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ABSTRACT

Neural processes (NPs) are a class of models that learn stochastic processes directly
from data and can be used for inference, sampling, and conditional sampling. We
introduce a new NP model, which is based on flow matching, a generative modeling
paradigm that has demonstrated strong performance on various data modalities.
Our model is simple to implement, is efficient in training and evaluation, and
outperforms previous state-of-the-art methods on various benchmarks including
synthetic 1D Gaussian processes data, 2D images, and real-world weather data.

1 INTRODUCTION

Recent advances in generative machine learning are primarily driven by models capable of leveraging
context information to enhance their predictions. To be effective across varying levels of contextual
information, these models must handle multiple degrees of conditional uncertainty and therefore
accurately capture conditional distributions at multiple levels of abstraction.

The neural process framework introduced by Garnelo et al. (2018a;b) provides a principled approach
to context-based predictions by formulating the problem as learning stochastic processes from data,
essentially training generative models of functions. Similarly to Gaussian processes, these models
focus on continuous data and can be used as priors over functions capable of generating samples
of arbitrary points along the functions. These target points can be predicted unconditionally or
conditioned on a context of observed points along the function. This formulation has made neural
processes a popular approach for modeling complex functional data in various domains.

In recent years, many different models have been proposed within the neural process framework,
differing in their architecture and stochastic mechanisms. Early models focused on stochastic latent
variables and were trained by variational inference Garnelo et al. (2018b). More recent approaches
such as Nguyen & Grover (2022) leverage transformer-based architectures Vaswani et al. (2017) in
an autoregressive setup, achieving improved performance in many scenarios.

Despite these advancements, several challenges remain unresolved. With the exception of autoregres-
sive approaches, models tend to underfit the training functions, failing to capture intricate structures.
On the other hand, autoregressive models, while more expressive, require sequential sampling of the
target points one at a time and are therefore expensive to sample from. Additionally, these models
lack a global or hierarchical representation of the function and the uncertainty which can limit their
applicability and harm their performance in some cases. For example, the first dimensions in the
autoregressive order are constrained to simple distributions.

In this paper, we introduce FlowNP, a new neural process model based on flow matching - a recent
generative modeling paradigm that is closely related to diffusion and score-based models and has
demonstrated strong performance in images and other modalities Liu et al. (2022); Lipman et al.
(2022); Albergo & Vanden-Eijnden (2022). Flow matching operates by continuously transforming
a simple and tractable initial distribution into the target data distribution by flowing through a
continuous path of intermediate probabilities.

Our model is built on a transformer architecture where the input tokens include both the observed
context points and intermediate values of the target points as generated across the flow path. At each
step the model outputs a velocity vector, which guides the sampler in updating the target point values
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Figure 1: FlowNP: we model
a probability flow of a stochas-
tic process where at each step
our model takes the values of
the observed context points from
the given function (ctx), and an
intermediate value of the target
points (tgt) at time t and pre-
dicts the velocities of the target
points. With an ODE solver
this can be used as a model of
p (ytgt|xtgt, {xctx, yctx}) to gen-
erate samples or compute likeli-
hoods.

for the subsequent step. This formulation allows FlowNP to capture complex structures effectively
while enabling parallel sampling of all target points.

FlowNP offers several advantages over existing approaches. It is simple, efficient and capable
of generating samples and computing likelihoods of any conditional distribution. In contrast to
autoregressive models, it generates all target points in parallel, providing a more globally coherent
and consistent representation of uncertainty. Extensive experimentation on standard NP benchmarks
demonstrate that FlowNP consistently outperforms prior models, achieving state-of-the-art results
across multiple datasets.

2 BACKGROUND

2.1 NEURAL PROCESSES

Neural processes (NP) Garnelo et al. (2018a;b), provide a framework for training generative models
of functions, by modeling a stochastic process using a dataset of functions. Given such a dataset,
a model is trained to predict an arbitrary target set of points along a function, based on a context
set of observed points along the same function. More formally, if the functions are defined as
F = {f : X → Y}, models are trained to predict a conditional distribution over the target set:

pθ (y
tgt|xtgt, {xctx, yctx}) (1)

where xctx ∈ XM and xtgt ∈ XN are the positions of the M context points and N target points
respectively, and yctx ∈ YM and ytgt ∈ YN are the function evaluations of these points yi = f(xi).
Each of X and Y can be of arbitrary dimension. We put the context in ‘{}’ brackets for better
readability.

