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Abstract

The fully-connected dependencies in self-
attention over-fit spurious correlations and
limit the generalization on out-of-distribution
data. Pre-trained language models (PLMs) al-
leviate this problem benefitted from the ap-
preciable counterexamples in large-scale pre-
training corpora. However, there is no study to
resolve this problem by improving the model
structure. We enforced the causal indepen-
dence mechanism in the self-attention network,
which constrains attention mapping topologies
(AMGs) as causal structures. To implement
it, we defined a smooth loss on the Markov
boundary constrained directed acyclic graph
(DAG) with the Lagrange duality, and used it
to optimize the AMGs towards causal struc-
tures. Further, this causal attention network
was applied on Transformer (Causal Trans-
former). The empirical results on two spu-
rious correlation challenging (SCC) datasets,
neural machine translation (NMT) and natural
language inference (NLI) tasks demonstrated
that our Causal Transformer outperforms the
state-of-the-art model and improves the out-of-
distribution prediction.

1 Introduction

Recently, Transformer (Vaswani et al., 2017) and
the pre-trained language models (PLMs) on top of
it, such as the BERT (Devlin et al., 2019), GPT
(Radford et al., 2019), VILBERT (Lu et al., 2019),
ViT (Dosovitskiy et al., 2020) and Swin Trans-
former (Liu et al., 2021) have achieved state-of-
the-art performance across a wide range of natural
language processing (NLP) (Lin et al., 2021), com-
puter vision (CV) (Han et al., 2020), multimodal
(Yao and Wan, 2020) and other tasks. As a vital
component in Transformer, the self-attention is op-
timized to learn the fully-connected dependencies
of a single token (or batch) with respect to all other
tokens (or batches) in the same sequence. The
self-attention outperforms traditional deep learn-
ing models (like recurrent neural networks (RNNs),

convolutional neural networks (CNNs) and et al.)
as it can capture long-term and non-consecutive
dependencies. This superiority helps the models
to overcome the catastrophic forgetting in previ-
ous deep learning models and contributes to the
popularity of PLMs on top of Transformers.

Yaghoobzadeh et al. (2021) conducted an experi-
ment that trains the BoW, BiILSTM and BERT with
Transfer learning on MNLI, QQP and FEVER se-
quentially. The number of forgotten examples in
the training process and the final prediction on test
data were recorded in Figure 1.
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Figure 1: The experiment conducted on BoW, BiL-
STM, BERT with multitask learning on MNLI, QQP
and FEVER, where (a) is the numbers of forgetting
examples in the Transfer learning process on three
datasets and (b) is the test accuracies of different mod-
els.

This experiment demonstrated that BERT can
remember most examples that it has encountered.
This superiority improves the robustness of PLMs
on spurious correlations because the models en-
counter enough counterexamples in large-scale pre-
training corpora (Tu et al., 2020). But, Tu et al.
(2020) demonstrated with experimental results that
BERT does not outperform traditional models for
spurious correlation challenging datasets when it
is trained from scratch. The fully-connection in
self-attention networks is one of the important
causes of this phenomenon (Wang and Culotta,
2020), and which limits the generalization on out-
of-distribution test data.

Recent studies (Jain and Wallace, 2019; Lin
et al., 2021) proposed the sparse attentions to im-
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Figure 2: The fully-connected self-attention and different sparse attentions (band, dilated band, random and local
block band), where @, & represent the input token and output token respectively. In fully-connected attention, the
great majority tokens have not conditional independent distributions with each other. In the band, dilated band and
local block band attentions, the blue tokens have conditional independencies with the green tokens.

prove the test generalization, and these existing
methods can be categorized into the band, random
as shown in Figure 2. The band attentions ex-
plore the localness modelling for the self-attention
network, and it has been branched in to local con-
secution, dilatation and local block (Yang et al.,
2018; Guo et al., 2019a). The random sparsity ran-
domly activates attention connections taking the
attention scores as the probabilities, or samples
the attention values from prior distribution only
(Wang et al., 2020; He et al., 2020; Ying et al.,
2021; You et al., 2020). Band sparsities improve
the conditional independence on the attention map-
ping graphs (AMGs), which reduces great spurious
correlations. But the localness limits the reasoning
on long-term and non-consecutive relations. The
random attentions can learn more non-consecutive
relations than the local band in each layer, but
which impede the limitation on spurious correla-
tions.

