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Abstract

We study the batched best arm identification (BBAI) problem, where the learner’s
goal is to identify the best arm while switching the policy as less as possible. In
particular, we aim to find the best arm with probability 1−δ for some small constant
δ > 0 while minimizing both the sample complexity (total number of arm pulls)
and the batch complexity (total number of batches). We propose the three-batch
best arm identification (Tri-BBAI) algorithm, which is the first batched algorithm
that achieves the optimal sample complexity in the asymptotic setting (i.e., δ → 0)
and runs in 3 batches in expectation. Based on Tri-BBAI, we further propose the
almost optimal batched best arm identification (Opt-BBAI) algorithm, which is the
first algorithm that achieves the near-optimal sample and batch complexity in the
non-asymptotic setting (i.e., δ is finite), while enjoying the same batch and sample
complexity as Tri-BBAI when δ tends to zero. Moreover, in the non-asymptotic
setting, the complexity of previous batch algorithms is usually conditioned on the
event that the best arm is returned (with a probability of at least 1− δ), which is
potentially unbounded in cases where a sub-optimal arm is returned. In contrast,
the complexity of Opt-BBAI does not rely on such an event. This is achieved
through a novel procedure that we design for checking whether the best arm is
eliminated, which is of independent interest.

1 Introduction
Multi-armed bandit (MAB) is a fundamental model in various online decision-making problems,
including medical trials [40], online advertisement [5], and crowdsourcing [43]. These problems
typically involve a bandit with multiple arms, where each arm follows an unknown distribution with
a mean value. At each time step, the learner selects an arm, and receives a reward sample drawn from
the chosen arm’s distribution. Best arm identification (BAI) aims to identify the arm with the highest
mean reward, which can be approached with a fixed budget or a fixed confidence level [14, 4, 19].

In this paper, we assume that there is a unique best arm and study BAI with fixed confidence.
Specifically, we consider a set [n] = {1, 2, . . . , n} of n arms, where each arm i is associated with a
reward distribution having a mean value µi. Without loss of generality, for a bandit instance denoted
by µ = {µ1, µ2, . . . , µn}, we assume that µ1 > µ2 ≥ · · · ≥ µn. At each time step t, the learner
selects an arm and observes a sample drawn independently from the chosen arm’s distribution. In
the fixed confidence setting, the learner aims to correctly identify the best arm (arm 1 in our context)
with a probability of at least 1− δ, where δ > 0 is a pre-specified confidence parameter. Meanwhile,
the learner seeks to minimize the total number of arm pulls, also known as the sample complexity.

Denote by a∗(λ) = argmaxi λi the best arm for an arbitrary bandit instance λ. Let Alt(µ) =
{λ : a∗(λ) ̸= 1} be a set of models that have a different best arm from the model µ, and Pk = {w ∈
Rn

+ :
∑n

i=1 wi = 1} be the probability simplex. Garivier and Kaufmann [17] showed that for bandits
with reward distributions that are continuously parameterized by their means, the number Nδ of pulls
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by any algorithm that returns the best arm with a probability of at least 1− δ is bounded by

lim inf
δ→0

Eµ[Nδ]

log(1/δ)
≥ T ∗(µ), (1.1)

where T ∗(µ) is defined according to

T ∗(µ)−1 := sup
w∈Pk

(
inf

λ∈Alt(µ)

(
n∑

i=1

wi · d(µi, λi)

))
, (1.2)

and d(µi, λi) is the Kullback-Leibler (KL) divergence of two arms’ distributions with means µi and
λi, respectively. We say that an algorithm achieves the asymptotically optimal sample complexity if
it satisfies

lim sup
δ→0

Eµ[Nδ]

log(1/δ)
≤ T ∗(µ). (1.3)

The well-known Track-and-Stop algorithm [17] solves the BAI problem with asymptotically optimal
sample complexity. However, it is a fully sequential algorithm, which is hard to be implemented
in parallel. The learner in such an algorithm receives immediate feedback for each arm pull, and
adjusts the strategy for the next arm selection based on the previous observations. Unfortunately, this
sequential approach may not be feasible in many real-world applications. For instance, in medical
trials, there is typically a waiting time before the efficacy of drugs becomes observable, making it
impossible to conduct all tests sequentially. Instead, the learner needs to group the drugs into batches
and test them in parallel. Similarly, in crowdsourcing, the goal is to identify the most reliable worker
for a specific task by testing candidates with a sequence of questions. Again, there is often a waiting
time for workers to finish all the questions, necessitating the grouping of workers into batches and
conducting parallel tests. In such scenarios, the results of pulling arms are only available at the end
of each batch [22, 1, 39, 37, 15, 24, 25, 38].

Motivated by these applications, we study the problem of batched best arm identification (BBAI).
In BBAI, we are allowed to pull multiple arms in a single batch, but the results of these pulls are
revealed only after the completion of the batch. The objective is to output the best arm with a high
probability of at least 1− δ, while minimizing both the sample complexity (total number of pulls)
and the batch complexity (total number of batches). This leads to the following natural question:

Can we solve the BBAI problem with an asymptotically optimal sample complexity
and only using a constant number of batches?

Furthermore, the aforementioned results hold only in the limit as the confidence parameter δ ap-
proaches zero, which may provide limited practical guidance since we often specify a fixed confidence
level parameter δ > 0. To address this, some algorithms [31, 21] have been proposed to solve the
BAI problem with finite confidence. Specifically, for some universal constant C, these algorithms
satisfy that with probability 1− δ,

E[Nδ] ≤ O

(∑
i>1

1

∆2
i

log log∆−1
i

)
(1.4)

where ∆i = µ1 − µi. In addition, Jamieson et al. [21] demonstrated that for two-armed bandits, the
term log log∆−1

2

∆2
2

is optimal as ∆2 → 0, where ∆2 is assumed to be the gap between the best arm and
the second best arm. In the context of the batched setting, Jin et al. [22] proposed an algorithm that
achieves the sample complexity in (1.4) withinO(log∗(n) · log(1/∆2)) batches, where log∗(n) is the
iterated logarithm function1. Furthermore, Tao et al. [39] proved that for certain bandit instances, any
algorithm that achieves the sample complexity bound shown in (1.4) requires at least Ω

( log∆−1
2

log log∆−1
2

)
batches. It should be noted that the batched lower bound proposed by Tao et al. [39] assumes δ as
a constant, making it inapplicable in the asymptotic setting. Therefore, an additional question that
arises is:

Can we achieve the optimal sample complexity in (1.3) and (1.4) adaptively, taking into account the
specified confidence level parameter δ, while minimizing the number of batches?

1Specifically, log∗(n) denotes the number of times the function log(·) needs to be applied to n until the
result is less than 1.
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Table 1: Comparison of sample and batch complexity of different algorithms. In the asymptotic
setting (i.e., δ → 0), the sample complexity of an algorithm is optimal if it satisfies the definition
in (1.3). The field marked with “–” indicates that the result is not provided. The sample complexity
presented for [31, 22] is conditioned on the event that the algorithm returns the best arm, which can
be unbounded when it returns a sub-optimal arm with certain (non-zero) probability (see Remark 4.4
for more details). In contrast, the sample complexity presented for [17, 26] and our algorithms is the
total expected number of pulls that will be executed.

Algorithm Asymptotic behavior (δ → 0) Finite-confidence behavior

Sample complexity Batch complexity Sample complexity Batch complexity

Karnin et al. [31] Not optimal O(log n · log n
∆2

) O
(∑

i>1
log(log∆−1

i )

∆2
i

)
O(log n · log n

∆2
)

Jin et al. [22] Not optimal O(log 1
∆2

) O
(∑

i>1
log(log∆−1

i )

∆2
i

)
O(log∗(n) · log 1

∆2
)

Wang et al. [42] Optimal O(
√

log(1/δ)) O(nH(µ)4/w2
min) -

Agrawal et al. [2] Optimal T∗(µ) log δ−1

m (m = o(log δ−1)) – –

Karpov et al. [32] – – O
(∑

i>1
log(n log∆−1

i )

∆2
i

)
O(log 1

∆2
)

Lower bound [39] – – O
(∑

i>1
log(log∆−1

i )

∆2
i

)
Ω(log(1/∆2))

Tri-BBAI (Our Algorithm 1) Optimal 3 – –

Opt-BBAI (Our Algorithm 2) Optimal 3 O
(∑

i>1
log(n log∆−1

i )

∆2
i

)
O(log 1

∆2
)

In this work, we provide positive answers to both of the aforementioned questions. Specifically, the
main contributions of our paper can be summarized as follows:

• We propose Tri-BBAI (Algorithm 1) that returns the best arm with a probability of at least 1− δ
by pulling all arms for a total number of at most T ∗(µ) log(1/δ) times when δ → 0. Tri-BBAI
employs three batches in expectation when δ → 0. Therefore, Tri-BBAI achieves the optimal
sample within constant batches. As a comparison, Track-and-Stop [17] also achieves the optimal
sample complexity but requires solving the right-hand side of (1.2) after each arm pull, resulting in
a batch complexity of the same order as the sample complexity, which is a significant computational
overhead in practice.

• Built upon Tri-BBAI, we further propose Opt-BBAI (Algorithm 2) that runs in O(log(1/∆2))
expected batches and pulls at most O

(∑
i>1 ∆

−2
i log(n log∆−1

i )
)

expected number of arms for
finite confidence δ. It is also important to note that Opt-BBAI achieves the same sample and
expected batch complexity as Tri-BBAI asymptotically when δ → 0. Moreover, for the finite
confidence case, this sample complexity matches (1.4) within a log(·) factor and matches the
optimal batched complexity within a log log(·) factor. To the best of our knowledge, Opt-BBAI is
the first batched bandit algorithm that can achieve the optimal asymptotic sample complexity and
the near-optimal non-asymptotic2 sample complexity adaptively based on the assumption on δ.

• Notably, in the non-asymptotic setting, the complexity of earlier batch algorithms [22, 32, 39, 24]
typically depends on the event of returning the best arm, which occurs with a probability of at
least 1− δ. However, this complexity could potentially become unbounded if a sub-optimal arm is
returned instead. Unlike these algorithms, the complexity of Opt-BBAI is not contingent on such
an event. This is made by employing an innovative procedure to verify if the best arm is eliminated,
a method that holds its independent interest. To the best of our knowledge, Opt-BBAI is the first
algorithm that achieves the optimal asymptotic sample complexity while providing the optimal
non-asymptotic sample complexity within logarithm factors.

• We also conduct numerical experiments3 to compare our proposed algorithms with the optimal
sequential algorithm Track-and-Stop [17], and the batched algorithm Top-k δ-Elimination [22] on
various problem instances. The results indicate that our algorithm significantly outperforms the
Track and Stop method in terms of batch complexity, while its sample complexity is not much
worse than that of Track and Stop. Additionally, our algorithm demonstrates a notable improvement
in sample complexity compared to [22], while exhibiting similar batch complexity.

For ease of reference, we compare our results with existing work on batched bandits in Table 1.

2Non-asymptotic here refers to finite confidence. In this paper, we use names non-asymptotic and finite
confidence interchangeably.

3Due to the space limit, we put the experimental results in Appendix E.
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Table 2: Comparison of sample complexity of different algorithms.

