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ABSTRACT

This study indicates that atomic features derived from a message passing neural
network (MPNN) forcefield are robust descriptors for atomic properties. A dense
network utilizing these descriptors to predict 13C shifts achieves a mean absolute
error (MAE) of 1.68 ppm. When these features are used as node labels in a simple
graph neural network (GNN), the model attains a better MAE of 1.34 ppm. On the
other hand, embeddings from a self-supervised pre-trained 3D aware transformer
are not sufficiently descriptive for a feedforward model but show reasonable accu-
racy within the GNN framework, achieving an MAE of 1.51 ppm. Under low-data
conditions, all transfer-learned models show a significant improvement in predic-
tive accuracy compared to existing literature models, regardless of the sampling
strategy used to select from the pool of unlabeled examples. We demonstrated that
extracting atomic features from models trained on large and diverse datasets is an
effective transfer learning strategy for predicting NMR chemical shifts, achieving
results on par with existing literature models. This method provides several bene-
fits, such as reduced training times, simpler models with fewer trainable parame-
ters, and strong performance in low-data scenarios, without the need for costly ab
initio data of the target property.

1 INTRODUCTION

1.1 NMR CHEMICAL SHIFTS

NMR chemical shifts are valuable in the structure elucidation of organic compounds within classical
and computer-assisted frameworks.(Stothers), 2012; |Sternberg et al., |2004; Bagno & Saielli, 2007
Wu et al [2023; [Huang et al., [2021)) Carbon chemical shifts have been used to elucidate reaction
products(Michels et al.l 2012), metabolites(DiBello et al., |2023)), and natural products, including
in the revision of the structures.(Rychnovsky, 2006} Sanchez-Martinez et al., 2023} [Tantillo} [2013))
Furthermore, chemical shifts carry information about the local chemical environments of atoms and
have been used as descriptors for predicting chemical reactivityGordon et al.| (2019); (Guan et al.
(2021) and in QSAR/QSPR modelsVerma & Hansch|(2011). Prediction of carbon chemical shifts
from the molecular structure has been extensively studied and many methods have been developed,
ranging from ab initio to fully data-driven methods.(Jonas et al., 2022; |Cortés et al., 2023)

Predicting carbon NMR shifts from molecular structures from the first principles is computationally
intensive. First, the geometry is optimized, followed by calculating the electronic structure. In
addition to errors from the electronic structure calculations, treatment of solvation, conformational
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flexibility, and rovibronic effects introduce further errors.(Lodewyk et al., [2012) Considering all
these factors comprehensively is computationally impractical at any level of theory that ensures
reasonable accuracy. For example, even a basic DFT calculation of chemical shifts on an inexpensive
geometry is too resource-intensive for large-scale rapid structure elucidation. The chosen functional,
basis set, and solvation model influences the precision of DFT predictions for NMR shifts.(Benassi,
2017; |Cimino et al.| 2004)) Although different results in the literature are reported on different sets
for the same computational protocols, the best-reported protocol achieves a root mean square error
(RMSE) of 3.68 ppm when compared to experimental shifts.(Benassi, [2017) This is insufficient for
typical applications, as an initial investigation has shown that an accuracy of 1.1-1.2 ppm of MAE is
necessary for correctly identifying 99% of molecules in the metabolomic database. (Yesiltepe et al.,
2022)

The errors of DFT-predicted shifts have a systematic component that can be corrected using available
experimental data. [Lodewyk et al.|(2012) developed a linear scaling protocol for different combi-
nations of levels of theory, solvents, and solvation models, and their findings were compiled in the
CHESHIRE repository.(Cheshire et al.) This became the standard for chemical shift prediction us-
ing DFT.|Gao et al.|(2020) went beyond linear interpolation and constructed a deep neural network
that takes molecular structure and descriptors derived from calculated DFT shielding constants as
input to predict experimental chemical shifts. Their method demonstrated superior performance,
achieving an RMSE of 2.10 ppm, which is a significant notable improvement over the 4.77 ppm
RMSE the authors report from linear regression on the same small test set.

