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Abstract
The fully-connected dependencies in self-001
attention over-fit spurious correlations and002
limit the generalization on out-of-distribution003
data. Pre-trained language models (PLMs) al-004
leviate this problem benefitted from the ap-005
preciable counterexamples in large-scale pre-006
training corpora. However, there is no study to007
resolve this problem by improving the model008
structure. We enforced the causal indepen-009
dence mechanism in the self-attention network,010
which constrains attention mapping topologies011
(AMGs) as causal structures. To implement012
it, we defined a smooth loss on the Markov013
boundary constrained directed acyclic graph014
(DAG) with the Lagrange duality, and used it015
to optimize the AMGs towards causal struc-016
tures. Further, this causal attention network017
was applied on Transformer (Causal Trans-018
former). The empirical results on two spu-019
rious correlation challenging (SCC) datasets,020
neural machine translation (NMT) and natural021
language inference (NLI) tasks demonstrated022
that our Causal Transformer outperforms the023
state-of-the-art model and improves the out-of-024
distribution prediction.025

1 Introduction026

Recently, Transformer (Vaswani et al., 2017) and027

the pre-trained language models (PLMs) on top of028

it, such as the BERT (Devlin et al., 2019), GPT029

(Radford et al., 2019), ViLBERT (Lu et al., 2019),030

ViT (Dosovitskiy et al., 2020) and Swin Trans-031

former (Liu et al., 2021) have achieved state-of-032

the-art performance across a wide range of natural033

language processing (NLP) (Lin et al., 2021), com-034

puter vision (CV) (Han et al., 2020), multimodal035

(Yao and Wan, 2020) and other tasks. As a vital036

component in Transformer, the self-attention is op-037

timized to learn the fully-connected dependencies038

of a single token (or batch) with respect to all other039

tokens (or batches) in the same sequence. The040

self-attention outperforms traditional deep learn-041

ing models (like recurrent neural networks (RNNs),042

convolutional neural networks (CNNs) and et al.) 043

as it can capture long-term and non-consecutive 044

dependencies. This superiority helps the models 045

to overcome the catastrophic forgetting in previ- 046

ous deep learning models and contributes to the 047

popularity of PLMs on top of Transformers. 048

Yaghoobzadeh et al. (2021) conducted an experi- 049

ment that trains the BoW, BiLSTM and BERT with 050

Transfer learning on MNLI, QQP and FEVER se- 051

quentially. The number of forgotten examples in 052

the training process and the final prediction on test 053

data were recorded in Figure 1. 054

Figure 1: The experiment conducted on BoW, BiL-
STM, BERT with multitask learning on MNLI, QQP
and FEVER, where (a) is the numbers of forgetting
examples in the Transfer learning process on three
datasets and (b) is the test accuracies of different mod-
els.

This experiment demonstrated that BERT can 055

remember most examples that it has encountered. 056

This superiority improves the robustness of PLMs 057

on spurious correlations because the models en- 058

counter enough counterexamples in large-scale pre- 059

training corpora (Tu et al., 2020). But, Tu et al. 060

(2020) demonstrated with experimental results that 061

BERT does not outperform traditional models for 062

spurious correlation challenging datasets when it 063

is trained from scratch. The fully-connection in 064

self-attention networks is one of the important 065

causes of this phenomenon (Wang and Culotta, 066

2020), and which limits the generalization on out- 067

of-distribution test data. 068

Recent studies (Jain and Wallace, 2019; Lin 069

et al., 2021) proposed the sparse attentions to im- 070
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Figure 2: The fully-connected self-attention and different sparse attentions (band, dilated band, random and local
block band), where x, x̂ represent the input token and output token respectively. In fully-connected attention, the
great majority tokens have not conditional independent distributions with each other. In the band, dilated band and
local block band attentions, the blue tokens have conditional independencies with the green tokens.