Algorithm Asymptotic behavior (δ → 0) Finite-confidence behavior

Kalyanakrishnan et al. [30] O(H(µ) log(1/δ)) O(H(µ) log(H(µ)))

Karnin et al. [31] O(H(µ) log(1/δ)) O
(∑

i>1

log(log∆−1
i )

∆2
i

)
Garivier and Kaufmann [17] T ∗(µ) log(1/δ)+o(1/δ) -

Jamieson et al. [21] O(H(µ) log(1/δ)) O
(∑

i>1

log(log∆−1
i )

∆2
i

)
Jourdan and Degenne [26] T ∗

β (µ) log(1/δ)+o(1/δ) O ((H(µ) logH(µ))α), α > 1

Degenne et al. [12] T ∗(µ) log(1/δ)+o(1/δ) Õ(nT ∗(µ)2)
Katz-Samuels et al. [33] O(T ∗(µ) log(1/δ)) O(H(µ) log(n/∆min))
Wang et al. [42] T ∗(µ) log(1/δ)+o(1/δ) O(nH(µ)4/w2

min)

Opt-BBAI (Our Algorithm 2) T ∗(µ) log(1/δ)+o(1/δ) O
(∑

i>1

log(n log∆−1
i )

∆2
i

)

2 Related Work
The BAI problem with fixed confidence is first studied for [0, 1] bounded rewards by Even-Dar et al.
[14]. The sample complexity of their algorithm scales with the sum of the squared inverse gap, i.e.,
H(µ) =

∑
i>1 1/∆

2
i . Garivier and Kaufmann [17] showed that H(µ) < T ∗(µ) ≤ 2H(µ) with

T ∗(µ) defined in (1.2) and proposed the Track-and-Stop algorithm, which is the first one in the
literature proved to be asymptotically optimal. Later, Degenne et al. [12] viewed T ∗(µ) as a min-max
game and provided an efficient algorithm to solve it. Jourdan et al. [27] studied the asymptotically
optimal sample complexity for any reward distributions with bounded support. Degenne et al. [13]
studied pure exploration in linear bandits. Their proposed algorithm proved to be both asymptotically
optimal and empirically efficient.

There are also many studies [30, 10, 8, 21, 31] that focus on providing non-asymptotic optimal sample
complexity. The best non-asymptotic sample complexity was achieved by Chen et al. [10], which
replaces the term log log∆−1

i in (1.4) with a much smaller term. Furthermore, when we allow a
loss ϵ of the quality of the returned arm, the problem is known as (ϵ, δ)-PAC BAI, for which various
algorithms [29, 14, 6, 9] are proposed, achieving the worst-case optimal sample complexity.

There are a few attempts to achieve both the asymptotic and non-asymptotic optimal sample complex-
ity. Degenne et al. [12] provided a non-asymptotic sample complexity Õ

(
nT ∗(µ)2

)
, which could be

nT ∗(µ) larger than the optimal sample complexity. Recently, Jourdan and Degenne [26] managed to
achieve a sample complexity that is β-asymptotically optimal (with w1 fixed at 1/β in (1.2)), render-
ing it asymptotically optimal up to a factor of 1/β. Meanwhile, they also reached a non-asymptotic
sample complexity of O

(
(H(µ) · logH(µ))α

)
4 for some α > 1, where H(µ) =

∑
i>1 1/∆

2
i .

Wang et al. [42] explored both asymptotic and non-asymptotic sample complexities. Their algorithm
achieves asymptotic optimality and shows a non-asymptotic sample complexity of O(nH(µ)4/w2

min).
However, this non-asymptotic sample complexity is nH(µ)3/w2

min away from being optimal. Jour-
dan et al. [28] studied (ϵ, δ)-PAC BAI, proposing an asymptotically optimal algorithm and providing
non-asymptotic sample complexity. When ϵ = 0, it aligns with our setting, our non-asymptotic
sample complexity is better scaled. Specifically, Jourdan et al. [28] offered a non-asymptotic sam-
ple complexity scale of n/∆2

2 log(1/∆2), whereas ours is more instance-sensitive, as our sample
complexity is related to all gaps, not just ∆2. Additionally, Jourdan et al. [28] considered a practical
scenario where the algorithm can return a result at any time while still ensuring a good guarantee on
the returned arm. For ease of reference, we summarize the sample complexity of different algorithms
in Table 2. As shown in Table 2, our algorithm is the only one that achieves both the asymptotic
optimality and non-asymptotic optimality within logarithm factors.

Another line of research [31, 4, 7] investigated BAI with a fixed budget, where the objective is to
determine the best arm with the highest probability within T pulls. Audibert et al. [4] and Karnin
et al. [31] offered finite-time bounds for this problem, while Carpentier and Locatelli [7] presented a
tight lower bound, demonstrating that such finite-time bounds[4, 31] are optimal for certain bandit

4To derive the near-optimal non-asymptotic sample complexity, α should be 1. However, As explained in
their original paper, the algorithm will be sub-optimal if we set α close to 1.
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instances. However, the asymptotic optimality for this problem remains unknown. Interested readers
are referred to recent advancements[11, 35] in the asymptotic results of BAI with a fixed budget.

In addition, some recent works [1, 22, 39, 32] also focused on batched BAI in non-asymptotic setting.
Agarwal et al. [1] studied the batched BAI problem under the assumption that ∆2 is known. They
proposed an algorithm that has the worst-case optimal sample complexity of O

(
n∆−2

2

)
and runs in

log∗(n) batches. Later, Jin et al. [22] provided the algorithms that achieves the sample complexity
given in (1.4) within Õ(log(1/∆2)) batches, where Õ hides the log log(·) factors. Tao et al. [39]
studied the BAI problem in the general collaborative setting and showed that no algorithm can achieve
(1.4) with o((log∆−1

2 )/ log log∆−1
2 ) batches. Karpov et al. [32] further proposed an algorithm

which has the sample complexity
∑

i>1
log(n log∆−1)

∆2
i

and the batch complexity O(log(1/∆2)). We
note that the lower bound of batch complexity given by Tao et al. [39] can only be applied to
a constant δ. In other words, the lower bound of complexity for the asymptotic setting remains
unknown. Agrawal et al. [2] studied the optimal batch size for keeping the asymptotic optimality.
They showed an algorithm with batch size m = o(log(1/δ)) achieves the asymptotic optimality. The
batch complexity of the algorithm is O(T ∗(µ) log(1/δ)/m). Wang et al. [42] provided an algorithm
that uses O(

√
log δ−1) batches and retains asymptotic optimality for linear bandits. However, for the

asymptotic setting, such batch size is still too large as it grows to infinity as δ decreases to 0.

3 Achieving Asymptotic Optimality with at Most Three Batches
3.1 Reward Distribution

We assume the reward distributions belong to a known one-parameter exponential family that is
commonly considered in the literature [17, 16, 36]. In particular, the measure νθ of such probability
distributions with respect the model parameter θ satisfies dνθ

dρ (x) = exp(xθ − b(θ)), for some
measure ρ and b(θ) = log(

∫
exθdρ(x)). For one-parameter exponential distributions, it is known

that b′(θ) = E[νθ] and the mapping b′(θ) 7→ θ is one-to-one. Moreover, given any two mean values
µ and µ′, we define d(µ, µ′) to be the Kullback-Leibler divergence between two distributions with
mean values µ and µ′.

3.2 The Proposed Three-Batch Algorithm

Algorithm 1 shows the pseudo-code of our proposed Tri-BBAI algorithm. In particular, Tri-BBAI has
four stages. In what follows, we elaborate on the details of each stage.

Stage I: Initial exploration. In this stage, we pull each arm for L1 times. Denote by i∗(t) the arm
with the largest empirical mean at time t (i.e., after we pull all arms for a total number of t times), i.e.,
i∗(t) = maxi∈[n] µ̂i(t). Let τ0 = nL1. Fix t = τq−1 ≥ τ0, we let bqi = µ̂i(t) + ϵ for i ̸= i∗(t) and
bqi = µ̂i(t)− ϵ for i = i∗(t). Let w∗(µ) = argmaxw∈Pk

infλ∈Alt(µ) (
∑n

i=1wi · d(µi, λi)). Then,
for the aforementioned bq = {bq1, b

q
2, . . . , b

q
n}, we calculate w∗(bq) according to Lemma A.1 and

T ∗(bq) according to Lemma A.2. We note that arm 1 is assumed to be the arm with the highest mean
in these two lemmas. However, in the context of bq, the index of i∗(t) might be different. To align
with the standard practice, we can rearrange the indices of the arms in bq so that i∗(t) corresponds to
index 1.

Purpose. To achieve the asymptotic optimality, we attempt to pull each arm i for around w∗
i (µ)T

∗(µ)
times. We can show that with a high probability, w∗

i (b
q)T ∗(bq) is close to w∗

i (µ)T
∗(µ), which

implies that pulling arm i for a number of times proportional to w∗
i (b

q)T ∗(bq) is likely to ensure the
asymptotic optimal sample complexity.

Stage II: Exploration using w∗(bq) and T ∗(bq). Stage II operates in batches with the maximum
number of batches determined by log(1/δ). At batch q, each arm i is pulled maxp:p∈N,p∈[1,q] T

q
i

times in total. Here
T q
i := min

{
αw∗

i (b
q)T ∗(bq) log δ−1, L2

}
, (3.1)

where the definition of w∗
i (b

q) and T ∗(bq) could be found in Stage I. We then evaluate the stage
switching condition, |w∗

i (b
q)− w∗

i (b
q−1)| ≤ 1/

√
n for all i ∈ [n]. If this condition is met, we go to

the next stage; otherwise, we proceed to the next batch within Stage II.
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Algorithm 1: Three-Batch Best Arm Identification (Tri-BBAI)
Input: Parameters ϵ, δ, L1, L2, L3, α and function β(t, δ).
Output: The estimated optimal arm.

1 Stage I: Round 1 exploration
2 for i← 1 to n do
3 Pull arm i for L1 times;
4 t← nL1 and τ0 ← t;
5 Stage II:Round 2 exploration
6 Let w∗

0(b
0) = (1/n, 1/n, · · · , 1/n) and T 0

i = L1 for all i ∈ [n];
7 for q = 1, 2 · · · , log(1/δ) do
8 i∗(t)← maxi∈[n] µ̂i(t);
9 for each i ∈ [n] \ {i∗(t)} do

10 bqi ← µ̂i(t) + ϵ;

11 bqi∗(t) ← µ̂i∗(t)(t)− ϵ;
12 for i← 1 to n do
13 Pull arm i for {0, T q

i −maxp:p∈N,p∈[0,q) T
p
i } times;

/**/ Note that T q
i = min

{
αw∗

i (b
q)T ∗(bq) log δ−1, L2

}
by (3.1)

14 t← t+ {0, T q
i −maxp:p∈N,p∈[0,q) T

p
i };

15 if |w∗
i (b

q)− w∗
i (b

q−1)| ≤ 1/
√
n for all i ∈ [n] then

16 Break;
17 τq ← t;
18 τ ← t, and i∗(τ) = maxi∈[n] µ̂i(τ);
19 Stage III: Statistical test with Chernoff’s stopping rule;
20 Compute Zj(τ) according to (3.3) ;
21 if minj∈[n]\{i∗(τ)} Zj(τ) ≥ β(τ, δ/2) then
22 return i∗(τ);
23 Stage IV: Round 3 exploration for i← 1 to n do
24 Pull arm i for total max{0, L3 − L1 − Ti} times;
25 t← nL3, and i∗(t)← maxi∈[n] µ̂i(t);
26 return i∗(t) ;

Purpose. Pulling arm i proportional to w∗
i (b

q)T ∗(bq) provides statistical evidence for the reward dis-
tributions without sacrificing sample complexity compared to the optimality per our above discussion.
Meanwhile, we also set a threshold L2 to avoid over-exploration due to sampling errors from Stage I.

The rationale for running Stage II in multiple batches is based on empirical considerations. In
experiments, δ is always finite. Consequently, the error of arm i, |µ̂i(t)− µi|, remains constant since
the number of pulls of arms is limited. Given that the stopping rule in Stage III is highly dependent
on the error of arm i and the number of pulls Ti := maxp:p∈N,p≥1 T

p
i , there is a constant probability

that the stopping rule may not be met, leading to significant sample costs in Stage IV. Adding the
condition in Line 15 ensures that w∗(bq) converges and that the sample size T q

i , as defined by w∗(bq)
and T ∗(bq), closely approximates αw∗(µ)T ∗(µ) log δ−1. This alignment significantly increases the
probability that the stopping rule will be satisfied in experiments.

