
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARN BULLISH MOVES VIA EIGENCLUSTER TOKENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional tokenization schemes in time series, such as point-wise and patch-
wise methods, are poorly suited for financial time series data due to excessive
token counts, sparse distributions, and heightened out-of-vocabulary risks—an
issue not explicitly addressed in prior work. This paper introduces a novel to-
kenization approach for financial time series. By clustering scalar projections
of eigenvectors from multi-window Open-High-Low-Close (OHLC) price matri-
ces, our method generates compact and semantically meaningful tokens, enabling
Transformer-based models to effectively identify next-day close price increase
patterns. Extensive experiments on S&P 500 and CSI 300 datasets show our ap-
proach outperforms market baselines by 6–9% in precision, while reducing token
vocabulary size to 51–101 tokens and sequence length by 75% versus point-wise.

1 INTRODUCTION

Current tokenization approaches in time series fall into three paradigms: point-wise, patch-wise (see
Fig. 1), and variate-wise (Chen et al., 2025; Wang et al., 2024b). Point-wise methods treat each time
point as a token (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Liu et al., 2022), leading
to redundancy and inefficiency (Dou et al., 2023). Patch-wise methods group consecutive points
into segment tokens to capture local patterns (Nie et al., 2023; Zhang & Yan, 2023). Variate-wise
tokenization represents an entire series as one token, emphasizing global structure but sacrificing
granularity (Liu et al., 2024). Since variate-wise tokenization can be viewed as an extreme case of
patch-wise (with one segment per series), we group them together in subsequent discussion. Recent
advances, such as (Wang et al., 2025b; Chen et al., 2024), have extended patch-wise methods using
a multi-scale approach, where time series are partitioned into patches at varying granularities. This
multi-scale strategy is adopted in our work, as illustrated on the right of Fig. 1.

A.Point-wise Token B.Patch-wise Token C.Multi-scale Token

Figure 1: point-wise tokenization, patch-wise tokenization, multiscale discrete tokenization.

Existing tokenization methods, such as point-wise and patch-wise approaches, are often ill-suited
for financial time series forecasting due to redundancy, inefficiency, and limited ability to capture
meaningful temporal patterns. Inspired by recent advances in computer vision, where clustering-
based tokenization has been used to extract semantically meaningful visual tokens (Liang et al.,
2023; Grainger et al., 2023), we recognize the potential of domain-specific clustering strategies for
financial data. Motivated by this insight and the unique characteristics of price series, we develop
a novel multi-scale discrete tokenization approach, which clusters time series eigenvectors obtained
from matrix transformations to generate informative tokens. This work primarily addresses three
questions: (1) Why are point-wise and patch-wise tokenizers insufficient? (2) How does our multi-
scale clustering-based tokenization overcome these limitations? (3) Can the effectiveness of our
method be empirically validated? Our key contributions include:

• Effective Pattern Recognition: Our tokenization enables vanilla Transformers to successfully iden-
tify next-day close price increase patterns. In comprehensive evaluations across both S&P 500 and
CSI 300, the identified portfolios consistently outperform market baselines by 6-9% in precision.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Superior Model Performance: The proposed approach demonstrates consistent advantages over
conventional token methods in predicting upward price signals across different threshold settings.

• Computational Efficiency: Our method significantly reduces the total number of unique tokens,
with the token vocabulary size constrained within 51–101. In addition, the input token sequence
length per sample is reduced by 75% compared to point-wise tokenization (from 36 to 9), enabling
faster computation and inference.

The remainder of this paper proceeds as follows: In Section 2, we define the tokenization problem;
while in Section 3, we review related work. Furthermore, in Sections 4 and 5, we present our
methodology and architecture. We present in Section 6 the experimental results; and in Section 7
we conclude the study and the open-source code release are provided. Additional details on the
experimental implementation and test results are provided in the Appendix.

2 PROBLEM FORMULATION

Under the embedding paradigm established in natural language processing (NLP), tokenization
serves as the mechanism that maps discrete vocabulary units to continuous embedding spaces, en-
abling semantic structure to emerge from symbolic sequences. However, as shown in Fig. 2, apply-
ing this paradigm directly to financial time series introduces three fundamental challenges that differ
markedly from NLP. For a concise mathematical perspective underlying these issues, we refer the
reader to Appendix A.4.

0 10 20 30 40 50
Time

88

90

92

94

96

98

100

102

104

Pr
ice

0 10 20 30 40 50
Tokens

Token Column IndexToken Row Index

0
10000
20000
30000

40000

50000

Frequency

Training Token Set
Test Token Set

Intersection

Excessive Token Cardinality Sparse Token Representation Out-of-Vocabulary Tokens

Figure 2: Visualization of financial time series tokenization challenges.

• Excessive Token Cardinality: Financial price series show high variability and weak periodicity,
leading to an unmanageably large token space. Both point-wise and patch-wise tokenization result
in exponentially growing vocabularies as decimal precision increases.

• Sparse Token Representation: Most tokens occur infrequently, receiving insufficient weight up-
dates during training. This prevents learning meaningful representations in the embedding space.

• Out-of-Vocabulary Tokens (OOV): Financial non-stationarity causes new tokens during testing,
where Vtest \ Vtrain ̸= ∅ (V represents the token set). Extreme events (e.g., the negative oil price
shock in 2020, unseen during training) yield tokens absent from training, limiting generalization.

Table 1: Token Counts and Out-of-Vocabulary (OOV) Analysis by Tokenization Method

Dataset Train/Test
Period Point-wise Point-wise

(3 dec.) Patch-wise Point-wise
Vtest \ Vtrain

Patch-wise
Vtest \ Vtrain

S&P500 00-09/11-20 829,240 607 230,716 17,784,212 11,531,733
04-13/15-24 878,676 596 240,909 21,084,110 11,855,766

CSI300 00-09/11-20 181,167 455 48,047 2,411,709 4,739,052
04-13/15-24 181,334 454 48,265 4,188,064 5,797,612

As detailed in Table 1, we empirically validate the tokenization challenges using S&P 500 and
CSI 300 data. The training set consists of OHLC data of the index itself, while the test set com-
prises data from the index’s constituent stocks, which exhibit richer price dynamics. Each 10-day
segment is normalized by day 9’s closing price. We evaluate point-wise (both full precision and
3-decimal rounded) and patch-wise (encoding daily OHLC as a single token) strategies. The re-
sults demonstrate that vocabulary size grows prohibitively with decimal precision. Crucially, both
methods yield unacceptably high Out-of-Vocabulary (OOV) counts due to the distributional shift

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

between training and testing period. This starkly contrasts with general-purpose text tokenizers like
OpenAI’s cl100k-base, which operates on a fixed vocabulary of 100,256 tokens. These critical
shortcomings underscore the necessity of a robust tokenization design tailored for financial data.

3 RELATED WORK

The success of Transformer models in NLP has spurred interest in financial time series forecasting
(Coelho e Silva et al., 2024). Current literature in finance employs two main tokenization paradigms:
point-wise methods that treat the price at each time step as a token (Wang et al., 2022; Qin et al.,
2017), and patch-wise approaches that group consecutive prices into segment tokens (Zeng et al.,
2023; Wang et al., 2025a). As shown in Table 2, many well-known time series Transformer models
fall into one of these categories. Beyond price prediction, Transformers have been adapted for
multimodal financial analysis. Studies (Zhang et al., 2022; Li et al., 2022; Liu et al., 2019; Zhang
et al., 2024) process textual data from news and social media to extract market sentiment, while
Yang et al. (2022) combines numerical data with textual and audio information.

Table 2: Summary of Transformer-based time series models (Point-wise vs. Patch-wise)
Autoformer
(Wu et al.)

FEDformer
(Zhou et al.)

Crossformer
(Zhang & Yan)

PatchTST
(Nie et al.)

iTransformer
(Zhou et al.)

Point-wise ✓ ✓
Patch-wise ✓ ✓ ✓

However, the literature reveals a gap in addressing time series tokenization challenges (as detailed in
Section 2). Many studies circumvent this issue by: (1) using datasets with strong periodicity where
extreme values are rare (Chen et al., 2025); (2) employing small test sets to avoid extreme scenarios
(Xu et al., 2025); (3) using z-score normalization that reduces value dispersion (Zhu et al., 2025);
4) replacing the embedding layer with either a simple linear projection or a convolutional mapping,
thereby bypassing the tokenization problem entirely (Nie et al., 2023; Wu et al., 2021).

