retrieval, within a single interactive system. Zou et
al. [20] introduced El Agente Q, a hierarchical multi-agent frame-
work capable of autonomously planning and executing quantum
chemistry tasks across geometry optimization, electronic structure
calculations, and thermodynamic evaluations. In parallel, Hu et
al. [8] developed Aitomia, a platform that combines LLMs, rule-
based agents, and the MLatom ecosystem to streamline the setup
and interpretation of atomistic simulations.

Several systems also focus on lowering the barrier for nonspe-
cialists through conversational interfaces. Liu et al. [6] presented
AutoSolvateWeb, a chatbot-guided quantum chemistry platform that
helps users perform multistep calculations involving explicit solva-
tion models via natural language prompts and cloud infrastructure.
Jacobs and Pollice [9] showed that prompt engineering, retrieval-
augmented generation, and lightweight fine-tuning significantly
improve LLM performance on input generation for simulation pack-
ages such as ORCA [15]. Yu et al. [19] proposed Spatial-RAG, a
framework that connects LLMs with spatial databases to enable nat-
ural language-based geospatial reasoning and querying, allowing
non-experts to interact with complex spatial data through tool-
augmented agents.
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Our work builds on these prior efforts by focusing specifically on
quantum chemistry in complex environments. Unlike previous sys-
tems that target general-purpose automation or isolated task types,
we introduce an LLM-based agentic system that integrates protocol
generation, dynamic workflow control, and post-processing inter-
pretation into a unified, autonomous assistant tailored to domain-
specific simulation challenges.

3 METHODOLOGY
AutoSolvate-Agent is an autonomous assistant designed to execute
and interpret complex quantum chemistry workflows through in-
teractive, tool-augmented reasoning (Figure 1). At the center of
AutoSolvate-Agent is an LLM-based reasoning core built on GPT
[1] models from OpenAI, which orchestrates task planning, exter-
nal tool invocation, and adaptive error handling. User queries, such
as investigating solvent effects on UV/Vis spectra, are interpreted
through multi-step reasoning that combines structured tool use
and chemical knowledge. Leveraging the tool-calling framework
from LangChain [3], the agent decomposes high-level tasks into
subtasks spanning structure generation, quantum chemical com-
putation, wave function analysis, and result summarization. To
address the complexity of protocol design, the system trans-
lates natural language queries into valid computational workflows
by retrieving relevant tool documentation from a domain-specific
vector store and selecting appropriate methods and parameters
(see Section 3.1). Adaptive control is achieved through interac-
tive monitoring and real-time error recovery; for example, SCF
convergence failures in quantum chemistry calculations trigger
automatic input adjustment and re-execution (see Section 3.2). Re-
sult interpretation is achieved through integration with analysis
tools such as Multiwfn [14] and RDKit [11], allowing the system
to explain computed results and generate both textual and visual
summaries (see Section 3.3). Together, these components enable
AutoSolvate-Agent to support both end-to-end simulation pipelines
and modular tasks (e.g., analyzing precomputed data), thereby en-
hancing usability, robustness, and accessibility for non-specialist
users.

3.1 Protocol Reasoning and Workflow
Construction

To translate natural language queries into valid quantum chemistry
workflows, AutoSolvate-Agent performs protocol reasoning and
input generation using a tool-augmented LLM.When a user poses a
query, the agent first identifies the task type and required molecular
entities.

The agent then proceeds to acquire the desired object, e.g., input
parameters needed for QM calculations. If a structure name/SMILES
is given, the system retrieves relevant molecular information (e.g.,
charge, multiplicity) from PubChem [10]. If the molecular informa-
tion is not accessible, the agent can leverage RDKit [11] to obtain
the relevant information. For simulations involving explicit solvent
effects consideration, the agent can also invoke the AutoSolvate
package [7] to generate explicit solvent configurations.

Upon obtaining the basic molecular information, the appropriate
QM calculation settings—such as method, basis set, and solvation
model—are selected through context-aware reasoning, guided by

the TeraChem (a GPU-accelerated quantum chemistry engine)[17]
Manual book [17] embedded in a vector store (via Chroma [5])
and retrieved using Retrieval-augmented generation (RAG) [12]
technique. The LLM uses this knowledge to configure valid input
files via validated tool wrappers.