Moreover, such modification doesn’t hurt any theoretical results. To explain, in our analysis for
Tri-BBAI, we demonstrate that as δ approaches 0, w∗(bq) will be very close to w∗(µ) and the
probability that Line 15 is not satisfied could be bounded by 1/ log2 δ−1, which means with high
probability Stage II costs 2 batches. Besides, q ≤ log(1/δ), which implies that even if Line 15 is not
satisfied, the number of batches required for Stage II is at most log(1/δ). Therefore, the expected
number of batches required for Stage II is 2 as δ approaches 0.
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Stage III: Statistical test with Chernoff’s stopping rule. Denote by Ni(t) the number of pulls of
arm i at time t. For each pair of arms i and j, define their weighted empirical mean as

µ̂ij(t) :=
Ni(t) · µ̂i(t)

Ni(t) +Nj(t)
+

Nj(t) · µ̂j(t)

Ni(t) +Nj(t)
, (3.2)

where µ̂i(t) and µ̂j(t) are the empirical means of arms i and j at time t. For µ̂i(t) ≥ µ̂j(t), define
Zij(t) := d(µ̂i(t), µ̂ij(t))Ni(t) + d(µ̂j(t), µ̂ij(t))Nj(t),

Zj(t) := Zi∗(t)j(t).
(3.3)

We test whether Chernoff’s stopping condition is met (Line 21). If so, we return the arm with the
largest empirical mean, i.e., i∗(τ), where τ is the total number of pulls examined after Stage II.

Purpose. The intuition of using Chernoff’s stopping rule for the statistical test is two-fold. Firstly, if
Chernoff’s stopping condition is met, with a probability of at least 1− δ/2, the returned arm i∗(τ)
in Line 22 is the optimal arm (see Lemma B.1). Secondly, when δ is sufficiently small, with high
probability, Chernoff’s stopping condition holds (see Lemma B.4). As a consequence, our algorithm
identifies the best arm successfully with a high probability of meeting the requirement.

Stage IV: Re-exploration. If the previous Chernoff’s stopping condition is not met, we pull each
arm until the total number of pulls of each arm eqauls L3 taking into account the pulls in the previous
stages (Line 24). Finally, the arm with the largest empirical mean is returned (Line 26).

Purpose. If Chernoff’s stopping condition is not met, i∗(τ) might not be the optimal arm. In addition,
when each arm is pulled for L3 times, we are sufficiently confident that i∗(t) is the best arm. Since
the probability of Stage IV happening is very small, its impact on the sample complexity is negligible.

3.3 Theoretical Guarantees of Tri-BBAI

In the following, we present the theoretical results for Algorithm 1.
Theorem 3.1 (Asymptotic Sample Complexity). Given any δ > 0, let ϵ = 1

log log(δ−1) , L1 =√
log δ−1, L2 = log δ−1 log log δ−1

n , and L3 = (log δ−1)2. Meanwhile, for any given α ∈ (1, e/2],
define function β(t, δ) as β(t, δ) = log(log(1/δ)tα/δ).5 Then, for any bandit instance µ, Algorithm
1 satisfies

lim sup
δ→0

Eµ[Nδ]

log(1/δ)
≤ αT ∗(µ).

By letting α in Theorem 3.1 approach 1 (e.g., α = 1+ 1/ log δ−1), we obtain the asymptotic optimal
sample complexity.
Theorem 3.2 (Correctness). Let ϵ, L1, L2, L3, α, and β(t, δ) be the same as in Theorem 3.1. Then,
for sufficiently small δ > 0, Algorithm 1 satisfies Pµ(i

∗(Nδ) ̸= 1) ≤ δ.
Theorem 3.3 (Asumptotic Batch Complexity). Let ϵ, L1, L2, L3, α, and β(t, δ) be the same as in
Theorem 3.1. For sufficiently small δ > 0, Algorithm 1 runs within 3 + o(1) batches in expectation.
Besides, Algorithm 1 runs within 3 batches with probability 1− 1/ log(1/δ2).

To the best of our knowledge, all previous works in the BAI literature [18, 12, 2, 42] that achieve the
asymptotic optimal sample complexity require unbounded batches as δ → 0. In contrast, Tri-BBAI
achieves the asymptotic optimal sample complexity and runs within 3 batches in expectation, which is
a significant improvement in the batched bandit setting where switching to new policies is expensive.
Remark 3.4. Apart from best arm identification, regret minimization is another popular task in
bandits, where the aim is to maximize the total reward in T rounds. Jin et al. [25] proposed an
algorithm that achieves a constant batch complexity for regret minimization and showed that their
algorithm is optimal when T goes to infinity. In regret minimization, the cost of pulling the optimal
arm is 0, indicating that the allocation wi (i.e., the proportion of pulling the optimal arm) is close to 1.
In the BAI problem, the main hardness is to find the allocation wi for each arm since even pulling
arm 1 will increase the sample complexity of the algorithm. Therefore, the strategy proposed by Jin
et al. [25] cannot be applied to the BAI problem.

5Recent work by Kaufmann and Koolen [34] offers improved deviation inequalities allowing for a smaller
selection of β(t, δ) without sacrificing the asymptotic optimality. However, it remains uncertain whether this
refined parameter choice is applicable to our batched bandit problem. For ease of presentation, we use the
parameter choice of β in Garivier and Kaufmann [17].
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Algorithm 2: (Almost) Optimal Batched Best Arm Identification (Opt-BBAI)
Input: Parameters δ, ϵ, L1, L2, L3, α and function β(t, δ).
Output: The estimated optimal arm.

1 Stage I, II, and III: the same as that in Algorithm 1
2 Stage IV: Exploration with Exponential Gap Elimination
3 Sr ← [n], B0 ← 0, r ← 1;
4 while |Sr| > 1 do
5 Let ϵr ← 2−r/4, δr ← δ/(40π2n · r2), ℓr ← 0, and γr ← δr;
6 Successive elimination /**/ Eliminate arms whose means are lower than µ1 by at least ϵr
7 for each arm i ∈ Sr do
8 Pull arm i for dr ← 32

ϵ2r
log(2/δr) times;

9 Let p̂ri be the empirical mean of arm i;
10 Let ∗ ← maxi∈Sr p̂

r
i ;

11 Set Sr+1 ← Sr \ {i ∈ Sr : p̂
r
i < p̂r∗ − ϵr};

12 Checking for best arm elimination /**/ Reduce the risk of the best arm being eliminated
13 Let Br ← Br−1 + dr|Sr|;
14 for j < r do
15 for each arm i ∈ Sj \ Sj+1 do
16 if Brγj · 2ℓj > Bj then
17 γj ← (γj)

2;
18 Repull arm i for total 32

ϵ2j
log(2/γj) times;

19 Let p̂ji be the empirical mean of arm i in Sj ;
20 ℓj ← ℓj + 1;

21 if ∃i ∈ Sj , p̂ji > p̂r∗ − ϵj/2 then
22 return Randomly return an arm in Sr;

23 r ← r + 1;
24 return The arm in Sr;

4 Best of Both Worlds: Achieving Asymptotic and Non-asymptotic
Optimalities

The Tri-BBAI algorithm is shown to enjoy the optimal sample complexity with only three batches in
the asymptotic setting. However, in practice, we are limited to a finite number of samples and thus δ
cannot go to zero, which is a critical concern in real-world applications. Consequently, obtaining
the optimal sample and batch complexity in a non-asymptotic setting becomes the ultimate objective
of a practical bandit strategy in BBAI. In this section, we introduce Opt-BBAI, which can attain
the optimal sample and batch complexity in asymptotic settings and near-optimal sample and batch
complexity in non-asymptotic settings.

We assume a bounded reward distribution within [0, 1], which aligns with the same setting in the
literature [31, 21]. Again, we consider that the reward distribution belongs to a one-parameter
exponential family. By refining Stage IV of Algorithm 1, we can achieve asymptotic optimality and
near non-asymptotic optimality adaptively based on the assumption on δ in various settings.

The pseudo-code for the algorithm is provided in Algorithm 2. The main modification from Algorithm
1 occurs in Stage IV. Intuitively, if the algorithm cannot return at Stage III, then the value of log δ−1

may be comparable to other problem parameters, such as 1/∆2. Therefore, we aim to achieve the
best possible sample and batch complexity for the non-asymptotic scenario. Stage IV operates in
rounds, progressively eliminating sub-optimal arms until a result is obtained. Each round consists of
two components: Successive Elimination and Checking for Best Arm Elimination.

Successive Elimination. In the r-th round, we maintain a set Sr, a potential set for the best arm.
Each arm in Sr is then pulled dr = 32/ϵ2r log(2/δr) times. At Line 11, all possible sub-optimal arms
are eliminated. This first component of Stage IV borrows its idea from successive elimination [14].
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Purpose. After dr number of pulls, arms are likely to be concentrated on their true means within a
distance of ϵr/4 with a high probability. Hence, with high probability, the best arm is never eliminated
at every round of Line 11, and the final remaining arm is the best arm.

Issue of Best Arm Elimination. Due to successive elimination, there is a small probability (≤ δr)
that the best arm will be eliminated. The following example illustrates that, conditioning on this
small-probability event, the sample and batch complexity of the algorithm could become infinite.

Example 4.1. Consider a bandit instance where µ1 > µ2 = µ3 > µ4 ≥ · · · ≥ µn. If the best arm
is eliminated at a certain round and never pulled again, the algorithm tasked with distinguishing
between the 2nd and 3rd best arms will likely never terminate due to their equal means, leading to
unbounded sample and batch complexity.

To address this issue, we introduce a Check for Best Arm Elimination component into Stage IV.

Checking for Best Arm Elimination. In the r-th round, we represent the total sample complexity
used up to the r-th round as Br. We employ γj as an upper bound for the probability that the best
arm is eliminated in Sj . If Line 16 is true (Brγj · 2ℓj > Bj), we adjust γj to γ2

j and pull each arm
in Sj for 32/ϵ2j log(2/γj) times (Line 18), subsequently updating their empirical mean (Line 19).
Finally, we return a random arm in Sr if the condition at Line 21 holds.

Purpose. If Line 16 is satisfied, it indicates that the sample costs, based on the event of the best arm
being eliminated in the r-th round, exceed Bj/2

ℓj . In this case, we increase the number of samples
for arms in Sj and re-evaluate if their empirical mean is lower than that of the current best arm ∗.
This ensures that the expected total sample costs, assuming the best arm is eliminated at Sj , are
bounded by

∑∞
ℓj=1 Bj/2

ℓj ≤ Bj . If Line 21 holds, we randomly return an arm from Sr. Since this
only happens with a small probability, we still guarantee that Algorithm 2 will return the best arm
with a probability of at least 1− δ.

In what follows, we provide the theoretical results for Algorithm 2.

Theorem 4.2. Let ϵ, L1, L2, L3, α, and β(t, δ) be the same as in Theorem 3.1. For finite δ ∈
(0, 1), Algorithm 2 identifies the optimal arm with probability at least 1− δ and there exists some
universal constant C such that E[Nδ] ≤ C

(∑
i>1 ∆

−2
i log

(
n · log∆−1

i

))
, and the algorithm runs in

C log(1/∆2) expected batches.

When δ is allowed to go to zero, we also have the following result.

Theorem 4.3. Let ϵ, L1, L2, L3, α, and β(t, δ) be the same as in Theorem 3.1. Algorithm
2 identifies the optimal with probability at least 1 − δ and its sample complexity satisfies
lim supδ→0 Eµ[Nδ]/log(1/δ) ≤ αT ∗(µ), and the expected batch complexity of Algorithm 2 con-
verges to 3 when δ approaches 0.

The results in Theorems 4.2 and 4.3 state that Algorithm 2 achieves both the asymptotic optimal
sample complexity and a constant batch complexity. Moreover, it also demonstrates near-optimal
performance in both non-asymptotic sample complexity and batch complexity. Notably, this is the
first algorithm that successfully attains the optimal or near-optimal sample and batch complexity,
adaptively, in asymptotic and non-asymptotic settings.

Remark 4.4. Jin et al. [22] achieved near-optimal sample and batch complexity in a non-asymptotic
setting. However, their results are contingent on the event that the algorithm can find the best arm
(with probability 1− δ). Consequently, with a probability of δ there is no guarantee for its batch and
sample complexity to be bounded. As demonstrated in Example 4.1, the batch and sample complexity
in [22] could even be infinite.