This approach of modeling stochastic processes follows from Kolmogorov’s extension theo-
rem (Øksendal, 2003) that states that a collection of distributions over sets is equivalent to a stochastic
process if it meets two conditions: exchangeability and consistency.

Exchangeability. This condition requires that joint distributions over the sets are invariant to
permutations. When using conditionals as in Eq. 1, this condition requires invariance to random
permutations both for points in the target set and points in the context set. For example, the following
equality should hold:

pθ(y1, y2|x1, x2, {x3, x4, y3, y4}) = pθ(y2, y1|x2, x1, {x4, x3, y4, y3}) (2)

2



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Consistency This condition requires that joint distributions are consistent with marginalizations.
Since many NP models are designed to directly predict conditional distributions as in Eq. 1, this
means two things. First, marginalizing over variables in the target set should be consistent with using
the equivalently reduced target set. For example, the following equality should hold:∫

pθ(y1, y2|x1, x2, {x3, y3})dy2 = pθ(y1|x1, {x3, y3}) (3)

Additionaly, the condional distributions need to be consistent with different conditioning, i.e. they
should obey the chain rule and Bayes’ rule. For example:

pθ(y1, y2|x1, x2, {}) = pθ(y1|x1, {x2, y2}) pθ(y2|x2, {}) (4)

2.2 FLOW MATCHING

Flow matching Lipman et al. (2022); Liu et al. (2022); Albergo & Vanden-Eijnden (2022); Albergo
et al. (2023) is a generative modeling paradigm that has recently achieved significant traction. It is
closely related to diffusion modeling and its appeal stems from being both conceptually very simple
and versatile.

The fundamental object in flow matching is a probability path pt(x) defined over a continuous time
parameter t ∈ [0, 1]. This path defines a smooth transition between the two distributions p0(x) and
p1(x). Most commonly, p0(x) corresponds to a simple tractable distribution such as a Gaussian, and
p1(x) corresponds to a target distribution which is defined only through samples from the training
data such as images.

In its simplest formulation, which we also adopt here, training is performed by generating samples
of a conditional probability path pt(xt|x1) computed as an interpolation tx1 + (1− t)x0 between
an image x1 and a noise sample x0. Given this sample, a model is trained to predict a conditional
velocity ut(xt|x1) = x1 − x0, using a squared loss:

L(θ) = Et,x1,xt
∥uθ(xt, t)− ut(xt|x1)∥2 (5)

It can be shown that using the expectation over x1 results in the model approximating the uncondi-
tional velocity ut(xt) =

d
dtxt defining an ordinary differential equation (ODE) which can be used

for both sampling and likelihood estimation.

In the case of sampling, this is achieved by first generating samples from the noise p0(x0) and using
an ODE solver to transform the sample into a sample from p1(x1). Computing the likelihood of a
given sample x1 is done via the change of variable formula where the sample is transformed back
from x1 to a sample from the tractable noise distribution p0(x0), then computing the likelihood of x0

and correcting with an estimate of the Jacobian trace.

2.3 RELATED WORK

Neural processes. A prominent approach to form distributions over continuous functions is by
using Gaussian processes Rasmussen & Williams (2006). While they can be powerful, leveraging
their capacity in modeling arbitrary functions is limited due to the complexity of training and
evaluating them. To this end Neural processes were introduced, allowing the prior over functions
to be learned from data in straightforward way. The first model in the NP class is the Conditional
Neural Process (CNP) Garnelo et al. (2018a), which is deterministic and predicts an independent
Gaussian distribution for each target point given the context. Later, the Neural Process (NP) Garnelo
et al. (2018b) introduced a latent variable to allow capturing global uncertainty over the functions.
Empirical evaluations of the approach was conducted by Le et al. (2018). Following, different
extensions to the model were proposed. These include using attention mechanisms (ANP) Kim et al.
(2019), translation invariance through convolutions Gordon et al. (2019), bootstrapping Lee et al.
(2020), and more Bruinsma et al. (2021); Holderrieth et al. (2021); Ashman et al. (2024a;b).

