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Abstract
Learning from human feedback plays an impor-
tant role in aligning generative models, such as
large language models (LLM). However, the ef-
fectiveness of this approach can be influenced by
adversaries, who may intentionally provide mis-
leading preferences to manipulate the output in an
undesirable or harmful direction. To tackle this
challenge, we study a specific model within this
problem domain–contextual dueling bandits with
adversarial feedback, where the true preference
label can be flipped by an adversary. We propose
an algorithm namely robust contextual dueling
bandits (RCDB), which is based on uncertainty-
weighted maximum likelihood estimation. Our
algorithm achieves an Õ(d

√
T/κ + dC/κ) re-

gret bound, where T is the number of rounds, d
is the dimension of the context, κ is the lower
bound of the derivative of the link function, and
0 ≤ C ≤ T is the total number of adversarial
feedback. We also prove a lower bound to show
that our regret bound is nearly optimal, both in
scenarios with and without (C = 0) adversarial
feedback. Our work is the first to achieve nearly
minimax optimal regret for dueling bandits in
the presence of adversarial preference feedback.
Additionally, for the sigmoid link function, we
develop a novel algorithm that takes into account
the effect of local derivatives into maximum likeli-
hood estimation (MLE) analysis through a refined
method for estimating the link function’s deriva-
tive. This method helps us to eliminate the κ
dependence in the leading term with respect to T ,
which reduces the exponential dependence on the
parameter radius B to a polynomial dependence.
We conduct experiments to evaluate our proposed
algorithm RCDB against various types of adversar-
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ial feedback. Experimental results demonstrate
its superiority over the state-of-the-art dueling
bandit algorithms in the presence of adversarial
feedback.

1 Introduction
Acquiring an appropriate reward proves challenging in nu-
merous real-world applications, often necessitating intricate
instrumentation (Zhu et al., 2020) and time-consuming cal-
ibration (Yu et al., 2020) to achieve satisfactory levels of
sample efficiency. For instance, in training large language
models (LLM) using reinforcement learning from human
feedback (RLHF), the diverse values and perspectives of
humans can lead to uncalibrated and noisy rewards (Ouyang
et al., 2022). In contrast, preference-based data, which
involves comparing or ranking various actions, is a more
straightforward method for capturing human judgments and
decisions. In this context, the dueling bandit model (Yue
et al., 2012) provides a problem framework that focuses
on optimal decision-making through pairwise comparisons,
rather than relying on the absolute reward for each action.
However, human feedback may not always be reliable. In
real-world applications, human feedback is particularly vul-
nerable to manipulation through preference label flip. Ad-
versarial feedback can significantly increase the risk of mis-
leading a large language model (LLM) into erroneously
prioritizing harmful content, under the false belief that it
reflects human preference. Despite the significant influence
of adversarial feedback, there is limited existing research
on the impact of adversarial feedback specifically within
the context of dueling bandits. A notable exception is Agar-
wal et al. (2021), which studies dueling bandits when an
adversary can flip some of the preference labels received
by the learner. They proposed an algorithm that is agnostic
to the amount of adversarial feedback introduced by the
adversary. However, their setting has the following two
limitations. First, their study was confined to a finite-armed
setting, which renders their results less applicable to modern
applications such as RLHF. Second, their adversarial feed-
back is defined on the whole comparison matrix. In each
round, the adversary observes the outcomes of all pairwise
comparisons and then decides to corrupt some of the pairs
before the agent selects the actions. This assumption does
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not align well with the real-world scenario, where the adver-
sary often flips the preference label based on the information
of the selected actions.
In this paper, to address the above challenge, we aim to
develop contextual dueling bandit algorithms that are robust
to adversarial feedback. This enables us to effectively tackle
problems involving a large number of actions while also
taking advantage of contextual information. We specifically
consider a scenario where the adversary knows the selected
action pair and the true preference of their comparison. In
this setting, the adversary’s only decision is whether to flip
the preference label or not. We highlight our contributions
as follows:

• We propose a new algorithm called robust contextual
dueling bandits (RCDB), which integrates uncertainty-
dependent weights into the Maximum Likelihood Estima-
tor (MLE). Intuitively, our choice of weight is designed
to induce a higher degree of skepticism about potentially
“untrustworthy” feedback. The agent is encouraged to
focus more on feedback that is more likely to be genuine,
effectively diminishing the impact of any adversarial feed-
back.

• We analyze the regret of our algorithm under at most C
number of adversarial feedback. For known adversarial
level, our result consists of two terms: a C-independent
term Õ(d

√
T/κ), and a C-dependent term Õ(dC/κ),

where κ is the lower bound of the derivative of the link
function. Additionally, we establish a lower bound for
dueling bandits with adversarial feedback, which demon-
strates that our algorithm achieves optimal regret both in
settings with and without adversarial feedback.

• When the adversarial level is unknown, we conduct our
algorithm with an optimistic estimator of the number of
adversarial feedback and prove the optimality of our result
in case of a strong adversary. To the best of our knowledge,
our work is the first to achieve nearly minimax optimal
regret for dueling bandits in the presence of adversarial
preference feedback, regardless of whether the amount of
adversarial feedback is known.

• For the sigmoid link function, we develop a novel al-
gorithm called Robust Contextual Dueling Bandit for
Sigmoid link function (RCDB-S). Rather than using the
uniform lower bound κ, we introduce local derivatives in
maximum likelihood estimation (MLE) analysis through a
refined estimation method of the link function’s derivative.
Our theoretical analysis establishes that RCDB-S achieves
a regret bound of Õ

(
dB1.5

√
T+dBC/κ), where we elim-

inate the κ dependence in the leading term with respect
to T . This represents a significant improvement over
prior works, reducing the exponential dependence on the
parameter radius B to a polynomial dependence.

• We conduct experiments to validate the effectiveness of
our algorithm RCDB (See Appendix E). To further assess
RCDB’s robustness against adversarial feedback, we eval-
uate its performance under various types of adversarial
feedback and compare the results with state-of-the-art
dueling bandit algorithms. Experimental results demon-
strate the superiority of our algorithm in the presence of
adversarial feedback, which corroborate our theoretical
analysis.

Notation. In this paper, we use plain letters such as x to
denote scalars, lowercase bold letters such as x to denote
vectors and uppercase bold letters such as X to denote matri-
ces. For a vector x, ∥x∥2 denotes its ℓ2-norm. The weighted
ℓ2-norm associated with a positive-definite matrix A is de-
fined as ∥x∥A =

√
x⊤Ax. For two symmetric matrices

A and B, we use A ⪰ B to denote A − B is positive
semidefinite. We use 1 to denote the indicator function and
0 to denote the zero vector. For two actions a, b, we use
a ≻ b to denote a is more preferable to b. For a postive
integer N , we use [N ] to denote {1, 2, . . . , N}. We use stan-
dard asymptotic notations including O(·),Ω(·),Θ(·), and
Õ(·), Ω̃(·), Θ̃(·) will hide logarithmic factors.

2 Related Work
Bandits with Adversarial Reward. The multi-armed ban-
dit problem, involving an agent making sequential decisions
among multiple arms, has been studied with both stochas-
tic rewards (Lai et al., 1985; Lai, 1987; Auer, 2002; Auer
et al., 2002a; Kalyanakrishnan et al., 2012; Lattimore &
Szepesvári, 2020; Agrawal & Goyal, 2012), and adversarial
rewards (Auer et al., 2002b; Bubeck et al., 2012). More-
over, a line of works focuses on designing algorithms that
can achieve near-optimal regret bounds for both stochastic
bandits and adversarial bandits simultaneously (Bubeck &
Slivkins, 2012; Seldin & Slivkins, 2014; Auer & Chiang,
2016; Seldin & Lugosi, 2017; Zimmert & Seldin, 2019; Lee
et al., 2021), which is known as “the best of both worlds”
guarantee. Distinct from fully stochastic and fully adversar-
ial models, Lykouris et al. (2018) studied a setting, where
only a portion of the rewards is subject to corruption. They
proposed an algorithm with a regret dependent on the corrup-
tion level C, defined as the cumulative sum of the corruption
magnitudes in each round. Their result is C times worse
than the regret without corruption. Gupta et al. (2019) im-
proved the result by providing a regret guarantee comprising
two terms, a corruption-independent term that matches the
regret lower bound without corruption, and a corruption-
dependent term that is linear in C. In addition, Gupta et al.
(2019) proved a lower bound demonstrating the optimality
of the linear dependency on C.
Contextual Bandits with Corruption. Li et al. (2019) stud-
ied stochastic linear bandits with corruption and presented
an instance-dependent regret bound linearly dependent on
the corruption level C. Bogunovic et al. (2021) studied the
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Table 1. Comparison of algorithms for robust bandits and dueling bandits.
Model Algorithm Setting Regret

Multi-layer Active Arm Elimination Race
(Lykouris et al., 2018) K-armed Bandits Õ

(
K1.5C

√
T
)

BARBAR
(Gupta et al., 2019) K-armed Bandits Õ

(√
KT +KC

)
SBE

(Li et al., 2019) Linear Bandits Õ
(
d2C/∆+ d5/∆2

)
Bandits

Robust Phased Elimination
(Bogunovic et al., 2021) Linear Bandits Õ

(√
dT + d1.5C + C2

)
Robust weighted OFUL

(Zhao et al., 2021) Linear Contextual Bandits Õ
(
dC

√
T
)

CW-OFUL
(He et al., 2022) Linear Contextual Bandits Õ

(
d
√
T + dC

)
WIWR

(Agarwal et al., 2021) K-armed Dueling Bandits Õ
(
K2C/∆min +

∑
i ̸=i∗ K

2/∆2
i

)
Versatile-DBDueling Bandits (Saha & Gaillard, 2022) K-armed Dueling Bandits Õ

(
C +

∑
i̸=i∗ 1/∆i +

√
K
)

RCDB
(Our work) Contextual Dueling Bandits Õ

(
d
√
T + dC

)

same problem and proposed an algorithm with near-optimal
regret in the non-corrupted case. Lee et al. (2021) studied
this problem in a different setting, where the adversarial
corruptions are generated through the inner product of a
corrupted vector and the context vector. For linear con-
textual bandits, Bogunovic et al. (2021) proved that under
an additional context diversity assumption, the regret of a
simple greedy algorithm is nearly optimal with an additive
corruption term. Zhao et al. (2021) and Ding et al. (2022)
extended the OFUL algorithm (Abbasi-Yadkori et al., 2011)
and proved a regret with a corruption term polynomially
dependent on the total number of rounds T . He et al. (2022)
proposed an algorithm for known corruption level C to re-
move the polynomial dependency on T in the corruption
term, which only has a linear dependency on C. They also
proved a lower bound showing the optimality of linear de-
pendency on C for linear contextual bandits with a known
corruption level. Additionally, He et al. (2022) extended the
proposed algorithm to an unknown corruption level and pro-
vided a near-optimal performance guarantee that matches
the lower bound. For more extensions, Kuroki et al. (2023)
studied best-of-both-worlds algorithms for linear contex-
tual bandits. Ye et al. (2023) proposed a corruption robust
algorithm for nonlinear contextual bandits.
Dueling Bandits and Logistic Bandits. The dueling bandit
model was first proposed in Yue et al. (2012). Compared
with bandits, the agent will select two arms and receive
the preference feedback between the two arms from the
environment. For general preference, there may not exist
the “best” arm that always wins in the pairwise comparison.
Therefore, various alternative winners are considered, in-
cluding Condorcet winner (Zoghi et al., 2014; Komiyama
et al., 2015), Copeland winner (Zoghi et al., 2015; Wu &
Liu, 2016; Komiyama et al., 2016), Borda winner (Jamieson