In contrast, the batch and sample complexity introduced in Theorem 4.2 is near-optimal and does not
rely on any specific event due to the procedure “checking for best arm elimination” we proposed.
Our technique could be of independent interest and could be further applied to existing elimination-
based BAI algorithms [14, 21, 22, 31] to ensure that the sample and batch complexity is independent
of the low-probability event that the best arm is eliminated.
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5 Conclusion, Limitations, and Future Work
In this paper, we studied the BAI problem in the batched bandit setting. We proposed a novel
algorithm, Tri-BBAI, which only needs 3 batches in expectation to find the best arm with probability
1− δ and achieves the asymptotic optimal sample complexity. We further proposed Opt-BBAI and
theoretically showed that Opt-BBAI has a near-optimal non-asymptotic sample and batch complexity
while still maintaining the asymptotic optimality as Tri-BBAI does.

In our experiments, although Tri-BBAI utilizes a limited number of batches, its sample complexity
does not match that of Garivier and Kaufmann [17]. Designing a batched algorithm with sample
complexity comparable to Garivier and Kaufmann [17], while maintaining a constant number of
batches, presents an intriguing challenge.

As for future work, an interesting direction is to investigate whether our “checking for best arm
elimination” could be beneficial to other elimination-based algorithms. Additionally, some research [3,
23] implied a strong correlation between batch complexity in batched bandit, and the memory
complexity and pass complexity in streaming bandit. Thus, it could be valuable to assess if our
techniques could enhance the results in the field of streaming bandit.
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Notations.
Denote by µ̂s

i the empirical mean of arm i after its s-th pull and by µ̂i(t) the empirical mean of arm
i at time t (i.e., after a total number of t pulls are examined for all arms). We use ∆i = µ1 − µi

for the gap between the optimal arm and the i-th arm. Throughout the paper, we use the following
asymptotic notation. Specifically we use f(δ) ≲ g(δ) to denote that there exists some δ0, such that
for any δ < δ0, f(δ) ≤ g(δ). Similarly, we use f(δ) ≳ g(δ) to denote that there exists some δ0, such
that for any δ < δ0, f(δ) ≥ g(δ).

A Computing w∗(µ) and T ∗(µ)

In this section, we introduce two useful lemmas that help us to calculate w∗(b) and T ∗(b) in
Algorithm 1 and Algorithm 2, which are also used in [17]. For ease of presentation, we first define
some useful notations. For every c ∈ [0, 1], we define

Ic(µ, µ
′) := cd(µ, cµ+ (1− c)µ′) + (1− c)d(µ′, cµ+ (1− c)µ′).

For any arm i ∈ [n] \ {1}, we define

gi(x) := (1 + x)I 1
1+x

(µ1, µi).

Lemma A.1 (Garivier and Kaufmann 17, Lemma 3). For every w ∈ Pn,

inf
λ∈Alt(µ)

(
n∑

i=1

wid(µi, λi)

)
= min

i ̸=1
(w1 + wi)I w1

w1+wi

(µ1, µi).

Besides,

T ∗(µ)−1 = sup
w∈Pn

min
i ̸=1

(w1 + wi)I w1
w1+wi

(µ1, µi), (A.1)

and

w∗(µ) = argmax
w∈Pn

min
i ̸=1

(w1 + wi)I w1
w1+wi

(µ1, µi). (A.2)

Lemma A.2 (Garivier and Kaufmann 17, Theorem 5). For i ∈ [n], let

w∗
i (µ) =

xi(y
∗)∑

i∈[n] xi(y∗)
,

where y∗ is the unique solution of the equation Fµ(y) = 1, and where

Fµ : y 7→
n∑

i=2

d
(
µ1,

µ1+xi(y)µi

1+xi(y)

)
d
(
µi,

µ1+xi(y)µi

1+xi(y)

) .
in a continuous, increasing function on [0, d(µ1, µ2)) such that Fµ(y)→∞ when y → d(µ1, µ2).

B Proof of Theorems in Section 3
B.1 Proof of Theorem 3.2

Proof of Theorem 3.2. The proof of Theorem 3.2 requires the following two Lemmas, which guaran-
tees the error returned by Line 22 and Line 26 of Algorithm 1 respectively.
Lemma B.1. [17, Proposition 12] Let µ be the exponential bandit model. Let δ ∈ (0, 1). For
sufficiently small δ > 0, the Chernoff’s stopping rule Line 21 of Algorithm 1 with the threshold

β(t, δ/2) = log

(
2 log(2/δ)tα

δ

)
,

ensures that Pµ(i
∗(Nδ) ̸= 1) ≤ δ/2.

Recall µ̂s
i is the empirical mean of arm i after its s-th pull. Let E1 = {∀s ≥ L3 and i ∈ [n] : µ̂s

i ∈
[µi − ϵ, µi + ϵ]}. The following lemma shows that P(Ec1) ≤ δ/2, where Ec denotes the complement
event of E .
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Lemma B.2. For sufficiently small δ > 06, we have

P(Ec1) ≤ δ/2.

If E1 happens, we have that at Line 26 of Algorithm 1, µ̂1(t) ≥ µ1 − ϵ ≳ µi + ϵ ≥ µ̂i(t) for all
i > 1, which means i∗(t) = 1. Combining Lemma B.1 and Lemma B.2, Theorem 3.1 follows
immediately.

B.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Recall in Algorithm 1, bq1 = µ̂i∗(t)(t) − ϵ and bqi = µ̂i(t) + ϵ for all i ∈
[n] \ {i∗(t)}, where t = τq . Let E0 be the intersection of the following four events:

E10 = ∩q≥1{bq1 ∈ [µ1 − 3ϵ/2, µ1 − ϵ/2]}, (B.1a)

E20 = ∩q≥1{for all i ∈ [n] \ {1}, bqi ∈ [µi + ϵ/2, µi + 3ϵ/2]}, (B.1b)

E30 = ∩q≥0{µ̂1(τq) ≥ µ1 − ϵ/2}, (B.1c)

E40 = ∩q≥0{for all i ∈ [n] \ {1}, µ̂i(τq) ≤ µi + ϵ/2}. (B.1d)

Here (B.1a) and (B.1b) ensure that the estimation of w∗(bq) and T ∗(bq) is close to w∗(µ) and
T ∗(µ), and (B.1c) and (B.1d) ensure that arm 1 has the largest average reward at time τq .
Lemma B.3. For sufficiently small δ > 0, we have

P((Ec0) ≤
1

(log δ−1)2
.

Lemma B.4. If E0 holds, then for sufficiently small δ > 0, we have

1. Ti = αw∗
i (µ)T

∗(µ) log(1/δ) + o(log(1/δ));

2. |w∗
i (b

2)− w∗
i (b

1)| ≤ 1/
√
n for all i ∈ [n];

3. minj /∈[n]\{i∗(τ)} Zj(τ) ≥ β(τ, δ/2).

From Lemma B.4, if δ is sufficiently small and E0 holds, then Algorithm 1 will return at Line 22.
Besides, we note that the total number of pulls of any arm is no more than L3 = (log(δ−1))2 times.
Therefore,

E[Nδ] ≤ nL1 + 1{E0} · (αT ∗(µ) log δ−1 + o(n log(1/δ))) + 1{Ec0} · (L2 + nL3)

≤ 1{E0} · αT ∗(µ) log δ−1 + o(n log(1/δ)) + 1{Ec0}nL3

≲ 1{E0} · αT ∗(µ) log δ−1 + n

≤ αT ∗(µ) log δ−1 + n. (B.2)

We further have

lim
δ→0

E[Nδ]

log δ−1
≤ αT ∗(µ).

This completes the proof.

B.3 Proof of Theorem 3.3

Proof of Theorem 3.3. Stage I costs one batch. For the Stage II, note that P(Ec0) ≤ 1
log(δ−1)2 and if

E0 occurs, then |w∗
i (b

2) − w∗
i (b

1)| ≤ 1/
√
n for all i ∈ [n] (from the second statement of Lemma

B.4), which means Stage II costs 2 batches. Moreover, from Lemma B.4, if δ is sufficiently small and
E0 holds, then Algorithm 1 will return at Line 22. Otherwise, the algorithm goes to Stage IV and
costs one batch. Therefore, for sufficiently small δ, the expected number of batches

≤ 1 + P(Ec0) · log(1/δ) + 2 + P(Ec0) = 3 + o(1).

Finally, if E0 is true, the algorithm costs 3 batches. Therefore, with probability 1 − 1/ log(1/δ2),
Algorithm 1 costs 3 batches.

6If event E occur for a sufficiently small δ > 0, it signifies that there exists a δ0 ∈ (0, 1) such that for all
δ ≤ δ0, event E consistently holds.
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B.4 Proof of Supporting Lemmas

The proof of Lemma B.3 requires the following useful inequalities.

Lemma B.5 (Maximal Inequality). Let N and M be two positive integers, let γ > 0, and µ̂n be the
empirical mean of n random variables i.i.d. according to the arm’s distribution with mean µ. Then,
for x ≤ µ,

P(∃N ≤ n ≤M, µ̂n ≤ x) ≤ e−N(x−µ)2/(2V0), (B.3)

and for every x ≥ µ,

P(∃N ≤ n ≤M, µ̂n ≥ x) ≤ e−N(x−µ)2/(2V1), (B.4)

where V0 is the maximum variance of arm’s distribution with mean µ ∈ [x, µ] and V1 is the maximum
variance of arm’s distribution with mean µ ∈ [µ, x].

Note that Lemma B.5 is an improved version of Lemma 4 of [36], where we use a much smaller
variance upper bound to tighten the inequalities for the case x ≤ µ and the case x ≥ µ respectively.

Lemma B.6. [24, Proposition 1] For ϵ > 0 and µ ≤ µ′ − ϵ,

d(µ, µ′) ≥ d(µ, µ′ − ϵ), and d(µ, µ′) ≤ d(µ− ϵ, µ′). (B.5)

Now, we are ready to prove Lemma B.3.

Proof of Lemma B.3. Let V be the maximum variance of reward distribution with mean µ ∈ [µn, µ1].
From Lemma B.5, we have that for s ≥ L1,

P(∃s ≥ L1 : µ̂s
1 /∈ [µ1 − ϵ/2, µ1 + ϵ/2])

≤ P(∃s ≥ L1 : µ̂s
1 ≥ µ1 + ϵ/2) + P(∃s ≥ L1 : µ̂s

1 ≤ µ1 − ϵ/2)

≤ 2e−L1(ϵ/2)
2/(2V )

≲
1

n(log δ−1)2
, (B.6)

where the second inequality is from Lemma B.5, and the last inequality is due to that for sufficiently
small δ > 0, L1 =

√
log δ−1 ≥ 8V/ϵ2 log(n(log δ−1)2). Similarly, for i ∈ [n] \ {1},

P(∃s ≥ L1 : µ̂s
i /∈ [µi − ϵ/2, µi + ϵ/2]) ≲

1

n(log δ−1)2
. (B.7)

Define events:
A1 = {∀s ≥ L1 : µ̂s

1 ∈ [µ1 − ϵ/2, µ1 + ϵ/2]}

and
A2 = {for all i ∈ [n] \ {1},∀s ≥ L1 : µ̂s

i ∈ [µi − ϵ/2, µi + ϵ/2]}.