Among the extensions of NP, a notable example is the Transformer Neural Process (TNP) Nguyen
& Grover (2022) which treats the prediction of conditional distributions as sequence modeling. Of
the three proposed variants in the TNP paper, the autoregressive model (TNP-A), implemented with
a causal mask, achieves the highest scores on most common benchmarks, and here we refer to it
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simply as TNP. Our model is implemented in a similar way to TNP, however, rather than predicting
the next single target point in an autoregressive fashion, we use a transformer as a predictor of the
flow matching velocity for all target points at once. We show that our model outperforms the TNP.

Diffusion of continuous spaces Following the success of diffusion models for data in discrete
and finite spaces such as image grids Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al.
(2020); Song et al. (2021) different works have investigated their extension to infinite and continuous
spaces Kerrigan et al. (2022); Phillips et al. (2022); Pidstrigach et al. (2023); Xu et al. (2023);
Bond-Taylor & Willcocks (2023); Mathieu et al. (2023). These approaches use diffusion to model
joint distributions with some spatial structure. Given a joint distribution several approaches can be
applied to predict conditional distributions. Pidstrigach et al. (2023) and Bond-Taylor & Willcocks
(2023) use a guidance term computed based on the conditioning context and Kerrigan et al. (2022)
and Dutordoir et al. (2023) use a replacement method Lugmayr et al. (2022) to generate conditional
samples.

Using joint distributions over continuous spaces to predict conditional distributions can be seen as
implementing neural processes using the definition of conditional distributions p(x|y) = p(x, y)/p(y).
The Neural Diffusion Process (NDP) Dutordoir et al. (2023) makes this connection explicitly and
uses this method to evaluate the model on NP benchmarks. In comparison, our model uses a flow
matching formulation, and is trained to capture both the joint distribution and arbitrary conditionals
directly. We show that our model outperforms the NDP.

3 THE FLOWNP MODEL

Our goal is to implement a model of conditional distributions defined by any arbitrary target and
context sets of points coming from an underlying function as formulated in Eq. 1.

We implement our model using a transformer architecture Vaswani et al. (2017) that predicts the
velocities of the target variables at time t in the probability path defined by the continuous flow. The
model is depicted in Fig. 1. We perform full self-attention between all input tokens, whereby each
of the tokens are updated using an attention operator on all other tokens. The tokens we feed to the
transformer are divided to context tokens and target tokens.

Target tokens: These tokens represent the intermediate values of the N function points ytgt

evaluated at the N target positions xtgt. For the evaluation at time t in the probability path, each
token is formed by concatenating a single target point position together with the time t and the
intermediate value of the variable at that time.

tokentgti = embed([xtgti , t, y
tgti
t ]) (6)

Context tokens: These tokens represent the observed points along the function, on which the
distribution is conditioned. They are formed in the same way as the target tokens, except that they
always contain the true observed function evaluations yctx1 = yctx, and the time t = 1, equivalent to
the data distribution p1(y).

tokenctxi = embed([xctxi , 1, yctxi1 ]) (7)

Output tokens: The output of our model consist of the output tokens corresponding to the input
target tokens. Each of these tokens is projected to the original dimension of the function values
dim(Y) and used as the velocity vector at time t in the continuous probability path defined by the
model.

3.1 TRAINING

We train our model following the standard NP training setup using a conditional flow matching
approach. At each training step, a minibatch of functions is extracted from the training set, where
for each function two random sets of points are used as the context and target sets. For each step we
randomly define different sizes of these two sets. Given the context and targets sets, we train our
model as a velocity predictor by generating a random sample from an intermediate distribution along
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the continuous probability path ytgtt ∼ pt(y
tgt
t |y

tgt
1 ). This is achieved by interpolating the clean data

with random noise:
ytgtt = tytgt1 + (1− t)ytgt0 , ytgt0 ∼ N (0, NI). (8)