et al., 2015; Falahatgar et al., 2017; Heckel et al., 2018;
Saha et al., 2021; Wu et al., 2023) and von Neumann winner
(Ramamohan et al., 2016; Dudı́k et al., 2015; Balsubramani
et al., 2016), along with their corresponding performance
metrics. To handle potentially large action space or context
information, Saha (2021) studied a structured contextual
dueling bandit setting. In this setting, each arm possesses an
unknown intrinsic reward. The comparison is determined
based on a logistic function of the relative rewards. In a
similar setting, Bengs et al. (2022) studied contextual linear
stochastic transitivity model with contextualized utilities.
Di et al. (2023) proposed a layered algorithm with variance
aware regret bound. Another line of works does not make
the reward assumption. Instead, they assume the preference
feedback can be represented by a function class. Saha &
Krishnamurthy (2022) designed an algorithm that achieves
the optimal regret for K-armed contextual dueling bandit
problem. Sekhari et al. (2023) studied contextual dueling
bandits in a more general setting and proposed an algorithm
the provides guarantees for both regret and the number of
queries. Another related area of research is the logistic ban-
dits, where the agent selects one arm in each round and
receives a Bernoulli reward. Faury et al. (2020) studied the
dependency with respect to the degree of non-linearity of
the logistic function κ. They proposed an algorithm with no
dependency in κ. Abeille et al. (2021) further improved the
dependency on κ and proved a problem dependent lower
bound. Faury et al. (2022) proposed a computationally effi-
cient algorithm with regret performance still matching the
lower-bound proved in Abeille et al. (2021).
Dueling Bandits with Adversarial Feedback. A line of
work has focused on dueling bandits with adversarial feed-
back or corruption. Gajane et al. (2015) studied a fully
adversarial utility-based version of dueling bandits, which
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was proposed in Ailon et al. (2014). Saha et al. (2021)
considered the Borda regret for adversarial dueling bandits
without the assumption of utility. In a setting parallel to
that in Lykouris et al. (2018); Gupta et al. (2019), Agarwal
et al. (2021) studied K-armed dueling bandits in a scenario
where an adversary has the capability to corrupt part of the
feedback received by the learner. They designed an algo-
rithm whose regret comprises two terms: one that is optimal
in uncorrupted scenarios, and another that is linearly de-
pendent on the total times of adversarial feedback C. Later
on, Saha & Gaillard (2022) achieved “best-of-both world”
result for noncontextual dueling bandits and improved the
adversarial term of Agarwal et al. (2021) in the same setting.
For contextual dueling bandits, Wu et al. (2023) proposed
an EXP3-type algorithm for the adversarial linear setting
using Borda regret. For a comparison of the most related
works for robust bandits and dueling bandits, please refer to
Table 1. In this paper, we study the influence of adversarial
feedback within contextual dueling bandits, particularly in a
setting where only a minority of the feedback is adversarial.
Compared to previous studies, most studies have focused
on the multi-armed dueling bandit framework without inte-
grating context information. The notable exception is Wu
et al. (2023); however, this study does not provide guaran-
tees regarding the dependency on the number of adversarial
feedback instances.

3 Preliminaries
In this work, we study linear contextual dueling bandits
with adversarial feedback. In each round t ∈ [T ], the agent
observes the context information xt from a context set X
and the corresponding action set A. Utilizing this context
information, the agent selects two actions, at and bt. Sub-
sequently, the environment will generate a binary feedback
(i.e., preference label) lt = 1(at ≻ bt) ∈ {0, 1} indicating
the preferable action. We assume the existence of a reward
function r∗(x, a) dependent on the context information x
and action a, and a monotonically increasing link function
σ satisfying σ(x)+ σ(−x) = 1. The preference probability
will be determined by the link function and the difference
between the rewards of the selected arms, i.e.,

P(a ≻ b|x) = σ
(
r∗(x, a)− r∗(x, b)

)
. (3.1)

We assume that the reward function is linear with respect to
some known feature map ϕ(x, a). To be more specific, we
make the following assumption:

Assumption 3.1. Let ϕ : X ×A → Rd be a known feature
map, with ∥ϕ(x, a)∥2 ≤ 1 for any (x, a) ∈ X × A. We
define the reward function rθ parameterized by θ ∈ Θ,
with rθ(x, a) = ⟨θ,ϕ(x, a)⟩. Moreover, there exists θ∗

satisfying rθ∗ = r∗. For all with θ ∈ Θ, ∥θ∥2 ≤ B.

Similar linear assumptions have been made in the literature
of dueling bandits (Saha, 2021; Bengs et al., 2022; Xiong

et al., 2023). We also make an assumption on the deriva-
tive of the link function, which is common in the study of
generalized linear models for bandits (Filippi et al., 2010).
Assumption 3.2. The link function σ is differentiable. Fur-
thermore, its first-order derivative satisfies that there exists
a constant κ > 0 such that

σ̇
(
⟨ϕ(x, a)− ϕ(x, b),θ⟩

)
≥ κ,

for all x ∈ X , a, b ∈ A,θ ∈ Θ.

In our setting, however, the agent does not directly observe
the true binary feedback. Instead, an adversary will see both
the choice of the agent and the true feedback. Based on the
information, the adversary can decide whether to corrupt
the binary feedback or not. Such adversary is referred to
as strong adversary (He et al., 2022), compared with the
weak adversary who cannot obtain the information before
the decision. We represent the adversary’s decision in round
t by an adversarial indicator ct, which takes values from the
set {0, 1}. If the adversary chooses not to corrupt the result,
we have ct = 0. Otherwise, we have ct = 1, which means
adversarial feedback in this round. As a result, the agent
will observe a flipped preference label, i.e., the observation
ot = 1 − lt. We define C as the total level of adversarial
feedback, i.e., ∑T

t=1 ct ≤ C.

Remark 3.3. There are two commonly used corruption
models for bandits. One is the total budget model (Lykouris
et al., 2018), where in each round t, the agent selects an
action at and the environment generates a numerical reward
rt(at). The adversary observes the reward and returns a
corrupted reward r̄t. The corruption level C is defined by∑T

t=1 |rt(at) − r̄t| ≤ C. Another considers the number
of corrupted rounds (Zhang et al., 2021). In our setting,
we consider the label-flipping attack. Thus, the magnitude
of adversarial feedback is always 1 and these two types
of corruption models are equivalent. Moreover, adversar-
ial feedback in our setting involves comparing two arms,
whereas in bandits it pertains to the reward of a single arm.
The only previous work that studied label-flipping is (Agar-
wal et al., 2021), where the adversary cannot observe the
action selected by the agent. In contrast, our setting fo-
cuses on scenarios where this information is available to
adversaries, which is common in many real-life applications.
We use the term “adversarial feedback” to differentiate our
work from prior studies on corrupted or adversarial reward
settings.

As the context is changing, the optimal action is different
in each round, denoted by a∗t = argmaxa∈A r∗(xt, a). The
goal of our algorithm is to minimize the cumulative gap
between the rewards of both selected actions and the optimal
action

Regret(T ) =
∑T

t=12r
∗(xt, a

∗
t )− r∗(xt, at)− r∗(xt, bt).
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This regret definition is the same as that in Saha (2021)
and the average regret defined in Bengs et al. (2022). It is
typically stronger than weak regret defined in Bengs et al.
(2022), which only considers the reward gap of the better
action.

4 Algorithm
In this section, we present our new algorithm RCDB, de-
signed for learning contextual linear dueling bandits. The
main algorithm is illustrated in Algorithm 1. At a high
level, we incorporate uncertainty-dependent weighting into
the Maximum Likelihood Estimator (MLE) to counter ad-
versarial feedback. Specifically, in each round t ∈ [T ],
we construct the estimator of parameter θ by solving the
following equation:

λθ +
∑t−1

i=1wi

(
σ(ϕ⊤

i θ)− oi
)
ϕi = 0, (4.1)

where we denote ϕi = ϕ(xi, ai) − ϕ(xi, bi) for
simplicity, wi is the uncertainty weight we are go-
ing to choose. To obtain an intuitive understanding
of our weight, we consider any action-observation se-
quence (x1, a1, b1, o1, x2, a2, b2, o2, . . . , xt, at, bt, ot) up
to round t. For simplicity, we denote Ft =
σ(x1, a1, b1, o1, x2, a2, b2, o2, . . . , xt, at, bt) as the filtra-
tion. Suppose the estimated parameter θt is the solution
to the unweighted version equation of (4.1), i.e.,

λθt +
∑t

i=1

(
σ(ϕ⊤

i θt)− oi
)
ϕi = 0. (4.2)

When we receive ϕt = ϕ(xt, at)− ϕ(xt, bt), the probabil-
ity of receiving lt = 1 can be estimated by σ(ϕ⊤

t θt). We
consider the conditional variance of the estimated probabil-
ity σ(ϕ⊤

t θt) in round t, i.e.,Var
[
σ(ϕ⊤

t θt)|Ft

]
, involving a

posterior estimate of the prediction’s variance. Intuitively,
even without the weighting, we can show that the solution of
(4.2), i.e., θt, will approach θ∗, using the arguments similar
to Lemma 5.1, what we will present next. This inspires us
to consider the approximation of Taylor’s expansion:

E
[
σ(ϕ⊤

t θt)|Ft

]
≈ E

[
σ(ϕ⊤

t θ
∗)− σ′(ϕ⊤

t θ
∗)ϕ⊤

t θ
∗︸ ︷︷ ︸

Ft−measurable

|Ft

]
+ E

[
σ′(ϕ⊤

t θ
∗)ϕ⊤

t θt|Ft

]
.

Moreover, using the Taylor’s expansion to (4.2), we have

0 = λθt +
∑t

i=1

(
σ(ϕ⊤

i θt)− oi
)
ϕi

≈
(
λI+

∑t
i=1σ

′(ϕ⊤
i θ

∗)ϕiϕ
⊤
i

)
θt

+

t∑
i=1

(
σ(ϕ⊤

i θ
∗)− oi

)
ϕi −

t∑
i=1

σ′(ϕ⊤
i θ

∗)ϕiϕ
⊤
i θ

∗.

Let Λt = λI+
∑t

i=1 σ
′(ϕ⊤

i θ
∗)ϕiϕ

⊤
i , we have

θt ≈ otΛ
−1
t ϕt +Λ−1

t

[∑t
i=1σ

′(ϕ⊤
i θ

∗)ϕiϕ
⊤
i θ

∗

−
t−1∑
i=1

(
σ(ϕ⊤

i θ
∗)− oi

)
ϕi − σ(ϕ⊤

t θ
∗)
]
.

Therefore, applying the pulling-out-known-factor property
of the conditional expectation, the Ft-measurable part will
cancel out when calculating the conditional variance. Then,
we can approximate the variance of the estimated preference
probability by

Var
[
σ(ϕ⊤

t θt)|Ft

]
≈ E

[(
E
[
otσ

′(ϕ⊤
t θ

∗)ϕ⊤
t Λ

−1
t ϕt|Ft

])2∣∣∣Ft

]
≤ [σ′(ϕ⊤

t θ
∗)]2∥ϕt∥2Λ−1

t
,

where the last inequality holds due to E[ot|Ft] ≤ 1. Us-
ing κ ≤ σ′(ϕ⊤

t θ
∗) ≤ 1, Λt ⪰ Σt+1 ⪰ Σt, where

Σt is defined in Line 1 of Algorithm 1, we can see that
Var

[
σ(ϕ⊤

t θt)|Ft

]
≤ ∥ϕt∥2Σ−1

t

. Since higher variance leads
to larger uncertainty, which harms the credibility of the data,
it is natural to assign a smaller weight to the data with high
uncertainty. Thus, we choose the weight to cancel out the
uncertainty as follows

wi = min{1, α/∥ϕi∥Σ−1
i
}, (4.3)

where α/∥ϕi∥Σ−1
i

normalizes the variance of the estimated
probability. To prevent excessively large weights, we apply
truncation to this value. A similar weight has been used
in He et al. (2022) for linear contextual bandits under cor-
ruption. Different from their setting where the weight is an
estimate of the variance of the linear model, our weight is
an estimate of a generalized linear model. Furthermore, by
selecting a proper threshold parameter, e.g., α =

√
d/C,

the weighted MLE shares the same confidence radius with
that of the no-adversary scenario.

Remark 4.1. Here, we use approximations to illustrate the
motivation of our uncertainty-based weight. Rigorous proof
for the algorithm’s performance is presented in Section A.1,
which relies solely on our specific choice of weights and
does not use the approximation.

After constructing the estimator θt from the weighted MLE,
the sum of the estimated reward for each duel (a, b) can be
calculated as

(
ϕ(xt, a) + ϕ(xt, b)

)⊤
θt. To encourage the

exploration of duel (a, b) with high uncertainty during the
learning process, we introduce an exploration bonus with
the following β

∥∥ϕ(xt, a) − ϕ(xt, b)
∥∥
Σ−1

t
, which follows

a similar spirit to the bonus term in the context of linear
bandit problems (Abbasi-Yadkori et al., 2011). However,
the reward term and the bonus term exhibit different combi-
nations of the feature maps ϕ(xt, a) and ϕ(xt, b), which is

5



Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback

Algorithm 1 Robust Contextual Dueling Bandit (RCDB)
1: Require: α > 0, regularization parameter λ, derivative

lower bound κ, confidence radius β.
2: for t = 1, . . . , T do
3: Compute Σt = λI +

∑t−1
i=1wiκ

(
ϕ(xi, ai) −

ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
.