The Exp5K dataset, developed as part of the CASCADE project,(Guan et al., 2021)) is the largest
dataset that compares empirically scaled DFT chemical shifts with experimental shifts. The authors
excluded structures where DFT significantly disagreed with experimental results to avoid introduc-
ing noise from potential misassignments in the experimental data. This exclusion inevitably removes
challenging examples where the disagreement arises from DFT’s inability to accurately predict shifts
due to molecular complexity. Additionally, the atom ordering was altered when comparing DFT with
experimental shifts, leading to the unjustified exclusion of some examples from the dataset. After
correcting the atom order, the calculated shifts deviate from the experiments with an MAE of 2.21
ppm and an RMSE of 3.31 ppm. (Appendix[A) This should be considered the most realistic measure
of the accuracy of DFT-calculated shifts corrected with linear scaling. These correction methods,
along with others reported in the literature,(Sarotti & Pellegrinet, 2009; | Xin et al., [2017)) enhance
the accuracy of predictions but do not reduce their computational cost.

On the other hand, data-driven methods are significantly faster by several orders of magnitude. The
efficiency of machine learning in predicting carbon chemical shifts arises from the avoidance of ex-
pensive geometry optimizations or electronic structure computations. Nevertheless, the top models
in the literature explicitly include geometrical data of the lowest energy conformers in their predic-
tions.(Williams & Jonas) [2023; |Guan et al., [2021; |Han et al., [2022; |[Kwon et al., 2020) The com-
promise is achieved by utilizing inexpensive forcefield geometries instead of costly DFT-optimized
geometries.

The accuracy of predictions in data-driven models is influenced by the quality and quantity of the
training data.(Budach et al.| [2022; [Fan & Shi, [2022) By using experimental data for training, com-
mon errors in ab initio methods can be avoided. The most extensive open NMR shift database with
fully assigned spectra is nmrshiftdb2.(Kuhn & Schlorer, [2015} |Kuhn et al.| [2024) User-contributed
databases like this often face issues such as missing solvent and temperature details, peak misassign-
ments, measurement noise, and incorrect structure identification. A model’s performance is limited
not only by the quantity but also by the quality of data. Thus, models that perform well in low-data
scenarios are necessary when data is scarce and when prioritizing high-quality data over quantity.

1.2 TRANSFER LEARNING

Transfer learning involves using a model trained on one task as a foundation for training on another
task, known as a downstream task. (Farahani et al.| 2021)) Generally, pre-training is performed on a
similar task with a much larger dataset, followed by training on a smaller dataset for the specific task
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of interest. Feature extraction and fine-tuning are two main implementations of transfer learningﬂ
The choice of method depends on task similarity, the size and architecture of the pre-trained model,
and the amount of available data. Feature extraction is commonly used in computer vision,(Kumar
& Bhatia, 2014; Puls et al.,[2023)) while fine-tuning is widely used in language models.(Brown et al.,
2020; Weng, |2024)

One of the major challenges for machine learning in chemistry is the scarcity of training data.(van
Tilborg et al.| [2024; Espley et al.| 2023) Acquiring experimental and high-quality ab initio data
is costly, and more affordable ab initio data often comes with substantial errors. Complex models,
which are generally necessary to represent intricate chemical phenomena, demand a large amount of
data for training. Integrating chemical and physical knowledge and intuition into the model architec-
ture is one strategy to lessen the required training data.(Karniadakis et al., 2021) Transfer learning
provides an alternative method to enhance models and can be used alongside other techniques to
address issues related to limited data for chemical problems.

Most previous studies employ transfer learning for chemical models by initially training models on
data generated from ab initio methods and then fine-tuning them on experimental data.(Guan et al.,
2021; Han & Chot, 2021} Vermeire & Green, [2021) This quasi-transfer approach is effective if a
significantly larger amount of ab initio data compared to the available experimental data can be
produced. However, certain experimental properties like the smell, catalytic activity, and reaction
yield are difficult or impossible to model using ab initio methods, while calculating others such as
NMR properties, free energies, and absorption spectra can be prohibitively costly. In such cases,
pre-training must be conducted on less relevant tasks where it is feasible to generate large-scale
datasets.