prove the test generalization, and these existing071

methods can be categorized into the band, random072

as shown in Figure 2. The band attentions ex-073

plore the localness modelling for the self-attention074

network, and it has been branched in to local con-075

secution, dilatation and local block (Yang et al.,076

2018; Guo et al., 2019a). The random sparsity ran-077

domly activates attention connections taking the078

attention scores as the probabilities, or samples079

the attention values from prior distribution only080

(Wang et al., 2020; He et al., 2020; Ying et al.,081

2021; You et al., 2020). Band sparsities improve082

the conditional independence on the attention map-083

ping graphs (AMGs), which reduces great spurious084

correlations. But the localness limits the reasoning085

on long-term and non-consecutive relations. The086

random attentions can learn more non-consecutive087

relations than the local band in each layer, but088

which impede the limitation on spurious correla-089

tions.090

There is no research to explore how to elimi-091

nate the useless attention mapping dependencies092

in Transformers. To tackle this problem, we intro-093

duced the causal independence mechanism (ICM)094

(Peters et al., 2017) on the attention mapping graph095

(AMGs). This mechanism means that the feature096

updater on a token, giving its causes, does not in-097

form or influence the feature updaters on other to-098

kens. Which aims to alleviate the over-fitting prob-099

lem on useless correlations (spurious correlations).100

Our method implements this ICM by enforcing101

a directed acyclic graph (DAG) constraint in the102

self-attention mappings (Luo et al., 2020). 103

Figure 3: The examples of DAGs that satisfy the no-
loop constraint. The DAGs (a), (b) and (c) have sim-
ple relations that cannot capture long-range and non-
consecutive dependencies and DAGs (d), (e) cannot dis-
tinguish the confusions.

The DAGs learning has become practicability 104

in deep learning to improve the out-of-distribution 105

prediction (Krueger et al., 2021) after the smooth 106

losses on DAGs were proposed by Zheng et al. 107

(2018a, 2020). This loss optimizes random graphs 108

towards DAGs by eliminating all loops. However, 109

the no-loop is a necessary but insufficient criterion 110

for the ICM in causal Bayesian networks, as shown 111

in Figure 3. 112

In this paper, we first analyzed the over-fitting 113

problem on the spurious correlations in the self- 114

attention networks. Further, we chose a stable DAG 115

constraint - Markov Blanket (also called Markov 116

boundary) (Liu and Liu, 2018) as the prior sparsity 117

on the attention mapping. Next, we defined the 118

smooth loss with the Lagrange duality to turn this 119

Markov Blanket constraint into a pure deep learn- 120

ing optimization. The Markov blanket on each 121

node in the attention mapping graphs (AMGs) is 122

a three-layer Bayesian network, which needs two- 123
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step inference to traverse through all relevant nodes.124