4: Calculate the MLE θt by solving the following equa-
tion:

λθ +
∑t−1

i=1wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)
− oi

]
(
ϕ(xi, ai)− ϕ(xi, bi)

)
= 0. (4.4)

5: Observe the context vector xt.
6: Choose at, bt = argmaxa,b

{(
ϕ(xt, a) +

ϕ(xt, b)
)⊤

θt + β
∥∥ϕ(xt, a)− ϕ(xt, b)

∥∥
Σ−1

t

}
.

7: The adversary sees the feedback lt = 1(at ≻ bt)
and decides the indicator ct. Observe ot = lt when
ct = 0, otherwise observe ot = 1− lt.

8: Set weight wt as (4.3).
9: end for

the key difference between bandits and dueling bandits. The
selection of action pairs (a, b) is subsequently determined
by maximizing the estimated reward with the exploration
bonus term, i.e.,(
ϕ(xt, a) + ϕ(xt, b)

)⊤
θt + β

∥∥ϕ(xt, a)− ϕ(xt, b)
∥∥
Σ−1

t
.

As the arm-selection rules involving the selection of two
arms has already been studied and is not the central contri-
bution of our algorithm, we refer the readers to Appendix C
of Di et al. (2023) for a detailed discussion.
Computational Complexity. We assume there is a compu-
tation oracle to solve the optimization problems of the action
selection over A. A similar oracle is implicitly assumed in
almost all existing works for solving standard linear bandit
problems with infinite arms (e.g., (Abbasi-Yadkori et al.,
2011; He et al., 2022)). In the special case where the deci-
sion set is finite, we can iterate across all actions, resulting
in O(k2d2) complexity for each iteration, where k is the
number of actions, and d is the feature dimension.

5 Main Results
5.1 Known Number of Adversarial Feedback
At the center of our algorithm design is the uncertainty-
weighted MLE. When faced with adversarial feedback, the
estimation error of the weighted MLE θt can be character-
ized by the following lemma.

Lemma 5.1. If we set β =
√
λB + αC +√

d log((1 + 2T/λ)/δ)/κ, then with probability at
least 1− δ, for any t ∈ [T ], we have∥∥θt − θ∗∥∥

Σt
≤ β.

The proof of this lemma is postponed to Section B.1.

Remark 5.2. If we set α = (
√
d +

√
λB)/C, then the

confidence radius β has no direct dependency on the number
of adversarial feedback C. This observation plays a key
role in proving the adversarial term in the regret without
polynomial dependence on the total number of rounds T .

With Lemma 5.1, we can present the following regret guaran-
tee of our algorithm RCDB in the dueling bandit framework.

Theorem 5.3. Under Assumption 3.1 and 3.2, let 0 < δ <
1, the total number of adversarial feedback be C. If we set
the confidence radius to be

β =
√
λB + αC +

√
d log((1 + 2T/λ)/δ)/κ,

λ = 1/B2, α =
√
d/(C

√
κ), then with probability at least

1− δ, the regret of Algorithm 1 in the first T rounds can be
upper bounded by

Regret(T ) = Õ
(
d
√
T/κ+ dC/κ

)
.

The proof of Theorem 5.3 is postponed to Section A.1. The
following theorem provides a lower bound for the dueling
bandit problem and demonstrates that our regret guarantee
is optimal for general link functions.

Theorem 5.4. For any algorithm Alg and any d,C, T ≥
max{(4d2)/25, dC}, κ > 0, there exists an instance of
dueling bandit with link function σ, satisfying

σ̇
(
⟨ϕ(x, a)− ϕ(x, b),θ⟩

)
≥ κ,∀x ∈ X , a, b ∈ A,θ ∈ Θ,

such that the regret of Alg over T rounds is Ω
(
(d
√
T +

dC)/κ
)
.

For the proof of Theorem 5.4, please refer to Appendix A.2.
Theorem 5.4 indicates that the regret guarantee Õ((d

√
T +

dC)/κ) in Theorem 5.3 for dueling bandits with adversarial
feedback is optimal not only in d, T and C but also in κ.
Notably, the constructed link function has a uniform first-
order derivative, with value κ even around 0. As discussed
in the next section, for the sigmoid function σ(x) = 1/(1 +
e−x), whose first-order derivative is constant around 0, the
dependency on κ can be further improved.

5.2 Unknown Number of Adversarial Feedback
In our previous analysis, the selection of parameters de-
pends on having prior knowledge of the total number of
adversarial feedback C. In this subsection, we extend our
previous result to address the challenge posed by an un-
known number of adversarial feedback C. Our approach to
tackle this uncertainty follows He et al. (2022), we introduce
an adversarial tolerance threshold C̄ for the adversary count.
This threshold can be regarded as an optimistic estimator
of the actual number of adversarial feedback C. Under this
situation, the subsequent theorem provides an upper bound
for regret of Algorithm 1 in the case of an unknown number
of adversarial feedback C.
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Theorem 5.5. Under Assumptions 3.1 and 3.2, if we set the
the confidence radius as

β =
√
λB + αC̄ +

√
d log((1 + 2T/λ)/δ)/κ,

with the pre-defined adversarial tolerance threshold C̄ and
λ = 1/B2, α =

√
d/(C̄

√
κ), then with probability at least

1 − δ, the regret of Algorithm 1 can be upper bounded as
following:

• If the actual number of adversarial feedback C is smaller
than the adversarial tolerance threshold C̄, then we have

Regret(T ) = Õ
(
d
√
T/κ+ dC̄/κ

)
.

• If the actual number of adversarial feedback C is larger
than the adversarial tolerance threshold C̄, then we have
Regret(T ) = O(T ).

Remark 5.6. The COBE framework (Wei et al., 2022) con-
verts any algorithm with the known adversarial level to an
algorithm in the unknown case. However, such a frame-
work only works for weak adversaries and does not work
in our strong adversary setting. In fact, He et al. (2022)
proved that any algorithm cannot simultaneously achieve
near-optimal regret when uncorrupted and maintain sublin-
ear regret with corruption level C = Ω(

√
T ). Therefore,

there exists a trade-off between robust adversarial defense
and near-optimal algorithmic performance, which is very
common in dealing with strong adversaries (He et al., 2022;
Ye et al., 2023). Our algorithm achieves the same nearly
optimal Õ(d

√
T ) regret as the no-adversary case even when

C = Θ(
√
T ), which indicates that our results are optimal in

the presence of an unknown number of adversarial feedback.

6 Improved Results for Sigmoid Link
Function

While Algorithm 1 can handle all link functions and
achieves optimal worst-case regret guarantees, it can be
improved for some specific link functions. In this section,
we demonstrate this improvement for the sigmoid link func-
tions.
We begin by calculating the coefficient κ for the sig-
moid link function and analyzing the corresponding re-
gret guarantee in Theorem 5.3. For the sigmoid function
σ(x) = 1/(1 + e−x), its derivative is given by σ̇(x) =
e−x/(1 + e−x)2. Under Assumption 3.1, we have∣∣⟨ϕ(x, a)− ϕ(x, b),θ⟩

∣∣ ≤ 2B, ∀x ∈ X , a, b ∈ A,θ ∈ Θ.

In the worst case, we have

min
x,a,b,θ

σ̇
(
⟨ϕ(x, a)− ϕ(x, b),θ⟩

)
=

1

2 + e−2B + e2B
,

which implies κ ≤ 1/(2 + e−2B + e2B). Therefore, the
previous regret bound exhibits a polynomial dependence on

1/κ, which translates to an exponential dependence on B.
This exponential dependence on B is frequently observed
in the literature of dueling bandits and RLHF (Zhu et al.,
2023; Xiong et al., 2023; Li et al., 2024).
To improve the dependency on κ, we present a new algo-
rithm that exploits the structure of the sigmoid link function.
In Section 6.1, we outline the key ideas behind our algo-
rithm design. Subsequently, in Section 6.2, we provide a
theoretical analysis to establish the regret guarantee of our
algorithm.

6.1 Key Ideas of the Algorithm
In this section, we present the key innovation of our al-
gorithm that improves upon Algorithm 1. Let ϕi =
ϕ(xi, ai) − ϕ(xi, bi) for notational simplicity. Following
the standard (weighted) MLE analysis (Li et al., 2017), we
introduce an auxiliary function:

Gt(θ) = λθ +

t−1∑
i=1

wi

[
σ
(
ϕ⊤

i θ
)
− σ

(
ϕ⊤

i θ
∗)]ϕi.

Using the mean-value theorem, Gt(θt) − Gt(θ
∗) can be

represented as:

Gt(θt)−Gt(θ
∗)

=
[
λI+

t−1∑
i=1

wiσ̇
(
ϕ⊤

i θ̄
)
ϕiϕ

⊤
i

]
(θt − θ∗), (6.1)

where θ̄ = mθt + (1 − m)θ∗ for some m ∈ [0, 1]. In
Algorithm 1, we use the unified lower bound κ to replace
the local derivative σ̇(ϕ⊤

i θ̄). Thus, we define Σt = λI +∑t−1
i=1 wiκϕiϕ

⊤
i , and the following inequality holds: ∥θt −

θ∗∥Σt ≤ ∥Gt(θt)−Gt(θ
∗)∥Σt .

Relaxing the local derivative σ̇(ϕ⊤
i θ̄) to the unified lower

bound κ works well for smooth link functions where the
derivative has little variation (e.g., the instance in Theo-
rem 5.4). However, this approach becomes less effective
for the sigmoid link function, whose derivative σ̇(x) =
e−x/(1 + e−x)2 exhibits exponential decay with respect to
x. In this case, the local derivative can significantly differ
from κ, particularly when both actions at and bt are near-
optimal. In such situations, ϕ⊤

i θ̄ ≈ 0 and consequently
σ̇(ϕ⊤

i θ̄) ≈ 1/4, a constant value. To address this limitation,
our new algorithm introduces a refined method to estimate
the local derivative σ̇(ϕ⊤

i θ̄) and directly uses it as weight
in the matrix.
Following Abeille et al. (2021), we begin by expressing
σ̇(ϕ⊤

i θ̄) in integral form:

σ̇(ϕ⊤
i θ̄) =

[ ∫ 1

0

σ̇
(
ϕ⊤

i

(
θt + v(θ∗ − θt)

))
dv

]
.

By applying Lemma F.5, we have:

σ̇(ϕ⊤
i θ̄) ≥

σ̇(ϕ⊤
i θ

∗)

1 + |ϕ⊤
i (θt − θ∗)|

≥ σ̇(ϕ⊤
i θ

∗)

1 + 4B
.
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Based on this inequality, we can estimate the local derivative
by constructing a lower bound of σ̇(ϕ⊤

i θ
∗). To this end, we

construct a confidence set for θ∗:

E1 =
{
θ : ∥θ − θ∗∥Σt ≤ βt,∀t

}
.

Supposing E1 holds, then for any i, the following inequality
holds:

|ϕ⊤
i θ

∗| ≤ |ϕ⊤
i θi|+ βi∥ϕi∥Σ−1

i

∆
= ∆̂i.

By defining vi = max{κ, σ̇(∆̂i)}, we have σ̇(ϕ⊤
i θ

∗) ≥ vi
and consequently σ̇(ϕ⊤

i θ̄) ≥ vi/(1 + 4B). Based on this
result, we use vi as a optimistic estimator of local derivative
σ̇(ϕ⊤

i θ̄) to define a refined covariance matrix Λt = λI +∑t−1
i=1 wiviϕiϕ

⊤
i (Line 6). For action selection, we apply

the pairwise selection rule from Section 4 using Λt:

at, bt = argmax
a,b

{(
ϕ(xt, a) + ϕ(xt, b)

)⊤
θt

+ β̃t

∥∥ϕ(xt, a)− ϕ(xt, b)
∥∥
Λ−1

t

}
.

In Algorithm 2, we highlight the differences from Algorithm
1 with red color for clarity.

6.2 Theoretical Results
In this section, we provide the upper bound of regret for our
algorithm with the sigmoid link function.

Theorem 6.1. For the sigmoid link function σ(x) = 1/(1+
e−x), under Assumption 3.1, let 0 < δ < 1 and the total
number of adversarial feedback be C. If we set the confi-
dence radius to be

βt =
√
λB +

1√
κ

√
d log(2(1 + 2t/λ)/δ) + αC,

β̃t = (1 + 4B)

[√
λB +

2√
λ
d log

(
dλ+ 2t

dλδ

)
+ αC

]
,

and λ = d/B, α = (
√
d+

√
λB)/C, then with probability

at least 1− δ, the regret of Algorithm 2 in the first T rounds
can be upper bounded by

Regret(T ) = Õ
(
dB1.5

√
T + dBC/κ

+ d2B2(1/κ2 +B/κ)
)
.