Our paper presents a data-centric critique demonstrating how current tokenization approaches are
fundamentally mismatched to the unique characteristics of financial time series. To address these
critical limitations, we introduce a spectral clustering strategy (Xiang & Gong, 2008; Tai et al., 2022)
that first constructs a multi-scale representation from the dataset, then extracts its eigenvectors and
performs clustering to guide a more adaptive, fine-grained token segmentation.

4 METHODOLOGY

This section presents our eigen-cluster tokenization approach, comprising four key components: (1)
prefix-window matrix representation, (2) matrix transformation and eigenvector computation, (3)
scalar projection and cluster-based tokenization, and (4) identification and interpretation of the most
bullish cluster. The overall workflow, which integrates multi-scale patching, eigendecomposition,
and clustering, is illustrated in Fig. 3 using an example with n = 10.

10 Days OHLC

M-Samples

......

...... Zm

9

4.Clustering

The Most Bullish Cluster

M-Samples

1.Prefix-Window Data Matrix

2.Eigendecomposition at Each Scale

3.Scalar Projection 5.Token inputs into Transformer Architecture

Figure 3: Workflow of multi-scale tokenization with eigendecomposition and clustering.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 PREFIX-WINDOW DATA MATRIX REPRESENTATION

To extract multi-scale temporal features, we construct a sequence of data matrices based on prefix
windows. Unlike sliding windows, here the windows are nested and grow forward from the starting
point t − n + 1 until t. Specifically, the k-th window (k = 1, 2, . . . , n) covers the time range from
t − n + 1 to t − n + k. Here, k can be as small as 1, corresponding to a single-day window, or
as large as n, corresponding to the full prefix ending at the current time t. Hence, only the largest
window (k = n) includes the current time t. For each window length k, we define a data matrix
X(k) ∈ Rm×4k, where each row corresponds to one sample and is formed by concatenating the
OHLC vectors of the k consecutive days in that prefix window. Formally,

X(k) =


x
(t−n+1)
1 x

(t−n+2)
1 · · · x

(t−n+k)
1

x
(t−n+1)
2 x

(t−n+2)
2 · · · x

(t−n+k)
2

...
...

. . .
...

x
(t−n+1)
m x

(t−n+2)
m · · · x

(t−n+k)
m

 . (1)

Each vector in the matrix is defined as

x
(t−n+j)
i =

[
O

(t−n+j)
i

C
(t−n+k−1)
i

H
(t−n+j)
i

C
(t−n+k−1)
i

L
(t−n+j)
i

C
(t−n+k−1)
i

C
(t−n+j)
i

C
(t−n+k−1)
i

]
, j = 1, 2, . . . , k. (2)

Each row is normalized by the closing price at time t−n+k−1, which serves as the denominator for
all values in that sample. This construction produces a family of matrices {X(1), X(2), . . . , X(n)},
where only X(n) contains the most recent observation t, while smaller matrices correspond to shorter
historical prefixes. This multiscale structure is inspired by prior work on hierarchical time series
modeling, such as TimeMixer (Wang et al., 2024a; 2025b), which demonstrates the effectiveness of
multi-resolution temporal decomposition in capturing complex temporal dependencies.

4.2 EIGENDECOMPOSITION AT EACH SCALE

To extract dominant patterns from the feature matrices at each scale, we perform eigendecomposition
on the covariance matrix of the centered data matrix corresponding to a specific prefix window. As
an example, we consider the largest window k = n, which covers the full prefix ending at time t.

Let X(n) ∈ Rm×4n be the data matrix for the largest prefix. We first compute the mean vector and
the centered matrix:

µ(n) =
1

m

m∑
i=1

x
(n)
i ∈ R4n, X

(n)
centered = X(n) − 1(µ(n))⊤ ∈ Rm×4n, (3)

where 1 is an m-dimensional column vector of ones and x
(n)
i denotes the i-th row of X(n). The

empirical covariance matrix is then

A(n) =
1

m
(X

(n)
centered)

⊤X
(n)
centered ∈ R4n×4n. (4)

Solving the eigenvalue problem A(n)v
(n)
i = λ

(n)
i v

(n)
i yields eigenpairs (λ

(n)
i ,v

(n)
i), where λ

(n)
i

represents the variance explained by the i-th principal direction v
(n)
i . We use all eigenvectors to

form the projection matrix:

W (n) = [v
(n)
1 v

(n)
2 · · · v(n)

4n] ∈ R4n×4n, X̃(n) = X
(n)
centeredW

(n) ∈ Rm×4n. (5)

This procedure can be applied to any prefix window k = 1, 2, . . . , n to obtain scale-specific princi-
pal components, enabling multi-scale temporal pattern extraction. A similar operation has also been
adopted in Tai et al. (2022). Notably, the eigendecomposition step is effectively a Principal Compo-
nent Analysis (PCA) operation; however, unlike conventional PCA, we retain all eigenvectors rather
than selecting only the leading components. Prior work has shown that PCA can enhance K-means
clustering by maximizing variance and making cluster directions more separable (Zha et al., 2001;
Ding & He, 2004).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.3 SCALAR PROJECTION AND CLUSTERING

After obtaining the eigendecomposed and projected feature matrices X̃(k) ∈ Rm×4k at each scale
k = 0, 1, . . . , n, we apply a monotonic transformation to compress each row into a single inter-
pretable scalar. This mapping, which we refer to as a scalar projection, preserves both directional and
magnitude characteristics of the original high-dimensional representation. The use of the trigono-
metric function sin(·) provides a bounded directional signal in [−1, 1], while ∥ · ∥2 encodes its
corresponding amplitude. This design enables subsequent visualization and supports conversion
from multivariate representations to a one-dimensional interpretable form. Specifically, for the i-th
sample at scale k, we define:

r
(k)
i =

 1

4k

4k∑
j=1

sin(x̃
(k)
ij)

 ·
∥∥∥x̃(k)

i

∥∥∥
2
, (6)

where x̃
(k)
i denotes the i-th row of X̃(k) for i = 1, . . . ,m. The j-th entry of x̃(k)

i is written as
x̃
(k)
ij , corresponding to the value in the i-th row and j-th column of X̃(k). This yields a scalar

vector r(k) = [r
(k)
1 , r

(k)
2 , . . . , r

(k)
m]⊤ ∈ Rm for clustering. We then apply one-dimensional K-means

clustering to r(k), producing clusters {S(k)
1 , . . . ,S(k)

K } by minimizing the within-cluster variance:

min
{S(k)

1 ,...,S(k)
K }

K∑
j=1

∑
r
(k)
i ∈S(k)

j

(
r
(k)
i − µ

(k)
j

)2

, (7)

where µ
(k)
j is the centroid of cluster S(k)

j . Each sample is assigned a cluster token z
(k)
i ∈

{1, 2, . . . ,K} based on the closest centroid. Repeating this procedure for all scales k = 0, 1, . . . , n
yields a multi-resolution token vector for each sample, and stacking all per-sample vectors forms the
final token matrix (see Fig. 3):

zi =
[
z
(1)
i z

(2)
i · · · z

(n)
i

]
∈ Rn, Z = [z1 z2 · · · zm] ∈ Rm×n. (8)

This multi-scale tokenized representation captures dominant temporal patterns in price dynamics,
making it directly compatible with Transformer architectures. By clustering sequences into K to-
kens, this approach not only mitigates OOV issues but also compresses the vocabulary. This consol-
idation significantly increases the frequency of each token’s occurrence, thereby directly alleviating
the sparse token problem alongside the excessive token problem.