Consequently, we took a two-layer graph convolu-125

tional network (GCN) as the node feature updater126

in causal attention network (CAN). Finally, we ap-127

plied this CAN in the Transformers (Causal Trans-128

formers) and evaluated it on spurious correlation129

challenging (SCC) datasets, natural language infer-130

ence (NLI), neural machine translation (NMT).131

Our contributions are summarized as follows.132

• We analyzed the over-fitting problem on spuri-133

ous correlations in the self-attention networks.134

• We introduced a DAGs topology - Markov135

blanket as the prior sparsity on the self-136

attention networks, and turned the Markov137

blanket constraint into a pure deep learning138

problem by defining its smooth loss with the139

Lagrange duality.140

• To reason over the Markov Blanket, we used141

a two-layer GCN as the feature updater.142

• We enforced this causal attention network in143

language Transformers.144

• We empirically showed that our Causal Trans-145

former outperforms the newest Transformer146

variants on out-of-distribution generalization147

and other NLP tasks.148

2 Background149

2.1 Self-Attention Over-Fits on Spurious150

Correlations151

As the most pivotal component in the Transformer,152

the self-attention captures fully-connected depen-153

dencies in a sequence with a parallel mode.154

Attention (X) = softmax
(
XWqWkX

T

√
d

)
XWv155

where X ∈ RN×d is the input sequence, A ∈156

RN×N is the attention score matrix and Wq ∈157

Rd×dk ,Wk ∈ Rdk×d,Wv ∈ Rd×dv .158

As fully-connected attention has a dense score159

matrix, as shown in the Figure 2, few causal in-160

dependencies exist in the self-attention mapping161

as any token j’s (1 ≤ j ≤ K) feature is updated162

depended on all tokens. The fully-connected de-163

pendencies easily capture the spurious correlations164

occurring in the training data, which is the rea-165

son why Transformers do not outperform the tradi-166

tional deep learning models when it is trained from167

scratch (Tu et al., 2020).168

In the band (includes dilatation, local block) at- 169

tentions, each token k, 1 ≤ k ≤ K is conditional 170

independent with token j, j /∈ [k − b, k + b] lying 171

out the band. That reduces the spurious correlations 172

significantly. But the band attentions cannot cap- 173

ture long-term dependencies, which is why sparse 174

attentions achieve better performance only when 175

they are used together. 176

Another popular sparsity is random attention, 177

like the dropout trick we often use, which alle- 178

viates the over-fitting on spurious correlations by 179

randomly activating part of attention mapping con- 180

nections with probability. 181

2.2 Causal Inference with DAGs Learning 182

Figure 4: A graph constrained with Markov blanket
(boundary). The Markov blanket on node A is marked
with blue roundel where the green nodes are A’s par-
ents, yellow nodes are A’s childrens and red nodes are
A’s spouses.

Zheng et al. (2018b) firstly proposed a contin- 183

uous optimization on DAGs, which turns the no- 184

loop constraint on DAGs topology into a pure deep 185

learning problem. Afterwards, the causal inference 186

has shown a big step forward in the deep learning 187

community (Luo et al., 2020). 188

min
W∈Rd×d

F (W )

subject to h (W ) = tr
(
eW ◦W

)
− d = 0

(1) 189

where W ∈ RN×N represents the weighted ad- 190

jacency matrix, F : Rd×d → R is the regression 191

function on the DAGs, h (W ) is the smooth loss 192

on graph g(W ) and ◦ is the Hadamard product. 193

Minimizing the smooth loss h (W )→ 0 will re- 194

move all loops in the graph g(W ), which optimizes 195

the g(W ) as a DAG. But the no-loop constraint, as 196

shown in Figure 3, (i) is a necessary but insufficient 197

condition for DAGs learning and cannot distinguish 198

confusions; (ii) easily optimizes the graphs towards 199

simple structures. These cases are incapable for 200
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reasoning in many realistic tasks (like the NLP, CV201

and et al.).202

In causal Bayesian networks, Pellet and Elisseeff203

(2008) proved that a Markov blanket (or Markov204

boundary) on a random variable is a minimum set205

with all the useful information to infer it. For206

a random variable xi in the random variable set207

X = {x1, · · ·xn}, its Markov Blanket is a subset208

S ⊂ X , and xi is conditional independent with209

all random variables xj ∈ {X − S}. In general,210

the Markov blanket of a node x in Bayesian net-211

works is a set of x’s parent nodes, children nodes212

and spouse nodes (i.e., children’s other parents) as213

shown in Figure 4.214

3 Causal Transformer215

In this section, we describe the causal indepen-216

dence constraint on the self-attention network217

and use it to implement the Causal Transformer.218

Our Causal Transformer has the similar Encoder-219

Decoder framework as the one in vanilla Trans-220

former. The model schematics are shown in Figure221

6.222

3.1 Continuous Optimization on Causal223

Self-Attention224

As shown in the Figure 6, in the self-attention A225

mapping graph, each token is constrained with the226

Markov Blanket. We propose a smooth loss h (A)227

to optimize the attention A mapping graph toward228

the Markov Blanket constrained DAG.229

Figure 5: The space for the measurement τ(Ai,·) on
the Markov blanket of node i with two parents m, n
and two childrens j, k. The blue line is the constraint
on τ (Ai,·) and τ (A·,i) for the Markov Blanket with-
out self-loop and the black line is the constraint for the
Markov Blanket with self-loop.