2 RELATED WORK

In the notable CASCADE study,(Guan et al.| 2021)) graph neural networks (GNN) were employed
to predict experimental chemical shifts. The ExpNN-ff model takes 3D structures optimized using
MMEFF forcefield as the way to incorporate geometrical information while maintaining relatively
low computational cost. The authors implemented an interesting double-transfer learning training.
First, the model was trained on DFT-optimized geometries and scaled DFT shifts. Second, the model
was retrained on DFT-optimized geometries and experimental shifts, keeping the interaction layers
frozen. Finally, the model was retrained again on forcefield geometries and experimental shifts,
keeping the readout layers frozen. It is unclear what advantage this approach has over doing single-
step transfer learning, updating all layers in the model simultaneously. Still, the ExpNN-ff model
with an MAE of 1.43 ppm on a 500 hold-out test set performs better than the DFT with empirical
scaling which has an MAE of 2.21 ppm on the whole training dataset of around 5000 compounds.

To avoid the costly DFT calculations for large molecules during the generation of the pre-training
dataset, [Han & Choi| (2021) pretrained a GNN using the QM9 dataset of DFT shielding constants.
They subsequently fine-tuned the model using an experimental chemical shifts database that includes
larger molecules and atoms such as P, CI, and S, which are absent in the QM9 dataset. The authors
evaluated the model in low data scenarios, achieving an MAE of approximately 2.3 ppm with 2112
training examples. Nonetheless, the authors pre-trained on ab initio NMR data on a dataset com-
parable to the size of the experimental dataset used to fine-tune the model, similar to the approach
used in CASCADE.

The first example of adopting true transfer learning for predicting chemical shifts was done in a
recent work by |[El-Samman et al.| (2024)). The authors extracted atomic embeddings from the last
interaction layer from the SchNet model trained to predict molecular energies on the QM9 dataset.
The authors tested linear and feedforward network models for different chemical tasks, including
predicting carbon chemical shifts calculated by HOSE codes. However, the dataset for the chemical
shifts consisted of only 200 examples of shifts predicted by the HOSE code, so the performance
relative to the literature models trained from scratch could not be assessed.

'In the literature, the term fine-tuning is not well-defined; it can refer to the second phase of training in
general or to training models with weights initialized from other models. Here, we refer to the latter and simply
call the second phase of training ’training,” as opposed to the ’pre-training’ in the first phase.
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To tackle low-data scenarios without resorting to transfer learning, (2023) modified a
GNN architecture to enhance its efficiency in such conditions. While the modified architecture
performed better in low-data scenarios than a similar GNN model, it significantly underperformed
in high-data scenarios. This underscores the importance of considering the volume of training data
when evaluating model performance and designing model architectures.

3 APPROACH

In an ideal situation, pre-training is performed on a highly similar task for which either more data is
available or it is significantly cheaper to generate. However, such tasks are rarely available for any
downstream chemical task, necessitating some form of compromise. Many of the latest pre-trained
chemical models employ self-supervised pre-training tasks on huge unlabeled datasets of 2D chemi-
cal structures.(Ahmad et al} 2022} [Ross et al} 2022} Xia et al 2022} [Rong et al,[2020) Conversely,
there are numerous instances of quasi-transfer learning, involving pre-training on datasets of ab ini-
tio calculated properties of the size comparable to the available experimental datasets.(Guan et al.,
2021} [Han & Choil 2021)) We propose the atomic feature extraction from the models pre-trained
for different chemical tasks on larger datasets, and we evaluate it by predicting experimental 13C
chemical shifts.
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Figure 1: Transfer Learning based on atomic feature extraction.