There is no research to explore how to elimi-
nate the useless attention mapping dependencies
in Transformers. To tackle this problem, we intro-
duced the causal independence mechanism (ICM)
(Peters et al., 2017) on the attention mapping graph
(AMGs). This mechanism means that the feature
updater on a token, giving its causes, does not in-
form or influence the feature updaters on other to-
kens. Which aims to alleviate the over-fitting prob-
lem on useless correlations (spurious correlations).
Our method implements this ICM by enforcing
a directed acyclic graph (DAG) constraint in the

self-attention mappings (Luo et al., 2020).
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Figure 3: The examples of DAGs that satisfy the no-
loop constraint. The DAGs (a), (b) and (c) have sim-
ple relations that cannot capture long-range and non-
consecutive dependencies and DAGs (d), (e) cannot dis-
tinguish the confusions.

(a)

The DAGs learning has become practicability
in deep learning to improve the out-of-distribution
prediction (Krueger et al., 2021) after the smooth
losses on DAGs were proposed by Zheng et al.
(2018a, 2020). This loss optimizes random graphs
towards DAGs by eliminating all loops. However,
the no-loop is a necessary but insufficient criterion
for the ICM in causal Bayesian networks, as shown
in Figure 3.

In this paper, we first analyzed the over-fitting
problem on the spurious correlations in the self-
attention networks. Further, we chose a stable DAG
constraint - Markov Blanket (also called Markov
boundary) (Liu and Liu, 2018) as the prior sparsity
on the attention mapping. Next, we defined the
smooth loss with the Lagrange duality to turn this
Markov Blanket constraint into a pure deep learn-
ing optimization. The Markov blanket on each
node in the attention mapping graphs (AMGS) is
a three-layer Bayesian network, which needs two-



step inference to traverse through all relevant nodes.
Consequently, we took a two-layer graph convolu-
tional network (GCN) as the node feature updater
in causal attention network (CAN). Finally, we ap-
plied this CAN in the Transformers (Causal Trans-
formers) and evaluated it on spurious correlation
challenging (SCC) datasets, natural language infer-
ence (NLI), neural machine translation (NMT).
Our contributions are summarized as follows.

e We analyzed the over-fitting problem on spuri-
ous correlations in the self-attention networks.

o We introduced a DAGs topology - Markov
blanket as the prior sparsity on the self-
attention networks, and turned the Markov
blanket constraint into a pure deep learning
problem by defining its smooth loss with the
Lagrange duality.

e To reason over the Markov Blanket, we used
a two-layer GCN as the feature updater.

e We enforced this causal attention network in
language Transformers.

e We empirically showed that our Causal Trans-
former outperforms the newest Transformer
variants on out-of-distribution generalization
and other NLP tasks.

2 Background

2.1 Self-Attention Over-Fits on Spurious
Correlations

As the most pivotal component in the Transformer,
the self-attention captures fully-connected depen-
dencies in a sequence with a parallel mode.

XW, W, XT
Vd

where X € RV*4 is the input sequence, A €
RN*N s the attention score matrix and W, €
Rdxdk’ Wk: c de ><d’ Wv c Rdxdv'

As fully-connected attention has a dense score
matrix, as shown in the Figure 2, few causal in-
dependencies exist in the self-attention mapping
as any token j’s (1 < j < K) feature is updated
depended on all tokens. The fully-connected de-
pendencies easily capture the spurious correlations
occurring in the training data, which is the rea-
son why Transformers do not outperform the tradi-
tional deep learning models when it is trained from
scratch (Tu et al., 2020).

Attention (X') = softmax ( ) Xw,

In the band (includes dilatation, local block) at-
tentions, each token k, 1 < k < K is conditional
independent with token j, j ¢ [k — b, k + b] lying
out the band. That reduces the spurious correlations
significantly. But the band attentions cannot cap-
ture long-term dependencies, which is why sparse
attentions achieve better performance only when
they are used together.

Another popular sparsity is random attention,
like the dropout trick we often use, which alle-
viates the over-fitting on spurious correlations by
randomly activating part of attention mapping con-
nections with probability.

2.2 Causal Inference with DAGs Learning

Figure 4: A graph constrained with Markov blanket
(boundary). The Markov blanket on node A is marked
with blue roundel where the green nodes are A’s par-
ents, yellow nodes are A’s childrens and red nodes are
A’s spouses.