Assume that both events A1 and A2 hold. Then, we have

µ̂L1
1 ≥ µ1 − ϵ/2 ≥ µi + ϵ/2 + ∆i − ϵ ≥ µ̂L1

i ,

where in the last inequality we assumed ϵ ≤ mini ̸=1 ∆i. This further implies i∗(τq) = 1 for any
q ≥ 0 and thus bq−1

1 = µ̂1(τq)− ϵ. Therefore, we have for any q ≥ 1

1. bq1 = µ̂1(τq−1)− ϵ ∈ [µ1 − 3ϵ/2, µ1 − ϵ/2];

2. ∀i ∈ [n] \ {1}, bqi = µ̂i(τq−1) + ϵ ∈ [µi − ϵ/2, µ1 + ϵ/2];

3. µ̂1(τq−1) ≥ µ1 − ϵ/2;

4. and ∀i ∈ [n] \ {1}, µ̂i(τq−1) ≤ µi + ϵ/2,
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which means E0 defined in (B.1) occurs. Therefore, we have

P(E0) ≥ P(A1 ∩ A2)

= P
(
{∀s ≥ L1 : µ̂s

1 ∈ [µ1 − ϵ/2, µ1 + ϵ/2]}
⋂

i:i∈[n]\{1}

{∀s ≥ L1 : µ̂s
i ∈ [µi − ϵ/2, µi + ϵ/2]}

)

= P
(
{∃s ≥ L1 : µ̂s

1 /∈ [µ1 − ϵ/2, µ1 + ϵ/2]}c
⋂

i:i∈[n]\{1}

{∃s ≥ L1 : µ̂s
i /∈ [µi − ϵ/2, µi + ϵ/2]}c

)

≥ 1− P
(
∃s ≥ L1 : µ̂s

1 /∈
[
µ1 −

ϵ

2
, µ1 +

ϵ

2

])
−

∑
i:i∈[n]\{1}

P
(
∃s ≥ L1 : µ̂s

i /∈
[
µi −

ϵ

2
, µi +

ϵ

2

])
≥ 1− (log δ−1)−2,

where the last inequality is due to (B.6) and (B.7).

Proof of Lemma B.4. Assume E0 is true. Recall that ∆2 = mini∈[n]\{1} µ1 − µi. For sufficiently
small δ > 0 such that ϵ < ∆2/8, we have bq1 ∈ [µ1 − ∆2/4, µ1] and bqi ∈ [µi, µi + ∆2/4]. Let
L(b) = {λ ∈ S : λ1 ∈ [µ1−∆2/4, µ1] and for any i ∈ [n] \ {1}, λi ∈ [µi, µi+∆2/4]}. Therefore

αw∗
i (b

q)T ∗(bq) ≤ max
b′∈L(b)

αw∗
i (b

′)T ∗(b′) <∞.

Since maxb′∈L(b) αw
∗
i (b

′)T ∗(b′) <∞ is independent of δ , we have

αw∗
i (b

q)T ∗(bq) ≤ max
b′∈L(b)

αw∗
i (b

′)T ∗(b′) ≲ log log δ−1/n = L2,

which implies T q
i = min{αw∗

i (b
q)T ∗(bq) log δ−1, L2} = αw∗

i (b
q)T ∗(bq) log δ−1. Besides, as

w∗(bq) and T ∗(bq) are continuous on bq , we have that as bq → µ, w∗(bq)→ w∗(µ) and T ∗(bq)→
T ∗(µ). Note that |bqi − µi| ≤ 2ϵ and ϵ approaches 0 as δ approaches 0. Recall τ is the stopping time
of Stage II and Ti is the number of pulls of arm i at time τ . Therefore, for sufficiently small δ,

Ti := max
p:p∈N,p≥1

T p
i = αw∗

i (µ)T
∗(µ) log δ−1 + o(log(1/δ)).

Moreover, for sufficient smaller δ and ∀i ∈ [n], |w∗
i (b

q)− w∗
i (µ)| = o(1) and thus

|w∗
i (b

1)− w∗
i (b

2)| < 1/
√
n,

which means the condition in Line 15 is satisfied and the Algorithm goes to Stage III.

Assume τ = τq′ . We have

Z1i(τ) = N1(τ) · d(µ̂1(τ), µ̂1i(τ)) +Ni(τ) · d(µ̂i(τ), µ̂1i(τ))

= N1(τq′) · d(µ̂1(τ), µ̂1i(τ)) +Ni(τq′) · d(µ̂i(τ), µ̂1i(τ))

≥ α log δ−1 ·
(
w∗

1(b
q′)d(µ̂1(τ), µ̂1i(τ))

T ∗(bq′)−1
+

w∗
i (b

q′)d(µ̂1(τ), µ̂1i(τ))

T ∗(bq′)−1

)
, (B.8)

where the last inequality is due to Ti ≥ T q′

i = αw∗
i (b

q′)T ∗(bq
′
) log(1/δ). In what follows, we will

show

w∗
1(b

q′) · d(µ̂1(τ), µ̂1i(τ))

T ∗(bq′)−1
+

w∗
i (b

q′) · d(µ̂i(τ), µ̂1i(τ))

T ∗(bq′)−1
≥ 1.

The following minimization problem is a convex optimization problem

min
λ1w:λ1w≤λiw

w∗
1(b

q′) · d(µ̂1(τ), λ1w) + w∗
i (b

q′) · d(µ̂i(τ), λiw),
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which is solved when we have λ1w = λiw = µ̂1i(τ). The proof of this lemma is based on the
assumption that E0 occurs. Note that E0 occurs, then bq

′

1 = µ̂1(τq′−1)− ϵ ≤ µ1 − ϵ/2 ≤ µ̂1(τ) and
bq

′

i = µ̂1(τq′−1) + ϵ > µ̂i(τ) for all i ∈ [n] \ {1}. Therefore, µ̂1(τ) ≥ bq
′

1 ≳ bq
′

i ≥ µ̂i(τ). Let

λw∗(bq′ )(b
q′

1 , b
q′

i ) =
w∗

1(b
q′)

w∗
1(b

q′) + w∗
i (b

q′)
· bq1 +

w∗
i (b

q′)

w∗
1(b

q′) + w∗
i (b

q′)
· bqi .

Then, λw∗(b)(b
q′

1 , b
q′

i ) is the solution to minimizing w∗
1(b

q′) · d(bq
′

1 , x) + w∗
i (b

q′) · d(bq
′

i , x) for

x ∈ (bq
′

i , b
q′

1 ).

Case 1: if µ̂1i(τ) ∈ (bq
′

1 , µ̂1(τ)), then

w∗
1(b

q′) · d(µ̂1(τ), µ̂1i(τ)) + w∗
i (b

q′) · d(µ̂i(τ), µ̂1i(τ))

≥ w∗
1(b

q′) · d(µ̂1(τ), µ̂1(τ)) + w∗
i (b

q′) · d(µ̂i(τ), b
q′

1 )

≥ w∗
1(b

q′) · d(bq
′

1 , b
q′

1 ) + w∗
i (b

q′) · d(bq
′

i , b
q′

1 )

≥ w∗
1(b

q′) · d(bq
′

1 , λw∗(bq′ )(b
q′

1 , b
q′

i )) + w∗
i (b

q′) · d(bq
′

i , λw∗(bq′ )(b
q′

1 , b
q′

i )), (B.9)

where the first and second inequalities are due to (B.5) and the last inequality is due to the fact that
w∗

1(b
q′) · d(bq

′

1 , x) + w∗
i (b

q′) · d(bq
′

i , x) achieves it minimum at x = λw∗(bq′ )(b
q′

1 , b
q′

i ).

Case 2: if µ̂1i(τ) ∈ (bq
′

i , b
q′

1 ), we have

w∗
1(b

q′) · d(µ̂1(τ), µ̂1i(τ)) + w∗
i (b

q′) · d(µ̂i(τ), µ̂1i(τ))

≥ w∗
1(b

q′) · d(bq
′

1 , µ̂1i(τ)) + w∗
i (b

q′) · d(bq
′

i , µ̂1i(τ))

≥ w∗
1(b

q′) · d(bq
′

1 , λw∗(bq′ )(b
q′

1 , b
q′

i )) + w∗
i (b

q′) · d(bq
′

i , λw∗(bq′ )(b
q′

1 , b
q′

i )), (B.10)

where the first inequality is due to (B.5) and the last inequality is due to the fact that for x ∈ (bq
′

i , b
q′

1 ),
w∗

1(b
q′) · d(bq

′

1 , x) + w∗
i (b

q′) · d(bq
′

i , x) achieves its minimum at x = λw∗(bq′ )(b1. . . . . . q
′, bq

′

i ).

Case 3: if µ̂1i(τ) ∈ (µ̂i(τ), b
q′

i ), similar to (B.9) and (B.10), we have

w∗
1(b

q′) · d(µ̂1(τ), µ̂1i(τ)) + w∗
i (b

q′) · d(µ̂i(τ), µ̂1i(τ))

≥ w∗
1(b

q′) · d(bq
′

1 , λw∗(bq′ )(b
q′

1 , b
q′

i )) + w∗
i (b

q′) · d(bq
′

i , λw∗(bq′ )(b
q′

1 , b
q′

i )). (B.11)

Combine all three cases, we obtain

w∗
1(b

q′) · d(µ̂1(τ), µ̂1i(τ)) + w∗
i (b

q′) · d(µ̂i(τ), µ̂1i(τ))

≥ w∗
1(b

q′) · d(b1, λw∗(bq′ )(b
q′

1 , b
q′

i )) + w∗
i (b

q′) · d(bq
′

i , λw∗(bq′ )(b
q′

1 , b
q′

i )). (B.12)

Note that µ̂1i(τ) = λw∗(bq′ )(µ̂1(τ), µ̂i(τ)), we have

w∗
1(b

q′) · d(µ̂1(τ), µ̂1i(τ))

T ∗(bq′)−1
+

w∗
i (b

q′) · d(µ̂1(τ), µ̂1i(τ))

T ∗(bq′)−1

≥
w∗

1(b
q′) · d(bq

′

1 , λw∗(bq′ )(b
q′

1 , b
q′

i ))

T ∗(bq′)−1
+

w∗
i (b

q′) · d(bq
′

i , λw∗(bq′ )(b
q′

1 , b
q′

i ))

T ∗(bq′)−1

= 1, (B.13)

where the first inequality is due to (B.12) and the last inequality is due to (A.1). Note that conditioned
on event E0, for sufficiently small δ > 0, we have 1 = i∗(τ). Therefore, for any i ∈ [n] \ {1},

Zi(τ) = Z1i(τ)

= α log δ−1 ·
(
w∗

1(b
q′) · d(µ̂1(τ), µ̂1i(τ))

T ∗(bq′)−1
+

w∗
i (b

q′) · d(µ̂1(τ), µ̂1i(τ))

T ∗(bq′)−1

)
≥ α log δ−1,
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where the first equality is from (3.3), the second equality is from (B.8), and the last inequality is from
(B.13). Finally, for α ≥ 1 + 6 log log δ−1/ log δ−1, we obtain

Zi(τ) ≥ log

(
(log δ−1)6

δ

)
≳ log

(
2(log(2/δ))) · (nL2 + nL1)

α

δ

)
= β(τ, δ/2),

which completes the proof.

B.5 Proof of Maximum Inequality

Proof of Lemma B.5. Recall that the result of Lemma 4 of Ménard and Garivier [36] is: for µ̂n ≤ µ,

P(∃N ≤ n ≤M,d(µ̂n, µ) ≥ γ) ≤ e−Nγ . (B.14)

By Lemma 1 of Harremoës [20], we have

d(x, µ) =

∫ µ

x

y − x

V (y)
dy ≤ (x− µ)2

2V0
, (B.15)

where V (y) is the variance of the distribution with mean y. As a simple consequence of (B.15) and
(B.14), we have

P(∃N ≤ n ≤M, µ̂n ≤ x) ≤ e−N(x−µ)2/(2V0). (B.16)

For the case when µ̂n ≥ µ, we can directly follow the idea of Lemma 4 of Ménard and Garivier [36].
For the case µ̂n ≥ µ, we aim to show

P(∃N ≤ n ≤M,d(µ̂n, µ) ≥ γ) ≤ e−Nγ . (B.17)

We let M(λ) be the log-moment generating function of νθ. Recall that dνθ

dρ (x) = exp(xθ − b(θ)).
We use the following properties of one exponential family.

1. M(λ) = b(θ + λ)− b(θ);

2. KL(νθ1 , νθ) = b(θ)− b(θ1) + b′(θ1)(θ − θ1);

3. E[νθ] = b′(θ).

Let E[νθ] = µ. Let λ = θ1 − θ, z = b′(θ1) > µ, and γ = d(z, µ), we have

γ = d(z, µ) = KL(νθ1 , νθ) = λz −M(λ).

Since d(z, µ) is monotone increasing for z > µ, we obtain λ > 0. If event {∃N ≤ n ≤
M,d(µ̂n, µ) ≥ γ} and µ̂n ≥ µ, one have

µ̂n ≥ µ, λµ̂n −M(λ) ≥ λz −M(λ) = γ, λnµ̂n − nM(λ) ≥ Nγ.

