

000
001
002
003

LEARN BULLISH MOVES VIA EIGENCLUSTER TOKENS

004
005
006
007008 **Anonymous authors**
009
010
011
012
013
014
015
016
017
018
019020 Paper under double-blind review
021
022023

ABSTRACT

024
025
026
027
028
029
030
031
032
033

029 Conventional tokenization schemes in time series, such as point-wise and patch-
030 wise methods, are poorly suited for financial time series data due to excessive
031 token counts, sparse distributions, and heightened out-of-vocabulary risks—an
032 issue not explicitly addressed in prior work. This paper introduces a novel to-
033 kenization approach for financial time series. By clustering scalar projections
034 of eigenvectors from multi-window Open-High-Low-Close (OHLC) price matri-
035 ces, our method generates compact and semantically meaningful tokens, enabling
036 Transformer-based models to effectively identify next-day close price increase
037 patterns. Extensive experiments on S&P 500 and CSI 300 datasets show our ap-
038 proach outperforms market baselines by 6–9% in precision, while reducing token
039 vocabulary size to 51–101 tokens and sequence length by 75% versus point-wise.
040

041

1 INTRODUCTION

042

043 Current tokenization approaches in time series fall into three paradigms: point-wise, patch-wise (see
044 Fig. 1), and variate-wise (Chen et al., 2025; Wang et al., 2024b). Point-wise methods treat each time
045 point as a token (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Liu et al., 2022), leading
046 to redundancy and inefficiency (Dou et al., 2023). Patch-wise methods group consecutive points
047 into segment tokens to capture local patterns (Nie et al., 2023; Zhang & Yan, 2023). Variate-wise
048 tokenization represents an entire series as one token, emphasizing global structure but sacrificing
049 granularity (Liu et al., 2024). Since variate-wise tokenization can be viewed as an extreme case of
050 patch-wise (with one segment per series), we group them together in subsequent discussion. Recent
051 advances, such as (Wang et al., 2025b; Chen et al., 2024), have extended patch-wise methods using
052 a multi-scale approach, where time series are partitioned into patches at varying granularities. This
053 multi-scale strategy is adopted in our work, as illustrated on the right of Fig. 1.

054 Figure 1: point-wise tokenization, patch-wise tokenization, multiscale discrete tokenization.
055

056 Existing tokenization methods, such as point-wise and patch-wise approaches, are often ill-suited
057 for financial time series forecasting due to redundancy, inefficiency, and limited ability to capture
058 meaningful temporal patterns. Inspired by recent advances in computer vision, where clustering-
059 based tokenization has been used to extract semantically meaningful visual tokens (Liang et al.,
060 2023; Grainger et al., 2023), we recognize the potential of domain-specific clustering strategies for
061 financial data. Motivated by this insight and the unique characteristics of price series, we develop
062 a novel multi-scale discrete tokenization approach, which clusters time series eigenvectors obtained
063 from matrix transformations to generate informative tokens. This work primarily addresses three
064 questions: (1) *Why are point-wise and patch-wise tokenizers insufficient?* (2) *How does our multi-*
065 *scale clustering-based tokenization overcome these limitations?* (3) *Can the effectiveness of our*
066 *method be empirically validated?* Our key contributions include:

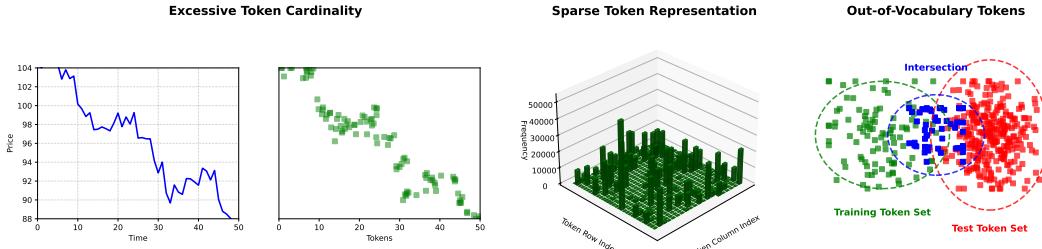
067 • *Effective Pattern Recognition:* Our tokenization enables vanilla Transformers to successfully iden-
068 tify next-day close price increase patterns. In comprehensive evaluations across both S&P 500 and
069 CSI 300, the identified portfolios consistently outperform market baselines by 6–9% in precision.
070

054 • *Superior Model Performance*: The proposed approach demonstrates consistent advantages over
 055 conventional token methods in predicting upward price signals across different threshold settings.
 056 • *Computational Efficiency*: Our method significantly reduces the total number of unique tokens,
 057 with the token vocabulary size constrained within 51–101. In addition, the input token sequence
 058 length per sample is reduced by 75% compared to point-wise tokenization (from 36 to 9), enabling
 059 faster computation and inference.

060 The remainder of this paper proceeds as follows: In Section 2, we define the tokenization problem;
 061 while in Section 3, we review related work. Furthermore, in Sections 4 and 5, we present our
 062 methodology and architecture. We present in Section 6 the experimental results; and in Section 7
 063 we conclude the study and the open-source code release are provided. Additional details on the
 064 experimental implementation and test results are provided in the Appendix.
 065

066 2 PROBLEM FORMULATION

069 Under the embedding paradigm established in natural language processing (NLP), tokenization
 070 serves as the mechanism that maps discrete vocabulary units to continuous embedding spaces, en-
 071 abling semantic structure to emerge from symbolic sequences. However, as shown in Fig. 2, apply-
 072 ing this paradigm directly to financial time series introduces three fundamental challenges that differ
 073 markedly from NLP. For a concise mathematical perspective underlying these issues, we refer the
 074 reader to Appendix A.4.



084 Figure 2: Visualization of financial time series tokenization challenges.

085 • *Excessive Token Cardinality*: Financial price series show high variability and weak periodicity,
 086 leading to an unmanageably large token space. Both point-wise and patch-wise tokenization result
 087 in exponentially growing vocabularies as decimal precision increases.
 088 • *Sparse Token Representation*: Most tokens occur infrequently, receiving insufficient weight up-
 089 dates during training. This prevents learning meaningful representations in the embedding space.
 090 • *Out-of-Vocabulary Tokens (OOV)*: Financial non-stationarity causes new tokens during testing,
 091 where $\mathcal{V}_{\text{test}} \setminus \mathcal{V}_{\text{train}} \neq \emptyset$ (\mathcal{V} represents the token set). Extreme events (e.g., the negative oil price
 092 shock in 2020, unseen during training) yield tokens absent from training, limiting generalization.
 093

094 Table 1: Token Counts and Out-of-Vocabulary (OOV) Analysis by Tokenization Method

095 Dataset	096 Train/Test 097 Period	098 Point-wise	099 Point-wise (3 dec.)	100 Patch-wise	101 Point-wise $\mathcal{V}_{\text{test}} \setminus \mathcal{V}_{\text{train}}$	102 Patch-wise $\mathcal{V}_{\text{test}} \setminus \mathcal{V}_{\text{train}}$
103 S&P500	00-09/11-20	829,240	607	230,716	17,784,212	11,531,733
	04-13/15-24	878,676	596	240,909	21,084,110	11,855,766
104 CSI300	00-09/11-20	181,167	455	48,047	2,411,709	4,739,052
	04-13/15-24	181,334	454	48,265	4,188,064	5,797,612

105 As detailed in Table 1, we empirically validate the tokenization challenges using S&P 500 and
 106 CSI 300 data. The training set consists of OHLC data of the index itself, while the test set com-
 107 prises data from the index’s constituent stocks, which exhibit richer price dynamics. Each 10-day
 108 segment is normalized by day 9’s closing price. We evaluate point-wise (both full precision and
 109 3-decimal rounded) and patch-wise (encoding daily OHLC as a single token) strategies. The re-
 110 sults demonstrate that vocabulary size grows prohibitively with decimal precision. Crucially, both
 111 methods yield unacceptably high Out-of-Vocabulary (OOV) counts due to the distributional shift

108 between training and testing period. This starkly contrasts with general-purpose text tokenizers like
 109 OpenAI’s `c1100k-base`, which operates on a fixed vocabulary of 100,256 tokens. These critical
 110 shortcomings underscore the necessity of a robust tokenization design tailored for financial data.
 111

112 3 RELATED WORK

113 The success of Transformer models in NLP has spurred interest in financial time series forecasting
 114 (Coelho e Silva et al., 2024). Current literature in finance employs two main tokenization paradigms:
 115 point-wise methods that treat the price at each time step as a token (Wang et al., 2022; Qin et al.,
 116 2017), and patch-wise approaches that group consecutive prices into segment tokens (Zeng et al.,
 117 2023; Wang et al., 2025a). As shown in Table 2, many well-known time series Transformer models
 118 fall into one of these categories. Beyond price prediction, Transformers have been adapted for
 119 multimodal financial analysis. Studies (Zhang et al., 2022; Li et al., 2022; Liu et al., 2019; Zhang
 120 et al., 2024) process textual data from news and social media to extract market sentiment, while
 121 Yang et al. (2022) combines numerical data with textual and audio information.
 122

123 Table 2: Summary of Transformer-based time series models (Point-wise vs. Patch-wise)

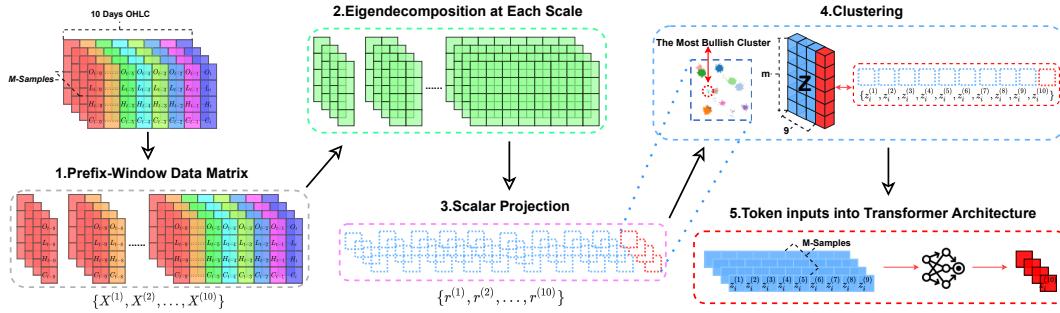
	Autoformer (Wu et al.)	FEDformer (Zhou et al.)	Crossformer (Zhang & Yan)	PatchTST (Nie et al.)	iTransformer (Zhou et al.)
Point-wise	✓	✓			
Patch-wise			✓	✓	✓