Zheng et al. (2018b) firstly proposed a contin-
uous optimization on DAGs, which turns the no-
loop constraint on DAGs topology into a pure deep
learning problem. Afterwards, the causal inference
has shown a big step forward in the deep learning
community (Luo et al., 2020).

ey
subjectto  h (W) =tr (eWOW) —d=0

where W € RYXN represents the weighted ad-
jacency matrix, F' : R?*¢ — R is the regression
function on the DAGs, h (W) is the smooth loss
on graph g(W') and o is the Hadamard product.
Minimizing the smooth loss & (W) — 0 will re-
move all loops in the graph g(W'), which optimizes
the g(W) as a DAG. But the no-loop constraint, as
shown in Figure 3, (i) is a necessary but insufficient
condition for DAGs learning and cannot distinguish
confusions; (ii) easily optimizes the graphs towards
simple structures. These cases are incapable for



reasoning in many realistic tasks (like the NLP, CV
and et al.).

In causal Bayesian networks, Pellet and Elisseeff
(2008) proved that a Markov blanket (or Markov
boundary) on a random variable is a minimum set
with all the useful information to infer it. For
a random variable @x; in the random variable set
X ={x, - x,}, its Markov Blanket is a subset
S C X, and x; is conditional independent with
all random variables ; € {X — S}. In general,
the Markov blanket of a node x in Bayesian net-
works is a set of x’s parent nodes, children nodes
and spouse nodes (i.e., children’s other parents) as
shown in Figure 4.

3 Causal Transformer

In this section, we describe the causal indepen-
dence constraint on the self-attention network
and use it to implement the Causal Transformer.
Our Causal Transformer has the similar Encoder-
Decoder framework as the one in vanilla Trans-
former. The model schematics are shown in Figure
6.

3.1 Continuous Optimization on Causal
Self-Attention

As shown in the Figure 6, in the self-attention A
mapping graph, each token is constrained with the
Markov Blanket. We propose a smooth loss / (A)
to optimize the attention A mapping graph toward
the Markov Blanket constrained DAG.

Markov Blanket

Markov Blanket + Self-loop

7(A,.)/T(A.)

Figure 5: The space for the measurement 7(A;.) on
the Markov blanket of node ¢ with two parents m, n
and two childrens j, k. The blue line is the constraint
on 7 (A;.) and 7 (A. ;) for the Markov Blanket with-
out self-loop and the black line is the constraint for the
Markov Blanket with self-loop.

Definition 1. The Markov blanket of a node
has 1 ~ 2 parents and 1 ~ 2 childrens, this con-
straint can be defined as an mathematical inequal-
ity on the normalized attention scores A € RNV*N

N N
e Aig=1AY 00 A =1

N—2+22<7(A;.),7(A;)<N—1+e,
for ¢=1,--- N

Definition 2. To adapted for wide NLP tasks,
the DAG constraint on the attention mapping graph
must has slack variables to tolerate the self-loops:

As each node contains important information
about itself in many tasks, we enforce the self-loop
in attention map A by slack variables e,e eRVN.
The optimization objective can be defined with the
Lagrange duality as follows,

min : Z (s; + s;,)
i

st 2H —7(Ai) —7(A) 45 <0
(A +7(AL) — 2K +< <o P
0 <& < Emag
0< e < Emag

where H' :N—2—|—26%,HN =N-1+e.
As shown in Figure 5, the self-loop is set with
a 1/3 weight when the attention A is in the

!

Non-Autoregressive Encoding block, and ¢ =

max
0.7045, dng = 0.5062 correspondingly. When
the attention A is in the Autoregressive Decod-
ing block, there is no self-loop and ¢

Emaz = 0--
Definition 3. The loss h (A) must be differen-
tiable and can be optimized with the deep learning

models together:

max = O”

Given the Lagrange multipliers =, the smooth
loss function A (A) is defined as follows,

h(A) = Z [71 (6; - 6;1“) + 72 (el/ — sxm)]

+ sz (27{/ —7(A) =7 (A) + 25;) 3)

3 (7 (AL + 7 (AL — 2K 426
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Figure 6: The schematics of Causal Transformer where the causal attention in left encoding block is enforced with
self-loop and the causal attention in decoding block masked the upper triangular for autoregressive prediction.

3.2 Implementation

As shown in the Figure 6, the encoding and de-
coding blocks in our Causal Transformer are com-
posed of the multi-head causal self-attention net-
works, two-layer GCN feature updaters, the multi-
head cross-attentions, normalization (Norm) lay-
ers and position-wise feed-forward (FFN) layer.
The causal self-attention networks in the encoding
block are added the self-loops.