Definition 1. The Markov blanket of a node230

has 1 ∼ 2 parents and 1 ∼ 2 childrens, this con-231

straint can be defined as an mathematical inequal-232

ity on the normalized attention scores A ∈ RN×N ,233 ∑N
j=1Ai,j = 1 ∧

∑N
i=1Ai,j = 1:234

N − 2 + 2e
1
2 ≤ τ (Ai,·) , τ (A·,i) ≤ N − 1 + e,

for i = 1, · · · , N

where τ (Ai,·) =
N∑
j=1

eAij ,

τ (A·,i) =

N∑
j=1

eAji

235

Definition 2. To adapted for wide NLP tasks, 236

the DAG constraint on the attention mapping graph 237

must has slack variables to tolerate the self-loops: 238

As each node contains important information 239

about itself in many tasks, we enforce the self-loop 240

in attention map A by slack variables ε
′
, ε
′′ ∈ RN . 241

The optimization objective can be defined with the 242

Lagrange duality as follows, 243

min :
∑
i

(
ε
′
i + ε

′′
i

)
s.t. 2H′ − τ (Ai,·)− τ (A·,i) + ε

′
i 6 0

τ (A·,i) + τ (Ai,·)− 2H′′ + ε
′′
i 6 0

0 6 ε
′
i 6 ε

′
max

0 6 ε
′′
i 6 ε

′′
max

(2) 244

whereH′ = N − 2 + 2e
1
2 ,H′′ = N − 1 + e. 245

As shown in Figure 5, the self-loop is set with 246

a 1/3 weight when the attention A is in the 247

Non-Autoregressive Encoding block, and ε
′
max = 248

0.7045, ε
′′
max = 0.5062 correspondingly. When 249

the attention A is in the Autoregressive Decod- 250

ing block, there is no self-loop and ε
′
max = 0., 251

ε
′′
max = 0.. 252

Definition 3. The loss h (A) must be differen- 253

tiable and can be optimized with the deep learning 254

models together: 255

Given the Lagrange multipliers γ, the smooth 256

loss function h (A) is defined as follows, 257

h (A) =
∑
i

[
γ1
(
ε
′
i − ε

′
max

)
+ γ2

(
ε
′′
i − ε

′′
max

)]
+
∑
i

γ3
(
2H

′
− τ (Ai,·)− τ (A·,i) + 2ε

′
i

)
+
∑
i

γ4
(
τ (Ai,·) + τ (A·,i)− 2H

′′
+ 2ε

′′
i

) (3) 258
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Figure 6: The schematics of Causal Transformer where the causal attention in left encoding block is enforced with
self-loop and the causal attention in decoding block masked the upper triangular for autoregressive prediction.

3.2 Implementation259

As shown in the Figure 6, the encoding and de-260

coding blocks in our Causal Transformer are com-261

posed of the multi-head causal self-attention net-262

works, two-layer GCN feature updaters, the multi-263

head cross-attentions, normalization (Norm) lay-264

ers and position-wise feed-forward (FFN) layer.265

The causal self-attention networks in the encoding266

block are added the self-loops.267

Causal Self-Attention Network Given the in-268

put sequence X ∈ RN×d, the feature updater in269

the causal self-attention network is defined as fol-270

lows,271

Self-Attention (X) = σ
(
Aσ

(
AXW (0)

v

)
W (1)

v

)
︸ ︷︷ ︸

2-layer GCN

A = softmax
(
XWqWkX√

dk

) (4)272

where Wq ∈ Rd×dk , Wk ∈ Rdk×d, W (0)
v ∈273

Rd×dv andW (1)
v ∈ Rdv×dv .274

As each node in the Markov Blanket mapping275

graph needs a two-step inference path to reach all276

relevant nodes, we replace the Query-Key-Value277

updater with the two-layer GCN. The attention278

score matrix A in Eq 4 works as an adjacency279

matrix in the 2-layer GCN.280

Decoding Block The decoding block predicts 281

the targets Y ∈ RM×d in an auto-regressive way, 282

ŷm =p (ym|y0:m−1,Zenc)

m = 1, · · · ,M
(5) 283

where Zenc is the output of the encoding block. 284

The model is optimized by minimizing the sum 285

of the causal loss function h () on all self-attentions 286

and the cross-entropy between the predicted target 287

ŷ and true label y. 288

L =−
∑
m

ym log (ŷm)