Remark 6.2. Compared to the result in Theorem 5.3, our
new regret bound has a leading term of Õ(dB1.5

√
T ) with

respect to T , which eliminates the polynomial dependency
on 1/κ by utilizing the local derivative rather than the uni-
form lower bound κ. This implies a reduction from an
exponential dependence to a polynomial dependence on
B. To the best of our knowledge, this is the first work to
achieve such a reduction in regret for contextual dueling
bandits. However, there are two scenarios where κ depen-
dency remains: during the warm-up period when selected

Algorithm 2 Robust Contextual Dueling Bandit for Sigmoid
link function (RCDB-S)

1: Require: α > 0, regularization parameter λ, derivative
lower bound κ, confidence radius βt, β̃t.

2: Set ∆̂0 = 0
3: for t = 1, . . . , T do
4: Compute Σt = λI +

∑t−1
i=1wiκ

(
ϕ(xi, ai) −

ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
.

5: // Construct a new weighted covariance matrix
6: Compute Λt = λI +

∑t−1
i=1wivi

(
ϕ(xi, ai) −

ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
.

7: Calculate the MLE θt by solving the following equa-
tion:

λθ +
∑t−1

i=1wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)
− oi

]
(
ϕ(xi, ai)− ϕ(xi, bi)

)
= 0. (6.2)

8: Observe the context vector xt.
9: // Use Λt to do exploration

10: Choose at, bt = argmaxa,b

{(
ϕ(xt, a) +

ϕ(xt, b)
)⊤

θt + β̃t

∥∥ϕ(xt, a)− ϕ(xt, b)
∥∥
Λ−1

t

}
.

11: The adversary sees the feedback lt = 1(at ≻ bt)
and decides the indicator ct. Observe ot = lt when
ct = 0, otherwise observe ot = 1− lt.

12: Set weight wt as (4.3).
13: // Calculate the weight vt
14: ∆̂t =

∣∣[ϕ(xt, at)−ϕ(xt, bt)
]⊤

θt
∣∣+βt

∥∥ϕ(xt, at)−
ϕ(xt, bt)∥Σ−1

t

15: Set vt = max{κ, σ̇(∆̂t)}
16: end for
actions are far from optimal, the local derivative may ap-
proach κ, resulting in a κ-dependent constant factor; And
in the corruption term, since the strong adversary, who can
observe the actions selected by the agent, can strategically
flip labels anytime, particularly when the local derivative is
close to κ. This leads to a polynomial dependency on κ in
the corruption term.

7 Conclusion
In this paper, we focus on the contextual dueling bandit
problem from adversarial feedback. We introduce a novel
algorithm, RCDB, which utilizes an uncertainty-weighted
Maximum Likelihood Estimator (MLE) approach. This
algorithm not only achieves optimal theoretical results in
scenarios with and without adversarial feedback but also
demonstrates superior performance with synthetic data. For
the sigmoid link function, we develop a novel algorithm
called Robust Contextual Dueling Bandit for Sigmoid link
function (RCDB-S). Through a refined estimation method
of the link function’s derivative, RCDB-S achieves a regret
bound of Õ

(
dB1.5

√
T + dBC/κ), where we eliminate the

8
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κ dependence in the leading term with respect to T .
Limitations and Future Works. We assume that the re-
ward is linear with respect to some known feature maps.
Although this setting is common in the literature, we ob-
serve that some recent works on dueling bandits can deal
with nonlinear rewards (Li et al., 2024; Verma et al., 2024).
Recently, Verma et al. (2024) studied the problem of approx-
imating reward models using neural networks, addressing
nonlinear rewards for dueling bandits. It is an interesting
future direction to design robust algorithms for nonlinear
reward functions, such as with neural networks. Another
promising direction is to design a more computationally
efficient algorithm that avoids computing the MLE in each
round (Jun et al., 2017; Zhang & Sugiyama, 2024; Sawarni
et al., 2024).

Impact Statement
This paper studies contextual dueling bandits with adver-
sarial feedback. Our primary objective is to propel ad-
vancements in bandit theory by introducing a more ro-
bust algorithm backed by solid theoretical guarantees. The
uncertainty-weighted approach we have developed for duel-
ing bandits holds significant potential to address the issue of
adversarial feedback in preference-based data, which could
be instrumental in enhancing the robustness of generative
models against adversarial attacks. Moreover, our study
on dueling bandits with a logistic link function suggests
that the leading term of the regret can remain unaffected
by the derivative lower bound κ. This novel result provides
valuable insights and may positively impact the study of
machine learning theory and its applications.
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A Proof of Theorems in Section 5
A.1 Proof of Theorem 5.3
In this subsection, we provide the proof of Theorem 5.3. We condition on the high-probability event in Lemma 5.1

E =
{∥∥θt − θ∗∥∥

Σt
≤ β,∀t ∈ [T ]

}
,

where β =
√
λB + αC +

√
d log((1 + 2T/λ)/δ)/κ, λ = 1/B2.

Let rt = 2r∗(xt, a
∗
t )− r∗(xt, at)− r∗(xt, bt) be the regret incurred in round t. The following lemma provides the upper

bound of rt.

Lemma A.1. Suppose the event E holds. If we set β =
√
λB + αC +

√
d log((1 + 2T/λ)/δ)/κ, the regret of Algorithm

1 incurred in round t can be upper bounded by

rt ≤ min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.

Moreover, the regret can be upper bounded by

Regret(T ) ≤
T∑

t=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.

With Lemma A.1, we can provide the proof of Theorem 5.3.

Proof of Theorem 5.3. Using Lemma A.1, the total regret can be upper bounded by

Regret(T ) ≤
T∑

t=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.

Our weight wt has two possible values. We decompose the summation based on the two cases separately. We have

Regret(T ) ≤
∑
wt=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
︸ ︷︷ ︸

J1

+
∑
wt<1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
︸ ︷︷ ︸

J2

.

For the term J1, we consider a partial summation in rounds when wt = 1. Let Λt = λI +
∑

i≤k−1,wi=1 κ
(
ϕ(xi, ai) −

ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
. Then we have

J1 ≤ 4β√
κ

∑
t:wt=1

min
{
1, ∥

√
κ(ϕ(xt, at)− ϕ(xt, bt))∥Σ−1

t

}
≤ 4β√

κ

∑
t:wt=1

min
{
1, ∥

√
κ(ϕ(xt, at)− ϕ(xt, bt))∥Λ−1

t

}
≤ 4β√

κ

√
T

∑
t:wt=1

min
{
1, ∥

√
κ(ϕ(xt, at)− ϕ(xt, bt))∥2Λ−1

t

}
≤ 4β√

κ

√
dT log(1 + 2T/λ), (A.1)

where the second inequality holds due to Σt ⪰ Λt. The third inequality holds due to the Cauchy-Schwartz inequality, The
last inequality holds due to Lemma F.3.
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For the term J2, the weight in this summation satisfies wt < 1, and therefore wt = α/∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

. Then
we have

J2 =
∑
wt<1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
wt∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
/α

}

≤
T∑

t=1

min
{
4, 2β/α∥

√
wt(ϕ(xt, at)− ϕ(xt, bt))∥2Σ−1

t

}
≤

T∑
t=1

4β

ακ
min

{
1, ∥

√
wtκ(ϕ(xt, at)− ϕ(xt, bt))∥2Σ−1

t

}
≤ 4dβ log(1 + 2T/λ)

ακ
, (A.2)

where the first equality holds due to the choice of wt. The first inequality holds because each term in the summation is
positive. The last inequality holds due to Lemma F.3. Combining (A.1) and (A.2), we have

Regret(T ) ≤ 4β√
κ

√
dT log(1 + 2T/λ) +

4dβ log(1 + 2T/λ)

ακ
.

By setting β =
√
λB + αC +

√
d log((1 + 2T/λ)/δ)/κ, λ = 1/B2, α =

√
d/(C

√
κ), we complete the proof of

Theorem 5.3.

A.2 Proof of Theorem 5.4
Proof of Theorem 5.4. We consider the following link function

σ(x) =


0 if x < − 1

2
1
2 + x, if x ∈ [− 1

2 ,
1
2 ]

1, if x > 1
2 .

(A.3)

Firstly, we prove a minimax lower bound. We follow the proof techniques in Li et al. (2024). The difference lies in that they
consider the sigmoid link function, while we consider another. Consider the parameter set Θ ∈ {−∆,∆}d, where ∆ > 0 is
a constant to be determined. Let the action set be A = {x ∈ Rd : ∥x∥2 ≤ 1}. We assume the feature map ϕ(x,a) = a. For
any algorithm, denote the trajectories of actions by {at,bt}Tt=1. We require that for any action x ∈ A, θ ∈ Θ, we have
x⊤θ ≤ 1/8. For this reason, we assume

√
d∆ ≤ 1/8.

We fix i ∈ [d]. Define

τi = T ∧min

{
τ :

τ∑
t=1

[
(ait)

2 + (bi
t)

2
]
≥ 2T

d

}
, (A.4)

where a ∧ b = min{a, b} and ait means the i-th coordinate of at. Intuitively, τi acts as the first time in which the amount of
information gathered for coordinate i until time τ (quantified as the sum of squares of the i-th coordinates of the chosen
arms) exceeds the average amount of information expected, which is 2T/d. For any θ ∈ Θ, we denote Pθ and Eθ as the
distribution and expectation over the trajectories. We define the following function

Uθ,i(x) = Eθ

[ τi∑
t=1

( 1√
d
− aitx

)2

+

τi∑
t=1

( 1√
d
− bi

tx
)2

]
,

with x ∈ {−1,+1}, which can be understood as the lower bounding term that pops up when lower bounding the average
dueling regret. We greatly appreciate this insightful explanation above from the autonomous reviewer. Moreover, we define
θ′ to be a vector whose i-th coordinate is different from θ, while the other coordinates are the same. Denote the i-th
coordinate of θ by θi. We consider the following term:

Uθ,i(sign(θi)) + Uθ′,i(sign(θ′i)) = Uθ,i(sign(θi))− Uθ′,i(sign(θi))︸ ︷︷ ︸
I1

+Uθ′,i(sign(θi)) + Uθ′,i(sign(θ′i))︸ ︷︷ ︸
I2

. (A.5)
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First, we have

τi∑
t=1

( 1√
d
− ait sign(θi)

)2

+

τi∑
t=1

( 1√
d
− bi

t sign(θi)
)2

≤
τi∑
t=1

[2
d
+ 2(ait)

2
]
+

τi∑
t=1

[2
d
+ 2(bi

t)
2
]

=
4τi
d

+ 2

τi∑
t=1

[
(ait)

2 + (bi
t)

2
]

≤ 4T

d
+

4T

d
+ 4

=
8T

d
+ 4,

where the first inequality holds due to (a− b)2 ≤ 2a2 + 2b2. The second inequality holds due to (A.4). Therefore, we have

I1 = Eθ

[ τi∑
t=1

( 1√
d
− ait sign(θi)

)2

+

τi∑
t=1

( 1√
d
− bi

t sign(θi)
)2

]

− Eθ′

[ τi∑
t=1

( 1√
d
− ait sign(θi)

)2

+

τi∑
t=1

( 1√
d
− bi

t sign(θi)
)2

]
≥ −

(8T
d

+ 4
)√

KL(Pθ||Pθ′)/2, (A.6)

where the first inequality holds due to the Pinsker’s inequality. Next, we compute the KL-divergence.

KL(Pθ||Pθ′) =

τi∑
t=1

KL(Pt
θ||Pt

θ′), (A.7)

which holds due to the chain rule of KL-divergence. At each step t, the distribution is Bernoulli. Using the link function
(A.3), we have Pt

θ = Ber(ptθ), Pt
θ′ = Ber(ptθ′), where ptθ = 1/2 + ⟨at − bt,θ⟩. Direct calculations show that

KL(Pt
θ||Pt

θ′) = ptθ log
( ptθ
ptθ′

)
+ (1− ptθ) log

( 1− ptθ
1− ptθ′

)
≤ ptθ

[ ptθ
ptθ′

− 1
]
+ (1− ptθ)

[ 1− ptθ
1− ptθ′

− 1
]

=
(ptθ − ptθ′)2

ptθ′(1− ptθ′)
,

where the first inequality holds due to log x ≤ x− 1. Using
√
d∆ ≤ 1/8, we have

KL(Pt
θ||Pt

θ′) ≤
16

3
(⟨at − bt,θ − θ′⟩)2. (A.8)

Substituting (A.7) and (A.8) into (A.6), we have

I1 ≥ −3
(8T

d
+ 4

)√√√√ τi∑
t=1

(
⟨at − bt,θ − θ′⟩

)2
/2

≥ −3
(8T

d
+ 4

)
∆

√√√√ τi∑
t=1

|ait − bi
t|2/2

≥ −3
(8T

d
+ 4

)
∆

√√√√ τi∑
t=1

[
(ait)

2 + (bi
t)

2
]
.
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where the second inequality holds due to θ only differs from θ′ at the i-th coordinate. The third inequality holds due to
(a− b)2 ≤ 2a2 + 2b2. Using (A.4), we have

I1 ≥ −3
(8T

d
+ 4

)
∆

√
2T

d
+ 2 ≥ −40∆(T/d)1.5. (A.9)

For I2, we have

I2 = Uθ′,i(sign(θi)) + Uθ′,i(sign(θ′i))

= Eθ′

[ τi∑
t=1

( 1√
d
− ait

)2

+

τi∑
t=1

( 1√
d
− bi

t

)2
]
+ Eθ′

[ τi∑
t=1

( 1√
d
+ ait

)2

+

τi∑
t=1

( 1√
d
+ bi

t

)2
]

= 2Eθ′

[
2τi
d

+

τi∑
t=1

(
(ait)

2 + (bi
t)

2
)]

≥ 4T

d
. (A.10)

Substituting (A.9) and (A.10) into (A.5), we have

Uθ,i(sign(θi)) + Uθ′,i(sign(θ′i)) ≥
4T

d
− 40∆(T/d)1.5.