Causal Self-Attention Network Given the in-
put sequence X € RV*?, the feature updater in
the causal self-attention network is defined as fol-
lows,

Self-Attention (X ) = o (AO’ (AXWU(O)) Wv(l))

2-layer GCN 4)
A = softmax (%)
where W, € R4 W, e Réxd W ¢
R¥<dv and W) € Rbxdo,

As each node in the Markov Blanket mapping
graph needs a two-step inference path to reach all
relevant nodes, we replace the Query-Key-Value
updater with the two-layer GCN. The attention
score matrix A in Eq 4 works as an adjacency
matrix in the 2-layer GCN.

Decoding Block The decoding block predicts
the targets Y € RM*? in an auto-regressive way,

Ym =P (’ym|yo:m71, Zenc)
m=1,---,M

where Zenc is the output of the encoding block.

The model is optimized by minimizing the sum
of the causal loss function A () on all self-attentions
and the cross-entropy between the predicted target
v and true label 3.

)

L== ymlog(jm)
+3 [h (Af{ﬁlc) +h <Agé C)} ©
k

where [ represents the layer number, enc and dec
represent the self-attentions in encoding and decod-
ing blocks respectively.

4 Experiments and Analysis

To experimentally demonstrate the robustness of
our Causal Transformer on spurious correlations,
we conducted an experiment on two spurious corre-
lation challenging (SCC) datasets. Besides, we also
conducted the natural language inference (NLI),
neural machine translation (NMT) tasks to evaluate
the performance of our causal attention network.



Task Dataset Spurious correlations Input Label
P: What happened in actual fact to a young man who ran
incessantly and persistently through the London streets?
g H: What happened to the guy running through the
MNLI high word overlap treets? .
: entailment

(In-distribution training) = entailment
natural language

inference (NLI)

HANS high word overlap

(Out-of-distribution test) ~ = non-entailment

P: You’d think this sort of thing would show up in more
educational reform plans.
H: You would think that would be in reform plans.

P: The authors introduced the students.
H: The students introduced the authors.

P: The managers were introduced by the senator.
H: The managers introduced the senator.

non-entailment

same bag-of-words

QQP

(In-distribution training) = paraphrase

paraphrase
identification (PT) bag-of-word
PAWS-QQP same bag-of-words

(Out-of-distribution test) # paraphrase

S1: Bangkok vs Shanghai?

S2: Shanghai vs Bangkok?

S1: What is the funniest joke you know?

S2: What is the funniest joke of all time?

S1: What is it like to be poor after being rich?
S2: What is it like to be rich after being poor?
S1: Are all dogs smart or can some be dumb?
S2: Are all dogs dumb or can some be smart?

paraphrase

non-paraphrase

Figure 7: Some examples in the in-distribution training datasets (MNLI, QQP) and spurious correlation challenging
datasets (HANS, PAWS-QQP). The high word overlaps are highlighted with blue text. The MNLI dataset has high
word overlaps on the entailment examples, and the challenging dataset HANS has high word overlaps on the
non-entailment examples. Likewise, the in-distribution dataset QQP and the out-distribution challenging dataset
PAWS-QQP have high word overlaps on paraphrase and non-paraphrase respectively.

e SCC is a task to evaluate whether the mod-
els trained on the in-distribution dataset
(high word overlap, i.e., the spurious corre-
lations) have robust performance on the out-
of-distribution challenging test set (Tu et al.,
2020). Our experiment was conducted on
the MNLI (Nangia et al., 2017), HANS (Mc-
Coy et al., 2019), QQP (Chen et al., 2018) ,
PAWS-QQP datasets (Zhang et al., 2019). As
shown in Figure 7, the MNLI and QQP have
high spurious correlations (word overlaps) in
the entailment and paraphrase sentence pairs.
In contrast, the HANS and PAWS-QQP have
out-distributions with high spurious correla-
tions on non-entailment and non-paraphrase
sentence pairs.

e Machine Translation task was conducted
on WMT2014 English-German (EN-DE)
with 4.5M translation pairs and WMT2016
English-Romanian (EN-RO) with 610k trans-
lation pairs. These datasets are tokenized
and segmented into subword units with BPE
encodings (Sennrich et al., 2016). The
WMT2014 EN-DE was preprocessed with the
scripts provided by (Vaswani et al., 2017) and
the WMT2016 EN-RO was preprocessed data
provided by (Lee et al., 2018).

o NLI task is to predict whether the given

premise sentence and hypothesis sentence is
"entailed by", "neutral with" or "contradicts".
Our experiment was conducted on the Stan-
ford Natural Language Inference (SNLI) cor-
pus (Bowman et al., 2015), a collection of
570k human-written English sentence pairs

manually labeled for balanced classification.

