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Abstract
Fine-tuning large language models (LLMs) to
align with user preferences is challenging due
to the high cost of quality human annotations in
Reinforcement Learning from Human Feedback
(RLHF) and the generalizability limitations of AI
Feedback. To address these challenges, we pro-
pose RLTHF, a human-AI hybrid framework that
combines LLM-based initial alignment with selec-
tive human annotations to achieve full-human an-
notation alignment with minimal effort. RLTHF
identifies hard-to-annotate samples mislabeled by
LLMs using a reward model’s reward distribution
and iteratively enhances alignment by integrat-
ing strategic human corrections while leveraging
LLM’s correctly labeled samples. Evaluations on
HH-RLHF and TL;DR datasets show that RLTHF
reaches full-human annotation-level alignment
with only 6-7% of the human annotation effort.
Furthermore, models trained on RLTHF’s curated
datasets for downstream tasks outperform those
trained on fully human-annotated datasets, under-
scoring the effectiveness of RLTHF.

1. Introduction
In recent years, large language models (LLMs) have demon-
strated remarkable advancements, unlocking new possibil-
ities across a wide range of applications (Touvron et al.,
2023; Jiang et al., 2024; Achiam et al., 2023; Team et al.,
2023). As these models become more powerful, the fo-
cus has shifted toward customization, i.e., fine-tuning base
models to better serve specific tasks and user needs (Wei
et al., 2021; Li et al., 2023a). Companies are increasingly
investing in solutions built upon fine-tuned models, recog-
nizing the value of adapting LLMs to align with end-user
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preferences, including intent, style, grounding, and compli-
ance requirements (Atreya, 2024; Microsoft, 2024; Sharma,
2024; AI, 2024). A key approach to achieving this align-
ment is Reinforcement Learning from Human Feedback
(RLHF), which has emerged as a widely adopted technique
in the literature for refining model behavior based on human
feedback (Bai et al., 2022a; Stiennon et al., 2020; Rafailov
et al., 2024; Wang et al., 2024a; Ouyang et al., 2022).

The effectiveness of RLHF techniques heavily depends on
high-quality human annotations, which are both costly and
time-consuming to obtain (Pang et al., 2023; Lee et al., 2023;
Wang et al., 2024a). To mitigate this challenge, Reinforce-
ment Learning from AI Feedback (RLAIF) has been intro-
duced, leveraging LLMs to replace human annotators in the
feedback loop (Lee et al., 2023; Lee et al.; Bai et al., 2022b).
While RLAIF can approximate human judgment to some
extent, it is sensitive to factors such as prompt optimization,
task complexity, model bias, generator-discriminator gap,
and the capability of the judge model, limiting its ability
to fully replicate human annotations (Huang et al., 2024;
Sharma et al., 2024; Lee et al., 2023; Zeng et al., 2024;
Huang et al., 2023). Our evaluation also provides evidence
of these limitations. Furthermore, the samples that chal-
lenge a judge model are often the ones most critical for
adapting base models to specialized fine-tuning tasks (Etha-
yarajh et al., 2024; Yuan et al., 2024; Huang et al., 2023).
The cost of human annotation is further exacerbated by pri-
vacy and security constraints that restrict fine-tuning service
providers’ access to an entire customer data corpus. In such
cases, only subject matter experts (SMEs) within the cus-
tomer organization have full visibility into the data, making
it particularly difficult to optimize prompts effectively across
the entire corpus, especially for hard-to-annotate samples.

To address these challenges, we propose Reinforcement
Learning from Targeted Human Feedback (RLTHF), a
human-AI hybrid solution that combines coarse initial align-
ment using general-purpose LLMs with the progressive
integration of strategically selected human annotations to
achieve annotation quality comparable to fully human-
supervised approaches. RLTHF begins with an initial align-
ment stage, where a general-purpose LLM labels unlabeled
data based on high-level instructions. While this approach
effectively captures broader human alignment for easier data
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Figure 1: Overview of RLTHF process. RLTHF starts with coarse LLM alignment on the task. It then iteratively takes
targeted human feedback and blending the same with sanitized LLM-annotations to reach the complete human alignment,
leveraging reward distribution of a reward model in its training dataset.

points, it often struggles with fine-grained nuances, leading
to incorrect labeling. RLTHF automatically identifies these
hard-to-annotate data points and directs human effort exclu-
sively toward them. This targeted approach enables RLTHF
to achieve the quality of fully human-annotated data while
reducing the majority of human annotation effort.

To enable this efficient human-in-the-loop approach for
achieving comprehensive human alignment, RLTHF intro-
duces the following key technical contributions:

First, we introduce a concept that leverages the reward distri-
bution of a reward model over its training dataset to capture
the relative arrangement of samples based on rewarded fea-
tures. This distributional property enables the identification
of both potential annotation inaccuracies and the model’s
confidence across the dataset. Specifically, we train a reward
model on the LLM-labeled dataset to uncover clusters of
hard-to-annotate samples that are highly likely to be misla-
beled by the LLM, as well as easy samples that are highly
likely to be correctly labeled.