3.1 CHOICE OF PRE-TRAINING TASK AND MODEL

The downstream task in this study is to predict the chemical shifts of carbon atoms. Predicting
other atomic properties influenced by the chemical environment of the atom is the most relevant
task. However, no other atomic properties have as extensive experimental data as chemical shifts.
Fortunately, many models designed for predicting molecular properties incorporate atomic represen-
tations within their architectures.(Heid et all, 2024} [Gilmer et al, 2017) Moreover, the pre-trained
model must consider geometrical information since chemical shifts are influenced by molecular
conformation. Therefore, most pre-trained models based on 2D molecular structures are not suit-
able candidates. This leads us to neural network forcefields, whose architectures are designed to sum
atomic energy contributionsEl We selected the MACE-OFF23 transferable organic forceﬁeld
et all}, 2023} [Batatia et al 2022)), which is state-of-the-art for predicting DFT molecular energies,
open-source, and trained on a reasonably large dataset. Since we are not concerned with inference
time, we chose the large variant of the forcefield. The other model we tested is Uni-Mol(Zhou et all
[2023), a 3D-aware self-supervised pre-trained transformer known for its performance in downstream

!'This architecture design is not mandatory. The only requirement for architecture is the presence of atomic
embeddings within the model
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molecular property prediction tasks. Although self-supervised pre-training is less directly related to
atomic property prediction, it is done on an even larger dataset. The model includes atomic rep-
resentation in its architecture, and integrates geometrical information in its embeddings, making it
appropriate for this transfer learning approach. Finally, both pre-trained models are publicly avail-
able including their weights, making them ready to use without pre-training them again.

3.2 FEATURE EXTRACTION

We extract atomic embeddings from the first of two interaction layers in the large variant of the
MACE-OFF23 forcefield. This approach contrasts with the method of [EI-Samman et al.| (2024),
where embeddings are extracted from the final interaction layer of the SchNet model. We suggest
the extraction from initial layers works better when the similarity of tasks is low.(Schiitt et al.} 2017)
We retain only the invariant portion of the embedding to ensure rotational and translational invari-
ance, resulting in a 244-dimensional vector atomic embedding. Given that Uni-Mol is intended as
a backbone pre-trained model for various downstream tasks, we directly extract the atomic repre-
sentation from the output of the backbone, yielding a 512-dimensional vector per atom, invariant
to translation and rotation. Both models use atomic coordinates and identities as inputs, akin to the
input used by typical ab initio codes, and produce atomic embeddings for each atom as outputs.

3.3 MODELS ARCHITECTURE

We evaluated two distinct types of downstream models: a feedforward network (FFN) and a graph
neural network (GNN). For the feedforward network, we assume that the pre-trained model has cap-
tured all necessary information regarding the chemical environment of each carbon atom. We use
the embeddings of carbon atoms as input and train the network to predict chemical shifts. Addi-
tionally, we tested the GNN based on the GraphSAGE(Hamilton et all, 2017) architecture, which
facilitates the exchange of information between different atomic environment embeddings. This
leads to a more robust model as it can learn more relevant embeddings for NMR shifts. Unlike the
other methods where fully connected graphs with a cutoff distance or graphs with implicitly repre-
sented hydrogens have been used, we used a chemical graph where all atoms are explicitly included.
Consequently, GNN models require atomic connectivity as input, whereas FFN models only need
atomic coordinates. Finally, after the message passing layers, the atomic embeddings of carbon
atoms are fed into a readout feedforward network to predict chemical shifts. Both methodologies
are illustrated in Figure 2] Finally, the ensembles of two models of the same type and different
pre-training tasks, implemented as the average of the prediction of each model are also tested.
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3.4 LOW-DATA REGIMES

To evaluate model performance with fewer training examples, we selected varying quantities of
samples from the original dataset, treating it as a pool of unlabeled examples. Although this dataset
is smaller than the typical molecular datasets of unlabeled molecules, it is sufficiently large to
compare different sampling methods. We examined three sampling strategies: random sampling,
MaxMin(Ashton et all [2002) sampling based on the Tanimoto distance(Bajusz et al., [2015) be-
tween Morgan fingerprints(Rogers & Hahnl 2010), and MaxMin sampling based on the undirected
Hausdorff distance(Birsan & Tiba,[2006) between sets of transferred embeddings of all carbon atoms
in two molecules. The directed Hausdorff distance between two sets of vectors A and B is defined
as:
h(A, B) = maxmind(a, b)
ac€A beB

where d(a, b) is any distance metric between two vectors. However, the directed Hausdorff distance
is not symmetric, so we use the undirected Hausdorff distance, employing the Euclidean distance as
the distance metric d:

H(A, B) = max (h(A, B), h(B, A))
h(A, B) = maxmin ||a — b||?
a€A beB

In our scenario, sets of vectors represent sets of transferred embeddings of carbon atoms. While
we could have used embeddings of all atoms, the carbon atom embeddings also convey information
about their neighboring atoms. Since our primary interest lies in the differences in carbon atom
environments between two molecules, we used only the embeddings of carbon atoms, which also
reduces the computational cost, a crucial factor when sampling large pools of examples.

4 RESULTS

The mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient
(p) for all models are presented in Table 2] The results are based on a modified test set, where we
excluded a couple of broken examples from the original test set. (Appendix [C). The ensemble
of two independently trained GNN models performs the best, with the lowest MAE and RMSE.
MACE models outperform their Uni-Mol equivalents significantly, indicating that the forcefield is
an excellent option for the pre-training task. Even though the Uni-Mol GNN has a lower MAE than
the MACE FFN model, its RMSE is higher, highlighting the necessity to report at least both MAE
and RMSE when reporting the model’s performance. Regarding parameter efficiency, MACE GNN
is by far the best model.

Table 1: Performance on a test set and number of trainable parameters

Model MAE [ppm] RMSE [ppm] P N° params

MACE FEN 1.68 2.74 0.9986 1.3 x 10°

Uni-Mol FFN 2.07 3.40 0.9978 1.8 x 10°
Ensemble MACE & Uni-Mol FFN 1.65 2.68 0.9986 3.1 x 10°
MACE GNN 1.34 2.38 0.9989 1.9 x 108

Uni-Mol GNN 1.51 2.81 0.9985 9.3 x 10°
Ensemble MACE & Uni-Mol GNN 1.28 2.37 0.9989 1.0 x 107

A comparison with relevant literature models that take forcefield geometries as input is shown in
Figure[3] The ensemble of two GNNs and MACE GNN performs equally well as the best-reported
literature models. Comparison with models trained using the same train/test split is more reliable,
and the FullSSPrUCe model is trained on the larger portion of the nmrshiftdb2 database, which
explains its slightly better performance. In any case, since all reported models are solvent agnostic,
it is clear that the accuracy has reached its limit because it is not unusual for 3C shifts to differ by
more than 1 ppm in different solvents.

The distinct advantages of our models are their simpler architectures(Appendix [B]) and fewer train-
able parameters, which result in significantly reduced training time. We do not consider the param-
eters of pre-trained models because the entire training dataset can be encoded by pre-trained models
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Figure 3: Comparison with the literature models.(Jonas & Kuhnl 2019; Williams & Jonas), 2023}

Han et al.L 2022L [Kwon et al., 2020|; |Guan et al} [2021)

before training, making the training time independent of the number of parameters of the pre-trained
model. However, the complexity of pre-trained models affects inference speed. Fortunately, the bot-
tleneck in inference is conformer generation, so our models are faster to train and equally fast for
inference.

4.1 LOW-DATA REGIMES

To simulate low-data regimes, we sampled data points from the training dataset, maintaining the
same model architectures(Appendix as used in the full data scenario to emphasize the effec-
tiveness of transfer learning. Nonetheless, the performance can be enhanced by optimizing hyper-
parameters for low-data regimes, especially by reducing model complexity and the dropout rate.
Furthermore, an additional molecule was excluded from the test set because MACE-based models
gave erroneous predictions for that molecule.(Appendix [C)