124 However, the literature reveals a gap in addressing time series tokenization challenges (as detailed in
 125 Section 2). Many studies circumvent this issue by: (1) using datasets with strong periodicity where
 126 extreme values are rare (Chen et al., 2025); (2) employing small test sets to avoid extreme scenarios
 127 (Xu et al., 2025); (3) using z-score normalization that reduces value dispersion (Zhu et al., 2025);
 128 **4) replacing the embedding layer with either a simple linear projection or a convolutional mapping,**
 129 **thereby bypassing the tokenization problem entirely (Nie et al., 2023; Wu et al., 2021).**

130 Our paper presents a data-centric critique demonstrating how current tokenization approaches are
 131 fundamentally mismatched to the unique characteristics of financial time series. To address these
 132 critical limitations, we introduce a spectral clustering strategy (Xiang & Gong, 2008; Tai et al., 2022)
 133 that first constructs a multi-scale representation from the dataset, then extracts its eigenvectors and
 134 performs clustering to guide a more adaptive, fine-grained token segmentation.
 135

141 4 METHODOLOGY

142 This section presents our eigen-cluster tokenization approach, comprising four key components: (1)
 143 prefix-window matrix representation, (2) matrix transformation and eigenvector computation, (3)
 144 scalar projection and cluster-based tokenization, and (4) identification and interpretation of the most
 145 bullish cluster. The overall workflow, which integrates multi-scale patching, eigendecomposition,
 146 and clustering, is illustrated in Fig. 3 using an example with $n = 10$.
 147



160 Figure 3: Workflow of multi-scale tokenization with eigendecomposition and clustering.
 161

162 4.1 PREFIX-WINDOW DATA MATRIX REPRESENTATION
163

164 To extract multi-scale temporal features, we construct a sequence of data matrices based on *prefix*
165 *windows*. Unlike sliding windows, here the windows are nested and grow forward from the starting
166 point $t - n + 1$ until t . Specifically, the k -th window ($k = 1, 2, \dots, n$) covers the time range from
167 $t - n + 1$ to $t - n + k$. Here, k can be as small as 1, corresponding to a single-day window, or
168 as large as n , corresponding to the full prefix ending at the current time t . Hence, only the largest
169 window ($k = n$) includes the current time t . For each window length k , we define a data matrix
170 $X^{(k)} \in \mathbb{R}^{m \times 4k}$, where each row corresponds to one sample and is formed by concatenating the
171 OHLC vectors of the k consecutive days in that prefix window. Formally,

$$172 \quad \mathbf{X}^{(k)} = \begin{bmatrix} \mathbf{x}_1^{(t-n+1)} & \mathbf{x}_1^{(t-n+2)} & \dots & \mathbf{x}_1^{(t-n+k)} \\ 173 \quad \mathbf{x}_2^{(t-n+1)} & \mathbf{x}_2^{(t-n+2)} & \dots & \mathbf{x}_2^{(t-n+k)} \\ 174 \quad \vdots & \vdots & \ddots & \vdots \\ 175 \quad \mathbf{x}_m^{(t-n+1)} & \mathbf{x}_m^{(t-n+2)} & \dots & \mathbf{x}_m^{(t-n+k)} \end{bmatrix}. \quad (1)$$

176 Each vector in the matrix is defined as
177

$$179 \quad \mathbf{x}_i^{(t-n+j)} = \begin{bmatrix} 180 \quad O_i^{(t-n+j)} & H_i^{(t-n+j)} & L_i^{(t-n+j)} & C_i^{(t-n+j)} \\ 181 \quad C_i^{(t-n+k-1)} & C_i^{(t-n+k-1)} & C_i^{(t-n+k-1)} & C_i^{(t-n+k-1)} \end{bmatrix}, j = 1, 2, \dots, k. \quad (2)$$

182 Each row is normalized by the closing price at time $t - n + k - 1$, which serves as the denominator for
183 all values in that sample. This construction produces a family of matrices $\{X^{(1)}, X^{(2)}, \dots, X^{(n)}\}$,
184 where only $X^{(n)}$ contains the most recent observation t , while smaller matrices correspond to shorter
185 historical prefixes. This multiscale structure is inspired by prior work on hierarchical time series
186 modeling, such as TimeMixer (Wang et al., 2024a; 2025b), which demonstrates the effectiveness of
187 multi-resolution temporal decomposition in capturing complex temporal dependencies.

188 4.2 EIGENDECOMPOSITION AT EACH SCALE
189

190 To extract dominant patterns from the feature matrices at each scale, we perform eigendecomposition
191 on the covariance matrix of the centered data matrix corresponding to a specific prefix window. As
192 an example, we consider the largest window $k = n$, which covers the full prefix ending at time t .

193 Let $\mathbf{X}^{(n)} \in \mathbb{R}^{m \times 4n}$ be the data matrix for the largest prefix. We first compute the mean vector and
194 the centered matrix:

$$195 \quad \boldsymbol{\mu}^{(n)} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}_i^{(n)} \in \mathbb{R}^{4n}, \quad \mathbf{X}_{\text{centered}}^{(n)} = \mathbf{X}^{(n)} - \mathbf{1}(\boldsymbol{\mu}^{(n)})^\top \in \mathbb{R}^{m \times 4n}, \quad (3)$$

196 where $\mathbf{1}$ is an m -dimensional column vector of ones and $\mathbf{x}_i^{(n)}$ denotes the i -th row of $X^{(n)}$. The
197 empirical covariance matrix is then

$$198 \quad \mathbf{A}^{(n)} = \frac{1}{m} (\mathbf{X}_{\text{centered}}^{(n)})^\top \mathbf{X}_{\text{centered}}^{(n)} \in \mathbb{R}^{4n \times 4n}. \quad (4)$$

199 Solving the eigenvalue problem $\mathbf{A}^{(n)} \mathbf{v}_i^{(n)} = \lambda_i^{(n)} \mathbf{v}_i^{(n)}$ yields eigenpairs $(\lambda_i^{(n)}, \mathbf{v}_i^{(n)})$, where $\lambda_i^{(n)}$
200 represents the variance explained by the i -th principal direction $\mathbf{v}_i^{(n)}$. We use all eigenvectors to
201 form the projection matrix:

$$202 \quad \mathbf{W}^{(n)} = [\mathbf{v}_1^{(n)} \ \mathbf{v}_2^{(n)} \ \dots \ \mathbf{v}_{4n}^{(n)}] \in \mathbb{R}^{4n \times 4n}, \quad \widetilde{\mathbf{X}}^{(n)} = \mathbf{X}_{\text{centered}}^{(n)} \mathbf{W}^{(n)} \in \mathbb{R}^{m \times 4n}. \quad (5)$$

203 This procedure can be applied to any prefix window $k = 1, 2, \dots, n$ to obtain scale-specific princi-
204 pal components, enabling multi-scale temporal pattern extraction. A similar operation has also been
205 adopted in Tai et al. (2022). Notably, the eigendecomposition step is effectively a Principal Com-
206 ponent Analysis (PCA) operation; however, unlike conventional PCA, we retain all eigenvectors rather
207 than selecting only the leading components. Prior work has shown that PCA can enhance K-means
208 clustering by maximizing variance and making cluster directions more separable (Zha et al., 2001;
209 Ding & He, 2004).

216 4.3 SCALAR PROJECTION AND CLUSTERING
217

218 After obtaining the eigendecomposed and projected feature matrices $\widetilde{\mathbf{X}}^{(k)} \in \mathbb{R}^{m \times 4k}$ at each scale
219 $k = 0, 1, \dots, n$, we apply a monotonic transformation to compress each row into a single interpretable scalar.
220 This mapping, which we refer to as a scalar projection, preserves both directional and
221 magnitude characteristics of the original high-dimensional representation. The use of the trigono-
222 metric function $\sin(\cdot)$ provides a bounded directional signal in $[-1, 1]$, while $\|\cdot\|_2$ encodes its
223 corresponding amplitude. This design enables subsequent visualization and supports conversion
224 from multivariate representations to a one-dimensional interpretable form. Specifically, for the i -th
225 sample at scale k , we define:
226

$$227 \quad r_i^{(k)} = \left(\frac{1}{4k} \sum_{j=1}^{4k} \sin(\widetilde{x}_{ij}^{(k)}) \right) \cdot \left\| \widetilde{\mathbf{x}}_i^{(k)} \right\|_2, \quad (6)$$

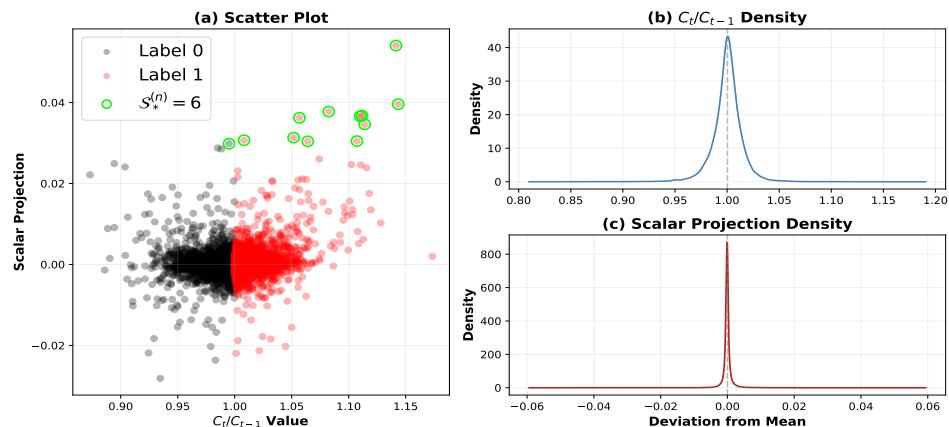
230 where $\widetilde{\mathbf{x}}_i^{(k)}$ denotes the i -th row of $\widetilde{\mathbf{X}}^{(k)}$ for $i = 1, \dots, m$. The j -th entry of $\widetilde{\mathbf{x}}_i^{(k)}$ is written as
231 $\widetilde{x}_{ij}^{(k)}$, corresponding to the value in the i -th row and j -th column of $\widetilde{\mathbf{X}}^{(k)}$. This yields a scalar
232 vector $\mathbf{r}^{(k)} = [r_1^{(k)}, r_2^{(k)}, \dots, r_m^{(k)}]^\top \in \mathbb{R}^m$ for clustering. We then apply one-dimensional K -means
233 clustering to $\mathbf{r}^{(k)}$, producing clusters $\{\mathcal{S}_1^{(k)}, \dots, \mathcal{S}_K^{(k)}\}$ by minimizing the within-cluster variance:
234

$$235 \quad \min_{\{\mathcal{S}_1^{(k)}, \dots, \mathcal{S}_K^{(k)}\}} \sum_{j=1}^K \sum_{r_i^{(k)} \in \mathcal{S}_j^{(k)}} \left(r_i^{(k)} - \mu_j^{(k)} \right)^2, \quad (7)$$