By Doob’s maximal inequality for the exponential martingale exp(λnµ̂n − nM(λ)),

P(∃N ≤ n ≤M,d(µ̂n, µ) ≥ γ) ≤ P(∃N ≤ n ≤M,λnµ̂n − nM(λ) ≥ Nγ)

≤ e−Nγ . (B.18)

Combining above inequality and (B.15), we obtain for µ̂n ≥ µ

P(∃N ≤ n ≤M,d(µ̂n, µ) ≥ γ) ≤ e−N(x−µ)2/(2V1). (B.19)

This completes the proof.

C Proof of Theorems in Section 4
In this proof, we define “one round" as a single iteration of the While Loop of Algorithm 2.

Proof of Theorem 4.2. Proof of Correctness. We first show that the best arm is not eliminated by
Line 11 for any round r. For any l, let E l be defined as follows.

E l = {1 ∈ Sr,∀r ≤ l}. (C.1)
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Lemma C.1. Line 11 of Algorithm 2 satisfies∑
r≥1

P
(
p̂r1 ≥ p̂r∗ −

ϵr
4

∣∣∣∣ Er) ≥ 1− δ

8
.

To streamline our presentation, we define ℓjs = s, γjs = (δj)
2s , and p̂jsi as the sth updates of

parameters ℓj , γj , and p̂ji , respectively, within the second For Loop. For any fixed j, we define Uj(s)
to be the following set of rounds, where ℓj remains to be the same value s:

Uj(s) := {r = 1, 2, . . . : ℓj = s at round r of Algorithm 2}. (C.2)

Then the condition of Line 21 could be represented as

∃i ∈ Sj and r ∈ Uj(s), p̂
js
i ≥ p̂r∗ −

ϵj
2
.

The following lemma shows that with high probability, Algorithm 2 will not return at Line 22.
Lemma C.2. Line 21 of Algorithm 2 satisfies

P

( ⋂
j≥1

⋂
s>1

⋂
r∈Uj(s)

{
max
i∈Sj

p̂jsi < p̂r∗ −
ϵj
2

})
≥ 1− 3δ

16
.

Note that Algorithm 2 will return arm 1 at Line 24 if 1: Arm 1 is always maintained in Sr, and 2:
Algorithm 2 never return at Line 22.

According to Lemma C.1, there is a probability of at least 1− δ/8 that Arm 1 will never be eliminated
at Line 11. Given that Arm 1 is never eliminated at Line 11, Lemma C.2 suggests that there is a
probability of at least 1− 3δ/16 that we will never loop back at Line 22. Hence, with a probability
of 1− δ/2, Stage IV will identify the optimal arm. By incorporating the results of Lemma B.1, we
find that with a probability exceeding 1− δ/2− δ/2, which is greater than 1− δ, Algorithm 2 will
return the optimal arm.
Proof of Sample Complexity. Let N ′ be the sample complexity of Stage IV. Let E = ∩r>1Er. The
following lemma shows the sample complexity conditioned on event E .
Lemma C.3. The expected sample complexity N ′ conditioned on event E has the order

E[N ′ | E ] = O

(∑
i>1

log
(
n/δ log(∆−1

i )
)

∆2
i

)
.

Now, we consider the expected sample complexity if the best arm is eliminated at some round r. We
prove the following lemma.
Lemma C.4. The sum of expected sample complexity N ′ at each loop has the order∑

r≥1

E[N ′ 1{Er, (Er+1)c}] = O

(∑
i>1

log
(
n/δ log(∆−1

i )
)

∆2
i

)
.

The number of pulls of all arms in the first three stages is no more than max{n
√
log δ−1, L2}. By

combining the above results, Lemma C.3 and Lemma C.4 together, we can obtain the following total
sample complexity

E[Nδ] = O

(
(log δ−1) · log log δ−1 +

∑
i>1

log
(
nδ−1 log∆−1

i

)
∆2

i

)
.

Since in the non-asymptotic setting, δ is finite. Then

E[Nδ] = O

(∑
i>1

log
(
n log∆−1

i

)
∆2

i

)
.

Proof of Batch Complexity. Just as we discussed in the proof of sample complexity, we first
demonstrate the batch complexity conditioned on the event of E .
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Lemma C.5. Conditional on event E , Algorithm 2 conducts O(log(1/∆−1
2 )) batches in expectation.

Let B′ be the number of batches we used in Stage IV. We consider the expected batch complexity if
the best arm is eliminated at some round r. We prove the following lemma.
Lemma C.6. The sum of expected batch complexity B′ at each loop has the order∑

r≥1

E[B′ 1{Er, (Er+1)c}] = O(log(1/∆−1
2 )).

By combining Lemma C.5, Lemma C.6, the fact that the first three stages use O(log(1/δ)) batches,
and δ is a constant in non-asymptotic setting, the batch complexity of Algorithm 2 isO(log(1/∆−1

2 )).

Proof of Theorem 4.3. Let E0 be the event defined in (B.1) in the proof of Theorem 3.1. From
Lemma B.4, if δ is sufficiently small and E0 holds, then Algorithm 2 will return at Stage III. Note
that the expected number of pulls in Stage IV is ≲ (log δ−1)2. Hence, the expected number of pulls
of all arms is no more than 2(log δ−1)2 times. Therefore, for any ϵ′ > 0

E[Nδ] ≲ αT ∗(b) log δ−1 + o(log(1/δ)) + 1{Ec0}2n(log δ−1)2

≲ αT ∗(µ) log δ−1 + 2n. (C.3)

Therefore,

lim
δ→0

Eµ[Nδ]

log δ−1
≤ αT ∗(µ),

Moreover, there exists some universal constant C, such that the expected number of batches used in
Stage IV is ≲ C log(1/∆2) · 1{Ec0} ≲ o(1), where the last inequality is due to Lemma B.3. Form
Theorem 3.3, the batch complexity of the first three Stage is 3 + o(1). Therefore, the total expected
batch complexity is 3 + o(1).

D Proof of Supporting Lemmas
The proof of the supporting lemmas requires the following concentration inequalities.
Lemma D.1. [41, Theorem 2.2.6] Let X1, . . . , Xk ∈ [0, 1] be independent bounded random
variables with mean µ. Then for any ϵ > 0

P(µ̂ ≥ µ+ ϵ) ≤ exp

(
− kϵ2

2

)
and (D.1)

P(µ̂ ≤ µ− ϵ) ≤ exp

(
− kϵ2

2

)
, (D.2)

where µ̂ = 1/k
∑k

t=1 Xt.

D.1 Proof of Lemma C.1

From Lemma D.1,

P
(
|p̂ri − µi| ≥

ϵr
8

)
≤ 2 exp

(
− 2drϵ

2
r

64

)
= δr.

Applying union bound, we have

P

( ⋃
r≥1

⋃
i∈[n]

{
|p̂ri − µi| ≥

ϵr
8

})
≤
∑
r>1

∑
i∈[n]

δr

≤
∑
r>1

δ

40π2 · r2

≤ δ

8
. (D.3)
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The aforementioned inequality suggests that, with a probability of at least 1 − δ/8, the condition
|p̂ri − µi| ≤ ϵr

8 holds true for any i ∈ [n] and r ≥ 1. Then, for any r > 1,

p̂r1 ≥ µ1 −
ϵr
8
≥ µ∗ −

ϵr
8
≥ p̂r∗ −

ϵr
4
.

Therefore, ∑
r≥1

P
(
p̂r1 ≥ p̂r∗ −

ϵr
4

∣∣∣∣ Er) ≥ 1− δ

8
.

D.2 Proof of Lemma C.2

From Lemma D.1,

P
(
|p̂jsi − µi| ≥

ϵj
8

)
≤ γjs = (δj)

2s .

Applying union bound, we have

P

( ⋃
j≥1

⋃
s>1

⋃
i∈Sj

{
|p̂jsi − µi| ≥

ϵj
8

})
≤
∑
j≥1

∑
s>1

∑
i∈Sj

(δj)
2s

≤
∑
j≥1

∑
s>1

(
δ

40π2 · j2

)2s

≤
∑
s>1

(
δ

8

)2s

≤ δ

16
. (D.4)

Besides, from (D.3), we obtain

P

( ⋂
r≥1

⋂
i∈[n]

{
|p̂ri − µi| ≤

ϵr
8

})
≥ 1− δ

8
. (D.5)

Define events
E3 = ∩r≥1 ∩i∈[n] {|p̂ri − µi| ≤ ϵr/8},

and
E4 = ∩j≥1 ∩s>1 ∩i∈Sj{|p̂

js
i − µi| < ϵj/8}.

If E3 and E4 truly hold, we have that (1): for any j and arm i ∈ Sj ,

µi ≤ p̂ji +
ϵj
8
≤ p̂j∗ −

7ϵj
8
≤ µ∗ −

3ϵj
4
≤ µ1 −

3ϵj
4

,

where the second inequality is due to Line 11 of Algorithm 2; (2): for any fixed j, s, and any
r ∈ Uj(s), where Uj(s) is defined in (C.2) and represents the set of all rounds in which parameter ℓj
is updated for exactly s times,

p̂jsi < µi +
ϵj
8
≤ µ1 −

5ϵj
8
≤ p̂r1 −

ϵj
2
≤ p̂r∗ −

ϵj
2
.

Therefore, if E3 and E4 truly hold, the event p̂jsi < p̂r∗ −
ϵj
2 consistently holds for all j, s, i ∈ Sj ,

and r ∈ Uj(s). It’s noteworthy that, according to (D.4), P
(
E4
)
≥ 1 − δ/16, and from (D.5),

P(E3) ≥ 1− δ/8. Therefore,

P
( ⋂

j≥1

⋂
s>1

⋂
r∈Uj(s)

{
max
i∈Sj

p̂jsi < p̂r∗ −
ϵj
2

})
≥ 1− δ

8
− δ

16
= 1− 3δ

16
.
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D.3 Proof of Lemma C.3

We first focus on bounding the number of pulls of arm i within the first For Loop. Define

r(i) = min

{
r : ϵr <

∆i

2

}
.

From Lemma D.1 and the union bound, for r ≥ r(i),

P
({
|p̂ri − µi| ≥

ϵr(i)

8

}
∪
{
|p̂r1 − µ1| ≥

ϵr(i)

8

})
≤ 4 exp

(
−

2drϵ
2
r(i)
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)
≤ 4(δr)

r−r(i)

≤ 10r(i)−r. (D.6)

Let Er
i be the event |p̂ri −µi| ≤ ϵr(i)/8 and |p̂r1−µ1| ≤ ϵr(i)/8 truly hold at r-th round. Conditioned

on Er
i and E ,

p̂ri ≤ µi +
ϵr
8
≤ µ1 −∆i +

ϵr
8
≤ µ1 −

3ϵr
2
≤ p̂r1 − ϵr ≤ p̂r∗ − ϵr,

which mean arm i will be eliminated. Therefore, the total sample cost of arm i in the first For Loop
of Algorithm 2 is∑

r≤ri

32

ϵ2r
log(2/δr) +

∑
r>r(i)

10r−r(i)−1 32

ϵ2r
log(2/δr) =O

(
log(1/δr(i))

ϵ2r(i)

)

=O
(
log
(
n/δ log(∆−1

i )
)

∆2
i

)
.

Consequently, if we define H to be the total sample complexity in the first For Loop of Algorithm 2.
Then we have

E[H] = O
(∑

i>1

log
(
n/δ log(∆−1

i )
)

∆2
i

)
.

Now, we bound the sample complexity within the second For Loop. We let Lj be the total number
of pulls of arms in Sj \ Sj+1 within the second For Loop. We let

nj = min

{
s ∈ {0, 1, 2, · · · } : Bj

(δj)2
s · 2s

≥ H

}
.

As per Line 16, nj represents the total count of arm re-pulls in the set Sj \ Sj+1. Consequently, we
can establish the following bound for Lj .