3.2 Adaptive Execution and Error Recovery
During quantum chemistry calculations, input errors and conver-
gence issues are common, particularly in complex systems or sol-
vent environments. To address this, AutoSolvate-Agent incorpo-
rates a feedback loop for runtime monitoring and recovery. Upon
receiving a tool output, the agent checks for errors (e.g., SCF conver-
gence failure). If encountered, the LLM parses diagnostic messages
and modifies parameters—such as changing the SCF convergence
threshold or updating the used method—before resubmitting the
task. This enables automatic self-correction without requiring user
intervention. Once successful, the agent extracts and reports key
results, such as total energy, HOMO-LUMO gap, and optimized
geometry.

3.3 Result Analysis and Summarization
To support result interpretation and downstream reasoning, AutoSolvate-
Agent integrates with Multiwfn [14] for wavefunction analysis.
Multiwfn’s extensive functionality is accessible via LLM-based con-
trol, guided by embedded Multiwfn’s documentation indexed in
the vector store. The agent issues analysis commands, parses out-
put, and iteratively adjusts its plan if expected outputs are not
obtained—retrieving additional documentation as needed.

For summarization, the system renders molecular structures as
labeled images using RDKit, facilitating structure-aware interpre-
tation. These images, together with numerical results, are passed
to a vision-language model (VLM) such as GPT-4.1-mini [1] to pro-
duce a unified, natural language report. The final output combines
chemical reasoning, quantitative results, and visual representations,
improving accessibility for users with limited quantum chemistry
expertise.

4 EXPERIMENTAL RESULTS
In the following sections, we demonstrate the capabilities of our
autonomous agent system in performing quantum chemistry tasks
based on the user’s request. Each task requires the agent to com-
plete a series of interdependent sub-tasks—ranging from molecular
setup and input file generation to job execution and post-analysis.
To evaluate performance, we tested 10 common computational
chemistry tasks, assessing the probability of producing a correct
analysis across 10 independent runs for each. The correctness of
each analysis is judged by QC domain experts. The user input and
agent output are summarized in Table 1, where the agent has an
accuracy of 100% on 8 out of 10 tasks. The performance of the
agent is evaluated using the GPT-4.1-mini model with its default
hyperparameters. Although adjustments to parameters such as
temperature, which controls the randomness of the model’s out-
put, can potentially improve task-specific accuracy, such changes
may also compromise the reliability of the generated responses.
Therefore, default settings are used to balance accuracy and output
quality, ensuring consistent and generalizable performance across
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a range of queries. For brevity, we present detailed results for two
representative tasks—frequency analysis and solvatochromism pre-
diction—to highlight the agent’s potential for accurate end-to-end
task completion.

Autosolvate-Agent

retrieve:

water molecule 

information 

user prompt: What’s 

the IR spectrum of a 

water molecule?

run tool:

frequency

 calculation

run tool: result 

analysis and 

summary
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IR result:

analysis: [...]

configuration file: 
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software: “TeraChem”

output file: “TeraChem”

software: “Multiwfn”

error detection

 & 

self-debug

failed

successful

Figure 2: Schematic demonstration of the workflow of a
water-molecule frequency analysis task

4.1 Frequency Analysis
Vibrational frequency analysis is a foundational task in compu-
tational chemistry, used to characterize stationary points on the
potential energy surface and to assign spectroscopic features. It
requires accurate geometry optimization, followed by Hessian ma-
trix evaluation through finite differences or analytic methods. This
task would fail if the geometry is not at a local minima, if the
basis set is incompatible with the method, or if numerical noise
causes imaginary frequencies. Our agent must recognize when a
geometry optimization has converged properly, set up the correct
input for frequency analysis, and extract and interpret the resulting
vibrational modes.

As shown in Figure 2 (with the complete dialogue illustrated in
Figure 3), when prompted about the infrared (IR) spectrum of a
water molecule, the agent autonomously executes a sequence of
tasks—including molecular information retrieval, frequency calcula-
tion, and result analysis—and presents a summarized interpretation
of the results, all without requiring domain expertise from the user.
Notably, the agent also performs automatic error detection and
self-debugging based on the software outputs. As highlighted in
the red box in Figure 3, the agent encounters a “large gradient”
error during the frequency calculation, caused by the use of an
unoptimized geometry directly retrieved from PubChem. Upon in-
terpreting the error message, the agent correctly infers the need for

geometry optimization, generates the appropriate input, completes
the optimization step, and subsequently reruns the frequency anal-
ysis. This workflow showcases the agent’s ability to identify failure
modes, interpret diagnostic outputs, and autonomously adapt its
strategy to recover from errors.