+
∑
k

[
h
(
A

(l)
enc
)
+ h

(
A

(l)

dec

)] (6) 289

where l represents the layer number, enc and dec 290

represent the self-attentions in encoding and decod- 291

ing blocks respectively. 292

4 Experiments and Analysis 293

To experimentally demonstrate the robustness of 294

our Causal Transformer on spurious correlations, 295

we conducted an experiment on two spurious corre- 296

lation challenging (SCC) datasets. Besides, we also 297

conducted the natural language inference (NLI), 298

neural machine translation (NMT) tasks to evaluate 299

the performance of our causal attention network. 300
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Figure 7: Some examples in the in-distribution training datasets (MNLI, QQP) and spurious correlation challenging
datasets (HANS, PAWS-QQP). The high word overlaps are highlighted with blue text. The MNLI dataset has high
word overlaps on the entailment examples, and the challenging dataset HANS has high word overlaps on the
non-entailment examples. Likewise, the in-distribution dataset QQP and the out-distribution challenging dataset
PAWS-QQP have high word overlaps on paraphrase and non-paraphrase respectively.

• SCC is a task to evaluate whether the mod-301

els trained on the in-distribution dataset302

(high word overlap, i.e., the spurious corre-303

lations) have robust performance on the out-304

of-distribution challenging test set (Tu et al.,305

2020). Our experiment was conducted on306

the MNLI (Nangia et al., 2017), HANS (Mc-307

Coy et al., 2019), QQP (Chen et al., 2018) ,308

PAWS-QQP datasets (Zhang et al., 2019). As309

shown in Figure 7, the MNLI and QQP have310

high spurious correlations (word overlaps) in311

the entailment and paraphrase sentence pairs.312

In contrast, the HANS and PAWS-QQP have313

out-distributions with high spurious correla-314

tions on non-entailment and non-paraphrase315

sentence pairs.316

• Machine Translation task was conducted317

on WMT2014 English-German (EN-DE)318

with 4.5M translation pairs and WMT2016319

English-Romanian (EN-RO) with 610k trans-320

lation pairs. These datasets are tokenized321

and segmented into subword units with BPE322

encodings (Sennrich et al., 2016). The323

WMT2014 EN-DE was preprocessed with the324

scripts provided by (Vaswani et al., 2017) and325

the WMT2016 EN-RO was preprocessed data326

provided by (Lee et al., 2018).327

• NLI task is to predict whether the given328

premise sentence and hypothesis sentence is 329

"entailed by", "neutral with" or "contradicts". 330

Our experiment was conducted on the Stan- 331

ford Natural Language Inference (SNLI) cor- 332

pus (Bowman et al., 2015), a collection of 333

570k human-written English sentence pairs 334

manually labeled for balanced classification. 335

4.1 Robustness on Spurious Correlations 336

The first experiment was conducted on MNLI, 337

HANS, QQP, PAWS-QQP datasets to evaluate the 338

robustness of our Causal Transformer on the spu- 339

rious correlations. Our model was trained from 340

scratch on the in-distribution datasets - HANS and 341

QQP respectively and evaluated on challenging 342

datasets - HANS, PAWS-QQP without any fine- 343

tuning. The model was trained 200 epochs on the 344

base hyper-parameters as shown in Table, and the 345

learning scheduler uses warm-up with 12800 warm 346

steps. The dropout p = 0.1 was used apart from 347

the causal attention networks, and the word em- 348

beddings were initialized from the 300-d GloVe 349

(Pennington et al., 2014). Besides, we also trained 350

our Causal Transformer in the single-task learning 351

(STL) way. In the STL mode, our Causal Trans- 352

former was trained only on the challenging datasets 353

from scratch. 354

As shown in the Figure 7 that HANS dataset 355

has an out-distribution with the MNLI dataset on 356
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Training
mode Models