4.4 THE BULLISH CLUSTER

0.90 0.95 1.00 1.05 1.10 1.15
Ct/Ct 1 Value

0.02

0.00

0.02

0.04

Sc
al

ar
 P

ro
je

ct
io

n

(a) Scatter Plot

Label 0
Label 1

(n)
* = 6

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
0

10

20

30

40

De
ns

ity

(b) Ct/Ct 1 Density

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Deviation from Mean

0

200

400

600

800

De
ns

ity

(c) Scalar Projection Density

Figure 4: Three-panel visualization: (a) scalar projection vs. Ct/Ct−1 scatter with the bullish cluster
highlight; (b) density of Ct/Ct−1; (c) density of scalar projections r(n)i .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

After obtaining the multi-scale token representation, the prediction task becomes estimating the n-th
token ẑ

(n)
i ∈ {1, 2, . . . ,K} from the preceding n−1 tokens [z(1)i , z

(2)
i , . . . , z

(n−1)
i]. Each predicted

token z
(n)
i maps to one of the K clusters derived from projected price trajectories. We define S(n)

∗
as the most bullish cluster according to the following criterion:

S(n)
∗ := argmin

S∈{S(n)
1 ,...,S(n)

K }
|S| s.t.

∣∣∣{i ∈ S : C
(i)
t > C

(i)
t−1

}∣∣∣ > ∣∣∣{i ∈ S : C
(i)
t < C

(i)
t−1

}∣∣∣ (9)

We select the smallest cluster with the highest concentration of rising patterns, ensuring S(n)
∗ con-

tains the most reliable bullish signals. As confirmed in Fig. 4(a), this cluster shows nearly perfect
separation, with almost all samples satisfying Ct > Ct−1. Subfigures (b) and (c) show kernel den-
sities of normalized Ct/Ct−1 and scalar projections, respectively. In addition, we apply Synthetic
Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002) to mitigate class imbalance (see
Appendix A.5).

5 TRANSFORMER ARCHITECTURE AND SETTING

This section details our multi-scale tokenization framework, the method for selecting optimal K-
means clusters, and the vanilla Transformer architecture employed.

Q K VK VQ

Output Layer

Dropout

Figure 5: Workflow of Transformer Architecture.

5.1 MULTI-SCALE SETTING AND OPTIMAL K CLUSTERS

We construct a 10-day OHLC matrix X ∈ Rm×40. Nested prefix matrices X(k) ∈ Rm×4k for
k = 1, . . . , 10 contain the first k days, with X(10) including all days to target t. Each X(k) has
response vector r(k) ∈ Rm. For r(1) to r(9), we use fixed K = 5 or 10, yielding two variants: Ours-
5 and Ours-10. For r(10), the optimal K∗ is determined by maximizing the score over K ∈ [5, 20].

argmax
K∈{5,...,20}

[
Score = 25.0 · p(10)∗ − 0.8 ·

(
50

n
(10)
∗

)
− 0.2 ·K

]
(10)

where p
(10)
∗ ≡ Pr(Ct/Ct−1 > 1|S(10)

∗): bullish probability in cluster; n(10)
∗ ≡ |S(10)

∗ |: cluster size;
K: number of clusters. The weights reflect our prioritization (as detailed in Appendix A.6): (1)
Strong emphasis on bullish rates (25.0) to promote upward-oriented samples; (2) Moderate concern

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

for larger cluster size (0.8) to avoid small, unreliable clusters; (3) Mild preference for smaller K
(0.2) to reduce the overall token count. Table 3 shows the optimal K values for r(10) and the most
bullish cluster S(10)

∗ that we adopted for different markets and training periods.

Table 3: Optimal K for r(10) and Bullish Cluster S(10)
∗

S&P500 CSI300

Market Training Period K S(10)
∗ Market Training Period K S(10)

∗

S&P500 2000–2009 6 4 CSI300 2000–2009 7 6
S&P500 2004–2013 11 6 CSI300 2004–2013 9 2

5.2 TRANSFORMER ARCHITECTURE

In this study, we employ a decoder-only Transformer as a shared architecture for all tokenization
methods under a controlled setup, ensuring that performance differences arise from the token rep-
resentation rather than architectural variance. As shown in Fig. 5, the input time series undergoes
normalization, multiscale segmentation, eigendecomposition, and clustering, producing a sequence
of 9 discrete cluster tokens [z(1)i , z

(2)
i , . . . , z

(9)
i] used to predict the next token z

(10)
i . Each token is

embedded into a 64-dimensional vector (dmodel = 64), forming a 9×64 input matrix, with sinusoidal
positional encodings (Vaswani et al., 2017) added to preserve temporal order. Notably, our embed-
ding layer follows the conventional NLP-style discrete lookup paradigm. This contrasts with linear
projection embeddings (e.g., PatchTST) or convolutional embeddings (e.g., Autoformer), where in-
puts are mapped into continuous representations. In those architectures, the notion of symbolic
"tokens" no longer exists, and the model no longer processes relationships between discrete tokens.

The embedding matrix is processed by an 8-layer decoder-only Transformer with 4 attention heads
per layer. The architecture follows the standard design with residual connections and layer normal-
ization before both attention and feed-forward modules. Dropout (rate 0.1) is applied within these
modules to reduce overfitting. The output is projected via a linear layer followed by softmax to pro-
duce a distribution over K cluster tokens. Hyperparameters were selected considering dataset size
and computational resources: batch size 4, dmodel = 64, 8 decoder blocks, 4 attention heads, learn-
ing rate 1 × 10−3, dropout 0.1, and 2000 training epochs. The model used the AdamW optimizer,
cross-entropy loss, and random seed 1337.

6 EMPIRICAL RESULTS

This section presents our experimental data and evaluation of different approaches for stock upward
recognition. Our dataset consists of two distinct groups for cross-market evaluation:

Table 4: Data Split Time Periods with Token Vocabulary Sizes
Train Token Vocabulary Size Validation Test Stocks

Ours-5 Ours-10

2000–09 51(US), 52(CN) 96(US), 97(CN) 2010 2011–20 493(US), 288(CN)
2004–13 56(US), 54(CN) 101(US), 99(CN) 2014 2015–24 501(US), 300(CN)

U.S. and Chinese (CN) Markets: We evaluate our approach on two distinct markets with differ-
ent training sets. For the U.S. market, we train on 10 major global indices and test on S&P 500
constituent stocks. For the Chinese market, we train on two domestic indices and test on CSI 300
constituent stocks1. This design offers two advantages: (1) indices better capture overall market
trends than individual stocks; (2) using completely different datasets for training and testing rigor-
ously evaluates model robustness. The chronological splitting follows two complete market cycles
as detailed in Table 4. Validation are used exclusively for early stopping to prevent overfitting.

1U.S. data sources: S&P 500, NASDAQ, Hang Seng, Dow Jones, CAC 40, DAXI, Nikkei 225, KOSPI, BSE,
EURO STOXX 50 (from https://pypi.org/project/yfinance/). Chinese data sources: SSEC
(Shanghai Composite) and SZSC (Shenzhen Component) (from Tushare: https://tushare.pro/).

7

https://pypi.org/project/yfinance/
https://tushare.pro/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Evaluation Metrics: We evaluate model performance using Precision = TP/(TP + FP). Here,
TP (True Positives) are correct predictions of upward movement (Ct/Ct−1 > 1), and FP (False
Positives) are incorrect upward predictions. This metric interprets the proportion of correct upward
predictions. Unlike regression metrics (MSE, RMSE) that quantify magnitude errors, precision
captures directional accuracy—essential for trading where even minor misdirection results in losses.

6.1 COMPARISON OF TOKENIZATION METHODS

As summarized in Table 5, we evaluate three tokenization methods within a unified framework.
Point-wise and patch-wise methods use the same normalization procedure (division by Ct−1) rather
than conventional z-score normalization, as the global statistics (e.g., max/min) of the entire trading
data are unavailable in practice. Each method predicts the next token, which is mapped to a numer-
ical value for thresholding at τ ∈ [1.00, 1.03]. Our method uses the normalization in Equation 2
and predicts token cluster membership. All tokenization methods employ the same vanilla Trans-
former architecture (Refer to Section 5.2), allowing direct observation of how different tokenization
strategies impact the Transformer’s performance.