The loss is computed using a square error of model’s output and the conditional velocity of the target
points ut(y

tgt
t |y

tgt
1 ) = ytgt1 − ytgt0 . Since the velocity model also sees the clean values of the context

points, it can be viewed as a standard flow matching model only with access to side information about
the target variables. In summary, the training loss is computed by:

L(θ) = E∥uθ(ytgtt , t, xtgt, xctx, yctx1 )− (ytgt1 − ytgt0 )∥2 (9)

where the expectation is over:

f ∼ F , {xtgt, ytgt1 , xctx, yctx1 } ∼ f, t ∼ U , ytgt0 ∼ N

The training process is presented in Alg. 1

3.2 EVALUATION

Once the model is trained, it can be used both for generating samples and computing likelihoods over
data. In order to use the model to generate samples, random values of the target set at time t = 0 are
drawn from a Normal distribution ytgt0 ∼ N (0, NI) and then they are used as the initial condition
when solving the ODE from t = 0 to t = 1. This can be done with various ODE solvers where each
evaluation of the velocity ut is performed by calling the model with the additional input of target
positions and context positions and values, ut ≈ uθ(ytgtt , t, xtgt, xctx, yctx1 ). The sampling process
is presented in Alg. 2.

In order to compute likelihoods over data, a similar ODE is solved in the reverse direction. Starting
from the target values ytgt1 at t = 1, samples are transformed back to t = 0 and their likelihood is
evaluated with the standard Normal distribution. To accommodate for the change of variable formula,
the Jacobian is estimated across the probability path using the Hutchinson trace estimator.

Running time Our model is based on a transformer architecture, therefore it is interesting to
analyze its running time compared to the TNP. First, the number of tokens used for predicting N
target points given a context of M points in our model is N +M compared to the TNP model which
uses 2N +M . Second, generating samples with TNP requires N evaluations as it is an autoregressive
model. For our model the number of evaluation depends on the ODE solver and is a parameter
that can be tuned according to the required accuracy, however it is independent of the number of
target points N . The main disadvantage of our model compared to TNP is in evaluating likelihoods,
where TNP requires only one model evaluation, and our model, similar to sampling, requires multiple
evaluations as part of the ODE solution. Wall-clock time comparisons for some of the experiments
are reported in App. D.

3.3 EXCHANGEABILITY AND CONSISTENCY

In this section we discuss the properties of our model in relation to the requirements of the Kolmogorov
extension theorem as presented in Sec. 2.1, namely the exchangeability and consistency properties.

Within a given conditional prediction task, p(ytgt|xtgt, {xctx, yctx}) our model is guaranteed to be
invariant with respect to permutations of both the context and the target, and therefore complies with
the exchangeability property. This is due to the transformer architecture and the treatment of tokens
as sets rather than sequences. Specifically, all tokens undergo the exact same processing and we do
not use positional encodings that rely on ordering.

On the other hand, the consistency property is not implied by the architecture of our model and
therefore it is not guaranteed. However, even though it is not guaranteed by the model itself, the
training paradigm of NPs promotes the consistency property. This is because for every training
sample, the context and target sets are constructed randomly from a true underlying function, which is
itself a sample from the stochastic process defined by the training set. Therefore the training objective
is a Monte Carlo estimate of the ground truth stochastic process. We empirically show an example
where our model learns to be consistent in App. D.
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Table 1: Comparison of log-likelihood computed on the target set for various 1D GP datasets. For
CNP, NP and ANP on RBF Matern- 52 and Periodic we report results from Nguyen & Grover (2022)
while for the rest we provide mean and standard deviation over five runs. FlowNP outperforms all
other models across all datasets, except in two cases where TNP achieves comparable performance.