4.1 Robustness on Spurious Correlations

The first experiment was conducted on MNLI,
HANS, QQP, PAWS-QQP datasets to evaluate the
robustness of our Causal Transformer on the spu-
rious correlations. Our model was trained from
scratch on the in-distribution datasets - HANS and
QQP respectively and evaluated on challenging
datasets - HANS, PAWS-QQP without any fine-
tuning. The model was trained 200 epochs on the
base hyper-parameters as shown in Table, and the
learning scheduler uses warm-up with 12800 warm
steps. The dropout p = 0.1 was used apart from
the causal attention networks, and the word em-
beddings were initialized from the 300-d GloVe
(Pennington et al., 2014). Besides, we also trained
our Causal Transformer in the single-task learning
(STL) way. In the STL mode, our Causal Trans-
former was trained only on the challenging datasets
from scratch.

As shown in the Figure 7 that HANS dataset
has an out-distribution with the MNLI dataset on



MNLI QQpP

"rl;lrg(lizmg Models In-distribution  Challenging In-distribution ~ Challenging
MNLI-m HANS QQP PAWS-QQP
scratch BERT-scratch (Devlin et al., 2019) 67.9 49.9 83.0 40.6
ESIM (Chen et al., 2017) 78.1 49.1 85.3 38.9
BERT-base 84.0 53.8 90.5 335
BERT-base (STL) (Devlin et al., 2019) 84.5 62.5 90.8 36.1
BERT-base (Tu et al., 2020) 83.7 68.2 91.3 45.9
pre-trained BERT-large 86.2 71.4 91.3 40.1
RoBERTa-base (STL) (Liu et al., 2019) 87.4 74.1 91.5 42.6
RoBERTa-base 86.4 72.8 91.7 51.7
RoBERTa-large 89.1 77.1 89.0 39.5
ours Causal Transformer (STL) - 81.7 - 67.1
Causal Transformer 72.8 85.2 87.8 78.1

Table 1: The test accuracies on the in-distribution datasets (MNLI, QQP) and out-distribution challenging datasets

(HANS, PAWS-QQP).

entailment examples. The challenging examples
in HANS can verify whether models can improve
the robustness on spurious correlations. The re-
sults are shown in Table 1. Our model achieved
the best results on both challenging datasets with
85.2%, 78.0%, and these accuracies are far better
than the pre-trained language models. On the in-
distribution datasets, even though our model had
not achieved the best results, it outperformed the
BERT-scratch, ESIM and DA. Our Causal Trans-
former also achieved better results than BERT and
RoBERTa when trained just on the challenging
datasets.

We chose a case example "premise: no, sir i’m
afraid i didn’t; hypothesis: yes, of course i did,
sir, entailment” to visualize the attention heatmaps
on the vanilla Transformer and our Causal Trans-
former in Figure 8. The causal attention dependen-
cies in our model on this example were plotted in
Figure 9.

s 1uag

Figure 8: The self-attention heatmaps in Causal Trans-
former and BERT when they are both trained from
scratch, this figure just exhibits the values in the 1-th
head of 1-th layer in encoding, decoding blocks.

In these results, (i) our Causal Transformer

achieved the new state-of-the-art test accuracies
on HANS, PAWS-QQP respectively. (ii) The com-
parison on different pre-trained models (BERT,
RoBERTa) shown that the size of the pre-training
corpus contributes to the prediction on out-of-
distribution challenging data. (iii) Our Causal
Transformer also outperforms all compared models
when it is trained only on the challenging dataset.
(iv) Combined the results shown in Table 1, Figure
8 9 together to analyze, the causal attention net-
works in our Causal Transformer capture sparse
dependencies than the BERT. These sparse depen-
dencies maintain the most meaningful and inter-
pretable word relations compared with the ones in
BERT.

N

,? course

sir  afraid nt

Figure 9: The causal attention mapping dependencies
in MNLI dataset where there is just little confusions in
these graphs.