OOV tokens are processed using: (1) KDTree nearest-neighbor retrieval from scikit-learn for
patch-wise tokenization, and (2) exact Euclidean search within a reduced vocabulary of 400–600
tokens for point-wise tokenization. The KDTree approach is adopted for patch-wise tokenization
to ensure computational efficiency, as performing exact Euclidean matching over a large token set
(e.g., 240,000+) would be prohibitively slow. Meanwhile, the point-wise method operates on a
much smaller token set, making exact Euclidean search feasible. The 3-decimal rounding applied
in point-wise tokenization serves two reasons: it significantly shrinks the token vocabulary to avoid
excessive memory consumption, and it alleviates extreme token frequency imbalances that would
otherwise bias predictions toward frequent values (such as 1).

Table 5: Comparison of Tokenization Strategies
Method Input Output Configuration
Ours 9 tokens I(ẑ(10)i ∈ S(10)

∗) Employs 9 tokens to predict the ẑ(10)i , we eval-
uate two configurations: Ours-5&10.

Point-wise 36 tokens I(ẑ(37)i > τ) 3-decimal rounding reduces tokens to 454–
607; each time point’s OHLC prices as sepa-
rate tokens, using 36 tokens (9 days × 4).

Patch-wise 9 tokens I(ẑ(10)i [close] > τ) Treats each trading day’s OHLC as a single
token segment, using 9 tokens to predict the
close within ẑ

(10)
i .

6.2 PERFORMANCE ACROSS TOKEN METHODS

Ours5

Ours10

>1.0

>1.01

>1.02

>1.0
>1.01
>1.02
>1.03

51 52 53 54 55 56 57 58 59
103

104

105

106

Sa
m

pl
e

C
ou

nt
(l

og
sc

al
e)

Model Performance Comparison (2011–2020 S&P500)

Ours5
Ours10

>1.0
>1.01

>1.02

>1.0

>1.01

>1.02

>1.03

48 49 50 51 52 53 54 55 56 57
103

104

105

Precision (%)

Sa
m

pl
e

C
ou

nt
(l

og
sc

al
e)

Model Performance Comparison (2011–2020 CSI300)

Ours5
Ours10

>1.0

>1.01

>1.02

>1.0>1.01
>1.02

>1.03

52 53 54 55 56 57 58 59 60 61
103

104

105

106

Model Performance Comparison (2015–2024 S&P500)

Ours5
Ours10
Point-wise
Patch-wise

Ours5

Ours10

>1.0

>1.01

>1.02

>1.0

>1.01 >1.02
>1.03

46 47 48 49 50 51 52 53 54 55 56
103

104

105

Precision (%)

Model Performance Comparison (2015–2024 CSI300)

Figure 6: Model performance comparison on S&P500 and CSI300 constituent stocks. The red
dashed line: market baselines (TP rates in test). Models with sample counts below 1000 are omitted.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Fig. 6 demonstrates the clear superiority of our eigen-cluster tokenization, outperforming both point-
wise and patch-wise methods by 2.6–8.8% precision across all thresholds and evaluation periods.
This improvement arises from resolving fundamental limitations in conventional designs: exces-
sive token counts (point-wise: 400–600, patch-wise: 240,000+) and the dependence on unoptimized
out-of-vocabulary substitutions that introduce approximation errors. The full numerical results cor-
responding to this figure are provided in Appendix A.9.

Our models consistently achieve 6 to 9% higher precision than market baselines (the red dash lines),
which represent the proportion of truly bullish samples in the test set and thus correspond to a
random-guessing strategy. In contrast, conventional methods struggle to exceed these baselines
when τ > 1.0 and fail to maintain high precision at τ > 1.03. Notably, patch-wise models show
little change across thresholds, as the vast token space dilutes probability distributions and reduces
sensitivity. These results highlight tokenization, rather than model complexity, as the primary bottle-
neck in financial time series forecasting with Transformers. For a practical evaluation, Appendix A.8
presents a trading backtest using the Ours5 model over the period 2015–2024.

To evaluate computational efficiency, we measured inference times for predicting 1,202,584 samples
from the S&P 500 test set (2015–2024) on Google Colab platform with T4 GPU (15,360 MiB
VRAM), as detailed in Table 6. Our method achieves 27× and 16× speedups over patch-wise
and point-wise approaches respectively, resulting from dramatically reduced token vocabulary (51–
101 vs. 400–600 vs. 240,000+) and shorter input sequences (9 vs. 36 tokens). In addition to
the Transformer architecture evaluation, we conducted comprehensive experiments comparing with
traditional machine learning models; detailed results are provided in Appendix A.7.

Table 6: Inference Time Comparison on S&P 500 Test Set (2015–2024)
Method Time Speedup Method Time Speedup
Patch-wise 4:55 (295 s) 1.0× Ours-5 0:11 (11 s) 26.8×
Point-wise 2:58 (178 s) 1.7× Ours-10 0:11 (11 s) 26.8×

6.3 THE IMPACT OF TOKEN LENGTH AND ARCHITECTURAL DEPTH

We also conduct an experiment to examine the effect of input token length. Specifically, we test
four configurations using 5, 10, 15, and 30 tokens as input (Table 7). The experiments are carried
out on the S&P 500 dataset covering 2015–2024. The results show that increasing the input length
does not improve performance; instead, shorter historical windows (e.g., 4 input tokens predicting
the next one) yield the best precision, suggesting that local market patterns are more informative for
short-term forecasting.

Table 7: Precision performance across different token counts.
Total Tokens Input Tokens Predicted Tokens Precision (%)

5 4 1 61.99
10 9 1 61.02
15 14 1 54.94
30 29 1 52.92

To further examine architectural sensitivity, we compare our 8-layer Transformer against a 2-layer
version and a 1-layer LSTM baseline on the same S&P 500 test set. As shown by the precision results
below, deeper Transformer architectures yield moderate improvements over shallower variants and
substantially outperform the LSTM baseline.

Table 8: Precision comparison of model architectures.
Model Precision (%)
8-layer Transformer (Ours-10) 61.02
2-layer Transformer (Ours-10) 59.63
1-layer LSTM 54.86

6.4 CORRELATION AMONG THE TEST STOCKS

To examine whether our method performs differently across stocks with different levels of represen-
tativeness in the index, we conducted an additional experiment using the S&P 500 constituents from

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2011–2020 as the test set. We grouped the constituents based on their index weights and evaluated
the prediction accuracy for four segments: the top 10%, top 30%, bottom 30%, and bottom 10%
by index weight. Table 9 reports the results. We observe that the method achieves higher precision
for stocks with larger benchmark weights, whereas the precision decreases for the smaller-weight
stocks. This suggests that our token-based up-movement prediction method is more effective for
stocks that are more strongly related to the overall market index.

Table 9: Prediction Precision Across S&P 500 Constituents (Grouped by Index Weight)
Constituent Group Precision (%)
Top 10% by weight 60.29
Top 30% by weight 61.35
Bottom 30% by weight 58.28
Bottom 10% by weight 56.81

6.5 ABLATION EXPERIMENT

We perform ablation studies on the 2011–2020 dataset to evaluate three main components of our
tokenization framework: (1) single-scale patch or multi-scale representation, (2) eigenvector projec-
tion, and (3) cluster-based tokenization. As shown in Table 10, removing any of these components
leads to a clear decrease in precision on both the S&P500 and CSI300 datasets, demonstrating their
complementary contributions.

Table 10: Ablation Results (Precision %, 2011–2020)
Patch Multi-scale Eigenvectors Clustering S&P500 CSI300

Ours5 Ours10 Ours5 Ours10

× ✓ ✓ ✓ 59.08 58.49 56.52 56.45
× ✓ ✓ × 52.20 52.09 48.40 48.43
× ✓ × ✓ 54.58 54.57 55.72 56.13
✓ × ✓ ✓ 52.80 48.62

Note: × indicates the component is ablated, ✓ indicates the component is included.

Clustering is critical—without it, tokenization degenerates into patch-wise schemes with excessive
tokens and out-of-vocabulary issues, causing substantial precision drops. Eigendecomposition fur-
ther enhances the expressiveness of bullish clusters; removing it yields moderate precision reduc-
tions, particularly on the S&P500. Moreover, replacing multi-scale patching with single-scale day-
level patch tokens (i.e., using one day’s OHLC as a segment token) markedly degrades precision on
both S&P500 and CSI300. Notably, the choice of K for the first nine prefix windows (5 or 10) has
minimal impact on performance, with only small differences between Ours5 and Ours10.