This example illustrates a typical user-agent interaction initiated
by a vague, entry-level question—akin to what might be asked by an
undergraduate student with minimal background. To evaluate the
robustness of the workflow, we repeated the same prompt ten times.
In six out of ten cases, the agent completed the entire process with
only the initial input prompt. In two additional cases, it followed up
with clarification questions (e.g., askingwhether to proceedwith the
calculation or which method to use). Notably, models with stronger
reasoning capabilities, such as GPT-4.1, required fewer follow-up
prompts, making the system more user-friendly and accessible to
beginners.

4.2 Solvatochromism Prediction
Solvatochromism, driven by solvent-induced shifts in a solute’s
absorption or emission spectra, offers critical insights into solva-
tion dynamics, molecular electronic transitions, and chromophore
behavior. Its modeling typically requires computationally inten-
sive excited-state calculations with solvent model, together with
a comprehensive analysis of the solute’s chemical and electronic
structure. Here, we demonstrate AutoSolvate-Agent’s capability
to perform such a complicated task by evaluating solvent polarity
effects on the HOMO-LUMO transitions of benzaldehyde. Our re-
sults show that even without complex excited-state calculations,
AutoSolvate-Agent can qualitatively predict the solvatochromism
of benzaldehyde with a success rate of 80% in 10 runs.

Upon user confirmation, the agent automatically retrieves the
molecular geometry of benzaldehyde, sets up the QC calculation
with the PCM enabled, executes the calculation, and extracts the
results. Subsequently, it initiates Multiwfn with the wave function
file generated from TeraChem. Without requiring additional user
prompts, the agent autonomously conducts a Hirshfeld popula-
tion analysis of the HOMO and LUMO in benzaldehyde, determin-
ing their orbital components and electron population distributions
across different atomic sites. At this stage, the agent already iden-
tifies that the HOMO is primarily localized on the oxygen atom,
whereas the LUMO is delocalized across multiple carbon atoms.

During the report generation phase, the agent integrates multiple
data sources, including the visual representation of benzaldehyde’s
chemical structure and the orbital components and atomic popula-
tions of HOMO and LUMO obtained from Multiwfn. Based on this
information, the agent successfully infers that the HOMO-LUMO
transition in benzaldehyde corresponds to an 𝑛 − 𝜋∗ transition,
which exhibits negative solvatochromism—meaning that the ab-
sorption wavelength undergoes a blue shift as the solvent polarity
increases.

This example highlights the agent’s capability to solve specific
problems in theoretical chemistry, demonstrating its potential to as-
sist experimental chemists in interpreting observed absorption blue
shift from a computational perspective. To assess the robustness
of AutoSolvate-Agent, we conducted ten independent trials. In all
cases, the agent first asked for the dielectric constant of the solvent
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and then successfully completed all computational and analytical
tasks. However, the agent misinterpreted the results in the report
and failed to predict the blue shift in 2 out of 10 runs, which may
be due to the lack of domain expertise of GPT-4.1-mini. Notably,
during the analysis stage, the agent initially selected an undesired
Multiwfn function in 7 out of 10 trials, e.g., the agent tried to modify
the wave function itself to estimate the transition dipole difference
between ground and excited state. However, after failing to obtain
the expected results, the agent retrieved from the vector store and
successfully completed the required analysis in its second attempt.

5 CONCLUSION
In this study, we developed an autonomous agent system that sim-
plifies solution-phase quantum chemistry simulations and results
analysis, significantly reducing complexity and minimizing exper-
tise requirements. With flexible tool integration and automated
analysis, the agent system achieves automatic function calls and er-
ror handling. Through two concrete chemical problems, we demon-
strated that AutoSolvate-Agent can help non-experts to perform
computational simulations and result analysis.
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A APPENDICES
A.1 Prompt
A.1.1 System prompt. The following is a LangChain system prompt template. The {tools} in the template will be replaced with the tool
function and its description.