Figure |62 illustrates that the performance of all models is improved with an increased number of
training examples. Notably, the MACE FFN model outperforms the Uni-Mol GNN model in ex-
tremely low-data scenarios, whereas the reverse is true in high-data scenarios. The varying com-
plexities of the models can explain this difference, as smaller models need less training data. Figure
[6b] compares models in this paper with a model that performs similarly on the full dataset, a model
specifically designed for low-data scenarios, and a classical HOSE Code model.(Rull et al.| 2023}
Transfer learning significantly boosts accuracy in low-data scenarios compared to
models trained from scratch. Furthermore, there is no trade-off between performance in high-data

and low-data scenarios, unlike in the 2019 model. 2023)

CONCLUSION

We introduced atomic feature extraction as a transfer learning method applicable to both atomic and
molecular-level prediction tasks. Unlike previous quasi-transfer methods, this approach does not
require generating ab initio data for the target property. Moreover, the only information needed are
atomic coordinates and atomic connectivity.

We evaluated this method on the prediction of experimental '3C chemical shifts, a well-studied
atomic property prediction task. Our method performs on par with the best models trained from
scratch and surpasses them in low-data scenarios. When using this transfer learning approach, we
demonstrated that the details of the sampling strategy used to select from the pool of unlabeled
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Figure 5: The effect of three different sampling strategies.

examples don’t matter. Lastly, we identified the MPNN forcefield as a superior candidate for pre-
trained models for transfer learning compared to self-supervised pre-trained models.

The proven efficacy in low-data scenarios reveals new potential uses for this transfer learning ap-
proach in chemical problems with limited experimental data and in tasks where plenty of data exists
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but predictions are limited by data quality. For chemical shifts, employing more precise geometries
and data with recorded solvents and peaks assigned through multiple spectra will enhance the accu-
racy of data-driven models. This enhancement is feasible only if models can be trained on less data,
which can be achieved through the transfer learning method described here.

METHODS

DATA

The dataset utilized in this work is taken from [Kwon et al.| (2020) and is derived from the origi-
nal dataset published by Jonas & Kuhn| (2019)) It includes a predefined train/test split. This dataset
comprises molecules with experimental spectra from nmrshiftdb2, which contain elements H, C,
O, N, P, S, and F, and have no more than 64 atoms. The molecular geometries are obtained as the
lowest energy conformers found in EDTKG conformer search(Riniker & Landrum| [2015) followed
by MMFF minimization(Halgren, |1996). Molecules that failed rdkit sanitization, likely due to ver-
sion discrepancies, were excluded. A detailed summary of the resulting dataset is available in the
supplementary information.(Appendix [E)

MODELS

FFN models consist of simple fully connected layers with exponential linear unit (ELU) activation
functions.(Clevert et al.,|2015)) The final layer is linear without any activation function. GNN models
employ GraphSAGE message passing layers with ELU activation function, followed by a readout
feedforward network of the same type as FFN models. Dropout was applied after each layer in
all models.(Srivastava et al., [2014) The models were trained using L1 loss (mean absolute error)
as the cost function and the AdamW optimizer with a weight decay of 0.01.(Loshchilov & Hutter,
2017) Hyperparameters were optimized through automated hyperparameter tuning and manual ad-
justments. Additional training and model architecture details can be found in the SI.(Appendix [B]

and D)

COMPUTATIONAL DETAILS

We accessed the pre-trained models using code from the associated repositories. Rdkit(RDK} |Lan-
drum et al., |2024) (version 2023.09.5) was employed to process data, extract atomic connectivity
from molecular structures, and perform MaxMin sampling. PyTorch(Paszke et al.,|2019) (version
2.2.1) and PyTorch Lightning(Falcon & The PyTorch Lightning team, 2019) (version 2.2.1) were
used for constructing and training FFN models, while PyTorch Geometric(Fey & Lenssen, [2019)
(version 2.5.2) was used for GNN models. All models were trained on a single Nvidia L4 Tensor
core GPU. MaxMin sampling and Morgan fingerprints with a radius of 3 were implemented using
rdkit. The Hausdorff distance was calculated using the scipy package(Virtanen et al.| [2020; [Taha &
Hanbury, 2015). Training for low-data examples continued until the validation loss ceased to de-
crease or until 800 epochs were reached. We sampled 120% of training data points for each regime,
then randomly divided the data into train and validation sets. This ensured that the validation dataset
size was always 20% of the training dataset size, and the train/validation split was performed as
usual, making the conditions closer to a real low-data regime. Conversely, testing was conducted
on the entire test set for a realistic performance evaluation. Note that this approach differs from the
work we compared low-data performance to, where the test set size was proportional to the training
dataset size.