7 CONCLUSION

This paper addresses key challenges in applying Transformers to stock forecasting, noting that
while an increasing number of studies leverage Transformers for time series prediction, the fun-
damental issue of tokenization remains largely unresolved. We identify core limitations in con-
ventional point-wise and patch-wise tokenization approaches: Excessive Token Vocabulary, Sparse
Token Distributions, and Out-of-Vocabulary Token Issues. To overcome these challenges, we pro-
pose a novel multiscale cluster discrete tokenization framework that: (1) employs multiscale seg-
mentation of time series to capture hierarchical patterns, (2) utilizes eigenvector projection for ef-
fective feature extraction, and (3) implements clustering-based tokenization to achieve semantic-
aware discretization. Experimental results demonstrate both the shortcomings of conventional
tokenization methods and the effectiveness of our approach. Our method enables Transform-
ers to match or outperform classical baselines across various prediction thresholds and market
conditions. Ablation studies further confirm the critical contribution of each component to the
overall performance. Overall, we emphasize that for financial time series applications, tok-
enization should prioritize reducing token counts while preserving semantic meaning. The im-
plementation code for this study is available at: https://github.com/MasterBeard/
EigenCluster-Tokenization-for-Financial-Transformers.

10

https://github.com/MasterBeard/EigenCluster-Tokenization-for-Financial-Transformers
https://github.com/MasterBeard/EigenCluster-Tokenization-for-Financial-Transformers

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. J. Artif. Int. Res., 16(1):321–357, June 2002. ISSN 1076-9757.

Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
forecasting. In The Twelfth International Conference on Learning Representations, 2024.

Yu Chen, Nathalia Céspedes, and Payam Barnaghi. A closer look at transformers for time series
forecasting: Understanding why they work and where they struggle. In Forty-second International
Conference on Machine Learning, 2025.

Lucas Coelho e Silva, Gustavo de Freitas Fonseca, and Paulo Andre L. Castro. Transformers and
attention-based networks in quantitative trading: a comprehensive survey. In Proceedings of the
5th ACM International Conference on AI in Finance, ICAIF ’24, pp. 822–830, New York, NY,
USA, 2024. Association for Computing Machinery. ISBN 9798400710810.

C. Ding and Xiaofeng He. K-means clustering via principal component analysis. Proceedings of
the twenty-first international conference on Machine learning, 2004.

Zhiyang Dou, Qingxuan Wu, Cheng Lin, Zeyu Cao, Qiangqiang Wu, Weilin Wan, Taku Komura, and
Wenping Wang. Tore: Token reduction for efficient human mesh recovery with transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15143–15155,
2023.

Akash Dubey, Shivam Singh, Ashish Kumar Mishra, et al. A survey on machine learning tech-
niques for stock market price prediction. In 2024 ASU International Conference in Emerging
Technologies for Sustainability and Intelligent Systems (ICETSIS), pp. 682–691. IEEE, 2024.

Ryan Grainger, Thomas Paniagua, Xi Song, Naresh Cuntoor, Mun Wai Lee, and Tianfu Wu. Paca-
vit: learning patch-to-cluster attention in vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 18568–18578, 2023.

Ang Li, Mark Liu, and Simon Sheather. Predicting stock splits using ensemble machine learning
and smote oversampling. Pacific-Basin Finance Journal, 78:101948, 2023. ISSN 0927-538X.

Yawei Li, Shuqi Lv, Xinghua Liu, and Qiuyue Zhang. Incorporating transformers and attention
networks for stock movement prediction. Complexity, 2022:1–10, 2022.

James Liang, Yiming Cui, Qifan Wang, Tong Geng, Wenguan Wang, and Dongfang Liu. Clus-
terfomer: clustering as a universal visual learner. Advances in neural information processing
systems, 36:64029–64042, 2023.

Jintao Liu, Hongfei Lin, Xikai Liu, Bo Xu, Yuqi Ren, Yufeng Diao, and Liang Yang. Transformer-
based capsule network for stock movement prediction. In Proceedings of the First Workshop on
Financial Technology and Natural Language Processing, pp. 66–73, 2019.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems,
35:9881–9893, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The 11th International Conference on
Learning Representations, 2023.

Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and Garrison W. Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pp. 2627–2633.
AAAI Press, 2017. ISBN 9780999241103.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Golshid Ranjbaran, Diego Reforgiato Recupero, Gianfranco Lombardo, and Sergio Consoli. Lever-
aging augmentation techniques for tasks with unbalancedness within the financial domain: a two-
level ensemble approach. EPJ Data Science, 12, 07 2023.

Mariko Tai, Mineichi Kudo, Akira Tanaka, Hideyuki Imai, and Keigo Kimura. Kernelized super-
vised laplacian eigenmap for visualization and classification of multi-label data. Pattern Recog-
nition, 123:108399, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Chaojie Wang, Yuanyuan Chen, Shuqi Zhang, and Qiuhui Zhang. Stock market index prediction
using deep transformer model. Expert Systems with Applications, 208:118128, 2022.

Mengyu Wang, Tiejun Ma, and Shay B. Cohen. Pre-training time series models with stock data
customization. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V.2, KDD ’25, pp. 3019–3030, New York, NY, USA, 2025a. Association for
Computing Machinery. ISBN 9798400714542.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations (ICLR), 2024a.

Shiyu Wang, Jiawei LI, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Ju Shengtong, Zhixuan
Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis. In The Thirteenth International Conference on Learning Representations, 2025b.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark, 2024b. URL https://arxiv.
org/abs/2407.13278.

Han Wei. Smote algorithm optimization and application in corporate credit risk prediction with
diversification strategy consideration. Scientific Reports, 15, 07 2025.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

Tao Xiang and Shaogang Gong. Spectral clustering with eigenvector selection. Pattern Recognition,
41(3):1012–1029, 2008.

Wenyan Xu, Rundong Wang, Chen Li, Yonghong Hu, and Zhonghua Lu. Hrft: Mining high-
frequency risk factor collections end-to-end via transformer. In Companion Proceedings of the
ACM on Web Conference 2025, WWW ’25, pp. 538–547, New York, NY, USA, 2025. Association
for Computing Machinery. ISBN 9798400713316.

Linyi Yang, Jiazheng Li, Ruihai Dong, Yue Zhang, and Barry Smyth. Numhtml: Numeric-oriented
hierarchical transformer model for multi-task financial forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 11604–11612, 2022.

Zhen Zeng, Rachneet Kaur, Suchetha Siddagangappa, Tucker Balch, and Manuela Veloso. From
pixels to predictions: Spectrogram and vision transformer for better time series forecasting. In
Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 82–90, 2023.

Hongyuan Zha, Xiaofeng He, Chris Ding, Ming Gu, and Horst Simon. Spectral relaxation for k-
means clustering. In T. Dietterich, S. Becker, and Z. Ghahramani (eds.), Advances in Neural
Information Processing Systems, volume 14. MIT Press, 2001.

Qiuyue Zhang, Chao Qin, Yunfeng Zhang, Fangxun Bao, Caiming Zhang, and Peide Liu.
Transformer-based attention network for stock movement prediction. Expert Systems with Ap-
plications, 202:117239, 2022.

12

https://arxiv.org/abs/2407.13278
https://arxiv.org/abs/2407.13278

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qiuyue Zhang, Yunfeng Zhang, Fangxun Bao, Yifang Liu, Caiming Zhang, and Peide Liu. In-
corporating stock prices and text for stock movement prediction based on information fusion.
Engineering Applications of Artificial Intelligence, 127:107377, 2024.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The 11th International Conference on Learning Rep-
resentations, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

Zhuohang Zhu, Haodong Chen, Qiang Qu, and Vera Chung. Fincast: A foundation model for
financial time-series forecasting, 2025. URL https://arxiv.org/abs/2508.19609.

A APPENDIX

This appendix provides additional discussions on several technical components that were only
briefly referenced in the main text, and includes a disclosure regarding the use of large language
models (LLMs) in the preparation of this manuscript.