MNLI QQP
In-distribution Challenging In-distribution Challenging

MNLI-m HANS QQP PAWS-QQP

scratch BERT-scratch (Devlin et al., 2019) 67.9 49.9 83.0 40.6
ESIM (Chen et al., 2017) 78.1 49.1 85.3 38.9

pre-trained

BERT-base 84.0 53.8 90.5 33.5
BERT-base (STL) (Devlin et al., 2019) 84.5 62.5 90.8 36.1
BERT-base (Tu et al., 2020) 83.7 68.2 91.3 45.9
BERT-large 86.2 71.4 91.3 40.1
RoBERTa-base (STL) (Liu et al., 2019) 87.4 74.1 91.5 42.6
RoBERTa-base 86.4 72.8 91.7 51.7
RoBERTa-large 89.1 77.1 89.0 39.5

ours Causal Transformer (STL) - 81.7 - 67.1
Causal Transformer 72.8 85.2 87.8 78.1

Table 1: The test accuracies on the in-distribution datasets (MNLI, QQP) and out-distribution challenging datasets
(HANS, PAWS-QQP).

entailment examples. The challenging examples357

in HANS can verify whether models can improve358

the robustness on spurious correlations. The re-359

sults are shown in Table 1. Our model achieved360

the best results on both challenging datasets with361

85.2%, 78.0%, and these accuracies are far better362

than the pre-trained language models. On the in-363

distribution datasets, even though our model had364

not achieved the best results, it outperformed the365

BERT-scratch, ESIM and DA. Our Causal Trans-366

former also achieved better results than BERT and367

RoBERTa when trained just on the challenging368

datasets.369

We chose a case example "premise: no, sir i’m370

afraid i didn’t; hypothesis: yes, of course i did,371

sir, entailment" to visualize the attention heatmaps372

on the vanilla Transformer and our Causal Trans-373

former in Figure 8. The causal attention dependen-374

cies in our model on this example were plotted in375

Figure 9.376

Figure 8: The self-attention heatmaps in Causal Trans-
former and BERT when they are both trained from
scratch, this figure just exhibits the values in the 1-th
head of 1-th layer in encoding, decoding blocks.

In these results, (i) our Causal Transformer377

achieved the new state-of-the-art test accuracies 378

on HANS, PAWS-QQP respectively. (ii) The com- 379

parison on different pre-trained models (BERT, 380

RoBERTa) shown that the size of the pre-training 381

corpus contributes to the prediction on out-of- 382

distribution challenging data. (iii) Our Causal 383

Transformer also outperforms all compared models 384

when it is trained only on the challenging dataset. 385

(iv) Combined the results shown in Table 1, Figure 386

8 9 together to analyze, the causal attention net- 387

works in our Causal Transformer capture sparse 388

dependencies than the BERT. These sparse depen- 389

dencies maintain the most meaningful and inter- 390

pretable word relations compared with the ones in 391

BERT. 392

Figure 9: The causal attention mapping dependencies
in MNLI dataset where there is just little confusions in
these graphs.

4.2 Machine Translation 393

Our second experiment was conducted on the 394

WMT2014 English-to-German (En-De), En-De 395

and WMT2016 English-to-Romanian (En-Ro), Ro- 396

En neural machine translation (NMT) tasks. We 397

fixed the Causal Transformer with architecture 398

dmodel = 512, nlayer = 6, dk, dv = 64 and 399

nhead = 8. We chose the preprocessed dataset in 400

(Vaswani et al. (2017)) for the WMT2014 EN-DE 401

and the dataset preprocessed in (Lee et al. (2018)) 402
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Models
WMT14 WMT16