4.2 Machine Translation

Our second experiment was conducted on the
WMT2014 English-to-German (En-De), En-De
and WMT2016 English-to-Romanian (En-Ro), Ro-
En neural machine translation (NMT) tasks. We
fixed the Causal Transformer with architecture
dmodel = 512, Nigyer = 6, dk, dv = 64 and
Nhead = S. We chose the preprocessed dataset in
(Vaswani et al. (2017)) for the WMT2014 EN-DE
and the dataset preprocessed in (Lee et al. (2018))



Models WMT14 WMTI16
EN-DE DE-EN EN-RO RO-EN
Transformer (Vaswani et al., 2017) 27.30 - - -
Transformer_Rep (Takase and Kiyono, 2021)  32.35 - -
Glancing Transformer (Qian et al., 2021) 27.48 31.27 33.70 34.05
LevT (Gu et al., 2019) 27.27 - - 33.26
Mask-Predict (Ghazvininejad et al., 2019) 27.03 30.53 33.08 33.31
JM-NAT (Guo et al., 2020) 27.31 31.02 - -
imit-NAT (Wei et al., 2019) 22.44 25.67 28.61 28.90
Flowseq (Ma et al., 2019) 23.72 28.39 29.73 30.72
NAT-DCREF (Sun et al., 2019) 23.44 27.22 - -
Imputer (Saharia et al., 2020) 25.80 28.40 32.30 31.70
Causal Transformer 31.30 32.90 34.85 34.73

Table 2: The BLEU scores on WMT2014 EN-DE, DE-EN and WMT2016 EN-RO, RO-EN.

for the WMT2016 EN-RO. Both datasets were to-
kenized and segmented into subword units with
the BPE encodings (Sennrich et al., 2016). The
word embeddings in this experiment were initial-
ized randomly and trained with the model together.
All results on the WMT2014 EN-DE, DE-EN and
WMT2016 EN-RO, RO-EN are shown in Table 2.
In which, our CausalTransformer, vanilla Trans-
former, Transformer_Rep use the autoregressive
decoding block, and the other compared models
use the non-autoregressive decoding blocks.

Table 2 shows that our Causal Transformer
achieved new state-of-the-art scores on the
WMT2014 DE-EN and WMT2016 EN-RO, RO-
EN tasks respectively. Moreover, our Causal Trans-
former was also the one closest to the best re-
sult achieved by the Transformer_Rep with exter-
nal knowledge on WMT2014 EN-DE task. Our
Causal Transformer outperforms the Glancing
Transformer with random sparsity and all state-
of-the-art non-autoregressive Transformers.

4.3 Natural Language Inference

The third experiment was conducted NLI task
to demonstrate the effectiveness of our Causal
Transformer by comparing with other sparse at-
tentions used in the newest Transformer vari-
ants. The compared models include vanilla
Transformer, Transformer-RPR, Transformer-XL,
Adapted Transformer, Star-Transformer and DA-
Transformer. Here we use the Stanford Natural Lan-
guage Inference (SNLI) dataset to evaluate the per-
formance of CausalTransformer and all compared
models. Our Causal Transformer in this experiment
was trained with the hyper-parameters same with

the BERT-base, and the word embeddings were ini-
tialized from 300-d GloVe. The results are shown
in Table 3, and our CausalTransformer achieved
new state-of-the-art accuracy 86.7% and Macro-F
85.2% respectively.

SNLI

Models Acc Macro-F
Transformer (Vaswani et al., 2017) 81.45 81.42
Transformer-RPR (Shaw et al., 2018) 82.20 82.18
Transformer-XL (Dai et al., 2019) 83.19 83.15
Adapted Transformer (Yan et al., 2019)  82.35 82.31
Star-Transformer (Guo et al., 2019b) 86.00 -
DA-Transformer (Wu et al., 2021) 84.18 84.16
CausalTransformer (Ours) 86.78 85.56

Table 3: Test accuracy and Macro-F on SNLI dataset.

5 Conclusion

This study implemented a Causal Transformer to
improve the robustness for spurious correlations.
In which, we proposed the causal attention network
to elimate the useless dependencies by the Markov
blanket constrained DAGs structure. To this end,
(i) we defined the smooth optimization with La-
grange duality on the Markov blanket constraint;
(ii) we taken the two-layer GCN as the feature up-
dater. We further enforced this causal attention
network in Transformers to implement our Causal
Transformer on language and vision tasks. Our ex-
perimental results on cpurious correlation challeng-
ing datasets, neural machine translation (NMT),
natural language inference (NLI) and image classi-
fication demonstrated that our Causal Transformer
outperformes compared SOTA models.
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