First, Appendix A.1 examines whether the proposed tokenization design introduces risks of over-
fitting under the learning framework by training and validation loss curves. Appendix A.2 extends
the discussion on clustering by comparing alternative methods, and further justifies the selection
of k-means based on its ability to obtain the most informative and actionable bullish cluster. Ap-
pendix A.3 explains why tokenization approaches widely adopted in vision—such as VQ-VAE and
discrete autoencoders—are not applicable to our financial time-series setting.

In addition to these points, we provide a mathematical discussion of the three fundamental tokeniza-
tion challenges introduced in Section 2. Second, we elaborate on the role of SMOTE in addressing
class imbalance within our predictive framework. Third, we detail the scoring function in Eq. 10 and
explain the rationale behind the weighting scheme used to determine the optimal number of clusters
K∗. Fourth, we present a comparative analysis demonstrating that our vanilla Transformer models
with eigencluster-based tokens generally achieve higher precision than traditional baselines, while
also acknowledging several extreme cases where conventional models outperform our predictions.
Finally, we report a historical backtest of the Ours5 model over the 2015–2024 period, as reported
in Appendix A.8, to evaluate the practical utility of the proposed predictive framework.

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

1

2

3

4

Lo
ss

Training vs Validation Loss
Training Loss
Validation Loss

Figure 7: Training and validation loss curves for the proposed model (S&P500 2004–2013).

13

https://arxiv.org/abs/2508.19609

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1 LOSS CURVES

We have included the training and validation loss curves in the following (see Fig. 7). As illustrated
in the figure, both training and validation losses consistently decrease throughout the entire training
process, and no late-stage increase in validation loss is observed. This indicates that the model is
learning generalizable patterns rather than memorizing the training data.

A.2 K-MEANS VS GMM

We tested various automatic clustering approaches, including Gaussian Mixture Models (GMM)
with AIC/BIC selection and Bayesian Gaussian Mixture Models (Bayesian GMM). On the S&P 500
training set (2004–2013), the bullish cluster from these methods exhibited only moderate bullish
probabilities (75%, 68%, and 61%, respectively). In contrast, using 1D K-means with k = 11
produced a top cluster with a bullish probability of 92%, which is substantially stronger. Therefore,
we chose 1D K-means as our main clustering method to obtain the most informative and actionable
bullish cluster.

Table 11: Comparison of different clustering methods on the SP500 training set (2004-2013).
Clustering Method Selection Bullish Cluster (%)
GMM AIC 75%
GMM BIC 68%
Bayesian GMM Default 61%
K-means k=11 92%

A.3 WHY VQ-VAE AND DISCRETE AUTOENCODERS COLLAPSE ON FINANCIAL DATA

We experimented with VQ-VAE and discrete autoencoders as alternative tokenization approaches;
however, these methods consistently collapse when applied to normalized financial price features.
Due to the extremely low variance of normalized inputs, almost all samples lie near a single mode,
causing the quantization stage to map the entire dataset to one identical discrete token and preventing
meaningful token diversity.

Our input features are normalized financial series with very limited dispersion:

xi,j ∈ R, µ ≈ 1.0005, σ ≈ 0.0328, (11)

where xi,j denotes the j-th feature of the i-th sample, µ is the empirical mean, and σ is the empirical
standard deviation. Thus,

xi,j = µ+ εi,j , |εi,j | ≪ 1, (12)

meaning the deviations εi,j are extremely small. For any encoder fθ in VQ-VAE or a discrete
autoencoder, such nearly constant inputs produce almost identical latent vectors:

zi = fθ(xi) ≈ zj , ∀i, j, (13)

where zi is the latent representation of sample i. Consequently, the quantization layer (e.g., Gumbel-
Softmax or VQ codebook) receives almost the same logits for every sample. For a linear projection
of the latent vector into code logits, we have

ℓi = Wzi + b ≈ ℓj , (14)

where zi ∈ Rd is the latent representation of sample i, W ∈ RK×d and b ∈ RK are the learnable
weight matrix and bias projecting zi to K logits, and ℓi ∈ RK is the vector of logits corresponding
to the K discrete codebook entries. Since all latent vectors are nearly identical (zi ≈ zj for all i, j),
the logits are also almost the same (ℓi ≈ ℓj). As a result, the quantization step collapses all samples
to the same code index:

argmax
k

ℓi,k = k0, for all i, (15)

where ℓi,k denotes the k-th component of ℓi, and k0 ∈ {1, . . . ,K} is the single code index assigned
to all samples. Therefore, the degeneration is not a failure of VQ-VAE or discrete autoencoders, but

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

a direct consequence of the low-variance, unimodal structure of normalized financial data, which
lacks the multimodal geometry needed for meaningful discrete token learning.

For transparency and reproducibility, we provide a Colab notebook in an anonymous GitHub
repository containing our VQ-VAE and discrete autoencoder experiments. The notebook can be
executed directly to verify the observed behavior: https://github.com/MasterBeard/
EigenCluster-Tokenization-for-Financial-Transformers/blob/main/
ICLR_review3_VQ_VAE.ipynb.

A.4 CHALLENGES IN FINANCIAL TOKENIZATION

Excessive Token Cardinality: Financial price series exhibit high variability and weak periodicity,
which leads to a token space that grows approximately as an exponential function of the decimal
precision. Formally, the vocabulary size grows as

|V| ∝ Bd, (16)

where B is the base of representation (e.g., B = 10 for decimal prices) and d is the decimal pre-
cision. This relationship demonstrates that the number of unique tokens scales exponentially with
precision, making the tokenization approach computationally intractable at high precision levels.

Update Sparsity: The fundamental issue is that each token’s embedding vector is only updated
when that specific token appears in the training data. Therefore, a token v that occurs only n times
receives exactly n updates to its embedding ev . For a rare token (e.g., n = 1), this results in a single,
ineffective gradient step:

e(final)v ≈ e(initial)v − η∇evL. (17)
where η is the learning rate and ∇evL is the gradient from the single occurrence of token v. This
single update is negligible compared to the thousands of updates received by frequent tokens. Con-
sequently, the embeddings of rare tokens remain poorly optimized and fail to learn meaningful
representations.

Out-of-Vocabulary Tokens (OOV): Due to financial non-stationarity, novel patterns appear at test
time that were never observed during training. This yields tokens outside the training vocabulary:

Vtest \ Vtrain ̸= ∅, (18)

where Vtrain and Vtest denote the training and testing vocabularies, respectively. The core challenge
is that no embedding parameters exist for these unseen tokens, creating a fundamental representa-
tion gap. Common workarounds, such as mapping novel tokens to the nearest in-vocabulary value,
introduce substantial approximation errors. Since financial time series are highly sensitive to ex-
act values, these substitutions propagate inaccuracies through subsequent model layers, ultimately
compromising prediction reliability. This representation failure severely hinders generalization, par-
ticularly during extreme market events (e.g., the negative oil price shock in 2020) when novel price
regimes emerge.

A.5 SMOTE AND SAMPLING STRATEGY

SMOTE has been widely used in financial machine learning for handling imbalance (Ranjbaran
et al., 2023; Li et al., 2023; Wei, 2025). In Section 4.4 we omitted the detailed discussion of SMOTE
for brevity. Here, we provide a complete formulation of our oversampling strategy, clarify its role in
our pipeline.

Data Representation. Let the training dataset consist of cluster-index token sequences,

D = {(xi, yi)}Ni=1, xi ∈ {1, 2, . . . ,K}L, yi ∈ {1, 2, . . . ,K}. (19)

where each xi is a symbolic sequence of cluster indices of length L, obtained from the price-pattern
encoder. SMOTE is applied exclusively to these discrete token vectors, not to raw or continuous
price series. This design completely avoids the risk of synthesizing economically implausible price
trajectories. For each label k, let

nk =
∣∣{i : yi = k}

∣∣ and n∗ = median{nk}Kk=1. (20)

15

https://github.com/MasterBeard/EigenCluster-Tokenization-for-Financial-Transformers/blob/main/ICLR_review3_VQ_VAE.ipynb
https://github.com/MasterBeard/EigenCluster-Tokenization-for-Financial-Transformers/blob/main/ICLR_review3_VQ_VAE.ipynb
https://github.com/MasterBeard/EigenCluster-Tokenization-for-Financial-Transformers/blob/main/ICLR_review3_VQ_VAE.ipynb

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The final number of samples per class is defined as

nfinal
k =


n∗, nk = 1 (extremely rare class, duplicated),

n∗, 2 ≤ nk < n∗ (minority class, oversampled via SMOTE),

n∗, nk > n∗ (majority class, downsampled).