Lj ≤ (Bj −Bj−1)

nj∑
s=0

2s ≤ Bj −Bj−1 + δjH.

where the first inequality is because γj(s+1) = γ2
js and we pull the arms in Sj/Sj+1 for total∑

i∈Sj\Sj+1

32

ϵ2j
log

(
2

γjs

)
≤

∑
i∈Sj\Sj+1

32 · 2s

ϵ2j
log

(
2

δj

)
= (Bj −Bj−1) · 2s

times at Line 18 and the last inequality is because for nj > 1,

δjH ≥ δj
Bj

(δj)2
nj−1 · 2nj−1

≥ Bj2
nj+1,

where the first inequality is due to the definition of nj . Therefore,∑
j≥1

Lj ≤
∑
j>1

Bj +H
∑
j>1

δj ≤ 2H.

Now, we conclude that conditioned on event E , the total expected sample complexity is

O
(∑

i>1

log
(
n/δ log(∆−1

i )
)

∆2
i

)
.
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D.4 Proof of Lemma C.4

From Lemma D.1,

P
(
|p̂ri − µi| ≥

ϵr
2

)
≤ 2 exp

(
− 2drϵ

2
r

4

)
≤ (δr)

4.

Applying union bound, we have

P

( ⋃
i∈Sr

{
|p̂ri − µi| ≥

ϵr
2

})
≤
∑
i∈Sr

(δr)
4

≤ (δr)
3. (D.7)

The aforementioned inequality suggests that, with a probability of at least 1− (δr)
3, the condition

|p̂ri − µi| ≤ ϵr/4 consistently holds true for any i ∈ Sr. Then,

p̂r1 ≥ µ1 −
ϵr
2
≥ µ∗ −

ϵr
2
≥ p̂r∗ − ϵr.

Therefore,

P(Er, (Er+1)c) ≤ (δr)
3. (D.8)

For any fixed j, recall the definition of Uj(s) in (C.2). Assume Er, (Er+1)c truly hold and denote
Ur(s) = {r1s , r2s , · · · , rs

′

s } as the rounds where ℓr = s. We note that at rls-th round, each arm within
the first For Loop of Algorithm 2 is pulled at least

32 · 4s+l

ϵ2r
log

(
2

δr

)
times. Besides, each arm within the second For Loop is pulled at least

32 · 2s

ϵ2r
log

(
2

δr

)
times. Then, similar to (D.7), for rls-th round, we have

P
(
∪i∈S

rls

{
|p̂r

l
s

i − µi| ≥
ϵr
4

})
≤ 2

∑
i∈S

rls

exp

(
−2ϵ2r
16
· 32 · 4

s+l

ϵ2r
log

(
2

δr

))
≤
∑
i∈S

rls

(δ4r)
4s+l

.

Then, we apply a union bound over all rounds in Ur(s), we obtain

P
(
∪l∈[s′] ∪i∈S

rls

{
|p̂r

l
s

i − µi| ≥
ϵ

4

})
≤ (δ3r)

2s/2.

Moreover, if Er, (Er+1)c happens, the best arm is eliminated at r-th round. Then for any rounds in
Ur(s), we have pulled arm 1 for at least

32 · 2s

ϵ2r
log

(
2

δr

)
times in the second For Loop. Recall that p̂jsi is the sth updates of parameter p̂ji within the second
For Loop. From Lemma D.1, we have that

P
(
p̂rs1 ≤ µ1 −

ϵr
4

)
≤ exp

(
− 2ϵ2r

16
· 32 · 2

s

ϵ2r
log

(
2

δr

))
≤ (δ3r)

2s/2.

Therefore, if Er, (Er+1)c happens, with probability

1− γrs = 1− (δ3r)
2s−1

, (D.9)

it holds that

∪l∈[s′] ∪i∈S
rls

{
|p̂r

l
s

i − µi| ≥
ϵ

4

}
, and p̂rs1 > µ1 −

ϵ

4
,

23



and thus for all l ∈ [s′]

p̂rs1 ≥ µ1 −
ϵ

4
≥ p̂

rls
∗ −

ϵ

2
,

which means Algorithm 2 returns at Line 22. Before we continue, we will first show that the number
of pulls in the second For Loop is lower than the first For Loop. Assume the algorithm stops at r′-th
round. Let s′j = max{s : Br′γjs · 2s > Bj}. The number of pulls for Sj \Sj+1 at second For Loop
is at most

s′j∑
s=1

(Bj −Bj−1) · 2s ≤
s′j∑
s=1

Bj2
s

≤ Bj · 2s
′
j+1

= 22s
′
j+1γjs′j

Bj

2s
′
jγjs′j

≤ Br′2
2s′j+1(δj)

2
s′j

≤ Br′δj .

Therefore, the total number of pulls within the second For Loop is at most

∑
j≥1

s′j∑
s=1

(Bj −Bj−1) · 2s ≤ Br′

∑
j>1

δj ≤ Br′ ,

which means the number of for the second For Loop is lower than the first For Loop. Finally, we
obtain

E[N ′ 1{Er, (Er+1)c}] ≤ E
(
O
(∑

s=1

((δr)
3)2

s−1

· Br

(δr)2
s2s

))
= E[O(δrBr)]

= O
(∑

i>1

δr log
(
n/δ log(∆−1

i )
)

∆2
i

)
.

In the first inequality, we used the fact that if the algorithm stops in some rounds in Ur(s), the
total number of pulls of all arms is at most Br/(γjs · 2s) + Br/(γjs · 2s), whcih comes from the
first and second For Loop respectively. Moreover, the factor ((δr)3)2

s−1

is because from (D.9), if
Er, (Er+1)c holds, then Algorithm 2 returns in some rounds in Ur(s) (at Line 22) with probability at
least 1− ((δr)

3)2
s−1

. The last equality is because from Lemma C.3, if Er, (Er+1)c holds, then

E[Br] ≤ O
(∑

i>1

log
(
n/δ log(∆−1

i )
)

∆2
i

)
.

Finally, ∑
r≥1

E[N ′ 1{Er, (Er+1)c}] = O
(∑

i>1

log
(
n/δ log(∆−1

i )
)

∆2
i

)
.

D.5 Proof of Lemma C.5

We note that each round within the While Loop costs one batch. Let

r(2) = min

{
r : ϵr <

∆2

2

}
.

Let Er be the event ⋂
i>1

{{
|p̂ri − µi| ≤

ϵr(2)

8

}⋂{
|p̂r1 − µ1| ≤

ϵr(2)

8

}}
.
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Conditioned on Er and E ,

p̂ri ≤ µi +
ϵr(2)

8
≤ µ1 −∆i −

ϵr(2)

8
≤ p̂r1 − ϵr(2) ≤ p̂r∗ − ϵr(2),

which means all sub-optimal arms have been eliminated and the algorithm returns. From Lemma D.1
and the union bound, for r ≥ r(2),

P((Er)c) ≤ 4n exp

(
−

2drϵ
2
r(i)

64

)
≤ 4n(δr)

r−r(i) ≤ 10r(i)−r. (D.10)

Therefore, the total batch cost is

r2 +
∑
r≥r2

1

10r−r2
= O(r2) = O

(
log

(
1

∆2

))
.

This completes the proof.

D.6 Proof of Lemma C.6

The proof of this lemma is similar to that of Lemma C.4. we have the following results.
1: From (D.8), we have

P(Er, (Er+1)c) ≤ (δr)
3.

2: From (D.9), we have if Er and (Er+1)c truly hold, then with fixed ℓs, Algorithm 2 returns at Line
22 with probability

1− (δ3r)
2s−1

. (D.11)

We first compute the size of Ur(s). From Algorithm 2, we know that the arm kept in the set Sr will
be pulled 4 times larger compared to (r − 1)-th round. Besides, we update ℓr to s+ 1, if the number
of pulls exceeds Br/((δr)

2s · 2s) (Line 16 of Algorithm 2). It is easy to see after log4 n rounds, the
number of pulls of any arm exceeds Br and then after ln 1

(δr)2
s ·2s rounds, the number of pulls of

single arm exceeds Br/((δr)
2s · 2s). Therefore, the size of Ur(s) is at most ln 1

(δr)2
s ·2s + lnn. We

let U be the total number of rounds used. Then, we obtain

E[U · 1{Er, (Er+1)c}] ≤ r · P(Er, (Er+1)c) + E
(
O
(∑

s=1

((δr)
3)2

s−1

·
(
lnn+ ln

1

(δr)2
s · 2s

)))
≤ rP(Er, (Er+1)c) + δr.

We have shown in Lemma C.5,
∑

r>1 rP(Er, (Er+1)c) = O(log(1/∆2)). Therefore, the total
number of rounds is

∞∑
r≥1

E[U · 1{Er, (Er+1)c}] = O(log(1/∆2)),

which completes the proof.

E Experiments
In this section, we compare our algorithms Tri-BBAI and Opt-BBAI with Track-and-Stop [17],
Top-k δ-Elimination [22], ID-BAI [23] and CollabTopM [32] under bandit instances with Bernoulli
rewards. All the experiments are repeated in 1000 trials. We perform all computations in Python
on R9 5900HX for all our experiments. The implementation of this work can be found at
https://github.com/panxulab/Optimal-Batched-Best-Arm-Identification

Data generation. For all experiments in this section, we set the number of arms n = 10, where
each arm has Bernoulli reward distribution with mean µi for i ∈ [10]. More specifically, the mean
rewards are generated by the following two cases.

• Uniform: The best arm has µ1 = 0.5, and the mean rewards of the rest of the arms follow uniform
distribution over [0.2, 0.4], i.e., µi is uniformly generated from [0.2, 0.4] for i ∈ [n] \ {1}.

• Normal: The best arm has µ1 = 0.6, and the mean rewards of the rest of the arms are first generated
from normal distribution N (0.2, 0.2) and then projected to the interval [0, 0.4].
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Implementation details. The hyperparameters of all methods are chosen as follows.

• Track-and-Stop [17] is a fully sequential algorithm and thus the only parameter that needs to be set
is the β(t) function in the Chernoff’s stopping condition (similar to Stage III of Algorithm 1). Note
that the theoretical value of β(t) in Track-and-Stop [17] is of the same order as presented in our
Theorem 3.1. However, they found that a smaller value works better in practice. Therefore, we
follow their experiments to set β = log ((log(t) + 1)/δ).

• Top-k δ-Elimination is a batched algorithm that eliminates the arms in batches. It has two parameters
ϵ and δ. In our experiments, we fix ϵ = 0.1.

• ID-BAI [23] is designed to identify the best arm among a set of bandit arms with optimal instance-
dependent sample complexity. We use the same algorithm setting of the original paper in our
experiments.

• CollabTopM [32] is the algorithm to identify the Top-m arms within a multi-agent setting. We set
the m as 1 and the agents K as 1.

• For Tri-BBAI and Opt-BBAI, we set α = 1.0017, and ϵ = 0.01. We use the same β(t) function for
Chernoff’s stopping condition as in Track-and-Stop. Moreover, for the lengths of the batches, we
set L1, L2 and L3 to be the value calculated by Theorem 3.1.

Results. We present a comprehensive comparison on the sample complexities and batch complexi-
ties of our algorithms and baseline algorithms in Tables 3 and 4. Notably, our algorithms Tri-BBAI
and Opt-BBAI, also including Top-K δ Elimination and CollabTopM, require significantly fewer
batches than Track-and-Stop. Furthermore, the sample complexity of Tri-BBAI and Opt-BBAI is
significantly lower than that of Top-K δ Elimination, ID-BAI and CollabTopM. Additionally, the
sample complexity of Tri-BBAI and Opt-BBAI is comparable to Track and Stop when δ is large, and
it is at most 3.6 times greater than Track and Stop when δ is very small. Additionally, we also provide
the runtime comparison in Tables 3 and 4. Our algorithms have a significantly reduced runtime
compared to Track-and-Stop, achieving nearly 1000× speedup.

7From Theorem 3.1, we can select α to be any constant within the range (1, e/2). To optimize the convergence
rate of E[Nδ]/(log(1/δ)T

∗(µ)), we set α slightly above 1, specifically we choose α = 1.001.
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Table 3: Experimental results in terms of sample complexity, batch complexity and runtime under the
uniform mean rewards. The number of arms is n = 10. The experiments are averaged over 1000
repetitions.