239 where $\mu_j^{(k)}$ is the centroid of cluster $\mathcal{S}_j^{(k)}$. Each sample is assigned a cluster token $z_i^{(k)} \in$
240 $\{1, 2, \dots, K\}$ based on the closest centroid. Repeating this procedure for all scales $k = 0, 1, \dots, n$
241 yields a multi-resolution token vector for each sample, and stacking all per-sample vectors forms the
242 final token matrix (see Fig. 3):
243

$$244 \quad \mathbf{z}_i = \begin{bmatrix} z_i^{(1)} & z_i^{(2)} & \dots & z_i^{(n)} \end{bmatrix} \in \mathbb{R}^n, \quad \mathbf{Z} = [\mathbf{z}_1 \quad \mathbf{z}_2 \quad \dots \quad \mathbf{z}_m] \in \mathbb{R}^{m \times n}. \quad (8)$$

246 This multi-scale tokenized representation captures dominant temporal patterns in price dynamics,
247 making it directly compatible with Transformer architectures. By clustering sequences into K to-
248 kens, this approach not only mitigates OOV issues but also compresses the vocabulary. This consol-
249 idation significantly increases the frequency of each token’s occurrence, thereby directly alleviating
250 the sparse token problem alongside the excessive token problem.
251

252 4.4 THE BULLISH CLUSTER
253

268 Figure 4: Three-panel visualization: (a) scalar projection vs. C_t/C_{t-1} scatter with the bullish cluster
269 highlights; (b) density of C_t/C_{t-1} ; (c) density of scalar projections $r_i^{(n)}$.
270

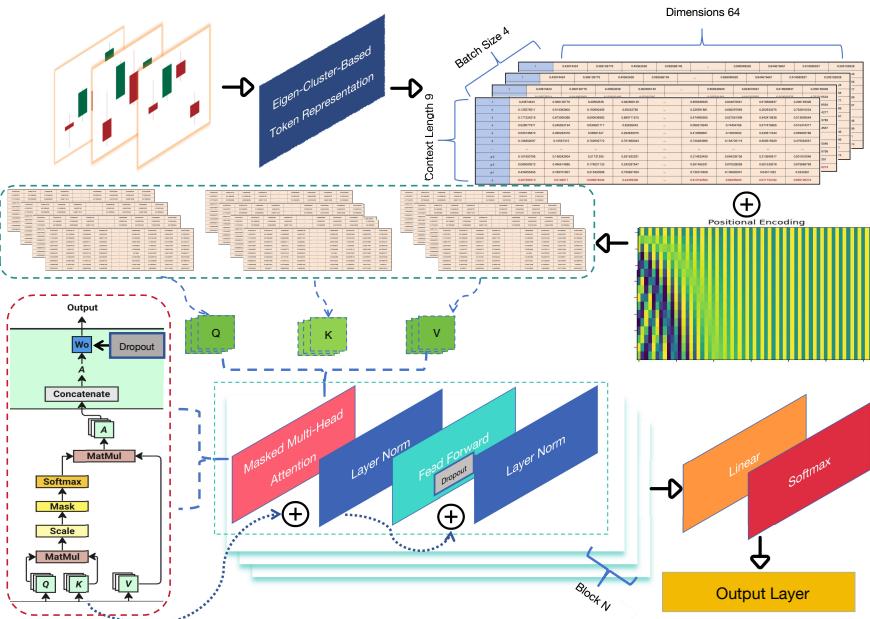
270 After obtaining the multi-scale token representation, the prediction task becomes estimating the n -th
 271 token $\hat{z}_i^{(n)} \in \{1, 2, \dots, K\}$ from the preceding $n-1$ tokens $[z_i^{(1)}, z_i^{(2)}, \dots, z_i^{(n-1)}]$. Each predicted
 272 token $z_i^{(n)}$ maps to one of the K clusters derived from projected price trajectories. We define $\mathcal{S}_*^{(n)}$
 273 as the most bullish cluster according to the following criterion:
 274

$$275 \quad \mathcal{S}_*^{(n)} := \arg \min_{\mathcal{S} \in \{\mathcal{S}_1^{(n)}, \dots, \mathcal{S}_K^{(n)}\}} |\mathcal{S}| \quad \text{s.t.} \quad \left| \left\{ i \in \mathcal{S} : C_t^{(i)} > C_{t-1}^{(i)} \right\} \right| > \left| \left\{ i \in \mathcal{S} : C_t^{(i)} < C_{t-1}^{(i)} \right\} \right| \quad (9)$$

278 We select the smallest cluster with the highest concentration of rising patterns, ensuring $\mathcal{S}_*^{(n)}$ contains
 279 the most reliable bullish signals. As confirmed in Fig. 4(a), this cluster shows nearly perfect
 280 separation, with almost all samples satisfying $C_t > C_{t-1}$. Subfigures (b) and (c) show kernel densities
 281 of normalized C_t/C_{t-1} and scalar projections, respectively. In addition, we apply Synthetic
 282 Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002) to mitigate class imbalance (see
 283 Appendix A.5).

284 5 TRANSFORMER ARCHITECTURE AND SETTING

285 This section details our multi-scale tokenization framework, the method for selecting optimal K -
 286 means clusters, and the vanilla Transformer architecture employed.



310 Figure 5: Workflow of Transformer Architecture.

311 5.1 MULTI-SCALE SETTING AND OPTIMAL K CLUSTERS

312 We construct a 10-day OHLC matrix $\mathbf{X} \in \mathbb{R}^{m \times 40}$. Nested prefix matrices $\mathbf{X}^{(k)} \in \mathbb{R}^{m \times 4k}$ for
 313 $k = 1, \dots, 10$ contain the first k days, with $\mathbf{X}^{(10)}$ including all days to target t . Each $\mathbf{X}^{(k)}$ has
 314 response vector $\mathbf{r}^{(k)} \in \mathbb{R}^m$. For $\mathbf{r}^{(1)}$ to $\mathbf{r}^{(9)}$, we use fixed $K = 5$ or 10 , yielding two variants: Ours-
 315 5 and Ours-10. For $\mathbf{r}^{(10)}$, the optimal K^* is determined by maximizing the score over $K \in [5, 20]$.

$$316 \quad \arg \max_{K \in \{5, \dots, 20\}} \left[\text{Score} = 25.0 \cdot p_*^{(10)} - 0.8 \cdot \left(\frac{50}{n_*^{(10)}} \right) - 0.2 \cdot K \right] \quad (10)$$

317 where $p_*^{(10)} \equiv \Pr(C_t/C_{t-1} > 1 | \mathcal{S}_*^{(10)})$: bullish probability in cluster; $n_*^{(10)} \equiv |\mathcal{S}_*^{(10)}|$: cluster size;
 318 K : number of clusters. The weights reflect our prioritization (as detailed in Appendix A.6): (1)
 319 Strong emphasis on bullish rates (25.0) to promote upward-oriented samples; (2) Moderate concern

324 for larger cluster size (0.8) to avoid small, unreliable clusters; (3) Mild preference for smaller K
 325 (0.2) to reduce the overall token count. Table 3 shows the optimal K values for $\mathbf{r}^{(10)}$ and the most
 326 bullish cluster $\mathcal{S}_*^{(10)}$ that we adopted for different markets and training periods.
 327

328 Table 3: Optimal K for $\mathbf{r}^{(10)}$ and Bullish Cluster $\mathcal{S}_*^{(10)}$

329 S&P500				330 CSI300			
331 Market	332 Training Period	333 K	334 $\mathcal{S}_*^{(10)}$	335 Market	336 Training Period	337 K	338 $\mathcal{S}_*^{(10)}$
S&P500	2000–2009	6	4	CSI300	2000–2009	7	6
S&P500	2004–2013	11	6	CSI300	2004–2013	9	2

339

5.2 TRANSFORMER ARCHITECTURE

340 In this study, we employ a decoder-only Transformer as a shared architecture for all tokenization
 341 methods under a controlled setup, ensuring that performance differences arise from the token rep-
 342 resentation rather than architectural variance. As shown in Fig. 5, the input time series undergoes
 343 normalization, multiscale segmentation, eigendecomposition, and clustering, producing a sequence
 344 of 9 discrete cluster tokens $[z_i^{(1)}, z_i^{(2)}, \dots, z_i^{(9)}]$ used to predict the next token $z_i^{(10)}$. Each token is
 345 embedded into a 64-dimensional vector ($d_{\text{model}} = 64$), forming a 9×64 input matrix, with sinusoidal
 346 positional encodings (Vaswani et al., 2017) added to preserve temporal order. Notably, our embed-
 347 ding layer follows the conventional NLP-style discrete lookup paradigm. This contrasts with linear
 348 projection embeddings (e.g., PatchTST) or convolutional embeddings (e.g., Autoformer), where in-
 349 puts are mapped into continuous representations. In those architectures, the notion of symbolic
 350 "tokens" no longer exists, and the model no longer processes relationships between discrete tokens.
 351

352 The embedding matrix is processed by an 8-layer decoder-only Transformer with 4 attention heads
 353 per layer. The architecture follows the standard design with residual connections and layer normal-
 354 ization before both attention and feed-forward modules. Dropout (rate 0.1) is applied within these
 355 modules to reduce overfitting. The output is projected via a linear layer followed by softmax to pro-
 356 duce a distribution over K cluster tokens. Hyperparameters were selected considering dataset size
 357 and computational resources: batch size 4, $d_{\text{model}} = 64$, 8 decoder blocks, 4 attention heads, learn-
 358 ing rate 1×10^{-3} , dropout 0.1, and 2000 training epochs. The model used the AdamW optimizer,
 359 cross-entropy loss, and random seed 1337.