(21)

SMOTE in the Token Space. For minority classes with 2 ≤ nk < n∗, synthetic samples are
generated using SMOTE applied to the token vectors xi. Given a sample xi and one of its K nearest
neighbors xnn in the token space (we use K = 2 throughout),

x̃ = xi + λ(xnn − xi), λ ∼ U(0, 1). (22)

Since the space is discrete, (xnn − xi) is computed elementwise and the result is rounded back
to valid cluster indices. Critically, this interpolation occurs only between existing cluster indices,
never between price values. Thus, SMOTE redistributes density in the symbolic state space without
creating artificial price paths.

Even if SMOTE were applied to continuous features, its linear interpolation cannot produce
outliers far from the data manifold. We verified this behavior visually: as shown in Fig. 8, when
applied to the bullish cluster, the synthetic samples (cyan) remain tightly concentrated around the
original cluster (green), indicating SMOTE’s inherently local and non-distortive nature.

Figure 8: SMOTE applied to the bullish cluster: synthesized samples (cyan) tightly adhere to the
original cluster boundary (green).

Table 12: Precision (%) and Counts Changes (%) without SMOTE
S&P500 CSI300

Ours5 Ours10 Ours5 Ours10
Prec Count Prec Count Prec Count Prec Count

2011–2020 +0.12 -9% +6.45 -58% +0.04 -26% -0.28 -31%
2015–2024 -1.19 -99% — -100% -0.38 -37% +1.32 -95%

Practical Role of SMOTE. The SMOTE module substantially stabilizes our classifier. Without
SMOTE, prediction counts decrease sharply (Table 12), leading to reduced robustness in detecting
bullish-cluster events. The oversampling procedure restores class balance and yields more reliable
bullish predictions across both markets.

Overall, SMOTE in our framework operates purely in the symbolic cluster-index space, enhances
prediction robustness, and does not introduce any risk of generating unrealistic price dynamics.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.6 SELECTION OF OPTIMAL K FOR BULLISH CLUSTERS

The weights in our scoring function (Eq. 10) were designed to balance three competing objectives:
maximizing bullish probability, maintaining adequate cluster size, and controlling model complex-
ity. The weight settings reflect our preferences derived from this foundational dataset. To illustrate
this principle, we present below the example used in the manuscript for the S&P 500 (2004–2013),
where for each candidate K we evaluate three quantities for the most bullish cluster: (1) its sample
size, (2) the bullish ratio (percentage of samples whose next-day closing price increases), and (3)
the resulting score computed using Eq. (10).

Table 13: Cluster statistics and calculated scores for S&P500 (2004–2013)
K Size Ratio Score K Size Ratio Score
5 65 0.69 15.64 13 12 0.92 17.07
6 32 0.72 15.55 14 12 0.92 16.87
7 15 0.80 15.93 15 12 0.92 16.67
8 15 0.80 15.73 16 12 0.92 16.47
9 15 0.80 15.53 17 12 0.92 16.27
10 14 0.79 14.89 18 6 1.00 14.73
11 12 0.92 17.47 19 6 1.00 14.53
12 12 0.92 17.27 20 1 1.00 -19.00

Among these, the bullish ratio is the most important criterion. A ratio of 100% is theoretically
ideal, but the values K = 18–20—which achieve 100%—have extremely small cluster sizes (all
below 10, and only one sample when K = 20), indicating that the clustering has become overly
fragmented and unreliable. Hence these K values are discarded immediately. The next-best group
consists of K = 11–17, all with ratio 0.92 and identical sizes. Within this group, our design principle
favors the smallest K, because a smaller K leads to a more compact token vocabulary and avoids
excessive token proliferation. Therefore, K = 11 is selected as the optimal choice.

5 6 10 11 12 20
K Values

56

57

58

59

60

61

Pr
ec

isi
on

 (%
)

56.1% 56.1%

58.2%

58.8%

57.9% 58.0%

55.4%

55.8%

58.7%

61.0%

58.6%
58.5%

Ours5
Ours10

Figure 9: Precision comparison across different K values (S&P500 2015–2024)

Interpretation of the Weighting Scheme. The weighting scheme in Eq. (10) is explicitly con-
structed to encode these principles:

• Bullish ratio receives the dominant positive weight (+25.0), because it is the primary de-
terminant of cluster quality.

• Cluster size receives a negative weight (-0.8), penalizing clusters that become too small
(e.g., K = 18–20).

• The number of clusters K receives a mild negative weight (-0.2), reflecting our preference
for a more compact token vocabulary.

Thus, the weights in Eq. (10) are not arbitrary—they directly implement the decision rule: select
the smallest K that yields a stable, sufficiently large, and strongly bullish cluster. As illustrated in
Fig. 9, both extremely small (K = 5, 6) and excessively large (K = 20) values exhibit suboptimal

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

performance. When K is too small, clusters show weak bullish predictive power. When K is too
large, clusters become unstable and statistically unreliable. Among the evaluated values (K =
5, 6, 10, 11, 12, 20), K = 11 achieves the highest precision, providing an optimal balance between
stability and predictive accuracy.

Additional Example: S&P500 (2001–2009). The same logic applies when selecting the optimal
K for the S&P500 during 2001–2009. Even without explicitly computing the scores using Eq. (10),
the choice is visually evident from Table 14: the extreme small clusters corresponding to K = 17–
20 can be ignored, as they contain only 1–2 samples. Among the remaining clusters, K = 6 and
K = 7 exhibit the highest ratio (0.824). Since we seek the smallest K that satisfies stability and
size criteria, K = 6 is naturally selected.

Table 14: Cluster statistics and calculated scores for S&P500 (2001–2009)
K Size Ratio Score K Size Ratio Score
5 37 0.811 18.19 13 22 0.773 14.90
6 34 0.824 18.21 14 22 0.773 14.70
7 34 0.824 18.01 15 22 0.773 14.50
8 27 0.815 17.29 16 22 0.773 14.30
9 23 0.783 16.03 17 2 1.00 1.60
10 23 0.783 15.83 18 2 1.00 1.40
11 23 0.783 15.63 19 2 1.00 1.20
12 23 0.783 15.43 20 2 1.00 1.00

The weights in our scoring function (Eq. 10) should therefore be understood not as externally tuned
hyperparameters, but as a concise summary of the decision principles described above. That is, the
weighting scheme was distilled from the observed behaviors of different K values across datasets:
clusters with extremely small sizes must be penalized, overly large K values must be discouraged,
and the bullish ratio must dominate the evaluation. The final coefficients encode these empirically
derived preferences in a compact mathematical form, ensuring consistent K-selection across all
datasets.

A.7 PERFORMANCE ACROSS BASELINE MODELS

Table 15: Comparison of Our Tokenization Strategy and Baseline Models
Method Input Output Configuration
Ours 9 tokens I(ẑ(10)i ∈ S(10)

∗) Architecture: Refer to Section 5.2.
RF 36 features I(Ĉt/Ct−1 > τ) 150 estimators; Unlimited depth; Min split 2;

Min leaf 2; Max features 6.
XGB 36 features I(Ĉt/Ct−1 > τ) 100 estimators; Max depth 5; η = 0.1; Sub-

sample 1; Column sample by tree 0.8.
LSTM 36 sequences I(Ĉt/Ct−1 > τ) Two layers, 64 units (η = 0.001); First returns

sequences; Second to output; Dropout 0.3.
CNN 6x6 matrix I(Ĉt/Ct−1 > τ) Convolutional layers(64,128)+pooling; Flat-

ten; Dense-256; Dropout 0.1.
SVM 36 features I(Ĉt/Ct−1 > τ) Linear kernel; The regularization parameter C

= 1 with automatic gamma scaling.
Lasso 36 features I(Ĉt/Ct−1 > τ) ℓ1 regularization with strength α = 1.0; 5000

iterations

In Table 15 we also evaluate our tokenization method alongside six established machine learning
models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory
(LSTM), Convolutional Neural Network (CNN), Support Vector Machine (SVM), and Lasso Re-
gression (Dubey et al., 2024)—within a unified experimental framework. All baseline methods also
use the same normalization procedure (division by Ct−1) as global data statistics are unavailable in

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

practice. Each model is trained to predict Ct/Ct−1, and predictions are thresholded at four levels
(τ ∈ [1.00, 1.03]) to assess sensitivity, with the prediction defined as ŷ = I(Ct/Ct−1 > τ).