Using the randomization hammer, we have

1

|Θ|
∑
θ∈Θ

d∑
i=1

Uθ,i(sign(θi)) ≥ 2T − 20∆T 1.5d−0.5.

Therefore, there exists θ ∈ Θ, such that

d∑
i=1

Uθ,i(sign(θi)) ≥ 2T − 20∆T 1.5d−0.5. (A.11)

Using this θ, we can decompose the regret into

Regret(T ) = ∆Eθ

[ T∑
t=1

d∑
i=1

( 1√
d
− ait sign(θi)

)]
+∆Eθ

[ T∑
t=1

d∑
i=1

( 1√
d
− bi

t sign(θi)
)]

.

Moreover, we have

d∑
i=1

( 1√
d
− ait sign(θi)

)
=

d∑
i=1

( 1

2
√
d
− ait sign(θi)

)
+

√
d

2

≥
d∑

i=1

( 1

2
√
d
− ait sign(θi)

)
+

√
d

2

d∑
i=1

(ait)
2

=

√
d

2

d∑
i=1

(
1√
d
− ait sign(θi)

)2

,

where the first inequality holds due to ∥at∥2 ≤ 1. Similarly, we have

d∑
i=1

( 1√
d
− bi

t sign(θi)
)
≥

√
d

2

d∑
i=1

(
1√
d
− bi

t sign(θi)
)2

.
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As a result, we have

Regret(T ) ≥
√
d∆

2

d∑
i=1

Eθ

[ T∑
t=1

(
1√
d
− ait sign(θi)

)2]
+

√
d∆

2

d∑
i=1

Eθ

[ T∑
t=1

(
1√
d
− bi

t sign(θi)
)2]

≥
√
d∆

2

d∑
i=1

Eθ

[ τi∑
t=1

(
1√
d
− ait sign(θi)

)2]
+

√
d∆

2

d∑
i=1

Eθ

[ τi∑
t=1

(
1√
d
− bi

t sign(θi)
)2]

=

√
d∆

2

d∑
i=1

Uθ,i(sign(θi))

≥
√
d∆

2

[
2T − 20∆T 1.5d−0.5

]
,

where the last inequality holds due to (A.11). Set ∆ = 1
20

√
d
T . Then we have proved a lower bound Regret(T ) ≥ d

√
T/40.

Moreover, when T ≥ (4d2)/25, we have
√
d∆ ≤ 1/8. In conclusion, for the link function σ defined in (A.3) and any

algorithm, there exists a dueling bandit instance such that the regret is Ω(d
√
T ).

Secondly, we consider the lower bound of the corruption term. Our proof adapts the argument in Bogunovic et al. (2021) to
dueling bandits. For any dimension d, we construct d instances, each with θi = ei/4, where ei is the i-th standard basis
vector. We set the action set A = {ei}di=1. Therefore, in the i-th instance, the reward for the i-th action will be 1/4. For the
other actions, it will be 0. Therefore, the i-th action will be more preferable to any other action. While for other pairs, the
feedback is simply a random guess.
Consider an adversary that knows the exact instance. When the comparison involves the i-th action, it will corrupt the
feedback with a random guess. Otherwise, it will not corrupt. In the i-th instance, the adversary stops the adversarial attack
only after C times of comparison involving the i-th action. However, after Cd/4 rounds, at least d/2 actions have not been
compared for C times. For the instances corresponding to these actions, the agent learns no information and suffers from
Ω(dC) regret.
Combining the results above, for the link function σ (defined in (A.3)), the lower bound for dueling bandits is Ω(d

√
T +dC).

Finally, for any κ, we define σκ(x) = σ(κx). Then min σ̇κ(·) = κ. For any algorithm Alg, consider the hard instance
I = (θ∗,A, σ) with the link function σ, and RegretAlg(T ) = Ω(d

√
T + dC). Define another instance I ′ = (θ∗,A/κ, σκ).

The interaction with the environment with I and I ′ are exactly the same. However, the regret with I ′ is RegretAlg(T )/κ.
This indicates a lower bound of Ω(d

√
T + dC)/κ, which completes the proof of Theorem 5.4.

A.3 Proof of Theorem 5.5
Proof of Theorem 5.5. Here, based on the relationship between C and the threshold C̄, we discuss two distinct cases
separately.

• In the scenario where C̄ < C, Algorithm 1 can ensures a trivial regret bound, with the guarantee that Regret(T ) ≤ 2T .

• In the scenario where C ≤ C̄, we know that C̄ is remains a valid upper bound on the number of adversarial feedback.
Under this situation, Algorithm 1 operates successfully with C̄ adversarial feedback. Therefore, according to Theorem
5.3, the regret is upper bounded by

Regret(T ) ≤ Õ(d
√
T + dC̄).
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B Proof of Lemmas 5.1 and A.1
B.1 Proof of Lemma 5.1
Proof of Lemma 5.1. Using a similar reasoning in Li et al. (2017), we define some auxiliary quantities

Gt(θ) = λθ +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)

− σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ∗
)](

ϕ(xi, ai)− ϕ(xi, bi)
)
,

ϵt = lt − σ
((

ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗
)
,

γt = ot − σ
((

ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗
)
,

Zt =

t−1∑
i=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
.

In Algorithm 1, θt is chosen to be the solution to the following equation,

λθt +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θt

)
− oi

](
ϕ(xi, ai)− ϕ(xi, bi)

)
= 0.

Then we have

Gt(θt) = λθt +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θt

)
− σ

((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ∗

)](
ϕ(xi, ai)− ϕ(xi, bi)

)
=

t−1∑
i=1

wi

[
oi − σ

((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ∗

)](
ϕ(xi, ai)− ϕ(xi, bi)

)
= Zt. (B.1)

The analysis in Li et al. (2017); Di et al. (2023) shows that this equation has a unique solution, with θt = G−1
t (Zt). Using

the mean value theorem, for any θ1,θ2 ∈ Rd, there exists m ∈ [0, 1] and θ̄ = mθ1 + (1−m)θ2, such that the following
equation holds,

Gt(θ1)−Gt(θ2) = λ(θ1 − θ2) +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ1

)
− σ

((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ2

)](
ϕ(xi, ai)− ϕ(xi, bi)

)
=

[
λI+

t−1∑
i=1

wiσ̇
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ̄
)

(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤]
(θ1 − θ2).

We define F (θ̄) as

F (θ̄) = λI+

t−1∑
i=1

wiσ̇
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ̄
)(

ϕ(xi, ai)− ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤]
.
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Moreover, we can see that Gt(θ
∗) = λθ∗. Recall Σt = λI+

∑t−1
i=1 wiκ

(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
.

We have ∥∥Gt(θt)−Gt(θ
∗)
∥∥2
Σ−1

t
= (θt − θ∗)⊤F (θ̄)Σ−1

t F (θ̄)(θt − θ∗)

≥ (θt − θ∗)⊤Σt(θt − θ∗)

= ∥θt − θ∗∥2Σt
,

where the first inequality holds due to σ̇(·) ≥ κ > 0 and F (θ̄) ⪰ Σt. Then we have the following estimate of the estimation
error:

∥θt − θ∗∥Σt
≤

∥∥Gt(θt)−Gt(θ
∗)
∥∥
Σ−1

t

≤ λ∥θ∗∥Σ−1
t

+ ∥Zt∥Σ−1
t

≤
√
λ∥θ∗∥2 + ∥Zt∥Σ−1

t
,

where the second inequality holds due to the triangle inequality and Gt(θ
∗) = λθ∗. The last inequality holds due to

Σt ⪰ λI. Finally, we need to bound the ∥Zt∥Σ−1
t

term. To study the impact of adversarial feedback, we decompose the
summation in (B.1) based on the adversarial feedback ct, i.e.,

Zt =
∑

i<t:ci=0

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
,

When ci = 1, i.e. with adversarial feedback, |γi − ϵi| = 1. On the contrary, when ci = 0, γi = ϵi. Therefore,∑
i<t:ci=0

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
=

∑
i<t:ci=0

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
,

∑
i<t:ci=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
=

∑
i<t:ci=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wi

(
γi − ϵi)(ϕ(xi, ai)− ϕ(xi, bi)

)
.

Summing up the two equalities, we have

Zt =

t−1∑
i=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wi(γi − ϵi)
(
ϕ(xi, ai)− ϕ(xi, bi)

)
.

Therefore,

∥Zt∥Σ−1
t

≤ 1√
κ

∥∥∥∥ t−1∑
i=1

wi

√
κϵi

(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
Σ−1

t︸ ︷︷ ︸
I1

+

∥∥∥∥ ∑
i<t:ci=1

wi

(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
Σ−1

t︸ ︷︷ ︸
I2

.

For the term I1, with probability at least 1− δ, for all t ∈ [T ], it can be bounded by

I1 ≤
√
2 log

(det(Σt)1/2 det(Σ0)−1/2

δ

)
,

due to Lemma F.2. Using wi ≤ 1 κ ≤ 1, we have
√
wiκ∥ϕ(xi, ai)− ϕ(xi, bi)∥2 ≤ 2. Moreover, we have

det(Σt) ≤
(

Tr(Σt)

d

)d

=

(
dλ+

∑t−1
i=1 wiκ∥(ϕ(xi, ai)− ϕ(xi, bi))∥22

d

)d

≤
(
dλ+ 2T

d

)d

,
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where the first inequality holds because for every matrix A ∈ Rd×d, detA ≤ (Tr(A)/d)d. The second inequality holds
due to

√
wiκ∥ϕ(xi, ai)− ϕ(xi, bi)∥2 ≤ 2. Easy to see that det(Σ0) = λd. The term I1 can be bounded by

I1 ≤
√

d log((1 + 2T/λ)/δ). (B.2)

For I2, with our choice of the weight wi, we have

I2 ≤
∑

i<t:ci=1

wi

∥∥(ϕ(xi, ai)− ϕ(xi, bi))
∥∥
Σ−1

t

≤
∑

i<t:ci=1

wi

∥∥(ϕ(xi, ai)− ϕ(xi, bi))
∥∥
Σ−1

i

≤
∑

i<t:ci=1

α

≤ αC, (B.3)

where the second inequality holds due to Σt ⪰ Σi. The third inequality holds due to wi ≤ α/∥(ϕ(xi, ai)−ϕ(xi, bi))
∥∥
Σ−1

i

.
The last inequality holds due to the definition of C. Combining (B.2) and (B.3), we complete the proof of Lemma 5.1.

B.2 Proof of Lemma A.1
Proof of Lemma A.1. Let the regret incurred in the t-th round by rt = 2r∗(xt, a

∗
t ) − r∗(xt, at) − r∗(xt, bt). It can be

decomposed as

rt = 2r∗(xt, a
∗
t )− r∗(xt, at)− r∗(xt, bt)

= ⟨ϕ(xt, a
∗
t )− ϕ(xt, at),θ

∗⟩+ ⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θ

∗⟩
= ⟨ϕ(xt, a

∗
t )− ϕ(xt, at),θ

∗ − θt⟩+ ⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θ

∗ − θt⟩
+ ⟨2ϕ(xt, a

∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩

≤ ∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Σ−1

t
∥θ∗ − θt∥Σt

+ ∥ϕ(xt, a
∗
t )− ϕ(xt, bt)∥Σ−1

t
∥θ∗ − θt∥Σt

+ ⟨2ϕ(xt, a
∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩

≤ β∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Σ−1

t
+ β∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Σ−1

t

+ ⟨2ϕ(xt, a
∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩,

where the first inequality holds due to the Cauchy-Schwarz inequality. The second inequality holds due to the high probability
confidence event E . Using our action selection rule, we have

⟨ϕ(xt, a
∗
t )− ϕ(xt, at),θt⟩+ β∥ϕ(xt, a

∗
t )− ϕ(xt, at)∥Σ−1

t

≤ ⟨ϕ(xt, bt)− ϕ(xt, at),θt⟩+ β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θt⟩+ β∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Σ−1

t

≤ ⟨ϕ(xt, at)− ϕ(xt, bt),θt⟩+ β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t
.