360

6 EMPIRICAL RESULTS

361 This section presents our experimental data and evaluation of different approaches for stock upward
 362 recognition. Our dataset consists of two distinct groups for cross-market evaluation:

363 Table 4: Data Split Time Periods with Token Vocabulary Sizes

364 Train	365 Token Vocabulary Size		366 Validation	367 Test	368 Stocks
	Ours-5	Ours-10			
2000–09	51(US), 52(CN)	96(US), 97(CN)	2010	2011–20	493(US), 288(CN)
2004–13	56(US), 54(CN)	101(US), 99(CN)	2014	2015–24	501(US), 300(CN)

369 *U.S. and Chinese (CN) Markets:* We evaluate our approach on two distinct markets with differ-
 370 ent training sets. For the U.S. market, we train on 10 major global indices and test on S&P 500
 371 constituent stocks. For the Chinese market, we train on two domestic indices and test on CSI 300
 372 constituent stocks¹. This design offers two advantages: (1) indices better capture overall market
 373 trends than individual stocks; (2) using completely different datasets for training and testing rigor-
 374 ously evaluates model robustness. The chronological splitting follows two complete market cycles
 375 as detailed in Table 4. Validation are used exclusively for early stopping to prevent overfitting.

376 ¹U.S. data sources: S&P 500, NASDAQ, Hang Seng, Dow Jones, CAC 40, DAXI, Nikkei 225, KOSPI, BSE,
 377 EURO STOXX 50 (from <https://pypi.org/project/yfinance/>). Chinese data sources: SSE
 (Shanghai Composite) and SZSC (Shenzhen Component) (from Tushare: <https://tushare.pro/>).

Evaluation Metrics: We evaluate model performance using $\text{Precision} = \text{TP}/(\text{TP} + \text{FP})$. Here, TP (True Positives) are correct predictions of upward movement ($C_t/C_{t-1} > 1$), and FP (False Positives) are incorrect upward predictions. This metric interprets the proportion of correct upward predictions. Unlike regression metrics (MSE, RMSE) that quantify magnitude errors, precision captures directional accuracy—essential for trading where even minor misdirection results in losses.

6.1 COMPARISON OF TOKENIZATION METHODS

As summarized in Table 5, we evaluate three tokenization methods within a unified framework. Point-wise and patch-wise methods use the same normalization procedure (division by C_{t-1}) rather than conventional z-score normalization, as the global statistics (e.g., max/min) of the entire trading data are unavailable in practice. Each method predicts the next token, which is mapped to a numerical value for thresholding at $\tau \in [1.00, 1.03]$. Our method uses the normalization in Equation 2 and predicts token cluster membership. All tokenization methods employ the same vanilla Transformer architecture (Refer to Section 5.2), allowing direct observation of how different tokenization strategies impact the Transformer’s performance.

OOV tokens are processed using: (1) KDTree nearest-neighbor retrieval from `scikit-learn` for patch-wise tokenization, and (2) exact Euclidean search within a reduced vocabulary of 400–600 tokens for point-wise tokenization. The KDTree approach is adopted for patch-wise tokenization to ensure computational efficiency, as performing exact Euclidean matching over a large token set (e.g., 240,000+) would be prohibitively slow. Meanwhile, the point-wise method operates on a much smaller token set, making exact Euclidean search feasible. The 3-decimal rounding applied in point-wise tokenization serves two reasons: it significantly shrinks the token vocabulary to avoid excessive memory consumption, and it alleviates extreme token frequency imbalances that would otherwise bias predictions toward frequent values (such as 1).

Table 5: Comparison of Tokenization Strategies

Method	Input	Output	Configuration
Ours	9 tokens	$\mathbb{I}(\hat{z}_i^{(10)} \in \mathcal{S}_*^{(10)})$	Employs 9 tokens to predict the $\hat{z}_i^{(10)}$, we evaluate two configurations: <code>Ours-5</code> & <code>10</code> .
Point-wise	36 tokens	$\mathbb{I}(\hat{z}_i^{(37)} > \tau)$	3-decimal rounding reduces tokens to 454–607; each time point’s OHLC prices as separate tokens, using 36 tokens (9 days \times 4).
Patch-wise	9 tokens	$\mathbb{I}(\hat{z}_i^{(10)}[\text{close}] > \tau)$	Treats each trading day’s OHLC as a single token segment, using 9 tokens to predict the close within $\hat{z}_i^{(10)}$.

6.2 PERFORMANCE ACROSS TOKEN METHODS

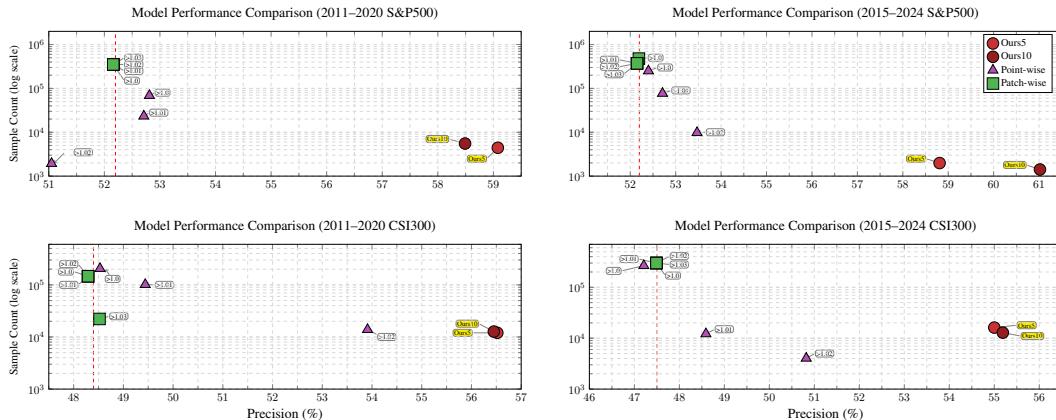


Figure 6: Model performance comparison on S&P500 and CSI300 constituent stocks. The red dashed line: market baselines (TP rates in test). Models with sample counts below 1000 are omitted.

432 Fig. 6 demonstrates the clear superiority of our eigen-cluster tokenization, outperforming both point-
 433 wise and patch-wise methods by 2.6–8.8% precision across all thresholds and evaluation periods.
 434 This improvement arises from resolving fundamental limitations in conventional designs: exces-
 435 sive token counts (point-wise: 400–600, patch-wise: 240,000+) and the dependence on unoptimized
 436 out-of-vocabulary substitutions that introduce approximation errors. [The full numerical results cor-
 437 responding to this figure are provided in Appendix A.9.](#)

438 Our models consistently achieve 6 to 9% higher precision than market baselines (the red dash lines),
 439 which represent the proportion of truly bullish samples in the test set and thus correspond to a
 440 random-guessing strategy. In contrast, conventional methods struggle to exceed these baselines
 441 when $\tau > 1.0$ and fail to maintain high precision at $\tau > 1.03$. Notably, patch-wise models show
 442 little change across thresholds, as the vast token space dilutes probability distributions and reduces
 443 sensitivity. These results highlight tokenization, rather than model complexity, as the primary bottle-
 444 neck in financial time series forecasting with Transformers. For a practical evaluation, Appendix A.8
 445 presents a trading backtest using the `Ours5` model over the period 2015–2024.

446 To evaluate computational efficiency, we measured inference times for predicting 1,202,584 samples
 447 from the S&P 500 test set (2015–2024) on Google Colab platform with T4 GPU (15,360 MiB
 448 VRAM), as detailed in Table 6. Our method achieves 27 \times and 16 \times speedups over patch-wise
 449 and point-wise approaches respectively, resulting from dramatically reduced token vocabulary (51–
 450 101 vs. 400–600 vs. 240,000+) and shorter input sequences (9 vs. 36 tokens). In addition to
 451 the Transformer architecture evaluation, we conducted comprehensive experiments comparing with
 452 traditional machine learning models; detailed results are provided in Appendix A.7.

453 [Table 6: Inference Time Comparison on S&P 500 Test Set \(2015–2024\)](#)

Method	Time	Speedup	Method	Time	Speedup
Patch-wise	4:55 (295 s)	1.0 \times	Ours-5	0:11 (11 s)	26.8 \times
Point-wise	2:58 (178 s)	1.7 \times	Ours-10	0:11 (11 s)	26.8 \times

459 6.3 THE IMPACT OF TOKEN LENGTH AND ARCHITECTURAL DEPTH

460 We also conduct an experiment to examine the effect of input token length. Specifically, we test
 461 four configurations using 5, 10, 15, and 30 tokens as input (Table 7). The experiments are carried
 462 out on the S&P 500 dataset covering 2015–2024. The results show that increasing the input length
 463 does not improve performance; instead, shorter historical windows (e.g., 4 input tokens predicting
 464 the next one) yield the best precision, suggesting that local market patterns are more informative for
 465 short-term forecasting.

466 [Table 7: Precision performance across different token counts.](#)

Total Tokens	Input Tokens	Predicted Tokens	Precision (%)
5	4	1	61.99
10	9	1	61.02
15	14	1	54.94
30	29	1	52.92

467 To further examine architectural sensitivity, we compare our 8-layer Transformer against a 2-layer
 468 version and a 1-layer LSTM baseline on the same S&P 500 test set. As shown by the precision results
 469 below, deeper Transformer architectures yield moderate improvements over shallower variants and
 470 substantially outperform the LSTM baseline.