Ours5

Ours10

>1.0

>1.01

>1.02

>1.03

>1.0

>1.01

>1.02

>1.03

>1.0

>1.01

>1.02

>1.03

>1.0
>1.0>1.0

>1.01

>1.0

>1.01

>1.0

52 53 54 55 56 57 58 59 60
103

104

105

106

Sa
m

pl
e

C
ou

nt
(l

og
sc

al
e)

Model Performance Comparison (2011–2020 S&P500)

Ours5
Ours10

>1.0

>1.01

>1.02

>1.03

>1.0

>1.01

>1.02

>1.0
>1.0

>1.0
>1.0

>1.01

>1.0
>1.01

>1.02

>1.0

>1.03

46 47 48 49 50 51 52 53 54 55 56 57 58 59
103

104

105

Precision (%)

Sa
m

pl
e

C
ou

nt
(l

og
sc

al
e)

Model Performance Comparison (2011–2020 CSI300)

Ours5
Ours10

>1.0

>1.01

>1.02

>1.03

>1.0

>1.01

>1.02

>1.03

>1.0

>1.01

>1.02

>1.03

>1.0
>1.0

>1.0

>1.0

>1.01

>1.02

>1.0>1.01

51 52 53 54 55 56 57 58 59 60 61
103

104

105

106

Model Performance Comparison (2015–2024 S&P500)

Ours5

Ours10

RandomForest

XGBoost

SVM

Lasso

LSTM

CNN

Point-wise

Patch-wise

Ours5

Ours10

>1.0

>1.01

>1.02

>1.03

>1.0

>1.0 >1.0

>1.01

>1.02

>1.03

>1.0

>1.01

>1.02

>1.03

>1.0

>1.01

>1.02

>1.0

46 47 48 49 50 51 52 53 54 55 56
103

104

105

Precision (%)

Model Performance Comparison (2015–2024 CSI300)

Figure 10: Model Performance Comparison on constituent stocks of S&P500 and CSI300 indices.
The graphs show the precision of various models for the periods 2011–2020 and 2015–2024.

Unlike traditional threshold-dependent models that require careful selection of optimal τ values,
our method requires no predefined τ and attains high precision directly from clustered tokens. The
Transformer architecture equipped with our multi-scale feature extraction and eigencluster-based
tokenization method demonstrates competitive performance that matches or surpasses conventional
benchmarks across most test conditions. Our best model achieves 61% precision on 2015–2024
S&P500, which translates to successfully predicting price increases in 61 out of every 100 forecasts.
While some traditional models (e.g., CNN at τ > 1.01 on S&P 500 and XGBoost at τ > 1.02 on
CSI 300) show narrow-range competitiveness, such advantages are practically negligible since op-
timal τ values are unknown in real trading scenarios. This underscores the robustness and practical
superiority of our τ -free tokenization strategy.

Algorithm 1 Cluster-Enhanced Trading Strategy (Adjusted Timing)
Setting: Initial capital $50,000, transaction fee 1%

1: Allocate 85% ($42,500) to S&P 500 at t0 (close price CS&P
t0)

2: Reserve 15% ($7,500) as active capital; initialize Profit = 0
3: for each trading day ti, i ≥ 1 do
4: Previous day ti−1:
5: if model predicts N stocks to buy then
6: Allocationj = $7, 500/N
7: for each stock j do
8: Sj =

⌊
Allocationj/Cti−1,j

⌋
; Buy Sj shares at Cti−1,j

9: end for
10: end if
11: Today ti:
12: if held stocks exist then
13: for each stock j do
14: Sell Sj shares at Cti,j

15: Profit += Sj × (Cti,j − Cti−1,j)× 0.99
16: end for
17: end if
18: Update index value: IndexValue = ($42, 500/CS&P

t0)× CS&P
ti

19: end for
Output: Final portfolio value = IndexValue + Profit

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.8 TRADING BACKTEST

To evaluate the practical utility of our cluster-enriched transformer predictions, we conducted a
trading backtest on the US stock market from 2015 to 2024 using the Ours5 model. The strategy,
summarized in Algorithm 1, maintains a core allocation to the S&P 500 index (85% of total capi-
tal) while deploying the remaining 15% for active daily trading based on the model’s predictions.
All selected stocks are equally weighted, positions are liquidated the following trading day to cap-
ture short-term cluster effects, and a transaction cost of 1% per trade is assumed to reflect realistic
execution frictions. The performance is quantified using the Total Return (TotR) metric:

TotR =
PT − P0

P0
, (23)

where P0 = $50,000 is the initial capital and PT is the terminal portfolio value.

2015-01-16 2016-05-04 2017-08-17 2018-11-26 2020-02-27 2021-05-26 2022-08-12 2023-10-12
Date

50000

60000

70000

80000

90000

100000

110000

Po
rtf

ol
io

 V
al

ue
 ($

)

Performance Comparison (Cumulative Value)

My Strategy
Benchmark: S&P 500
Benchmark: Dow Jones
Benchmark: NASDAQ

Figure 11: Backtest performance comparison of Ours5model trading strategy (2015–2024) against
benchmark indices.

Our Ours5-based trading strategy achieved a total return of 95.8% from 2015 to 2024, outper-
forming the S&P 500 (91.4%) and the Dow Jones Industrial Average (62.1%), while the Nasdaq
Composite led the benchmarks with 118.1%. As shown in Figure 11, our strategy consistently
outperforms the buy-and-hold approach on the S&P 500 and Dow Jones indices, while the Nasdaq
Composite slightly surpasses our returns, reflecting the strong performance of US technology stocks.
These results demonstrate that the higher precision of our model in predicting bullish signals can be
effectively translated into tangible trading gains beyond passive index investing.

A.9 TABULATED RESULTS CORRESPONDING TO FIG. 6

Table 16: Precision Comparison (%) of Tokenization Methods

Index Period Point-wise (3 decimal) Patch-wise Ours

> 1.0 > 1.01 > 1.02 > 1.03 > 1.0 > 1.01 > 1.02 > 1.03 5 10

S&P500 11-20 52.81 52.71 50.29 53.70 52.16 52.16 52.16 52.16 59.08 58.49
15-24 52.40 52.71 53.47 53.91 52.19 52.15 52.15 52.15 58.81 61.02

CSI300 11-20 48.53 49.44 53.91 52.58 48.29 48.29 48.29 48.52 56.52 56.45
15-24 47.21 48.59 50.82 49.85 47.49 47.49 47.49 47.49 55.00 55.19

A.10 LLM USAGE

The authors primarily used Grok4, ChatGPT, and Deepseek for linguistic polishing and paragraph
refinement only. All aspects of coding, research, analysis, figure preparation, and manuscript com-
position were performed solely by the authors without AI assistance.

20

	Introduction
	Problem Formulation
	Related Work
	Methodology
	Prefix-Window Data Matrix Representation
	Eigendecomposition at Each Scale
	Scalar Projection and Clustering
	The Bullish Cluster

	Transformer Architecture and Setting
	Multi-scale Setting and Optimal K Clusters
	Transformer Architecture

	Empirical Results
	Comparison of Tokenization Methods
	Performance Across Token Methods
	The Impact of Token Length and Architectural Depth
	Correlation among the test stocks
	Ablation Experiment

	Conclusion
	Appendix
	Loss Curves
	K-means vs GMM
	Why VQ-VAE and Discrete Autoencoders Collapse on Financial Data
	Challenges in Financial Tokenization
	SMOTE and Sampling Strategy
	Selection of Optimal K for Bullish Clusters
	Performance Across Baseline Models
	Trading Backtest
	Tabulated Results Corresponding to Fig. 6
	LLM Usage