You are a highly skilled quantum chemistry researcher with extensive knowledge in quantum chemistry and molecular
modeling. Based on the user’s question, you will first plan what properties you want to get, then you will use as many tools as
you can to get the result.
Remember, after you get the result, quit gracefully. Do not make repeat attempts. If you encounter an error, search the
corresponding manual to correct your input.
The Multiwfn output will be sent to the human for analysis. If you find the current output of Multiwfn useful for the user’s
question, e.g., the output contains data or numbers that is useful for the user, before entering other commands to Multiwfn,
save it to a file using the corresponding tool function. This is very important. You may use the tool function **Multiple** times
to get all useful outputs during different steps.
Sometimes, you may not find wanted option on the current page. In this case, you may need to choose some other options or
return to the previous page to navigate around.
You have access to the following tools:
{tools}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid action values: "Final Answer" or {tool_names}.
Provide only ONE action per JSON_BLOB, as shown:
{{
"action": TOOL_NAME,
"action_input": $INPUT
}}
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps.
Action:
JSON_BLOB
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
{{
"action": "Final Answer",
"action_input": "Final response to human"
}}
Remember, save EVERY useful output BEFORE you send any command to Multiwfn. This is very important. You may use the
tool function **Multiple** times to get all useful outputs during different steps.
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if
appropriate. Format is Action:"JSON_BLOB" then Observation
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A.2 Computational chemistry tasks for evaluation
In this section, we present the 10 chemistry problems used to test the performance of the AutoSolvate Agent, as well as the Agent’s
performance on these problems. We will then present the final output report of the Agent for each problem. Afterwards, we present the
expert-validated task summary of the Agent’s final output for each problem.

Table 1: Benchmark suite of ten practical computational-chemistry problems used to evaluate AutoSolvate Agent. Each entry
records the task posed, its principal challenge, and the proportion of runs in which GPT-4.1-mini produced expert-validated,
correct results.

Task summary Challenge Success
rate (GPT-
4.1-mini)

1. Please compute the IR spectra of water in the gas phase. Frequency analysis, geometry optimiza-
tion, plotting IR spectrum

100%

2. I want to know the HOMO-LUMO gap of methane. Get orbital energy 100%
3. I want to know which bond is the strongest in formaldehyde? Bond order analysis 100%
4. Which atom or functional group in glycine is most likely to be at-
tacked by electrophilic reagents?

Domain Knowledge, Fukui function, or-
bital population analysis, charge fitting

100%

5. What is the strength of the coordination bonds formed between Mg
and the ligand in Magnesium porphyrin?

Identifying metal-legend bonds, bond
order analysis

100%

6. Please analyze the strength of the coordination bonds between the
metal and each ligand in the Fe(bpy)(CN)4 ion.

Identifying metal-legend bonds, bond
order analysis, Correct identifying lig-
and name

100%

7. Analyze the type of the HOMO-LUMO transition of Benzaldehyde
without excited state calculations.

Orbital population analysis, functional
group identification

90%*

8. Without doing excited state calculations, please predict the relation-
ship between the excitation energy and the polarity of the solvent.

Domain Knowledge, orbital population
analysis, functional group identifica-
tion,

80%*

9. Compute the dipole moment of liquid-phase water. Environment parameter setting, output
analysis

100%

10. Compare the energy difference between cis- and trans- 2-butene. Task decomposition and output analysis 100%

*Failure cases:
Task 7: In 1 out of 10 trials, the agent swaps the orbital index of HOMO and LUMO.
Task 8: In 2 out of 10 trials, the agent failed to accurately identify the orbital characteristics of the HOMO and LUMO from Multiwfn’s
output, and thus concluded “the UV/Vis spectrum will be red-shifted based on the common sense of organic chemistry" instead of the
correct blue-shift.
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A.2.1 Question 1. Please compute the IR spectra of water in gas phase.
Agent response:
IR Spectrum Analysis of Water (H2O) in Gas Phase IntroductionWater (H2O) is a crucial molecule in chemistry and
biochemistry, and its vibrational properties can be characterized effectively through IR spectroscopy. In this analysis, we
present the computed IR spectrum for gas-phase water.
Molecular Properties

• Molecular Formula: H2O
• Molecular Weight: 18.015 g/mol
• Charge: 0
• Spin Multiplicity: 1
• Geometry Optimization: Converged successfully.

Vibrational Frequencies and Intensities The calculated vibrational frequencies and their corresponding IR intensities for
water are listed below:

Mode Frequency (cm−1) Intensity

1 1714.45 75.90
2 3715.88 1.86
3 3838.57 19.00

IR Spectrum Visualization
The IR spectrum has been generated based on the calculated vibrational frequencies and intensities. Below is a brief summary
of the spectrum analysis:

• The spectrum features three prominent peaks corresponding to the vibrational modes of water.
• The peak at 1714.45 cm−1 is the most intense, indicating a strong vibrational transition.
• The two higher frequency peaks at 3715.88 cm−1 and 3838.57 cm−1 have significantly lower intensities.