471 [Table 8: Precision comparison of model architectures.](#)

Model	Precision (%)
8-layer Transformer (Ours-10)	61.02
2-layer Transformer (Ours-10)	59.63
1-layer LSTM	54.86

483 6.4 CORRELATION AMONG THE TEST STOCKS

484 To examine whether our method performs differently across stocks with different levels of represen-
 485 tativeness in the index, we conducted an additional experiment using the S&P 500 constituents from

486 2011–2020 as the test set. We grouped the constituents based on their index weights and evaluated
 487 the prediction accuracy for four segments: the top 10%, top 30%, bottom 30%, and bottom 10%
 488 by index weight. Table 9 reports the results. We observe that the method achieves higher precision
 489 for stocks with larger benchmark weights, whereas the precision decreases for the smaller-weight
 490 stocks. This suggests that our token-based up-movement prediction method is more effective for
 491 stocks that are more strongly related to the overall market index.

492 Table 9: Prediction Precision Across S&P 500 Constituents (Grouped by Index Weight)

493 Constituent Group	494 Precision (%)
495 Top 10% by weight	496 60.29
497 Top 30% by weight	498 61.35
499 Bottom 30% by weight	500 58.28
501 Bottom 10% by weight	502 56.81

503

6.5 ABLATION EXPERIMENT

504 We perform ablation studies on the 2011–2020 dataset to evaluate three main components of our
 505 tokenization framework: (1) single-scale patch or multi-scale representation, (2) eigenvector projec-
 506 tion, and (3) cluster-based tokenization. As shown in Table 10, removing any of these components
 507 leads to a clear decrease in precision on both the S&P500 and CSI300 datasets, demonstrating their
 508 complementary contributions.

509 Table 10: Ablation Results (Precision %, 2011–2020)

510 Patch	511 Multi-scale	512 Eigenvectors	513 Clustering	514 S&P500		515 CSI300	
				516 Ours5	517 Ours10	518 Ours5	519 Ours10
520 ✗	521 ✓	522 ✓	523 ✓	524 59.08	525 58.49	526 56.52	527 56.45
528 ✗	529 ✓	530 ✓	531 ✗	532 52.20	533 52.09	534 48.40	535 48.43
536 ✗	537 ✓	538 ✗	539 ✓	540 54.58	541 54.57	542 55.72	543 56.13
544 ✓	545 ✗	546 ✓	547 ✓	548 52.80		549 48.62	

550 Note: ✗ indicates the component is ablated, ✓ indicates the component is included.

551 Clustering is critical—without it, tokenization degenerates into patch-wise schemes with excessive
 552 tokens and out-of-vocabulary issues, causing substantial precision drops. Eigendecomposition fur-
 553 ther enhances the expressiveness of bullish clusters; removing it yields moderate precision reduc-
 554 tions, particularly on the S&P500. Moreover, replacing multi-scale patching with single-scale day-
 555 level patch tokens (i.e., using one day’s OHLC as a segment token) markedly degrades precision on
 556 both S&P500 and CSI300. Notably, the choice of K for the first nine prefix windows (5 or 10) has
 557 minimal impact on performance, with only small differences between Ours5 and Ours10.

558

7 CONCLUSION

559 This paper addresses key challenges in applying Transformers to stock forecasting, noting that
 560 while an increasing number of studies leverage Transformers for time series prediction, the funda-
 561 mental issue of tokenization remains largely unresolved. We identify core limitations in con-
 562 ventional point-wise and patch-wise tokenization approaches: *Excessive Token Vocabulary*, *Sparse*
 563 *Token Distributions*, and *Out-of-Vocabulary Token Issues*. To overcome these challenges, we pro-
 564 pose a novel multiscale cluster discrete tokenization framework that: (1) employs multiscale seg-
 565 mentation of time series to capture hierarchical patterns, (2) utilizes eigenvector projection for ef-
 566 fective feature extraction, and (3) implements clustering-based tokenization to achieve semantic-
 567 aware discretization. Experimental results demonstrate both the shortcomings of conventional
 568 tokenization methods and the effectiveness of our approach. Our method enables Transfor-
 569 mers to match or outperform classical baselines across various prediction thresholds and market
 570 conditions. Ablation studies further confirm the critical contribution of each component to the
 571 overall performance. Overall, we emphasize that for financial time series applications, tok-
 572 enization should prioritize reducing token counts while preserving semantic meaning. The im-
 573 plementation code for this study is available at: <https://github.com/MasterBeard/EigenCluster-Tokenization-for-Financial-Transformers>.

540 REFERENCES
541

542 Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: synthetic
543 minority over-sampling technique. *J. Artif. Int. Res.*, 16(1):321–357, June 2002. ISSN 1076-9757.

544 Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
545 and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
546 forecasting. In *The Twelfth International Conference on Learning Representations*, 2024.

547 Yu Chen, Nathalia Céspedes, and Payam Barnaghi. A closer look at transformers for time series
548 forecasting: Understanding why they work and where they struggle. In *Forty-second International
549 Conference on Machine Learning*, 2025.

550

551 Lucas Coelho e Silva, Gustavo de Freitas Fonseca, and Paulo Andre L. Castro. Transformers and
552 attention-based networks in quantitative trading: a comprehensive survey. In *Proceedings of the
553 5th ACM International Conference on AI in Finance*, ICAIF ’24, pp. 822–830, New York, NY,
554 USA, 2024. Association for Computing Machinery. ISBN 9798400710810.

555 C. Ding and Xiaofeng He. K-means clustering via principal component analysis. *Proceedings of
556 the twenty-first international conference on Machine learning*, 2004.

557

558 Zhiyang Dou, Qingxuan Wu, Cheng Lin, Zeyu Cao, Qiangqiang Wu, Weilin Wan, Taku Komura, and
559 Wenping Wang. Tore: Token reduction for efficient human mesh recovery with transformer. In
560 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15143–15155,
561 2023.

562 Akash Dubey, Shivam Singh, Ashish Kumar Mishra, et al. A survey on machine learning tech-
563 niques for stock market price prediction. In *2024 ASU International Conference in Emerging
564 Technologies for Sustainability and Intelligent Systems (ICETSIS)*, pp. 682–691. IEEE, 2024.

565

566 Ryan Grainger, Thomas Paniagua, Xi Song, Naresh Cuntoor, Mun Wai Lee, and Tianfu Wu. Paca-
567 vit: learning patch-to-cluster attention in vision transformers. In *Proceedings of the IEEE/CVF
568 Conference on Computer Vision and Pattern Recognition*, pp. 18568–18578, 2023.

569 Ang Li, Mark Liu, and Simon Sheather. Predicting stock splits using ensemble machine learning
570 and smote oversampling. *Pacific-Basin Finance Journal*, 78:101948, 2023. ISSN 0927-538X.

571

572 Yawei Li, Shuqi Lv, Xinghua Liu, and Qiuyue Zhang. Incorporating transformers and attention
573 networks for stock movement prediction. *Complexity*, 2022:1–10, 2022.

574

575 James Liang, Yiming Cui, Qifan Wang, Tong Geng, Wenguan Wang, and Dongfang Liu. Clus-
576 terfomer: clustering as a universal visual learner. *Advances in neural information processing
systems*, 36:64029–64042, 2023.

577

578 Jintao Liu, Hongfei Lin, Xikai Liu, Bo Xu, Yuqi Ren, Yufeng Diao, and Liang Yang. Transformer-
579 based capsule network for stock movement prediction. In *Proceedings of the First Workshop on
Financial Technology and Natural Language Processing*, pp. 66–73, 2019.

580

581 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
582 the stationarity in time series forecasting. *Advances in Neural Information Processing Systems*,
583 35:9881–9893, 2022.

584

585 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
586 itransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth Inter-
587 national Conference on Learning Representations*, 2024.

588

589 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
590 64 words: Long-term forecasting with transformers. In *The 11th International Conference on
Learning Representations*, 2023.

591

592 Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and Garrison W. Cottrell. A
593 dual-stage attention-based recurrent neural network for time series prediction. In *Proceedings
of the 26th International Joint Conference on Artificial Intelligence*, IJCAI’17, pp. 2627–2633.
AAAI Press, 2017. ISBN 9780999241103.

594 Golshid Ranjbaran, Diego Reforgiato Recupero, Gianfranco Lombardo, and Sergio Consoli. Lever-
 595 aging augmentation techniques for tasks with unbalancedness within the financial domain: a two-
 596 level ensemble approach. *EPJ Data Science*, 12, 07 2023.

597

598 Mariko Tai, Mineichi Kudo, Akira Tanaka, Hideyuki Imai, and Keigo Kimura. Kernelized super-
 599 vised laplacian eigenmap for visualization and classification of multi-label data. *Pattern Recog-*
 600 *nition*, 123:108399, 2022.

601 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 602 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 603 *tion processing systems*, 30, 2017.

604

605 Chaojie Wang, Yuanyuan Chen, Shuqi Zhang, and Qiupei Zhang. Stock market index prediction
 606 using deep transformer model. *Expert Systems with Applications*, 208:118128, 2022.

607 Mengyu Wang, Tiejun Ma, and Shay B. Cohen. Pre-training time series models with stock data
 608 customization. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery*
 609 *and Data Mining V.2*, KDD '25, pp. 3019–3030, New York, NY, USA, 2025a. Association for
 610 Computing Machinery. ISBN 9798400714542.

611

612 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 613 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
 614 *International Conference on Learning Representations (ICLR)*, 2024a.

615 Shiyu Wang, Jiawei LI, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Ju Shengtong, Zhixuan
 616 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
 617 analysis. In *The Thirteenth International Conference on Learning Representations*, 2025b.

618

619 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
 620 time series models: A comprehensive survey and benchmark, 2024b. URL <https://arxiv.org/abs/2407.13278>.

621

622 Han Wei. Smote algorithm optimization and application in corporate credit risk prediction with
 623 diversification strategy consideration. *Scientific Reports*, 15, 07 2025.

624

625 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 626 formers with auto-correlation for long-term series forecasting. *Advances in Neural Information*
 627 *Processing Systems*, 34:22419–22430, 2021.

628

629 Tao Xiang and Shaogang Gong. Spectral clustering with eigenvector selection. *Pattern Recognition*,
 630 41(3):1012–1029, 2008.

631

632 Wenyuan Xu, Rundong Wang, Chen Li, Yonghong Hu, and Zhonghua Lu. Hrft: Mining high-
 633 frequency risk factor collections end-to-end via transformer. In *Companion Proceedings of the*
 634 *ACM on Web Conference 2025*, WWW '25, pp. 538–547, New York, NY, USA, 2025. Association
 for Computing Machinery. ISBN 9798400713316.