Adding the above two inequalities, we have

β∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Σ−1

t
+ β∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Σ−1

t

≤ ⟨ϕ(xt, at) + ϕ(xt, bt)− 2ϕ(xt, a
∗
t ),θt⟩+ 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
.

Therefore, we prove that the regret in round t can be upper bounded by

rt ≤ 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t
.

With a simple observation, we have rt ≤ 4. Therefore, the total regret can be upper bounded by

Regret(T ) ≤
T∑

t=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.
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C Proof of Theorem 6.1
To start with, we define some high-probability events. Recall that

Σt = λI+
∑t−1

i=1wiκ
(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
,

Λt = λI+
∑t−1

i=1wivi
(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
.

Then we define the following events:

E1 = {∥θ∗ − θt∥Σt
≤ βt,∀t ∈ [T ]},

E2 = {∥θ∗ − θt∥Λt
≤ β̃t,∀t ∈ [T ]}.

The following lemma indicates that with some well-chosen confidence radius, both E1 and E2 will happen with high
probability.
Lemma C.1. When selecting

βt =
√
λB +

1√
κ

√
d log(2(1 + 2t/λ)/δ) + αC,

β̃t = (1 + 4B)

[√
λB +

√
λ

2
+

2√
λ
d log

(
dλ+ 2t

dλ

)
+

2√
λ
d log(1/δ) + αC

]
,

then we have

P[E1 ∩ E2] ≥ 1− δ.

Proof of Theorem 6.1. Consider the case when E1 ∩ E2 holds. Recall that ∆̂t is defined by

∆̂t =
∣∣(ϕ(xt, at)− ϕ(xt, bt)

)⊤
θt
∣∣+ βt∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

then we have

|∆̂t| ≥
∣∣(ϕ(xt, at)− ϕ(xt, bt)

)⊤
θ∗∣∣+ β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
−

∣∣(ϕ(xt, at)− ϕ(xt, bt)
)⊤

(θ∗ − θt)
∣∣

≥
∣∣(ϕ(xt, at)− ϕ(xt, bt)

)⊤
θ∗∣∣,

where the first inequality holds due to the triangle inequality. The second inequality holds due to E1 and the Cauchy-Schwarz
inequality. Let vt = max{κ, σ̇(∆̂t)}. Using the fact that σ̇(·) is an even function decreasing when x > 0, we have
vt ≤ σ̇

((
ϕ(xt, at)−ϕ(xt, bt)

)⊤
θ∗). Let the regret incurred in the t-th round by rt = 2r∗(xt, a

∗
t )− r∗(xt, at)− r∗(xt, bt).

It can be decomposed as

rt = 2r∗(xt, a
∗
t )− r∗(xt, at)− r∗(xt, bt)

= ⟨ϕ(xt, a
∗
t )− ϕ(xt, at),θ

∗⟩+ ⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θ

∗⟩
= ⟨ϕ(xt, a

∗
t )− ϕ(xt, at),θ

∗ − θt⟩+ ⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θ

∗ − θt⟩
+ ⟨2ϕ(xt, a

∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩

≤ ∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Λ−1

t
∥θ∗ − θt∥Λt

+ ∥ϕ(xt, a
∗
t )− ϕ(xt, bt)∥Λ−1

t
∥θ∗ − θt∥Λt

+ ⟨2ϕ(xt, a
∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩

≤ β̃t∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Λ−1

t
+ β̃t∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Λ−1

t

+ ⟨2ϕ(xt, a
∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩,

where the first inequality holds due to the Cauchy-Schwarz inequality. The second inequality holds due to the high probability
confidence event E2. Using our action selection rule, we have

⟨ϕ(xt, a
∗
t )− ϕ(xt, at),θt⟩+ β̃t∥ϕ(xt, a

∗
t )− ϕ(xt, at)∥Λ−1

t

≤ ⟨ϕ(xt, bt)− ϕ(xt, at),θt⟩+ β̃t∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1
t

⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θt⟩+ β̃t∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Λ−1

t

≤ ⟨ϕ(xt, at)− ϕ(xt, bt),θt⟩+ β̃t∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1
t
.
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Adding the above two inequalities, we have

β̃t∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Λ−1

t
+ β̃t∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Λ−1

t

≤ ⟨ϕ(xt, at) + ϕ(xt, bt)− 2ϕ(xt, a
∗
t ),θt⟩+ 2β̃t∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1

t
.

Therefore, we prove that the regret in round t can be upper bounded by

rt ≤ 2β̃t∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1
t
.

As a result, the total regret can be upper bounded by

Regret(T ) ≤ 2β̃T

T∑
t=1

∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1
t
,

where we use that βt is increasing in t. Since our weight wt has two possible values, we can decompose the regret into two
terms:

Regret(T ) ≤ 2β̃T

∑
t:wt=1

∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1
t︸ ︷︷ ︸

I1

+ 2β̃T

∑
t:wt<1

∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1
t︸ ︷︷ ︸

I2

.

For the term I1, we consider a partial summation in rounds when wt = 1. Let Λ̃t = λI +
∑

i≤t−1,wi=1 vi
(
ϕ(xi, ai) −

ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
. Then we have

I1 = 2β̃T

∑
t:wt=1

1
√
vt

∥∥√vt
(
ϕ(xt, at)− ϕ(xt, bt)

)∥∥
Λ−1

t

≤ 2β̃T

√ ∑
t:wt=1

1

vt
·
√ ∑

t:wt=1

∥∥√vt
(
ϕ(xt, at)− ϕ(xt, bt)

)∥∥2
Λ−1

t

≤ 2β̃T

√ ∑
t:wt=1

1

vt
·
√ ∑

t:wt=1

∥∥√vt
(
ϕ(xt, at)− ϕ(xt, bt)

)∥∥2
Λ̃−1

t

≤ 4β̃T

√
d log(1 + 2T/λ) ·

√ ∑
t:wt=1

1

vt
, (C.1)

where the first inequality holds due to the Cauchy-Schwarz inequality. The second inequality holds due to Λt ⪰ Λ̃t. The
last inequality holds due to Lemma F.3 and

∥∥√vt
(
ϕ(xt, at) − ϕ(xt, bt)

)∥∥
2
≤ 2. Next, we will bound

∑
t:wt=1 1/vt.

Let L1 = {t : wt = 1, κ = max{κ, σ̇(∆̂t)}}, L2 = {t : wt = 1, σ̇(∆̂t) = max{κ, σ̇(∆̂t)}}. Then, we have
{t : wt = 1} = L1 ∪ L2. Therefore, we have the following decomposition∑

wt=1

1

vt
=

∑
t∈L1

1

vt︸ ︷︷ ︸
J1

+
∑
t∈L2

1

vt︸ ︷︷ ︸
J2

.

For J1, we have

J1 =
∑
t∈L1

1

vt

=
1

κ
|L1|, (C.2)
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This equality holds because for t ∈ L1, vt = κ. Using the high-probability event E1, the following inequality holds:

∆̂t =
∣∣[ϕ(xt, at)− ϕ(xt, bt)

]⊤
θt
∣∣+ βt

∥∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

≤
∣∣[ϕ(xt, at)− ϕ(xt, bt)

]⊤
θ∗∣∣+ 2βt

∥∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t
,

On the other hand, for t ∈ L1, we have

κ ≥ σ̇(∆̂t)

≥ σ̇

(∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βt

∥∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

)
,

where the first inequality holds due to the definition of L1. The second inequality holds due to the function σ̇(·) is decreasing
when x > 0. Using σ̇(|x|) = e−|x|/(1 + e−|x|)2 ≥ e−|x|/4, we have |x| ≥ log(1/4σ̇(|x|)). Therefore, the following
inequality holds ∣∣∣[ϕ(xt, at)− ϕ(xt, bt)

]⊤
θ∗

∣∣∣+ 2βt

∥∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

≥ log
( 1

4σ̇(∆̂t)

)
≥ log(1/4κ).

Let Σ̃t = λI+
∑

i≤t−1,wi=1 κ
(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
. Summing over t ∈ L1, we obtain

log(1/4κ)|L1| ≤
∑
t∈L1

∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βT

∑
t∈L1

∥∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

≤
∑

t:wt=1

∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βT

∑
t:wt=1

∥∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

≤
∑

t:wt=1

∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βT

√
T

∑
t:wt=1

∥∥ϕ(xt, at)− ϕ(xt, bt)∥2Σ̃−1
t

=
∑

t:wt=1

∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βT√

κ

√
T

∑
t:wt=1

∥∥√κ
(
ϕ(xt, at)− ϕ(xt, bt)

)∥∥2
Σ̃−1

t

≤
T∑

t=1

∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βT√

κ

√
dT log(1 + 2T/λ),

where the first inequality holds due to βt is increasing in t. The second inequality holds because partial summation is less
than total summation. The third inequality holds due to the Cauchy-Schwarz inequality and Σt ⪰ Σ̃t. The last inequality
holds due to Lemma F.3. Therefore, we have

|L1| ≤
1

log(1/4κ)

[ T∑
t=1

∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βT√

κ

√
dT log(1 + 2T/λ)

]
. (C.3)

Substituting (C.3) into (C.2), we have

J1 ≤ 1

κ log(1/4κ)

[ T∑
t=1

∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βT√

κ

√
dT log(1 + 2T/λ)

]
. (C.4)

For J2, we have

J2 =
∑
t∈L2

1

vt

=
∑
t∈L2

1

σ̇(|∆̂t|)

≤ 4
∑
t∈L2

e|∆̂t|, (C.5)

23



Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback

where the last inequality holds due to σ̇(|x|) ≥ e−|x|/4. For t ∈ L2, we have

κ ≤ σ̇(∆̂t) ≤ e−|∆̂t|,

where the last inequality holds due to σ̇(|x|) ≤ e−|x|. Then we have

|∆̂t| ≤ log(1/κ).

Since the function f(x) = ex is convex, for any A > 0, we have for all x ∈ [0, A]

ex ≤ 1 +
eA − 1

A
x.

Setting x = ∆̂t and A = log(1/κ), we have

e|∆̂t| ≤ 1 +
1/κ− 1

log(1/κ)
|∆̂t|. (C.6)

Substituting (C.6) into (C.5), we have

J2 ≤ 4
∑
t∈L2

[
1 +

1/κ− 1

log(1/κ)
|∆̂t|

]
.