MODEL RBF MATERN- 5
2 PERIODIC FIXED-NOISY RBF FIXED-NOISY MATERN- 5

2

CNP 0.26 ± 0.02 0.04 ± 0.02 -1.40 ± 0.02 -1.00 ± 0.02 -1.09 ± 0.02
NP 0.27 ± 0.01 0.07 ± 0.01 -1.15 ± 0.04 -1.18 ± 0.02 -1.20 ± 0.01
ANP 0.81 ± 0.00 0.63 ± 0.00 -5.02 ± 0.21 -0.91 ± 0.02 -0.99 ± 0.02
TNP 1.65 ± 0.02 1.29 ± 0.02 -0.58 ± 0.01 0.68 ± 0.01 0.30 ± 0.01
NDP(REIMPLEMENTED) 0.90 ± 0.03 0.7 ± 0.03 -0.55 ± 0.00 0.53 ± 0.00 0.19 ± 0.02
FLOWNP (OURS) 1.68 ± 0.02 1.29 ± 0.02 -0.50 ± 0.01 0.71 ± 0.01 0.30 ± 0.01

ANP

TNP

FlowNP

ANP

TNP

FlowNP

Figure 2: Samples from models trained on an RBF kernel (left) and a Matern- 52 kernel (right). ANP
captures the uncertainty mostly through its predicted local variance (shaded area) while TNP and
FlowNP can generate coherent samples that cover the global uncertainty. In contrast to TNP that
generates the samples point-by-point, FlowNP generates all points in parallel, resulting in smoother
samples.

We note that also for previous models of NPs, consistency is not completely guaranteed and holds
only in a limited sense. Specifically, while models like CNP, NP and TNP are consistent over
marginalization (Eq. 3), they are not consistent over conditioning (Eq. 4). On the other hand models
like NDP are consistent over conditioning and not over marginalization. For more discusison on this
see Sec. A.

4 EXPERIMENTS

We implement the same FlowNP model for all experiments, differing only in the dimensions of the
input dim(X ) and output dim(Y). We use a transformer with 6 layers of full self attention, 128
hidden dimensions and 4 attention heads. We use sinusoidal positional encodings for the input x
with 10 frequencies per dimension. We emphasize that the encoding is a function of x rather than the
position in the sequence. For likelihood evaluation and sampling, we use an ODE solver based on the
midpoint method with 100 steps implemented by Lipman et al. (2024). The transformer architecture
and implementation of our model are based on Nguyen & Grover (2022). We provide the code of our
model in the supplementary and we will open source the full repository including code of all models
and experiments upon publication.

Baselines We compare to the baselines CNP Garnelo et al. (2018a), NP Garnelo et al. (2018b)
and ANP Kim et al. (2019) using the implementation in Nguyen & Grover (2022) and Lee et al.
(2020), to TNP Nguyen & Grover (2022) and to a reimplemented version of NDP Dutordoir et al.
(2023) denoted by NDP(reimplemented). Both TNP and NDP models share our network architecture
and differ only in the training objective and evaluation method. Specifically, TNP uses the same
transformer as we do but is trained by autoregressive maximum likelihood using a causal mask. We
use the code published by the authors. For the NDP baseline we reimplement the model with the
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Table 2: Target log-likelihood mean ± 1 standard deviation for the EMNIST and CelebA datasets.

MODEL EMNIST 0-9 EMNIST 10-46 CELEBA

CNP 0.73 ± 0.00 0.49 ± 0.01 2.15 ± 0.01
NP 0.79 ± 0.01 0.59 ± 0.01 2.48 ± 0.02
ANP 0.98 ± 0.00 0.89 ± 0.00 2.90 ± 0.00
TNP 2.06 ± 0.00 1.74 ± 0.01 4.13 ± 0.02
NDP(REIMPLEMENTED) 1.20 ± 0.01 1.09 ± 0.01 3.42 ± 0.02
FLOWNP (OURS) 2.49 ± 0.01 2.41 ± 0.02 7.88 ± 0.01

same transformer used in FlowNP, omitting the bi-directional attention used in the original NDP.
Therefore, it differs from our model only by training on unconditional joint distributions and using a
diffusion loss based on predicting the denoised data rather than the flow velocity. We evaluate the
model likelihood by the probability flow ODE with the same ODE solver used by FlowNP.