635

636 Linyi Yang, Jiazheng Li, Ruihai Dong, Yue Zhang, and Barry Smyth. Numhtml: Numeric-oriented
 637 hierarchical transformer model for multi-task financial forecasting. In *Proceedings of the AAAI*
 638 *Conference on Artificial Intelligence*, volume 36, pp. 11604–11612, 2022.

639

640 Zhen Zeng, Rachneet Kaur, Suchetha Siddagangappa, Tucker Balch, and Manuela Veloso. From
 641 pixels to predictions: Spectrogram and vision transformer for better time series forecasting. In
Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 82–90, 2023.

642

643 Hongyuan Zha, Xiaofeng He, Chris Ding, Ming Gu, and Horst Simon. Spectral relaxation for k-
 644 means clustering. In T. Dietterich, S. Becker, and Z. Ghahramani (eds.), *Advances in Neural*
 645 *Information Processing Systems*, volume 14. MIT Press, 2001.

646

647 Qiuyue Zhang, Chao Qin, Yunfeng Zhang, Fangxun Bao, Caiming Zhang, and Peide Liu.
 Transformer-based attention network for stock movement prediction. *Expert Systems with Ap-*
plications, 202:117239, 2022.

648 Quiyue Zhang, Yunfeng Zhang, Fangxun Bao, Yifang Liu, Caiming Zhang, and Peide Liu. Incorporating stock prices and text for stock movement prediction based on information fusion.
 649 *Engineering Applications of Artificial Intelligence*, 127:107377, 2024.
 650

651
 652 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 653 for multivariate time series forecasting. In *The 11th International Conference on Learning Rep-*
 654 *resentations*, 2023.

655
 656 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 657 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 658 *of the AAAI Conference on Artificial Intelligence*, pp. 11106–11115, 2021.

659
 660 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
 661 enhanced decomposed transformer for long-term series forecasting. In *International Conference*
 662 *on Machine Learning*, pp. 27268–27286. PMLR, 2022.

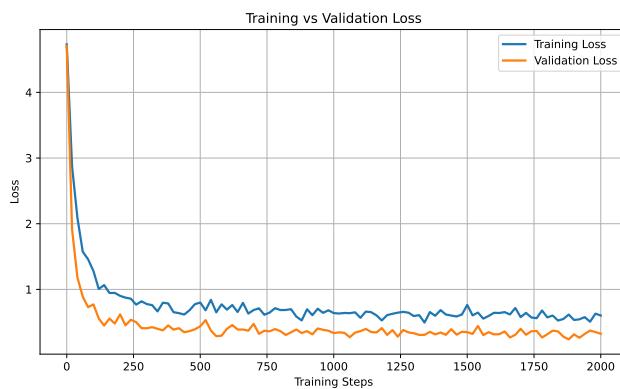
663 Zhuohang Zhu, Haodong Chen, Qiang Qu, and Vera Chung. Fincast: A foundation model for
 664 financial time-series forecasting, 2025. URL <https://arxiv.org/abs/2508.19609>.

666 A APPENDIX

667 This appendix provides additional discussions on several technical components that were only
 668 briefly referenced in the main text, and includes a disclosure regarding the use of large language
 669 models (LLMs) in the preparation of this manuscript.

670 First, Appendix A.1 examines whether the proposed tokenization design introduces risks of over-
 671 fitting under the learning framework by training and validation loss curves. Appendix A.2 extends
 672 the discussion on clustering by comparing alternative methods, and further justifies the selection
 673 of k -means based on its ability to obtain the most informative and actionable bullish cluster. Ap-
 674 pendix A.3 explains why tokenization approaches widely adopted in vision—such as VQ-VAE and
 675 discrete autoencoders—are not applicable to our financial time-series setting.

676 In addition to these points, we provide a mathematical discussion of the three fundamental tokeniza-
 677 tion challenges introduced in Section 2. Second, we elaborate on the role of SMOTE in addressing
 678 class imbalance within our predictive framework. Third, we detail the scoring function in Eq. 10 and
 679 explain the rationale behind the weighting scheme used to determine the optimal number of clusters
 680 K^* . Fourth, we present a comparative analysis demonstrating that our vanilla Transformer models
 681 with eigencluster-based tokens generally achieve higher precision than traditional baselines, while
 682 also acknowledging several extreme cases where conventional models outperform our predictions.
 683 Finally, we report a historical backtest of the `Ours5` model over the 2015–2024 period, as reported
 684 in Appendix A.8, to evaluate the practical utility of the proposed predictive framework.



701 Figure 7: Training and validation loss curves for the proposed model (S&P500 2004–2013).

702 A.1 LOSS CURVES
703704 We have included the training and validation loss curves in the following (see Fig. 7). As illustrated
705 in the figure, both training and validation losses consistently decrease throughout the entire training
706 process, and no late-stage increase in validation loss is observed. This indicates that the model is
707 learning generalizable patterns rather than memorizing the training data.708
709 A.2 K-MEANS VS GMM
710711 We tested various automatic clustering approaches, including Gaussian Mixture Models (GMM)
712 with AIC/BIC selection and Bayesian Gaussian Mixture Models (Bayesian GMM). On the S&P 500
713 training set (2004–2013), the bullish cluster from these methods exhibited only moderate bullish
714 probabilities (75%, 68%, and 61%, respectively). In contrast, using 1D K-means with $k = 11$
715 produced a top cluster with a bullish probability of 92%, which is substantially stronger. Therefore,
716 we chose 1D K-means as our main clustering method to obtain the most informative and actionable
717 bullish cluster.
718

719 Table 11: Comparison of different clustering methods on the SP500 training set (2004–2013).

720 Clustering Method	721 Selection	722 Bullish Cluster (%)
721 GMM	722 AIC	723 75%
722 GMM	723 BIC	724 68%
723 Bayesian GMM	724 Default	725 61%
724 K-means	725 k=11	726 92%

726 A.3 WHY VQ-VAE AND DISCRETE AUTOENCODERS COLLAPSE ON FINANCIAL DATA
727728 We experimented with VQ-VAE and discrete autoencoders as alternative tokenization approaches;
729 however, these methods consistently collapse when applied to normalized financial price features.
730 Due to the extremely low variance of normalized inputs, almost all samples lie near a single mode,
731 causing the quantization stage to map the entire dataset to one identical discrete token and preventing
732 meaningful token diversity.

733 Our input features are normalized financial series with very limited dispersion:

734
$$735 x_{i,j} \in \mathbb{R}, \quad \mu \approx 1.0005, \quad \sigma \approx 0.0328, \quad (11)$$

736 where $x_{i,j}$ denotes the j -th feature of the i -th sample, μ is the empirical mean, and σ is the empirical
737 standard deviation. Thus,

738
$$739 x_{i,j} = \mu + \varepsilon_{i,j}, \quad |\varepsilon_{i,j}| \ll 1, \quad (12)$$

740 meaning the deviations $\varepsilon_{i,j}$ are extremely small. For any encoder f_θ in VQ-VAE or a discrete
741 autoencoder, such nearly constant inputs produce almost identical latent vectors:

742
$$743 z_i = f_\theta(x_i) \approx z_j, \quad \forall i, j, \quad (13)$$

744 where z_i is the latent representation of sample i . Consequently, the quantization layer (e.g., Gumbel-
745 Softmax or VQ codebook) receives almost the same logits for every sample. For a linear projection
746 of the latent vector into code logits, we have

747
$$748 \ell_i = W z_i + b \approx \ell_j, \quad (14)$$

749 where $z_i \in \mathbb{R}^d$ is the latent representation of sample i , $W \in \mathbb{R}^{K \times d}$ and $b \in \mathbb{R}^K$ are the learnable
750 weight matrix and bias projecting z_i to K logits, and $\ell_i \in \mathbb{R}^K$ is the vector of logits corresponding
751 to the K discrete codebook entries. Since all latent vectors are nearly identical ($z_i \approx z_j$ for all i, j),
752 the logits are also almost the same ($\ell_i \approx \ell_j$). As a result, the quantization step collapses all samples
753 to the same code index:

754
$$755 \arg \max_k \ell_{i,k} = k_0, \quad \text{for all } i, \quad (15)$$

756 where $\ell_{i,k}$ denotes the k -th component of ℓ_i , and $k_0 \in \{1, \dots, K\}$ is the single code index assigned
757 to all samples. Therefore, the degeneration is not a failure of VQ-VAE or discrete autoencoders, but

756 a direct consequence of the low-variance, unimodal structure of normalized financial data, which
 757 lacks the multimodal geometry needed for meaningful discrete token learning.
 758

759 For transparency and reproducibility, we provide a Colab notebook in an anonymous GitHub
 760 repository containing our VQ-VAE and discrete autoencoder experiments. The notebook can be
 761 executed directly to verify the observed behavior: https://github.com/MasterBeard/EigenCluster-Tokenization-for-Financial-Transformers/blob/main/ICLR_review3_VQ_VAE.ipynb.
 762
 763

764 A.4 CHALLENGES IN FINANCIAL TOKENIZATION

766 *Excessive Token Cardinality*: Financial price series exhibit high variability and weak periodicity,
 767 which leads to a token space that grows approximately as an exponential function of the decimal
 768 precision. Formally, the vocabulary size grows as

$$769 \quad 770 \quad |\mathcal{V}| \propto B^d, \quad (16)$$

771 where B is the base of representation (e.g., $B = 10$ for decimal prices) and d is the decimal pre-
 772 cision. This relationship demonstrates that the number of unique tokens scales exponentially with
 773 precision, making the tokenization approach computationally intractable at high precision levels.

774 *Update Sparsity*: The fundamental issue is that each token’s embedding vector is only updated
 775 when that specific token appears in the training data. Therefore, a token v that occurs only n times
 776 receives exactly n updates to its embedding \mathbf{e}_v . For a rare token (e.g., $n = 1$), this results in a single,
 777 ineffective gradient step:

$$778 \quad 779 \quad \mathbf{e}_v^{(final)} \approx \mathbf{e}_v^{(initial)} - \eta \nabla \mathbf{e}_v \mathcal{L}. \quad (17)$$

780 where η is the learning rate and $\nabla \mathbf{e}_v \mathcal{L}$ is the gradient from the single occurrence of token v . This
 781 single update is negligible compared to the thousands of updates received by frequent tokens. Con-
 782 sequently, the embeddings of rare tokens remain poorly optimized and fail to learn meaningful
 783 representations.