Moreover, we know that

∆̂t =
∣∣(ϕ(xt, at)− ϕ(xt, bt)

)⊤
θt
∣∣+ βt∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

≤
∣∣(ϕ(xt, at)− ϕ(xt, bt)

)⊤
θ∗∣∣+ 2βt∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
. (C.7)

Therefore, we have

J2 ≤ 4

[
T +

2βT

κ log(1/κ)

T∑
t=1

∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

+
1

κ log(1/κ)

T∑
t=1

∣∣(ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗∣∣]

≤ 4

[
T +

2βT

κ1.5 log(1/κ)

T∑
t=1

∥∥√κ
(
ϕ(xt, at)− ϕ(xt, bt)

)∥∥
Σ−1

t
+

1

κ log(1/κ)

T∑
t=1

∣∣(ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗∣∣]

≤ 4T +

[
8βT

κ1.5 log(1/κ)

√
dT log(1 + 2T/λ) +

4

κ log(1/κ)

T∑
t=1

∣∣(ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗∣∣], (C.8)

where the first inequality holds due to (C.7). The last inequality holds due to Lemma F.3 and the Cauchy-Schwarz inequality.
Combining (C.4) and (C.8), we have∑

t:wt=1

1

vt
≤ 1

κ log(1/4κ)

[ T∑
t=1

∣∣∣[ϕ(xt, at)− ϕ(xt, bt)
]⊤

θ∗
∣∣∣+ 2βT√

κ

√
dT log(1 + 2T/λ)

]

+ 4T +

[
8βT

κ1.5 log(1/κ)

√
dT log(1 + 2T/λ) +

1

κ log(1/κ)

T∑
t=1

∣∣(ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗∣∣]

≤ 4T +
10βT

κ1.5 log(1/κ)

√
dT log(1 + 2T/λ) +

2

κ log(1/κ)

T∑
t=1

∣∣(ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗∣∣ (C.9)

For the term I2, the weight in this summation satisfies wt < 1, and therefore wt = α/∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

. Then
we have

I2 = 2β̃T

∑
wt<1

(
∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1

t
wt∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
/α

)

≤ 2β̃T

ακ

T∑
t=1

∥∥√wtκ(ϕ(xt, at)− ϕ(xt, bt))
∥∥2
Σ−1

t

≤ 4dβ̃T log(1 + 2T/λ)

ακ
, (C.10)
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where the first equality holds due to the choice of wt. The first inequality holds because Λt ⪰ Σt. The last inequality holds
due to Lemma F.3.
Moreover, we notice that the following inequality holds:

T∑
t=1

∣∣(ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗∣∣ = T∑
t=1

∣∣∣∣(ϕ(xt, a
∗
t )− ϕ(xt, at)

)⊤
θ∗ −

(
ϕ(xt, a

∗
t )− ϕ(xt, bt)

)⊤
θ∗

∣∣∣∣
≤

T∑
t=1

(
ϕ(xt, a

∗
t )− ϕ(xt, at)

)⊤
θ∗ +

(
ϕ(xt, a

∗
t )− ϕ(xt, bt)

)⊤
θ∗

= Regret(T ). (C.11)

Substituting (C.9) and (C.11) into (C.1), we have

I1 ≤ 4β̃T

√
d log(1 + 2T/λ) ·

√
4T +

10βT

κ1.5 log(1/κ)

√
dT log(1 + 2T/λ) +

2

κ log(1/κ)
Regret(T ) (C.12)

Combining (C.10) and (C.12), we have

Regret(T ) ≤ 4β̃T

√
d log(1 + 2T/λ)

√
4T +

[
10βT

κ1.5 log(1/κ)

√
dT log(1 + 2T/λ) +

2

κ log(1/κ)
Regret(T )

]
+

4dβ̃T log(1 + 2T/λ)

ακ

≤ 4β̃T

√
d log(1 + 2T/λ)

[
3
√
T +

10βT

κ1.5 log(1/κ)

√
d log(1 + 2T/λ) +

√
2

κ log(1/κ)

√
Regret(T )

]

+
4dβ̃T log(1 + 2T/λ)

ακ
,

where the last inequality holds due to Young’s inequality and
√
a+ b+ c ≤

√
a+

√
b+

√
c. Using x ≤ a

√
x+ b ⇒ x ≤

a2 + 2b, we have

Regret(T ) ≤ 24β̃T

√
dT log(1 + 2T/λ) +

80
(
β̃2
T /κ+ β̃TβT /κ

1.5
)
d log(1 + 2T/λ)

log(1/κ)

+
8dβ̃T log(1 + 2T/λ)

ακ
. (C.13)

Recall that

βt =
√
λB +

1√
κ

√
d log(2(1 + 2t/λ)/δ) + αC,

β̃t = (1 + 4B)

[√
λB +

√
λ

2
+

2√
λ
d log

(
dλ+ 2t

dλ

)
+

2√
λ
d log(1/δ) + αC

]
,

Choose λ = d/B, α = (
√
d+

√
λB)/C. Then we have

βt ≤
2√
κ

[√
dB +

√
d log((1 + 2tB/d)/δ)

]
β̃t ≤ 4(1 + 4B)

√
dB log

(
(1 + 2tB/d2)/δ

)
. (C.14)

Substituting (C.14) into (C.13), we have

Regret(T ) ≤ 150 · dB1.5
√
T log1.5

(
(1 + 2TB/d)/δ

)
+

10000(B/κ+ 1/κ2)

log(1/κ)
d2B2 log3

(
(1 + 2TB/d)/δ

)
+ 32dB log2

(
(1 + 2TB/d)/δ

)
C/κ.

This completes the proof of Theorem 6.1.
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D Proof of the Lemmas in Section C
We first prove Lemma C.1. Before we start, we will mention that Jun et al. (2021) considered a slightly different but
relevant confidence bound. Specifically, they studied the logistic bandit problem with pure exploration and proposed an
algorithm with a sample complexity guarantee. In contrast, our work focuses on the regret of dueling bandits, with the
approach involving reward estimation complemented by a bonus term. Furthermore, Jun et al. (2021) derived a concentration
inequality under a fixed design assumption, given by |⟨x, θ̂ − θ∗⟩| ≤ β∥x∥Ht(θ∗)−1 . However, this assumption is too
restrictive for our setting with adaptive action selection. In contrast, our concentration inequality (Lemma C.1) is applicable
to adaptive designs that holds for any arm, which works for the adaptive arm-selection inherent to bandit algorithms.

D.1 Proof of Lemma C.1
We define some auxiliary quantities

Gt(θ) = λθ +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)

− σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ∗
)](

ϕ(xi, ai)− ϕ(xi, bi)
)
,

ϵt = lt − σ
((

ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗
)
,

γt = ot − σ
((

ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗
)
,

Zt =

t−1∑
i=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
.

In Algorithm 2, θt is chosen to be the solution to the following equation,

λθt +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θt

)
− oi

](
ϕ(xi, ai)− ϕ(xi, bi)

)
= 0.

Then we have

Gt(θt) = λθt +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θt

)
− σ

((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ∗

)](
ϕ(xi, ai)− ϕ(xi, bi)

)
=

t−1∑
i=1

wi

[
oi − σ

((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ∗

)](
ϕ(xi, ai)− ϕ(xi, bi)

)
= Zt.

First, we will bound ∥Zt∥Σ−1
t

. Following the technique used in Section B.1, we decompose the summation in (B.1) based
on the adversarial feedback ct, i.e.,

Zt =
∑

i<t:ci=0

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
,

When ci = 1, i.e. with adversarial feedback, |γi − ϵi| = 1. On the contrary, when ci = 0, γi = ϵi. Therefore,∑
i<t:ci=0

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
=

∑
i<t:ci=0

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
,

∑
i<t:ci=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
=

∑
i<t:ci=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wi

(
γi − ϵi)(ϕ(xi, ai)− ϕ(xi, bi)

)
.
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Summing up the two equalities, we have

Zt =

t−1∑
i=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wi(γi − ϵi)
(
ϕ(xi, ai)− ϕ(xi, bi)

)
.

Therefore, we have

∥Zt∥Σ−1
t

≤ 1√
κ

∥∥∥∥ t−1∑
i=1

wi

√
κϵi

(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
Σ−1

t︸ ︷︷ ︸
I1

+

∥∥∥∥ ∑
i<t:ci=1

wi

(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
Σ−1

t︸ ︷︷ ︸
I2

. (D.1)

For the term I1, with probability at least 1− δ/2, for all t ∈ [T ], it can be bounded by

I1 ≤ 1√
κ

√
2 log

(2 det(Σt)1/2 det(Σ0)−1/2

δ

)
,

due to Lemma F.2. Using wi ≤ 1, we have
√
wi∥ϕ(xi, ai)− ϕ(xi, bi)∥2 ≤ 2. Moreover, we have

det(Σt) ≤
(

Tr(Σt)

d

)d

=

(
dλ+

∑t−1
i=1 wi∥(ϕ(xi, ai)− ϕ(xi, bi))∥22

d

)d

≤
(
dλ+ 2t

d

)d

,

where the first inequality holds because for every matrix A ∈ Rd×d, detA ≤ (Tr(A)/d)d. The second inequality holds
due to

√
wi∥ϕ(xi, ai)− ϕ(xi, bi)∥2 ≤ 2. Easy to see that det(Σ0) = λd. The term I1 can be bounded by

I1 ≤
√

d log(2(1 + 2t/λ)/δ). (D.2)

For I2, with our choice of the weight wi, we have

I2 ≤
∑

i<t:ci=1

wi

∥∥(ϕ(xi, ai)− ϕ(xi, bi))
∥∥
Σ−1

t

≤
∑

i<t:ci=1

wi

∥∥(ϕ(xi, ai)− ϕ(xi, bi))
∥∥
Σ−1

i

≤
∑

i<t:ci=1

α

≤ αC, (D.3)

where the second inequality holds due to Σt ⪰ Σi. The third inequality holds due to wi ≤ α/∥(ϕ(xi, ai)−ϕ(xi, bi))
∥∥
Σ−1

i

.
The last inequality holds due to the definition of C. Substituting (D.2) and (D.3) into (D.1), we have

∥Zt∥Σ−1
t

≤ 1√
κ

√
d log(2(1 + 2t/λ)/δ) + αC.

Therefore, using the triangle inequality, we have

∥Gt(θ
∗)−Gt(θt)∥Σ−1

t
≤ λ∥θ∗∥Σ−1

t
+

1√
κ

√
d log(2(1 + 2t/λ)/δ) + αC

≤
√
λB +

1√
κ

√
d log(2(1 + 2t/λ)/δ) + αC. (D.4)
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Using the Newton-Leibniz formula, we have

Gt(θ
∗)−Gt(θt) =

[ ∫ 1

0

∇Gt

(
θt + v(θ∗ − θt)

)
dv

]
(θ∗ − θt).

Recall the definition

Gt(θ) = λθ +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)

− σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ∗
)](

ϕ(xi, ai)− ϕ(xi, bi)
)

then we have

∇Gt(θ) = λI+

t−1∑
i=1

wiσ̇
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)(

ϕ(xi, ai)− ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
.

We define Vt as follows:

Vt =

∫ 1

0

∇Gt

(
θt + v(θ∗ − θt)

)
dv

= λI+

t−1∑
i=1

wt

[ ∫ 1

0

σ̇
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤(

θt + v(θ∗ − θt)
))

dv

]
(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
. (D.5)

Therefore, we have Vt ⪰ Σt. We know that Gt(θ
∗)−Gt(θt) = Vt(θ

∗ − θt). Then the following inequality holds:∥∥Gt(θt)−Gt(θ
∗)
∥∥2
Σ−1

t
= (θt − θ∗)⊤VtΣ

−1
t Vt(θt − θ∗)

≥ (θt − θ∗)⊤Σt(θt − θ∗).

As a result, we have ∥∥θt − θ∗∥∥
Σt

≤
∥∥Gt(θt)−Gt(θ

∗)
∥∥
Σ−1

t

≤
√
λB +

1√
κ

√
d log(2(1 + 2t/λ)/δ) + αC

= βt,

where the first inequality holds due to (D.4). Consequently, we have P[E1] ≥ 1− δ/2.
Let

Ht = λI+

t−1∑
i=1

wiσ̇
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ∗
)(

ϕ(xi, ai)− ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
.

Next, we consider the following term:

∥Zt∥H−1
t

≤
∥∥∥∥ t−1∑

i=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
H−1

t︸ ︷︷ ︸
J1

+

∥∥∥∥ ∑
i<t:ci=1

wi

(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
H−1

t︸ ︷︷ ︸
J2

.

For J1, let Ft = σ(x1, a1, b1, o1, x2, a2, b2, o2, . . . , xt, at, bt). We know that ϵt It’s Ft+1-measurable.

E[ϵt|Ft] = 0

E[ϵ2t |Ft] = σ̇
((

ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗
)

28



Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback

Using Lemma F.4, with probability at least 1− δ/2, for all t ∈ [T ], we have

J1 =

∥∥∥∥ t−1∑
i=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
H−1

t

≤
√
λ

2
+

2√
λ
log

(
2 det(Ht)

1/2λ−d/2

δ

)
+

2√
λ
d log(2).