IR Spectrum Plot The generated IR spectrum is available as a PDF file. You can view it by clicking the link below:
Download IR Spectrum of Water
Conclusion
The analysis of the IR spectrum of water provides insight into its molecular vibrations, which is essential for various applications
in chemical research and environmental studies. The calculated data aligns well with experimental findings reported in the
literature, confirming the reliability of the computational approach used in this study.

A.2.2 Question 2. I want to know the HOMO-LUMO gap of methane.
Agent response:
HOMO-LUMO Gap Analysis for Methane
After performing the quantum chemical calculations on methane (CH4), we can summarize the results as follows:
Molecule Name: Methane (CH4)
Calculation Method: B3LYP/6-31G*
Total Energy: -40.5183753589 Hartree
HOMO-LUMO Gap: 13.807 eV
Key Findings
HOMO-LUMO Gap: The calculated HOMO-LUMO gap for methane is 13.807 eV. The gap indicates the energy difference
between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). A larger gap
suggests a relatively stable molecule with less reactivity.
Conclusion
The HOMO-LUMO gap is an essential property in quantum chemistry as it provides insight into the electronic structure and
potential reactivity of molecules. In the case of methane, the significant gap indicates that it is a stable molecule with low
reactivity in terms of electronic transitions.
If you have any further questions or need additional calculations, feel free to ask!

http://127.0.0.1:7860/ir_spectrum.pdf
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A.2.3 Question 3. I want to know which bond is the strongest in formaldehyde?
Agent response:
The Mayer bond order analysis results for the formaldehyde (HCHO) molecule indicate the following bond orders:
Bond Bond Order

O(1) – C(2) 2.1098
C(2) – H(3) 0.9225
C(2) – H(4) 0.9224

From these values, the strongest chemical bond in the molecule is clearly the bond between the oxygen atom (O1) and carbon
atom (C2), with a Mayer bond order of approximately 2.11. This indicates a double bond, which is significantly stronger than
the single bonds between carbon and hydrogen atoms, both having bond orders close to 0.92.
Thus, based on this Mayer bond order analysis, the strongest chemical bond in formaldehyde is the C=O double bond.

A.2.4 Question 4. Which atom or functional group in glycine is most likely to be attacked by electrophilic reagents?
Agent response:
Theoretical Background

• The condensed Fukui function 𝑓 − (sometimes called "f-minus") on each atom indicates nucleophilic reactivity:
Larger 𝑓 − ⇒ more nucleophilic⇒ more attractive to electrophiles.

• The orbital-weighted (OW) Fukui function is a more accurate modern variant, and that’s what Multiwfn computed.
Key Table (from your output)
Atom index Symbol f+ f− f0 OW DD

1 O(HO) 0.1285 0.0547 0.0916 0.0739
2 O= 0.2412 0.1929 0.2170 0.0483
3 N 0.0178 0.5174 0.2676 -0.4996
4 C(alpha) 0.0736 0.0689 0.0712 0.0047
5 C(carbonyl) 0.3560 0.0648 0.2104 0.2912

6-10 H ... ... ... ...
Find the Highest Nucleophilicity (𝑓 −) Value

• Atom 3 (Nitrogen): 0.5174
• The next highest is Atom 2 (Carbonyl O): 0.1929
• Others are much lower.

Interpretation
Atom/Group Most Susceptible to Electrophilic Attack

• The amino nitrogen atom (Atom 3) has the highest nucleophilic Fukui index.
• Thus, the amino group (-NH2) in glycine is the most likely site for electrophilic reaction.

Why? The Fukui function 𝑓 − measures how electron density increases upon adding an electron: high values indicate sites
rich in electron density (good nucleophiles, preferred for attack by electrophiles).
Cross-check with Image

• Atom 3 ("N:3") corresponds to the amino nitrogen in glycine.
• This nitrogen is the same site commonly involved in protonation/phosphorylation in peptide chemistry.