EN-DE DE-EN EN-RO RO-EN
Transformer (Vaswani et al., 2017) 27.30 - - -
Transformer_Rep (Takase and Kiyono, 2021) 32.35 - -
Glancing Transformer (Qian et al., 2021) 27.48 31.27 33.70 34.05
LevT (Gu et al., 2019) 27.27 - - 33.26
Mask-Predict (Ghazvininejad et al., 2019) 27.03 30.53 33.08 33.31
JM-NAT (Guo et al., 2020) 27.31 31.02 - -
imit-NAT (Wei et al., 2019) 22.44 25.67 28.61 28.90
Flowseq (Ma et al., 2019) 23.72 28.39 29.73 30.72
NAT-DCRF (Sun et al., 2019) 23.44 27.22 - -
Imputer (Saharia et al., 2020) 25.80 28.40 32.30 31.70
Causal Transformer 31.30 32.90 34.85 34.73

Table 2: The BLEU scores on WMT2014 EN-DE, DE-EN and WMT2016 EN-RO, RO-EN.

for the WMT2016 EN-RO. Both datasets were to-403

kenized and segmented into subword units with404

the BPE encodings (Sennrich et al., 2016). The405

word embeddings in this experiment were initial-406

ized randomly and trained with the model together.407

All results on the WMT2014 EN-DE, DE-EN and408

WMT2016 EN-RO, RO-EN are shown in Table 2.409

In which, our CausalTransformer, vanilla Trans-410

former, Transformer_Rep use the autoregressive411

decoding block, and the other compared models412

use the non-autoregressive decoding blocks.413

Table 2 shows that our Causal Transformer414

achieved new state-of-the-art scores on the415

WMT2014 DE-EN and WMT2016 EN-RO, RO-416

EN tasks respectively. Moreover, our Causal Trans-417

former was also the one closest to the best re-418

sult achieved by the Transformer_Rep with exter-419

nal knowledge on WMT2014 EN-DE task. Our420

Causal Transformer outperforms the Glancing421

Transformer with random sparsity and all state-422

of-the-art non-autoregressive Transformers.423

4.3 Natural Language Inference424

The third experiment was conducted NLI task425

to demonstrate the effectiveness of our Causal426

Transformer by comparing with other sparse at-427

tentions used in the newest Transformer vari-428

ants. The compared models include vanilla429

Transformer, Transformer-RPR, Transformer-XL,430

Adapted Transformer, Star-Transformer and DA-431

Transformer. Here we use the Stanford Natural Lan-432

guage Inference (SNLI) dataset to evaluate the per-433

formance of CausalTransformer and all compared434

models. Our Causal Transformer in this experiment435

was trained with the hyper-parameters same with436

the BERT-base, and the word embeddings were ini- 437

tialized from 300-d GloVe. The results are shown 438

in Table 3, and our CausalTransformer achieved 439

new state-of-the-art accuracy 86.7% and Macro-F 440

85.2% respectively. 441

Models SNLI
Acc Macro-F

Transformer (Vaswani et al., 2017) 81.45 81.42
Transformer-RPR (Shaw et al., 2018) 82.20 82.18
Transformer-XL (Dai et al., 2019) 83.19 83.15
Adapted Transformer (Yan et al., 2019) 82.35 82.31
Star-Transformer (Guo et al., 2019b) 86.00 -
DA-Transformer (Wu et al., 2021) 84.18 84.16
CausalTransformer (Ours) 86.78 85.56

Table 3: Test accuracy and Macro-F on SNLI dataset.

5 Conclusion 442

This study implemented a Causal Transformer to 443

improve the robustness for spurious correlations. 444

In which, we proposed the causal attention network 445

to elimate the useless dependencies by the Markov 446

blanket constrained DAGs structure. To this end, 447

(i) we defined the smooth optimization with La- 448

grange duality on the Markov blanket constraint; 449

(ii) we taken the two-layer GCN as the feature up- 450

dater. We further enforced this causal attention 451

network in Transformers to implement our Causal 452

Transformer on language and vision tasks. Our ex- 453

perimental results on cpurious correlation challeng- 454

ing datasets, neural machine translation (NMT), 455

natural language inference (NLI) and image classi- 456

fication demonstrated that our Causal Transformer 457

outperformes compared SOTA models. 458
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