784 *Out-of-Vocabulary Tokens (OOV)*: Due to financial non-stationarity, novel patterns appear at test
 785 time that were never observed during training. This yields tokens outside the training vocabulary:

$$786 \quad \mathcal{V}_{\text{test}} \setminus \mathcal{V}_{\text{train}} \neq \emptyset, \quad (18)$$

787 where $\mathcal{V}_{\text{train}}$ and $\mathcal{V}_{\text{test}}$ denote the training and testing vocabularies, respectively. The core challenge
 788 is that no embedding parameters exist for these unseen tokens, creating a fundamental representa-
 789 tion gap. Common workarounds, such as mapping novel tokens to the nearest in-vocabulary value,
 790 introduce substantial approximation errors. Since financial time series are highly sensitive to ex-
 791 act values, these substitutions propagate inaccuracies through subsequent model layers, ultimately
 792 compromising prediction reliability. This representation failure severely hinders generalization, par-
 793 ticularly during extreme market events (e.g., the negative oil price shock in 2020) when novel price
 794 regimes emerge.

795 A.5 SMOTE AND SAMPLING STRATEGY

797 SMOTE has been widely used in financial machine learning for handling imbalance (Ranjbaran
 798 et al., 2023; Li et al., 2023; Wei, 2025). In Section 4.4 we omitted the detailed discussion of SMOTE
 799 for brevity. Here, we provide a complete formulation of our oversampling strategy, clarify its role in
 800 our pipeline.

802 **Data Representation.** Let the training dataset consist of cluster-index token sequences,

$$804 \quad 805 \quad \mathcal{D} = \{(x_i, y_i)\}_{i=1}^N, \quad x_i \in \{1, 2, \dots, K\}^L, \quad y_i \in \{1, 2, \dots, K\}. \quad (19)$$

806 where each x_i is a symbolic sequence of cluster indices of length L , obtained from the price-pattern
 807 encoder. **SMOTE is applied exclusively to these discrete token vectors, not to raw or continuous**
 808 **price series.** This design completely avoids the risk of synthesizing economically implausible price
 809 trajectories. For each label k , let

$$809 \quad n_k = |\{i : y_i = k\}| \quad \text{and} \quad n^* = \text{median}\{n_k\}_{k=1}^K. \quad (20)$$

810 The final number of samples per class is defined as
 811

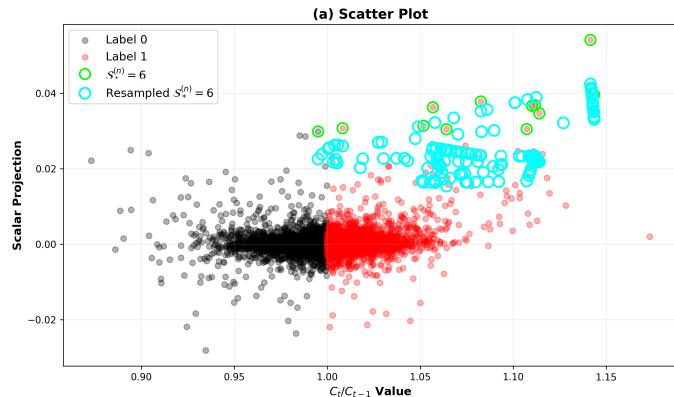
$$812 \quad 813 \quad 814 \quad 815 \quad n_k^{\text{final}} = \begin{cases} n^*, & n_k = 1 \text{ (extremely rare class, duplicated),} \\ n^*, & 2 \leq n_k < n^* \text{ (minority class, oversampled via SMOTE),} \\ n^*, & n_k > n^* \text{ (majority class, downsampled).} \end{cases} \quad (21)$$

817 **SMOTE in the Token Space.** For minority classes with $2 \leq n_k < n^*$, synthetic samples are
 818 generated using SMOTE applied to the *token vectors* x_i . Given a sample x_i and one of its K nearest
 819 neighbors x_{nn} in the token space (we use $K = 2$ throughout),

$$820 \quad 821 \quad \tilde{x} = x_i + \lambda(x_{nn} - x_i), \quad \lambda \sim U(0, 1). \quad (22)$$

822 Since the space is discrete, $(x_{nn} - x_i)$ is computed elementwise and the result is rounded back
 823 to valid cluster indices. Critically, this interpolation occurs *only between existing cluster indices*,
 824 never between price values. Thus, SMOTE redistributes density in the symbolic state space without
 825 creating artificial price paths.

826 **Even if SMOTE were applied to continuous features**, its linear interpolation cannot produce
 827 outliers far from the data manifold. We verified this behavior visually: as shown in Fig. 8, when
 828 applied to the bullish cluster, the synthetic samples (cyan) remain tightly concentrated around the
 829 original cluster (green), indicating SMOTE’s inherently local and non-distortive nature.



850 Table 12: Precision (%) and Counts Changes (%) without SMOTE

	S&P500				CSI300			
	Ours5		Ours10		Ours5		Ours10	
	Prec	Count	Prec	Count	Prec	Count	Prec	Count
2011–2020	+0.12	-9%	+6.45	-58%	+0.04	-26%	-0.28	-31%
2015–2024	-1.19	-99%	—	-100%	-0.38	-37%	+1.32	-95%

858 **Practical Role of SMOTE.** The SMOTE module substantially stabilizes our classifier. Without
 859 SMOTE, prediction counts decrease sharply (Table 12), leading to reduced robustness in detecting
 860 bullish-cluster events. The oversampling procedure restores class balance and yields more reliable
 861 bullish predictions across both markets.

862 Overall, SMOTE in our framework operates purely in the symbolic cluster-index space, enhances
 863 prediction robustness, and does not introduce any risk of generating unrealistic price dynamics.

864
865A.6 SELECTION OF OPTIMAL K FOR BULLISH CLUSTERS866
867
868
869
870
871
872

The weights in our scoring function (Eq. 10) were designed to balance three competing objectives: maximizing bullish probability, maintaining adequate cluster size, and controlling model complexity. The weight settings reflect our preferences derived from this foundational dataset. To illustrate this principle, we present below the example used in the manuscript for the S&P 500 (2004–2013), where for each candidate K we evaluate three quantities for the most bullish cluster: (1) its sample size, (2) the bullish ratio (percentage of samples whose next-day closing price increases), and (3) the resulting score computed using Eq. (10).

873

874

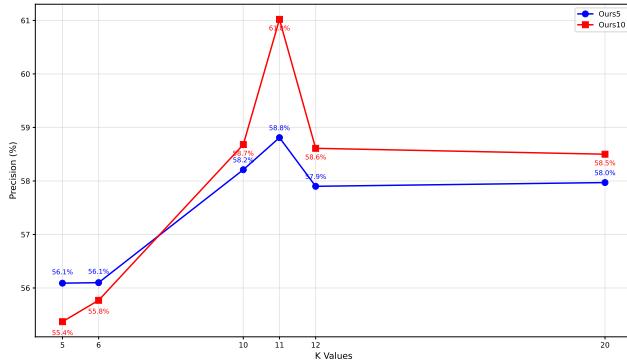
Table 13: Cluster statistics and calculated scores for S&P500 (2004–2013)

875
876
877
878
879
880
881
882
883

K	Size	Ratio	Score	K	Size	Ratio	Score
5	65	0.69	15.64	13	12	0.92	17.07
6	32	0.72	15.55	14	12	0.92	16.87
7	15	0.80	15.93	15	12	0.92	16.67
8	15	0.80	15.73	16	12	0.92	16.47
9	15	0.80	15.53	17	12	0.92	16.27
10	14	0.79	14.89	18	6	1.00	14.73
11	12	0.92	17.47	19	6	1.00	14.53
12	12	0.92	17.27	20	1	1.00	-19.00

884

Among these, the **bullish ratio** is the most important criterion. A ratio of 100% is theoretically ideal, but the values $K = 18\text{--}20$ —which achieve 100%—have extremely small cluster sizes (all below 10, and only one sample when $K = 20$), indicating that the clustering has become overly fragmented and unreliable. Hence these K values are discarded immediately. The next-best group consists of $K = 11\text{--}17$, all with ratio 0.92 and identical sizes. Within this group, our design principle favors the *smallest* K , because a smaller K leads to a more compact token vocabulary and avoids excessive token proliferation. Therefore, $K = 11$ is selected as the optimal choice.

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903904
905Figure 9: Precision comparison across different K values (S&P500 2015–2024)906
907
908

Interpretation of the Weighting Scheme. The weighting scheme in Eq. (10) is *explicitly constructed* to encode these principles:

909
910
911
912
913
914
915

- **Bullish ratio** receives the dominant positive weight (**+25.0**), because it is the primary determinant of cluster quality.
- **Cluster size** receives a negative weight (**-0.8**), penalizing clusters that become too small (e.g., $K = 18\text{--}20$).
- **The number of clusters K** receives a mild negative weight (**-0.2**), reflecting our preference for a more compact token vocabulary.

916
917

Thus, the weights in Eq. (10) are not arbitrary—they directly implement the decision rule: *select the smallest K that yields a stable, sufficiently large, and strongly bullish cluster*. As illustrated in Fig. 9, both extremely small ($K = 5, 6$) and excessively large ($K = 20$) values exhibit suboptimal

918 performance. When K is too small, clusters show weak bullish predictive power. When K is too
 919 large, clusters become unstable and statistically unreliable. Among the evaluated values ($K =$
 920 $5, 6, 10, 11, 12, 20$), $K = 11$ achieves the highest precision, providing an optimal balance between
 921 stability and predictive accuracy.

923 **Additional Example: S&P500 (2001–2009).** The same logic applies when selecting the optimal
 924 K for the S&P500 during 2001–2009. Even without explicitly computing the scores using Eq. (10),
 925 the choice is visually evident from Table 14: the extreme small clusters corresponding to $K = 17$ –
 926 20 can be ignored, as they contain only 1–2 samples. Among the remaining clusters, $K = 6$ and
 927 $K = 7$ exhibit the highest ratio (0.824). Since we seek the **smallest K** that satisfies stability and
 928 size criteria, $K = 6$ is naturally selected.