Reporting
Atom Atom Type OW Fukui f− Interpretation

3 N (amino) 0.5174 Most nucleophilic, best site for electrophilic attack
2 O (carbonyl) 0.1929 Less nucleophilic
1 O (hydroxy) 0.0547 Much less nucleophilic
5 C (carbonyl) 0.0648 Minimal
4 C (alpha) 0.0689 Minimal

Conclusion
The nitrogen atom in glycine’s amino group (Atom 3) is the most nucleophilic site, based on the orbital-weighted
Fukui 𝑓 − function from Multiwfn. This site is the most likely to undergo electrophilic attack.
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A.2.5 Question 5. What is the strength of the coordination bonds formed between Mg and legend in Magnesium porphyrin?
Agent response:
Analysis of Coordination Bonds in Mg Complex
From the Multiwfn output and the molecular structure image provided, the strength of the coordination bonds formed between
Mg (magnesium) and the ligand (N atoms) can be evaluated.

Key Points from Output:
• The Intrinsic Bond Strength Index (IBSI) quantifies atomic pair interactions based on the delta-g pair function
integral.

• RelevantMg–N bonds (Mg = atom 1, N = atoms 2, 3, 4, 5) exhibit distances of approximately 2.07 Å.
• The IBSI values for theseMg–N pairs range between 0.07536 to 0.07537.

Interpretation:
• TheMg–N IBSI values ( 0.075) indicate amedium-strength coordination bond between Mg and nitrogen in the
ligand.

• TheseMg–N bonds are stronger than Mg–C interactions, which exhibit IBSI values ranging from 0.0088 to 0.0161
(significantly weaker).

• Covalent bonds typically have IBSI values exceeding 0.2–0.3, confirming that these coordination bonds are weaker
than regular covalent bonds, as expected.

• However, the Mg–N bonds are still present and contribute to complex stabilization via ligand field coordination.

Additional Context:
• AMg–N bond distance of 2.07 Å aligns well with Mg(II) coordination bonds to nitrogen ligands.
• The IBSI index values confirm that these bonds are primarily electrostatic/coordinate rather than fully covalent.
• Strong N–C bonds (IBSI > 0.9) and C–C bonds ( 0.76–1.0) validate the ligand’s robust internal bonding framework.

Summary of Bond Strength:
Bond Type IBSI Value
Mg–N Coordination 0.075
Mg–C Interaction 0.0088 – 0.0161
N–C Covalent >0.9
C–C Covalent 0.76 – 1.0

Conclusion: The coordination bonds between Mg and N ligands in this complex exhibit moderately strong bond strength
indices ( 0.075 IBSI). These Mg–N interactions are dominant coordination bonds in the system, while Mg–C interactions
are significantly weaker. Overall, Mg is primarily coordinated via N atoms, forming medium-strength coordination bonds
characteristic of metal-ligand complexes.
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A.2.6 Question 6. Please analyze the strength of the coordination bonds between the metal and each ligand in the Fe(bpy)(CN)4 ion.
Agent response:
Summary of Fe–Ligand Bond Orders
Fe–Ligand Pair Atom Numbers Bond Order
Fe–C (cyanide, 1) 1–2 0.85
Fe–N 1–3 0.13
Fe–C (cyanide, 2) 1–4 0.76
Fe–N 1–5 0.11
Fe–C (cyanide, 3) 1–6 0.76
Fe–N 1–7 0.11
Fe–C (cyanide, 4) 1–8 0.85
Fe–N 1–9 0.13
Fe–N (chelate?) 1–10 0.56
Fe–C (weak) 1–13 0.06
Fe–C (weak) 1–18 0.06
Fe–N (chelate?) 1–21 0.55

Interpretation and Nature of Bonds
• Fe–C (cyanide carbon): Strong coordination bonds with bond orders 0.76–0.85, characteristic of cyanide complexes
where Fe prefers C over N.

• Fe–N (from cyanide ligands): Very weak bonding ( 0.11–0.13), confirming Fe primarily coordinates via C rather than
N.

• Fe–N (other ligands): Strong Fe–N bonds (0.55–0.56), likely from ancillary bidentate N-donor ligands (e.g., bipyridine).
• Fe–C (other weak interactions): Negligible bonding significance (0.06).

Comparison and Ligand Strength Ranking
• Strongest Coordination to Fe:
– C from cyanide ligands (0.76–0.85)
– N from other ligands (0.55–0.56, suggests chelation)

• Weakest Interactions:
– Fe–N from cyanide (0.11–0.13, minimal contribution)
– Fe–C (weak interactions) (0.06, negligible)

Bonding Picture
• Fe predominantly coordinates via C atoms of cyanide ligands.
• Two additional strong Fe–N bonds indicate secondary ligand interactions.
• Weak Fe–N cyanide interactions reflect normal CN−1 end-on bridging behavior.