4.1 SYNTHETIC 1D FUNCTIONS

We start with the standard benchmarks of NPs generated from synthetic 1D Gaussian processes (GP).
We follow the evaluation protocols of both Lee et al. (2020) and Bruinsma et al. (2021), which are
used respectively in the TNP Nguyen & Grover (2022) and NDP Dutordoir et al. (2023) papers. In
the first Lee et al. (2020), we generate data from three different GP kernels: RBF (also called squared
exponential - SE), Matern- 52 and Periodic. For each kernel, functions are generated using parameters
which are randomly chosen for each sampled function separately. Evaluation is done on held-out
data using a random number of context and target points sampled uniformly between 3 and 47 where
the total number is constrained to be equal or less than 50. In the second protocol Bruinsma et al.
(2021) we use two GP kernels: RBF and Matern- 52 , using a fixed set of parameters, and additional
Gaussian observation noise with variance 0.052. Evaluation is done on held-out data with the same
parameters, a uniformly random context size between 1 and 10, and a fixed number of 50 target
points. These datasets are denoted by Fixed-Noisy RBF and Fixed-Noisy Matern- 52 . Likelihood for
the latent variable models NP and ANP are computed with variational importance sampling Burda
et al. (2015) using 50 samples, and for the NDP and FlowNP using the midpoint ODE solver with
100 steps.

Results are shown in Table 1. We run all experiments 5 times with different random seeds and
evaluation sets and report the mean and standard deviation. For CNP ANP and NP on RBF, Matern- 52
and Periodic we report the results from Nguyen & Grover (2022). Our model, FlowNP, outperforms
all other models in all the benchmarks except for Matern- 52 and Fixed-Noisy Matern- 52 where FlowNP
and TNP perform similarly. We also show samples for models trained on the RBF and Matern kernels
with fixed parameters in Fig. 2. We compare ANP: a latent variable model trained with variational
inference; TNP: an autoregressive model; and our proposed model, FlowNP. ANP largely fails to
capture the global uncertainty with the latent variable, and tends to attribute large variances to local
uncertainty, depicted as the shaded area corresponding to the predicted variance of each point. In
contrast, TNP and FlowNP generate plausible samples that cover the global uncertainty. However
while TNP generates samples in an autoregressive manner sometimes resulting in a jumpy behavior,
FlowNP generates all points in parallel mostly resulting in smoother samples. For a visualiztion of
the sampling process see Fig. 5 in the appendix.

4.2 IMAGES

We follow with experiments on two image datasets, EMNIST Cohen et al. (2017) and CelebA Liu
et al. (2018), where the input X is 2-dimensional and represents the spacial position in the image,
and the output Y is either a 1D grayscale value or a 3D RGB value of the pixels. For EMNIST,
which contains images of characters, we train on the 10 first classes (digits 0-9) and evaluate both
the in-distribution performance, and the out-of-distribution performance on the rest of the characters.
Since the background in the images is effectively constant, the likelihood can grow arbitrarily and
therefore the predicted variance needs to be lower bounded. Since we cannot bound the variance in a
straightforward way, in order to make a fair comparison with the baseline models that do bound the
variance we add small noise to the data with variance 0.012. For the TNP baseline we optimize the
variance bound. Results are shown in Table 2. FlowNP outperforms all other models both for the
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GT context samples GT context samples GT context FlowNP TNP

Figure 3: Conditional samples generated by FlowNP and TNP for in-distribution EMNIST, out-of-
distribution EMNIST and CelebA. We show 5 samples for EMNIST and the average of 30 samples
for CelebA. Samples from FlowNP are generally sharper, more coherent and more diverse.

Samples p(ytgt|xtgt = 0, {})

Figure 4: Analysis of FlowNP vs. TNP for a random step function. Samples from FlowNP capture
the sharp transition occurring in random positions, while TNP cannot model this function as each step
in the autoregressive prediction is Gaussian. On the right: the marginal distribution of y predicted for
a single point where x = 0 further demonstrates this and highlights FlowNP’s capacity to capture
multimodal distributions.

in-distribution and out-of-distribution evaluations. We show samples generated by FlowNP and TNP
of three in-distribution and out-of-distribution images, using half of the image as context. Samples
from FlowNP are slightly sharper and more diverse, and are generated by four times less evaluation
steps compared to TNP.

Results for CelebA are shown in Table 2 on the right. FlowNP outperforms all other models. We
show image completion results (Fig. 3) where images are computed by averaging 30 samples. In
comparison to TNP, FlowNP results in sharper and more coherent samples.