930 Table 14: Cluster statistics and calculated scores for S&P500 (2001–2009)

K	Size	Ratio	Score	K	Size	Ratio	Score
5	37	0.811	18.19	13	22	0.773	14.90
6	34	0.824	18.21	14	22	0.773	14.70
7	34	0.824	18.01	15	22	0.773	14.50
8	27	0.815	17.29	16	22	0.773	14.30
9	23	0.783	16.03	17	2	1.00	1.60
10	23	0.783	15.83	18	2	1.00	1.40
11	23	0.783	15.63	19	2	1.00	1.20
12	23	0.783	15.43	20	2	1.00	1.00

940 The weights in our scoring function (Eq. 10) should therefore be understood not as externally tuned
 941 hyperparameters, but as a concise summary of the decision principles described above. That is, the
 942 weighting scheme was distilled from the observed behaviors of different K values across datasets:
 943 clusters with extremely small sizes must be penalized, overly large K values must be discouraged,
 944 and the bullish ratio must dominate the evaluation. The final coefficients encode these empirically
 945 derived preferences in a compact mathematical form, ensuring consistent K -selection across all
 946 datasets.

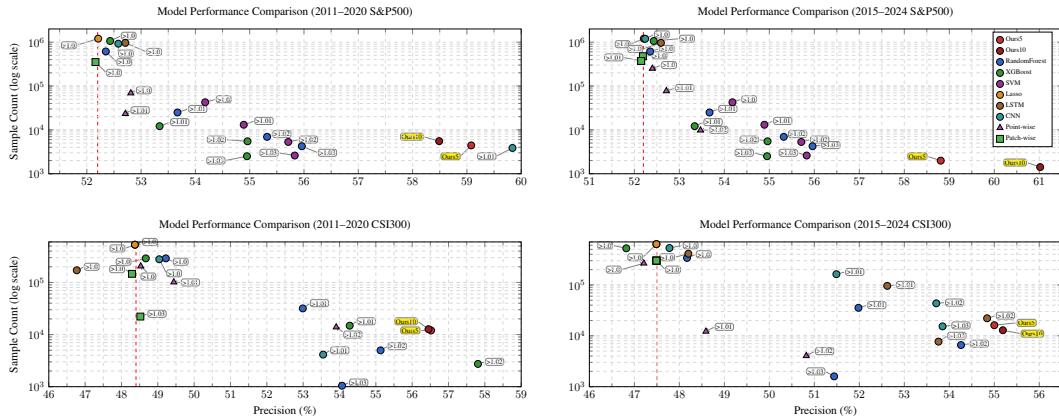
947 A.7 PERFORMANCE ACROSS BASELINE MODELS

951 Table 15: Comparison of Our Tokenization Strategy and Baseline Models

Method	Input	Output	Configuration
Ours	9 tokens	$\mathbb{I}(\hat{z}_i^{(10)} \in \mathcal{S}_*^{(10)})$	Architecture: Refer to Section 5.2.
RF	36 features	$\mathbb{I}(\hat{C}_t/C_{t-1} > \tau)$	150 estimators; Unlimited depth; Min split 2; Min leaf 2; Max features 6.
XGB	36 features	$\mathbb{I}(\hat{C}_t/C_{t-1} > \tau)$	100 estimators; Max depth 5; $\eta = 0.1$; Sub-sample 1; Column sample by tree 0.8.
LSTM	36 sequences	$\mathbb{I}(\hat{C}_t/C_{t-1} > \tau)$	Two layers, 64 units ($\eta = 0.001$); First returns sequences; Second to output; Dropout 0.3.
CNN	6x6 matrix	$\mathbb{I}(\hat{C}_t/C_{t-1} > \tau)$	Convolutional layers(64,128)+pooling; Flatten; Dense-256; Dropout 0.1.
SVM	36 features	$\mathbb{I}(\hat{C}_t/C_{t-1} > \tau)$	Linear kernel; The regularization parameter $C = 1$ with automatic gamma scaling.
Lasso	36 features	$\mathbb{I}(\hat{C}_t/C_{t-1} > \tau)$	ℓ_1 regularization with strength $\alpha = 1.0$; 5000 iterations

967 In Table 15 we also evaluate our tokenization method alongside six established machine learning
 968 models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory
 969 (LSTM), Convolutional Neural Network (CNN), Support Vector Machine (SVM), and Lasso Re-
 970 gression (Dubey et al., 2024)—within a unified experimental framework. All baseline methods also
 971 use the same normalization procedure (division by C_{t-1}) as global data statistics are unavailable in

972 practice. Each model is trained to predict C_t/C_{t-1} , and predictions are thresholded at four levels
 973 ($\tau \in [1.00, 1.03]$) to assess sensitivity, with the prediction defined as $\hat{y} = \mathbb{I}(C_t/C_{t-1} > \tau)$.
 974



990 Figure 10: Model Performance Comparison on constituent stocks of S&P500 and CSI300 indices.
 991 The graphs show the precision of various models for the periods 2011–2020 and 2015–2024.
 992

993 Unlike traditional threshold-dependent models that require careful selection of optimal τ values,
 994 our method requires no predefined τ and attains high precision directly from clustered tokens. The
 995 Transformer architecture equipped with our multi-scale feature extraction and eigencluster-based
 996 tokenization method demonstrates competitive performance that matches or surpasses conventional
 997 benchmarks across most test conditions. Our best model achieves 61% precision on 2015–2024
 998 S&P500, which translates to successfully predicting price increases in 61 out of every 100 forecasts.
 999 While some traditional models (e.g., CNN at $\tau > 1.01$ on S&P 500 and XGBoost at $\tau > 1.02$ on
 1000 CSI 300) show narrow-range competitiveness, such advantages are practically negligible since
 1001 optimal τ values are unknown in real trading scenarios. This underscores the robustness and practical
 1002 superiority of our τ -free tokenization strategy.
 1003

1004 **Algorithm 1** Cluster-Enhanced Trading Strategy (Adjusted Timing)

1005 **Setting:** Initial capital \$50,000, transaction fee 1%

1006 1: Allocate 85% (\$42,500) to S&P 500 at t_0 (close price $C_{t_0}^{\text{S&P}}$)
 1007 2: Reserve 15% (\$7,500) as active capital; initialize Profit = 0
 1008 3: **for** each trading day t_i , $i \geq 1$ **do**
 1009 4: Previous day t_{i-1} :
 1010 5: **if** model predicts N stocks to buy **then**
 1011 6: Allocation_j = \$7,500/ N
 1012 7: **for** each stock j **do**
 1013 8: $S_j = \lfloor \text{Allocation}_j / C_{t_{i-1},j} \rfloor$; Buy S_j shares at $C_{t_{i-1},j}$
 1014 9: **end for**
 1015 10: **end if**
 1016 11: Today t_i :
 1017 12: **if** held stocks exist **then**
 1018 13: **for** each stock j **do**
 1019 14: Sell S_j shares at $C_{t_i,j}$
 1020 15: Profit += $S_j \times (C_{t_i,j} - C_{t_{i-1},j}) \times 0.99$
 1021 16: **end for**
 1022 17: **end if**
 1023 18: Update index value: IndexValue = (\$42,500/ $C_{t_0}^{\text{S&P}}$) $\times C_{t_i}^{\text{S&P}}$
 19: **end for**

1024 **Output:** Final portfolio value = IndexValue + Profit

1026 A.8 TRADING BACKTEST
1027

1028 To evaluate the practical utility of our cluster-enriched transformer predictions, we conducted a
1029 trading backtest on the US stock market from 2015 to 2024 using the `Ours5` model. The strategy,
1030 summarized in Algorithm 1, maintains a core allocation to the S&P 500 index (85% of total capital)
1031 while deploying the remaining 15% for active daily trading based on the model’s predictions.
1032 All selected stocks are equally weighted, positions are liquidated the following trading day to cap-
1033 ture short-term cluster effects, and a transaction cost of 1% per trade is assumed to reflect realistic
1034 execution frictions. The performance is quantified using the *Total Return* (*TotR*) metric:

$$1035 \text{TotR} = \frac{P_T - P_0}{P_0}, \quad (23)$$

1037 where $P_0 = \$50,000$ is the initial capital and P_T is the terminal portfolio value.
1038

1039 Performance Comparison (Cumulative Value)

1054 Figure 11: Backtest performance comparison of `Ours5` model trading strategy (2015–2024) against
1055 benchmarks.
1056

1057 Our `Ours5`-based trading strategy achieved a total return of 95.8% from 2015 to 2024, outper-
1058 forming the S&P 500 (91.4%) and the Dow Jones Industrial Average (62.1%), while the Nasdaq
1059 Composite led the benchmarks with 118.1%. As shown in Figure 11, our strategy consistently
1060 outperforms the buy-and-hold approach on the S&P 500 and Dow Jones indices, while the Nasdaq
1061 Composite slightly surpasses our returns, reflecting the strong performance of US technology stocks.
1062 These results demonstrate that the higher precision of our model in predicting bullish signals can be
1063 effectively translated into tangible trading gains beyond passive index investing.
1064

1065 A.9 TABULATED RESULTS CORRESPONDING TO FIG. 6
1066

1067 Table 16: Precision Comparison (%) of Tokenization Methods

Index	Period	Point-wise (3 decimal)				Patch-wise				Ours	
		> 1.0	> 1.01	> 1.02	> 1.03	> 1.0	> 1.01	> 1.02	> 1.03	5	10
S&P500	11-20	52.81	52.71	50.29	53.70	52.16	52.16	52.16	52.16	59.08	58.49
	15-24	52.40	52.71	53.47	53.91	52.19	52.15	52.15	52.15	58.81	61.02
CSI300	11-20	48.53	49.44	53.91	52.58	48.29	48.29	48.29	48.52	56.52	56.45
	15-24	47.21	48.59	50.82	49.85	47.49	47.49	47.49	47.49	55.00	55.19

1075 A.10 LLM USAGE
1076

1077 The authors primarily used Grok4, ChatGPT, and Deepseek for linguistic polishing and paragraph
1078 refinement only. All aspects of coding, research, analysis, figure preparation, and manuscript com-
1079 position were performed solely by the authors without AI assistance.