Summary of Fe–Ligand Interaction Strengths
Ligand Atom Atom Number Bond Order Interpretation
C (CN−) 2, 4, 6, 8 0.76–0.85 Strongest Fe–C coordination
N (CN−) 3, 5, 7, 9 0.11–0.13 Weak Fe–N interaction
N (bidentate ligand) 10, 21 0.55–0.56 Strong (chelating N-donor)
Other C atoms 13, 18 0.06 Negligible interaction

Conclusion
The coordination bonds between Fe and the C atoms of cyanide ligands (0.76–0.85 bond order) are the strongest, followed by
two strong Fe–N bonds (0.55–0.56), likely from a bidentate chelating ligand. Fe–N interactions from cyanide ligands (∼ 0.1
bond order) are weak, confirming that Fe prefers binding through cyanide carbon atoms rather than nitrogen. Overall, Fe is
primarily coordinated via cyanide C and chelating N ligands, with very little interaction through cyanide N atoms.

A.2.7 Question 7. Analyze the type of the HOMO-LUMO transition of Benzaldehyde without excited state calculations.
Agent response:
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HOMO (Orbital 28) Composition

Summary:
• Atom contributions:
– O: 72.4% (Atom 1 = carbonyl O)
– C2: 8.3%, C8: 4.8%
– H: Minor except H14 (11%)
– Other C/H: Small

• Shell contributions:
– s: 14.3%
– p: 83.7%
– d: 2%

• Major character:
– Strongly localized on the carbonyl oxygen (mainly on O1).
– Dominated by p-type orbitals (especially px and py, contributing 45.9% and 26.5% respectively).

Interpretation:
• This is a nonbonding (n) orbital, mainly localized on the lone pairs of the carbonyl oxygen (𝑛𝑂 ).
• The high O percentage and p-character are typical for a nonbonding oxygen lone pair.

LUMO (Orbital 29) Composition

Summary:
• Atom contributions:
– C8 (carbonyl C): 25.7%, C7: 17.9%, O: 20.3%
– C4: 12.1%, C2: 9.9%, C3: 9.25%
– H: Negligible

• Shell contributions:
– s: 0%
– p: 98.1%
– d: 1.9%

• Major character:
– Delocalized over the benzene ring (C2, C3, C4, C5, C6, C7, C8) and the carbonyl group.
– Strong p-character, indicating a 𝜋∗-type orbital (antibonding).

Interpretation:
• This is a 𝜋∗ (pi-antibonding) orbital, delocalized over the carbonyl group and the aromatic ring.

Nature of the HOMO-LUMO Transition
• HOMO: Nonbonding lone pair on the carbonyl oxygen (𝑛𝑂 ).
• LUMO: 𝜋∗ orbital of the carbonyl and benzene (𝜋∗ (𝐶𝑂/𝑃ℎ)).

Therefore: The HOMO-LUMO transition is an 𝑛 → 𝜋∗ transition, specifically:
• From the lone pair on the carbonyl O.
• To the antibonding 𝜋∗ orbital of the C=O group (with some delocalization into the ring).

Summary Chart
Orbital Main localization Character Notation
HOMO O (carbonyl) n (lone pair) 𝑛(𝑂)
LUMO C=O + aromatic ring 𝜋∗ 𝜋∗ (𝐶 = 𝑂/𝑟𝑖𝑛𝑔)

Final Answer
The HOMO-LUMO transition in this molecule is an 𝑛 → 𝜋∗ transition:

• The HOMO is a nonbonding lone pair on the carbonyl oxygen (𝑛𝑂 ).
• The LUMO is a 𝜋∗ antibonding orbital of the carbonyl group and the conjugated ring (𝜋∗).

This is not a pure 𝜋 → 𝜋∗ aromatic transition, but a heteroatom (𝑛 → 𝜋∗) excitation.
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A.2.8 Question 8. Without doing excited state calculations, please predict the relationship between the excitation energy and the polarity of
the solvent.

Agent response:
Summary Table

HOMO (n, O1 lone pair) LUMO (𝜋∗, aromatic+CO)
Delocalization Highly localized (O1) Delocalized
Solvent effect Large stabilization Moderate stabilization
Δ𝐸 (S0 → S1) Increases with polarity
𝜆max Blueshift (↓ 𝜆) with polarity

Prediction of the S0–S1 Excitation Energy and Solvent Polarity

Based on the orbital composition and localization provided by your Multiwfn analysis, the HOMO is predominantly a non-
bonding orbital localized on the carbonyl oxygen, while the LUMO is a delocalized 𝜋∗ orbital spanning the aromatic and
carbonyl fragments. The electronic transition S0 → S1 can thus be classified as an 𝑛 → 𝜋∗ excitation.