Dataset δ Algorithm Sample Complexity Batch Complexity Runtime (s) Recall

Uniform

1× 10−1

Track-and-Stop 668.49± 298.62 668.49± 298.62 275.94± 135.67 100%
Top-k δ-Elimination 32472± 0 2± 0.01 0.04± 0.01 100%
ID-BAI 120427± 0 - 0.136± 0.003 100%
CollabTopM 27290.205± 4806.435 3.001± 0.031 0.032± 0.006 100%
Tri-BBAI 365.232± 21.85 3.99± 0.11 1.02± 0.23 90.1%
Opt-BBAI 1220.30± 586.92 4.89± 1.01 0.95± 0.22 100%

1× 10−2

Track-and-Stop 977.23± 371.61 977.23± 371.61 381.85± 146.10 100%
Top-k δ-Elimination 52734± 0 2± 0.01 0.07± 0.01 100%
ID-BAI 146948± 0 - 0.167± 0.003 100%
CollabTopM 35449.181± 5530.938 3.0± 0 0.042± 0.006 100%
Tri-BBAI 1114.41± 98.68 3.96± 0.19 1.05± 0.19 99.3%
Opt-BBAI 1929.65± 604.11 4.64± 1.00 1.02± 0.18 100%

1× 10−3

Track-and-Stop 1468.15± 448.88 1468.15± 448.88 624.82± 219.14 100%
Top-k δ-Elimination 72996± 0 2± 0.01 0.10± 0.01 100%
ID-BAI 173478± 0 - 0.197± 0.006 100%
CollabTopM 43457.489± 5519.169 3.0± 0 0.051± 0.006 100%
Tri-BBAI 2005.07± 175.13 3.88± 0.33 1.09± 0.13 100%
Opt-BBAI 2781.41± 658.40 4.37± 0.98 1.01± 0.14 100%

1× 10−4

Track-and-Stop 1769.72± 467.36 1769.72± 467.36 743.96± 196.39 100%
Top-k δ-Elimination 93258± 0 2± 0.01 0.12± 0.01 100%
ID-BAI 199999± 0 - 0.257± 0.005 100%
CollabTopM 51823.644± 6379.803 3.0± 0 0.061± 0.007 100%
Tri-BBAI 2989.96± 274.36 3.81± 0.39 1.10± 0.13 100%
Opt-BBAI 3752.31± 739.60 4.20± 0.99 1.00± 0.12 100%

1× 10−5

Track-and-Stop 2135.09± 535.01 2135.09± 535.01 821.59± 137.83 100%
Top-k δ-Elimination 113520± 0 2± 0.01 0.15± 0.01 100%
ID-BAI 226528± 0 - 0.257± 0.005 100%
CollabTopM 60263.887± 6367.285 3.0± 0 0.071± 0.007 100%
Tri-BBAI 4066.34± 381.41 3.74± 0.44 1.11± 0.13 100%
Opt-BBAI 4799.49± 852.00 4.04± 0.96 1.03± 0.12 100%

1× 10−6

Track-and-Stop 2517.93± 561.65 2517.93± 561.65 1085.30± 202.72 100%
Top-k δ-Elimination 133782± 0 2± 0.01 0.18± 0.01 100%
ID-BAI 253049± 0 - 0.288± 0.006 100%
CollabTopM 67958.078± 6730.415 3.0± 0 0.081± 0.008 100%
Tri-BBAI 5185.75± 485.82 3.65± 0.48 1.12± 0.12 100%
Opt-BBAI 5871.33± 951.60 3.90± 0.93 1.07± 0.14 100%

1× 10−7

Track-and-Stop 2942.67± 598.77 2942.67± 598.77 1232.91± 192.82 100%
Top-k δ-Elimination 154044± 0 2± 0.01 0.21± 0.01 100%
ID-BAI 279579± 0 - 0.317± 0.006 100%
CollabTopM 76627.155± 7000.211 3.0± 0 0.090± 0.008 100%
Tri-BBAI 6334.49± 613.88 3.58± 0.49 1.12± 0.12 100%
Opt-BBAI 7055.16± 1059.50 3.82± 0.93 1.11± 0.16 100%

1× 10−8

Track-and-Stop 3347.02± 535.16 3347.02± 535.16 1464.84± 359.57 100%
Top-k δ-Elimination 174306± 0 2± 0.01 0.23± 0.01 100%
ID-BAI 306108± 0 - 0.347± 0.006 100%
CollabTopM 84995.542± 7270.987 3.0± 0 0.100± 0.009 100%
Tri-BBAI 7486.57± 764.36 3.49± 0.50 1.13± 0.11 100%
Opt-BBAI 8136.01± 1094.05 3.64± 0.85 1.10± 0.12 100%

1× 10−9

Track-and-Stop 3609.64± 638.68 3609.64± 638.68 1661.96± 266.15 100%
Top-k δ-Elimination 194568± 0 2± 0.01 0.26± 0.01 100%
ID-BAI 332628± 0 - 0.376± 0.006 100%
CollabTopM 92705.663± 7639.167 3.0± 0 0.109± 0.009 100%
Tri-BBAI 8759.03± 844.59 3.41± 0.49 1.12± 0.10 100%
Opt-BBAI 9315.58± 1264.28 3.56± 0.83 1.01± 0.10 100%

1× 10−10

Track-and-Stop 4136.94± 665.10 4136.94± 665.10 1714.68± 257.00 100%
Top-k δ-Elimination 214830± 0 2± 0.01 0.28± 0.01 100%
ID-BAI 359158± 0 - 0.407± 0.008 100%
CollabTopM 100894.264± 7704.855 3.0± 0 0.119± 0.009 100%
Tri-BBAI 10083.60± 1005.54 3.30± 0.45 1.26± 0.18 100%
Opt-BBAI 10548.19± 1277.15 3.48± 0.78 0.99± 0.09 100%
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Table 4: Experimental results in terms of sample complexity, batch complexity and runtime under
the normal mean rewards. The number of arms is n = 10. The experiments are averaged over 1000
repetitions.

Dataset δ Algorithm Sample Complexity Batch Complexity Runtime (s) Recall

Normal

1× 10−1

Track-and-Stop 305.21± 183.51 305.21± 183.51 154.42± 64.49 100%
Top-k δ-Elimination 32472.0± 0 2± 0.01 0.04± 0.01 100%
ID-BAI 120427± 0 - 0.145± 0.012 100%
CollabTopM 11834.089± 2208.691 2.888± 0.315 0.015± 0.003 100%
Tri-BBAI 334.49± 32.80 3.89± 0.32 1.08± 0.16 98.3%
Opt-BBAI 793.23± 358.15 4.18± 0.79 1.05± 0.16 100%

1× 10−2

Track-and-Stop 490.95± 206.28 490.95± 206.28 182.42± 81.61 100%
Top-k δ-Elimination 52734± 0 2± 0.01 0.07± 0.01 100%
ID-BAI 146948± 0 - 0.171± 0.011 100%
CollabTopM 16145.218± 2255.120 2.933± 0.250 0.021± 0.004 100%
Tri-BBAI 893.05± 121.47 3.62± 0.48 1.11± 0.11 100%
Opt-BBAI 1236.33± 381.17 3.74± 0.71 1.11± 0.13 100%

1× 10−3

Track-and-Stop 699.18± 198.64 699.18± 198.64 264.66± 116.82 100%
Top-k δ-Elimination 72996± 0 2± 0.01 0.10± 0.01 100%
ID-BAI 173478± 0 - 0.204± 0.013 100%
CollabTopM 20414.549± 2277.714 2.960± 0.195 0.027± 0.004 100%
Tri-BBAI 1532.76± 201.18 3.37± 0.48 1.13± 0.10 100%
Opt-BBAI 1747.15± 389.65 3.43± 0.58 1.07± 0.10 100%

1× 10−4

Track-and-Stop 833.08± 234.48 833.08± 231.90 315.10± 91.15 100%
Top-k δ-Elimination 93258± 0 2± 0.01 0.12± 0.01 100%
ID-BAI 199999± 0 - 0.236± 0.015 100%
CollabTopM 24673.111± 2584.898 2.962± 0.191 0.032± 0.005 100%
Tri-BBAI 2141.11± 282.37 3.20± 0.40 1.13± 0.08 100%
Opt-BBAI 2263.174± 405.72 3.19± 0.42 1.06± 0.08 100%

1× 10−5

Track-and-Stop 972.75± 245.18 972.75± 245.18 336.78± 74.03 100%
Top-k δ-Elimination 113520± 0 2± 0.01 0.15± 0.01 100%
ID-BAI 226528± 0 - 0.269± 0.044 100%
CollabTopM 29081.141± 2323.105 2.982± 0.132 0.039± 0.005 100%
Tri-BBAI 2838.36± 353.12 3.09± 0.28 1.14± 0.08 100%
Opt-BBAI 2881.61± 430.05 3.08± 0.27 1.09± 0.09 100%

1× 10−6

Track-and-Stop 1122.53± 308.73 1122.53± 308.73 468.14± 138.87 100%
Top-k δ-Elimination 133782± 0 2± 0.01 0.17± 0.01 100%
ID-BAI 253049± 0 - 0.312± 0.038 100%
CollabTopM 33386.52± 2133.062 2.987± 0.113 0.043± 0.005 100%
Tri-BBAI 3516.52± 467.48 3.03± 0.18 1.14± 0.08 100%
Opt-BBAI 3556.59± 477.73 3.04± 0.20 1.15± 0.15 100%

1× 10−7

Track-and-Stop 1256.29± 308.88 1256.29± 308.88 544.76± 74.00 100%
Top-k δ-Elimination 154044± 0 2± 0.01 0.20± 0.02 100%
ID-BAI 279579± 0 - 0.336± 0.019 100%
CollabTopM 37499.802± 2413.418 2.986± 0.117 0.048± 0.005 100%
Tri-BBAI 4218.39± 523.49 3.01± 0.09 1.15± 0.08 100%
Opt-BBAI 4220.78± 523.11 3.02± 0.13 1.16± 0.13 100%

1× 10−8

Track-and-Stop 1438.20± 355.44 1438.20± 355.44 566.44± 101.01 100%
Top-k δ-Elimination 174306± 0 2± 0.01 0.23± 0.01 100%
ID-BAI 306108± 0 - 0.362± 0.018 100%
CollabTopM 41924.698± 2206.559 2.992± 0.089 0.055± 0.005 100%
Tri-BBAI 4912.64± 613.69 3.01± 0.08 1.15± 0.07 100%
Opt-BBAI 4940.68± 650.75 3.00± 0.06 1.12± 0.10 100%

1× 10−9

Track-and-Stop 1632.12± 348.14 1632.12± 348.14 590.42± 56.25 100%
Top-k δ-Elimination 194568± 0 2± 0.01 0.26± 0.01 100%
ID-BAI 332628± 0 - 0.393± 0.017 100%
CollabTopM 46244.241± 1816.041 2.997± 0.054 0.059± 0.005 100%
Tri-BBAI 5637.36± 743.53 3.00± 0.05 1.14± 0.08 100%
Opt-BBAI 5661.51± 740.74 3.00± 0.05 1.03± 0.06 100%

1× 10−10

Track-and-Stop 1747.29± 318.85 1747.29± 318.85 790.89± 119.52 100%
Top-k δ-Elimination 214830± 0 2± 0.01 0.28± 0.01 100%
ID-BAI 359158± 0 - 0.423± 0.015 100%
CollabTopM 50556.41± 1822.998 2.997± 0.054 0.067± 0.007 100%
Tri-BBAI 6356.78± 787.53 3.00± 0.03 1.30± 0.16 100%
Opt-BBAI 6355.28± 793.45 3.00± 0.03 1.03± 0.05 100%
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction accurately represent
the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the discussion in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the full set of assumptions and complete proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: We include all information needed to reproduce the main experimental results
in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]

Justification: We have uploaded my source and will make the full code public if this work
gets accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included all the test details in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the error range in Tables 3 and 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state all information on the computer resources in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, to the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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