Using wi ≤ 1, σ̇(·) ≤ 1, we have
√
wi∥ϕ(xi, ai)− ϕ(xi, bi)∥2 ≤ 2. Moreover, we have

det(Ht) ≤
(

Tr(Ht)

d

)d

=

(
dλ+

∑t−1
i=1 wi∥(ϕ(xi, ai)− ϕ(xi, bi))∥22

d

)d

≤
(
dλ+ 2T

d

)d

,

where the first inequality holds because for every matrix A ∈ Rd×d, detA ≤ (Tr(A)/d)d. The second inequality holds
due to

√
wi∥ϕ(xi, ai)− ϕ(xi, bi)∥2 ≤ 2. Therefore, we have

J1 ≤
√
λ

2
+

2√
λ
d log

(
dλ+ 2T

dλ

)
+

2√
λ
d log(1/δ). (D.6)

For J2, we have

J2 =
∑

i<t:ci=1

wi

∥∥(ϕ(xi, ai)− ϕ(xi, bi))
∥∥
H−1

t

≤
∑

i<t:ci=1

wi

∥∥(ϕ(xi, ai)− ϕ(xi, bi))
∥∥
H−1

i

≤
∑

i<t:ci=1

α

≤ αC, (D.7)

where the first inequality holds due to Ht ⪰ Hi. The second inequality holds due to wi ≤ α/∥(ϕ(xi, ai) −
ϕ(xi, bi))

∥∥
Σ−1

i

and Hi ⪰ Σi. The last inequality holds due to the definition of C. Combining (D.6) and (D.7), we
have

∥Gt(θ
∗)−Gt(θt)∥H−1

t
≤ λ∥θ∗∥H−1

t
+

√
λ

2
+

2√
λ
d log

(
dλ+ 2t

dλ

)
+

2√
λ
d log(1/δ) + αC

≤
√
λB +

√
λ

2
+

2√
λ
d log

(
dλ+ 2t

dλ

)
+

2√
λ
d log(1/δ) + αC, (D.8)

where the first inequality holds due to the triangle inequality. Recall Vt defined in (D.5). Using Lemma F.5, we have

Vt ≥ λI+

t−1∑
i=1

wi

σ̇
((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ∗)

1 +
∣∣(ϕ(xi, ai)− ϕ(xi, bi)

)⊤
(θ∗ − θt)

∣∣ (ϕ(xi, ai)− ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
≥ 1

1 + 4B
Ht, (D.9)

where the last inequality holds due to
∣∣(ϕ(xi, ai)− ϕ(xi, bi)

)⊤
(θ∗ − θt)

∣∣ ≤ 4B. This leads to

∥Gt(θ
∗)−Gt(θt)∥2H−1

t
= (θ∗ − θt)

⊤VtH
−1
t Vt(θ

∗ − θt)

≥ 1

1 + 4B
(θ∗ − θt)

⊤Vt(θ
∗ − θt).

≥ 1

(1 + 4B)2
(θ∗ − θt)

⊤Ht(θ
∗ − θt), (D.10)
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where the first equality holds due to Gt(θ
∗)−Gt(θt) = Vt(θ

∗ − θt). The first and second inequalities hold due to (D.9).
Conditioned on the event E1, recall that ∆̂t is defined by

∆̂t =
∣∣(ϕ(xt, at)− ϕ(xt, bt)

)⊤
θt
∣∣+ βt∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
.

Therefore, we have

|∆̂t| ≥
∣∣(ϕ(xt, at)− ϕ(xt, bt)

)⊤
θ∗∣∣+ β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
−

∣∣(ϕ(xt, at)− ϕ(xt, bt)
)⊤

(θ∗ − θt)
∣∣

≥
∣∣(ϕ(xt, at)− ϕ(xt, bt)

)⊤
θ∗∣∣,

where the first inequality holds due to the triangle inequality. The second inequality holds due to E1 and the Cauchy-Schwarz
inequality. Let vt = max{κ, σ̇(∆̂t)}. Using the fact that σ̇(·) is an even function decreasing when x > 0, we have
vt ≤ σ̇

((
ϕ(xt, at)− ϕ(xt, bt)

)⊤
θ∗). Therefore, we have Λt ⪯ Ht. As a result, (D.10) indicates that

∥θ∗ − θt∥2Λt
≤ ∥θ∗ − θt∥2Ht

≤ (1 + 4B)2∥Gt(θ
∗)−Gt(θt)∥2H−1

t
.

Using (D.8), we have

∥θ∗ − θt∥Λt ≤ (1 + 4B)∥Gt(θ
∗)−Gt(θt)∥H−1

t

≤ (1 + 4B)

[√
λB +

√
λ

2
+

2√
λ
d log

(
dλ+ 2t

dλ

)
+

2√
λ
d log(1/δ) + αC

]
= β̃t.

Taking a union bound, we complete the proof of Lemma C.1.

E Experiments
In this section, we conduct simulation experiments to verify our theoretical results.

E.1 Experiment Setup
Preference Model. We study the effect of adversarial feedback with the preference model determined by (3.1), where
σ(x) = 1/(1 + e−x). We randomly generate the underlying parameter in [−0.5, 0.5]d and normalize it to be a vector with
∥θ∗∥2 = 2. Then, we set it to be the underlying parameter and construct the reward utilized in the preference model as
r∗(x, a) = ⟨θ∗,ϕ(x, a)⟩. We set the action set A =

{
− 1/

√
d, 1/

√
d
}d

. For simplicity, we assume ϕ(x, a) = a. In our
experiment, we set the dimension d = 5, with the size of action set |A| = 2d = 32.

Adversarial Attack Methods. We study the performance of our algorithm using different adversarial attack methods. We
categorize the first two methods as “weak” primarily because the adversary in these scenarios does not utilize information
about the agent’s actions. In contrast, we classify the latter two methods as “strong” attacks. In these cases, the adversary
leverages a broader scope of information, including knowledge of the actions selected by the agent and the true preference
model. This enables it to devise more targeted adversarial methods.

• “Greedy Attack”: The adversary will flip the preference label for the first C rounds. After that, it will not corrupt the
result anymore.

• “Random Attack”: In each round, the adversary will flip the preference label with the probability of 0 < p < 1, until the
times of adversarial feedback reach C.

• “Adversarial Attack”: The adversary can have access to the true preference model. It will only flip the preference label
when it aligns with the preference model, i.e., the probability for the preference model to make that decision is larger than
0.5, until the times of adversarial feedback reach C.

• “Misleading Attack”: The adversary selects a suboptimal action. It will make sure this arm is always the winner in the
comparison until the times of adversarial feedback reach C. In this way, it will mislead the agent to believe this action is
the optimal one.
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(c) Adversarial Attack
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Figure 1. Comparison of RCDB (Our Algorithm 1), MaxInp (Saha, 2021), CoLSTIM (Bengs et al., 2022) and MaxPairUCB (Di et al.,
2023). We report the cumulative regret with various adversarial attack methods (Greedy, Random, Adversarial, Misleading). For the
baselines, the parameters are carefully tuned to achieve better results with different attack methods. The total number of adversarial
feedback is C = ⌈

√
T ⌉.

Experiment Setup. For each experiment instance, we simulate the interaction with the environment for T = 2000 rounds.
In each round, the feedback for the action pair selected by the algorithm is generated according to the defined preference
model. Subsequently, the adversary observes both the selected actions and their corresponding feedback and then engages in
one of the previously described adversarial attack methods. We report the cumulative regret averaged across 10 random runs.

E.2 Performance Comparison
We first introduce the algorithms studied in this section.

• MaxInP: Maximum Informative Pair by Saha (2021). It involves maintaining a standard MLE. With the estimated model,
it then identifies a set of promising arms possible to beat the rest. The selection of arm pairs is then strategically designed
to maximize the uncertainty in the difference between the two arms within this promising set, referred to as “maximum
informative”.

• CoLSTIM: The method by Bengs et al. (2022). It involves maintaining a standard MLE for the estimated model. Based
on this model, the first arm is selected as the one with the highest estimated reward, implying it is the most likely to prevail
over competitors. The second arm is selected to be the first arm’s toughest competitor, with an added uncertainty bonus.

• MaxPairUCB: This algorithm was proposed in Di et al. (2023). It uses the regularized MLE to estimate the parameter
θ∗. Then it selects the actions based on a symmetric action selection rule, i.e. the actions with the largest estimated reward
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plus some uncertainty bonus.

• RCDB: Algorithm 1 proposed in this paper. The key difference from the other algorithms is the use of uncertainty weight
in the calculation of MLE (4.4). The we use the same symmetric action selection rule as MaxPairUCB. Our experiment
results show that the uncertainty weight is critical in the face of adversarial feedback.

Our results are demonstrated in Figure 1. In Figure 1(a) and Figure 1(b), we observe scenarios where the adversary is “weak”
due to the lack of access to information regarding the selected actions and the underlying preference model. Notably, in
these situations, our algorithm RCDB outperforms all other baseline algorithms, demonstrating its robustness. Among the
other algorithms, CoLSTIM performs as the strongest competitor.
In Figure 1(c), the adversary employs a ’stronger’ adversarial method. Due to the inherent randomness of the model, some
labels may naturally be ’incorrect’. An adversary with knowledge of the selected actions and the preference model can
strategically neglect these naturally incorrect labels and selectively flip the others. This method proves catastrophic for
algorithms to learn the true model, as it results in the agent encountering only incorrect preference labels at the beginning.
Our results indicate that this leads to significantly higher regret. However, it’s noteworthy that our algorithm RCDB
demonstrates considerable robustness.
In Figure 1(d), the adversary employs a strategy aimed at misleading algorithms into believing a suboptimal action is the
best choice. The algorithm CoLSTIM appears to be the most susceptible to being cheated by this method. Despite the
deployment of ’strong’ adversarial methods, as shown in both Figure 1(c) and Figure 1(d), our algorithm, RCDB, consistently
demonstrates exceptional robustness against these attacks. A significant advantage of RCDB lies in that our parameter
is selected solely based on the number of adversarial feedback C, irrespective of the nature of the adversarial methods
employed. This contrasts with other algorithms where parameter tuning must be specifically adapted for each distinct
adversarial method.
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Figure 2. The relationship between cumulative regret and the number of adversarial feedback C. For this specific experiment, we employ
the ”greedy attack” method to generate the adversarial feedback. C is selected from the set [20, 40, 60, 80, 100, 120, 140, 160, 180, 200]
(10 adversarial levels).

E.3 Robustness to Different Numbers of Adversarial Feedback
In this section, we test the performance of algorithms with increasing times of adversarial feedback. As shown in Figure 2,
our algorithm has a linear dependency on the number of adversarial feedback C, which is consistent with the theoretical
results we have proved in Theorem 5.3. In comparison to other algorithms, RCDB demonstrates superior robustness against
adversarial feedback, as evidenced by its notably smaller regret.

F Auxiliary Lemmas
Lemma F.1 (Azuma–Hoeffding inequality, Cesa-Bianchi & Lugosi 2006). Let {ηk}Kk=1 be a martingale difference sequence
with respect to a filtration {Ft} satisfying |ηt| ≤ R for some constant R, ηt is Ft+1-measurable, E[ηt|Ft] = 0. Then for
any 0 < δ < 1, with probability at least 1− δ, we have

T∑
t=1

ηt ≤ R
√
2T log 1/δ.

Lemma F.2 (Lemma 9 Abbasi-Yadkori et al. 2011). Let {ϵt}Tt=1 be a real-valued stochastic process with corresponding
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filtration {Ft}Tt=0 such that ϵt is Ft-measurable and ϵt is conditionally R-sub-Gaussian, i.e.

∀λ ∈ R,E[eλϵt |Ft−1] ≤ exp
(λ2R2

2

)
.

Let {xt}Tt=1 be an Rd-valued stochastic process where xt is Ft−1-measurable and for any t ∈ [T ], we further define
Σt = λI+

∑t
i=1 xix

⊤
i . Then with probability at least 1− δ, for all t ∈ [T ], we have∥∥∥∥ T∑

i=1

xiηi

∥∥∥∥2
Σ−1

t

≤ 2R2 log

(
det(Σt)

1/2 det(Σ0)
−1/2

δ

)
.

Lemma F.3 (Lemma 11, Abbasi-Yadkori et al. 2011). For any λ > 0 and sequence {xt}Tt=1 ⊆ Rd for t ∈ [T ], define
Zt = λI+

∑t−1
i=1 xix

⊤
i . Then, provided that ∥xt∥2 ≤ L holds for all t ∈ [T ], we have

T∑
t=1

min
{
1, ∥xt∥2Z−1

t

}
≤ 2d log(1 + TL2/(dλ)).

Lemma F.4 (Theorem 1 in Faury et al. 2020). Let {Ft}∞t=1 be a filtration. Let {xt}∞t=1 be a stochastic process, such that xt

is Ft-measurable. Suppose ∥xt∥2 ≤ 1. Furthermore, let {ϵt}∞t=1 be a stochastic process which is Ft+1-measurable. Assume
|ϵt| ≤ 1. E[ϵt|Ft] = 0. E[ϵ2t |Ft] = σ2

t . Let λ > 0 and for any t ≥ 1 define:

Ht :=

t∑
s=1

σ2
sxsx

⊤
s + λI.

Then with probability at least 1− δ, for all t ∈ [T ], we have∥∥∥∥ t∑
i=1

xiϵi

∥∥∥∥
H−1

t

≤
√
λ

2
+

2√
λ
log

(
det(Ht)

1/2λ−d/2

δ

)
+

2√
λ
d log(2).

Lemma F.5 (Lemma 7 in Abeille et al. 2021). Let f be a strictly increasing function such that |f̈ | ≤ ḟ , and let I be any
bounded interval of R. Then, for all z1, z2 ∈ I , the following inequality holds:∫ 1

0

ḟ
(
z1 + v(z2 − z1)

)
dv ≥ ḟ(z)

1 + |z1 − z2|
for z ∈ {z1, z2}.
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