In polar solvents, the non-bonding HOMO will experience significant stabilization due to strong solute-solvent interactions
(primarily hydrogen bonding or dipole effects if protic/aprotic polar). The more delocalized LUMO (𝜋∗) is less affected.
Therefore, the energy gap between HOMO and LUMO, and thus the excitation energy, increases with solvent polarity.
Experimentally, this would manifest as the absorption maximum shifting to shorter wavelengths (blueshift) with
increasing solvent polarity.

This conclusion is fully supported by the orbital compositions from the wavefunction analysis:
• HOMO (Orbital 28): 72% localized on O1.
• LUMO (Orbital 29): Delocalized over several carbons and O1.
• Delocalization indices: Lower in LUMO, especially in n-type HOMOs.

This behavior is characteristic for 𝑛 → 𝜋∗ carbonyl transitions, where polar solvents preferentially stabilize the lone
pair, resulting in a hypsochromic shift in absorption.

Further Analysis

For a more quantitative assessment, TDDFT calculations in various solvents should be performed. Multiwfn can assist in
analyzing dipole moments and partial charges that can semi-quantitatively indicate the expected solvent effects.

Summary Statement

Excitation energy (S0 → S1) will INCREASE as solvent polarity increases for this molecule, because the HOMO (𝑛,
O lone pair) is stabilized more than the LUMO (𝜋∗). The absorption will shift to shorter wavelengths in more polar
solvents.

A.2.9 Question 9. Compute the dipole moment of liquid-phase water.
Agent response:
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Computational Details:
Level of theory: B3LYP/6-31G*
Dispersion: D3 correction
Solvation model: Polarizable Continuum Model (PCM) to mimic liquid-phase environment
Geometry: Retrieved from PubChem
Charge/Multiplicity: 0 / singlet
Results:
Calculated Dipole Moment:
|𝜇 | = 2.09 Debye
Dipole vector components (Debye):
x: 1.55
y: 1.15
z: -0.81

Analysis:
This computed value (2.09 D) reflects the effect of a polarizable environment, which slightly increases the dipole moment
compared to the gas-phase value ( 1.85 D). The typical experimental value for water in the liquid phase is 2.6–3.2 D, which
is generally obtained using advanced molecular dynamics or by averaging over many configurations in explicit clusters or
condensed phase simulations. The implicit solvent (PCM) approximation yields a reasonable estimate, but further refinement
(e.g., using water clusters or AIMD) could further increase the value to match the experiment.

Model/System Dipole Moment (Debye)

Gas-phase monomer 1.85
PCM (this work) 2.09
Liquid phase (exp) 2.6–3.2

Note:
The PCM value is a good estimate of enhanced polarity in the condensed phase, but may underestimate the full polarization
effects experienced in real liquid water.
If you require a higher-accuracy estimate (e.g., using water clusters or ab initio molecular dynamics snapshots), please let me
know!

A.2.10 Question 10. Compare the energy difference between cis- and trans- 2-butene.
Agent response:
Quantum Chemical Energy Comparison: cis- vs. trans-2-butene

Isomer Electronic Energy (hartree)

cis-2-butene −157.221537
trans-2-butene −157.225990

Energy Difference Calculation
Δ𝐸 = 𝐸 (cis) − 𝐸 (trans)
Δ𝐸 = (−157.221 537) − (−157.225 990)
Δ𝐸 = +0.004 453 hartree
To convert to kJ mol−1 (1 hartree = 2625.5 kJ mol−1): Δ𝐸 = 0.004 453 × 2625.5 ≈ 11.7 kJ mol−1
Interpretation

• trans-2-butene is more stable than cis-2-butene by approximately 11.7 kJ/mol according to these calculations.
• This result is consistent with chemical intuition and experiment: the trans isomer encounters less steric hindrance
between the methyl groups compared to cis.

Dipole Moments (for further interest)
• cis-2-butene: 0.21 Debye (significant, due to unsymmetrical arrangement)
• trans-2-butene: ∼0.0006 Debye (very small, nearly cancels due to symmetry)

A.3 Chat interface and self-correction demo
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Figure 3: Demonstration of the workflow of the agent using frequency analysis as an example. The tool-using outputs are
omitted here for clarity.
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