CODE AND DATA AVAILABILITY

The code used in the paper is publicly available in the repository
https://github.com/zarkoivkovicc/AFE-TL-for-13C-NMR-chemical-shifts| under the ASL license,
including the transfer learned models’ weights. Code and data related to pre-trained models can
be found in the code repositories of the corresponding publications.
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A ATOM ORDER DISTORTION BETWEEN EXP5K AND DFT&8K

Certain carbon atoms exhibit DFT shifts within the 0-10 ppm range. A detailed inspection of the
exp_dft_outlier file reveals that the atom labels were altered, with these atoms being hydrogen atoms
in the DFT8K dataset but carbon atoms in the NMRS8K dataset. This label distortion likely occurred
due to the addition of explicit hydrogen atoms in functional groups, where they were previously
implicit, using the AddHs function of rdkit during data transformation.

Atoms in any chemical structure can be ordered uniquely, as in the SMILES canonization pro-
cess. Consequently, there is also a unique mapping of two different atom labelings of the same
chemical structure. Rdkit stores the mapping from any atom labeling to canonical labeling in the
_smilesAtomQOutputOrder property of the canonicalized molecule. If we denote the mapping of the
experimental structure as f and the DFT structure as g, then the mapping from experimental atom
labels to DFT atom labels is g o f. Using this approach, we can correctly deduce MAE and RMSE
of DFT predicted shift compared to experiments.
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Figure 6: True against scaled DFT predicted chemical shifts of Exp5K dataset. More accurate DFT

geometries don’t result in better shift prediction

B ARCHITECTURES

Models architecture are shown in Figure [7]and [8] Dropout is applied after each layer.
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C MODIFIED TRAIN AND TEST SETS
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Figure 9: Molecules removed from the test set. The first molecule has the wrong graph connec-
tivity(not shown), and the second molecule has the erroneous geometry with two methyl groups
overlapping. The third molecule is removed only from the low-data regime test set due to erroneous
behavior in MACE models when trained in low-data regimes, likely due to inaccurate geometry ob-
tained from the forcefield.

17



Published as a conference paper at ICLR 2024

158

\\\\\

Figure 10: Molecules removed from the training set before sampling for low-data regimes. The
first molecule has the wrong graph connectivity and misses one hydrogen atom in the structure(not
shown), while the second molecule has the wrong graph connectivity (not shown).

D TRAINING AND HYPERPARAMETERS

The hyperparameters for all models are listed in Table[2] A custom learning rate decay of 4% was
applied every 15 epochs. The cost function was the mean absolute error. The AdamW optimizer,
with a weight decay of 0.01, was used to minimize the cost function. A validation set comprising
10% of the training data was utilized. The train/validation split was done on molecule level. Once
the optimal hyperparameters, including the number of epochs, were identified, the models were
retrained from scratch using the entire training set.

Table 2: Hyperparameters and number of trainable parameters

Model Initial LR  Batch size Dropoutrate Epochs
MACE FFN 6e-4 96 0.10 1000
Uni-Mol FFN 8e-6 96 0.15 1000
MACE GNN le-3 48 0.1 1000
Uni-Mol GNN 6e-4 64 0.15 900

E DATASET SUMMARY

Table 3: Data Description of training and test data

Dataset N° spectra N° atoms N° C atoms N° labeled at. N° heavy at.
average range average range average range average range
train 21509 26.96 3-64 10.68 1-34 9.93 1-34 14.20 1-44
test 5386 26.74 5-64 10.62 1-33 9.88 1-32 14.14 2-38
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Figure 11: Distribution of chemical shifts
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