4.3 MORE RESULTS, ANALYSIS AND ABLATIONS

We provide results of more experiments on real-world dynamics using meteorological data in the
appendix (App. C). Furthermore, we provide analysis of FlowNP compared to the autoregressive
approach of TNP (Fig. 4) and ablations compared to NDP. For further discussion see App. D.

5 DISCUSSION

We presented FlowNP, a new model which implements neural processes using flow matching. This
model is simple, efficient and outperforms previous neural processes models. We showed results on
standard benchmarks such as 1D GP data and 2D images as well as real-world weather prediction
data. We find that modeling conditionals is favorable over modeling the joint and that using a flow
matching objective is favorable over diffusion. Compared to TNP, FlowNP can efficiently capture
non-Gaussian and multimodal distributions.

Limitations: The main limitation we find with this model is the iterative sampling that can be costly
compared to feed forward models such as ANP. Compared to TNP, in most cases FlowNP would
need less iterations however for likelihood computation and in cases where point-by-point prediction
is needed TNP could be more efficient.
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A CONSISTENCY OF PRIOR MODELS

We discuss the consistency property of different models in more detail. The original CNP and NP
models use architectures that ensure that given a context, all target points are predicted independently.

p(y1, y2|x1, x2, {xctx, yctx} = p(y1|x1, {xctx, yctx} p(y2|x2, {xctx, yctx} (10)

This implies that consistency over marginalization as in Eq. 3 holds. However, nothing in the model
structure guarantees consistency over conditioning rule as in Eq. 4. This is because computing the
model conditioned on different contexts (e.g. the term on the left hand side and the first term on
the right hand side of Eq. 4) cannot be guaranteed to lead to consistent results that comply with an
underlying joint distribution.

TNP, which is based on a transformer performs best when it is used as an autoregressive model. In
that case it does not comply neither with exchangeability nor consistency, since even when using
clever masking to make the model invariant to the context, the joint distribution still depends on
the ordering of the autoregression in the target points. While the authors of TNP propose different
variants of the models that make it exchangeable and consistent with marginalization, they lead to a
significant drop in performance, and are still not guaranteed to be consistent in terms of conditioning.

The reason that NDP is consistent over the chain rule, is that it only models joint distributions and
therefore computes conditionals using the conditional definition. However the full self-attention
architecture leads to predictions of target points that cannot be separated into independent factors and
therefore cannot ensure consistency over marginalizations.

B TRAINING AND SAMPLING

The algortithms for training and sampling are provided in Alg. 1 and Alg. 2. Fig. 5 provides a
demonstration of the sampling process transforming random noise to samples from the conditional
distribution of p(ytgt|xtgt, {xctx, yctx}).

Algorithm 1 Training

input: dataset of functions F
repeat
fi ∼ F Sample a batch of functions, here shown for 1
M,N ∼ U Random context and target sizes
xctx ∼ XM , xtgt ∼ XN Sample positions
yctx ← fi(x

ctx), ytgt ← fi(x
tgt)

t ∼ U [0, 1] Sample flow time
ytgt0 ∼ N (0, NI) Sample noise
ytgtt ← tytgt + (1− t)ytgt0

tokensctx = {embedθ([xctx, 1, yctx])} M tokens
tokenstgt = {embedθ([xtgt, t, ytgtt ])} N tokens
ût ← uθ([tokensctx, tokenstgt])
L(θ) = ∥ût − (ytgt − y

tgt
0 )∥2

θ ← update
(

∂
∂θL(θ)

)
until convergence
output: trained parameters θ.
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Algorithm 2 Sampling with a midpoint ODE solver

input: context xctx, yctx and target positions xtgt

tokensctx = {embedθ([xctx, 1, yctx])} M tokens
ytgt ∼ N (0, NI) Random initialization
for t = 0 to 1 in δ = 1/n steps increments do
tokenstgt = {embedθ([xtgt, t, ytgt])} N tokens
ût ← uθ([tokensctx, tokenstgt])

ytgtmid ← ytgt + δ
2 ût

tokens
tgt
mid = {embedθ([xtgt, t+ δ

2 , y
tgt
mid ])}

ûtmid ← uθ([tokensctx, tokenstgtmid])

ytgt ← ytgt + δûtmid

end for
output: predicted sample ytgt.

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 0.9

t = 0.95

t = 0.98

t = 0.99

t = 1

Figure 5: A visualization of the sampling process, showing the intermediate values ytgtt for different
time steps. Each column is conditioned on a different context and each color represents a different
random sample generated by FlowNP.
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Figure 6: Visualization of wind prediction using conditional samples generated by FlowNP on three
held-out data points from ERA5. The model generates coherent samples based on the context points.
Results are more accurate as more context points are given (right).

MODEL ERA5

TNP 7.9446
FLOWNP (OURS) 11.6083

Table 3: Target log-likelihood for the ERA5 dataset. Pre-
dictions are 4D and consist of temperature, pressure, and
2D wind direction.

C WEATHER DATA

To assess the performance of the FlowNP model in real-world dynamic and multi-dimensional tasks,
we use meteorological data from the ERA5 global dataset Hersbach et al. (2020). We follow the
setup in Holderrieth et al. (2021) and extract data from a circular region centered around Memphis,
USA. Each sample represents a weather snapshot at a single point in time and consists of multiple
meteorological variables: temperature, pressure, and two wind components (eastward and northward).
We use about 34K training samples and train using the NP setup where X represents the 2D longitude
and latitude, Y represents the 4D meteorological variables and random subsets are used as the context
and target sets. A quantitative comparison of the target set log-likelihood between FlowNP and TNP
is reported in Table 3 and conditional samples of wind directions predicted by FlowNP are presented
in Fig. 6.
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MODEL RBF EMNIST

NDP(REIMPLEMENTED) 0.90 1.20
ABL1: DENOISER 1.06 1.24
ABL2: JOINT 1.37 2.44
FLOWNP (OURS) 1.68 2.49

Table 4: Target log-likelihood for ablations connect-
ing our model to NDP. ABL1 is similar to FlowNP
but trained with a denoiser objective over a vari-
ance preserving probablity path. ABL2 is similar to
FLowNP but is trained to predict only joint distribu-
tions rather than conditionals.

D ANALYSIS AND ABLATION

FlowNP vs. TNP We consider the 1D step function, where the output changes from y = 0 to
y = 1 at a random point of x. This function was used in Neal (1998) and Dutordoir et al. (2023) as
an example that cannot be captured by Gaussian processes. Here we show that an autoregressive
transformer-based model like TNP also cannot capture this function accurately. In Fig. 4 we show
samples from TNP and FlowNP. While TNP samples are noisy in the transition area, FlowNP samples
are sharp. The reason is that even though TNP can model complex distributions via the autoregression,
it is constraind to Gaussians at every step. This is evident when looking at the marginal distribution
at x = 0, shown on the right of Fig. 4 for both models. Comparing the marginal distribution of a
single point with samples from the entire function indicates that, even without a formal guarantee,
FlowNP’s training approximately preserves the consistency property (Eq. 3).

Running time Comparing the sampling time between FlowNP and TNP using an NVIDIA
RTX4090 GPU and 100 sampling steps for FlowNP, the time to generate 1 sample in the GP
experiment with 200 target points is 0.3sec for FlowNP and 0.8sec for TNP, and 1 EMNIST sample
with 748 target points is 4.1sec for FlowNP and 72.6sec for TNP.

Number of ODE steps We run an ablation on sampling and log-likelihood evaluation for a different
number of ODE steps. For GP-RBF data, the mean of 5 random seeds with number of steps (10, 20,
40, 60, 80, 100) are the following (the std of for all is 0.014): 1.89, 1.76, 1.70, 1.69, 1.69, 1.69. This
shows that the evaluation plateaus after T=60 steps. We observe similar behavior for sample quality.

FlowNP vs. NDP We conduct an ablation to test the two aspects on which the models differ: (1)
Modeling the joint distribution vs. modeling random conditionals and (2) the objectives of diffusion
with a variance preserving schedule vs. conditional flow matching. The results are shown in Table. 4
suggesting that both aspects contribute to FlowNP’s performance.
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