Building on this concept, we propose an innovative itera-
tive reward model training technique to achieve oracle-level
human alignment in the dataset. In each iteration, RLTHF
identifies highly probable mislabeled data points and recti-
fies the same using human annotations. Simultaneously, it
detects clusters of samples that are very likely to be correctly
labeled by the LLM and incorporates them with human-
annotated data to construct a high-quality training set for
the next iteration of reward model training. Throughout this
process, RLTHF preserves data richness and maximizes the
efficiency of human annotation investment through carefully
controlled hyperparameters.

Finally, we evaluate RLTHF on two distinct preference

datasets: HH-RLHF and TL;DR. Our results demonstrate
that RLTHF achieves accuracy comparable to a fully human-
annotated dataset while requiring only 6–7% of the total
human annotations. Furthermore, we conduct a compara-
tive study by training models on downstream tasks using
DPO (Rafailov et al., 2024). Remarkably, models trained
with RLTHF even outperform those trained on fully human-
annotated datasets, highlighting the impact of RLTHF’s
meticulous data curation in enhancing model performance.

2. Background and Related Work
LLMs have demonstrated impressive performance across a
wide spectrum of tasks (Achiam et al., 2023; Dubey et al.,
2024; Team et al., 2023). Despite the progress, their perfor-
mance on customized downstream tasks can be significantly
optimized by supervised fine-tuning (SFT) with instruction
and human-written responses pairs (Chung et al., 2024;
Thoppilan et al., 2022). Reinforcement learning with pref-
erence data has further shown success due to the easier-to-
collect data form (Ouyang et al., 2022; Stiennon et al., 2020;
Lee et al., 2023). Representative methods include Proximal
Policy Optimization (PPO) (Schulman et al., 2017), which
optimizes the LLM with a separate reward model, and Di-
rect Preference Optimization (DPO) (Rafailov et al., 2024),
which directly learns from the preference data. Although an
easier data collection is available, these methods still largely
rely on the richness and quality of the preference data (Xu
et al., 2024; Zheng et al., 2023b; Wang et al., 2024a).

2.1. Alignment with External Feedback
Human feedback is regarded as the golden standard in LLM
alignment. However, reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022; Stiennon et al.,
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2020; Köpf et al., 2024) typically incorporates heavy and
expensive crowdsourcing efforts or expert annotations to
guarantee data diversity and richness. To relieve the reliance
on human effort, reinforcement learning with AI feedback
(RLAIF) (Lee et al., 2023; Bai et al., 2022b) provides an
alternative that collects feedback from stronger LLMs in-
stead of humans. On the other hand, this method is limited
by the capability of the stronger LLM annotators (Huang
et al., 2024; Sharma et al., 2024; Lee et al., 2023) especially
for customized tasks, and suffers from their intrinsic bi-
ases (Zheng et al., 2023a). In this paper, we take advantage
of RLAIF to establish an initial alignment and strategically
incorporate human feedback to efficiently bring LLMs to
the true alignment.

2.2. LLM Self-Improvement
To break the upper bound of LLMs, recent efforts have been
devoted to enabling LLMs to self-improve. Self-Rewarding
LMs (Yuan et al., 2024) and Math-shepherd (Wang
et al., 2024b) demonstrate the possibility of LLM self-
improvement with reward signals from itself. SELF-
ALIGN (Sun et al., 2024b) uses a carefully written set
of principles to guide LLMs through self-improvement.
SER (Huang et al., 2024) starts with only a fraction of hu-
man annotations to achieve full-annotation performance by
progressively generating additional training data for itself.
However, these methods still suffer from the intrinsic upper
bound of LLMs and self-improvement is not guaranteed for
customized tasks. RLTHF, on the other hand, efficiently in-
troduces human intelligence into the improvement process,
thereby ensuring that the improvement is not bounded by
LLMs’ initial lack of domain understanding.

3. Improving Human Alignment with RLTHF
RLTHF enhances alignment with human in preference
datasets used for training preference optimization tech-
niques like DPO and PPO. It facilitates LLM training for
various downstream tasks, including summarization, com-
pliance, and grounding. Starting with an unlabeled prefer-
ence dataset, RLTHF strategically integrates AI-generated
labels with selective human feedback to maximize align-
ment while minimizing annotation effort. As illustrated in
Figure 1, RLTHF operates in three stages: 1) Initial align-
ment, where an off-the-shelf LLM provides dataset labeling
to establish a coarse task understanding, 2) Iterative align-
ment improvement, which leverages reward distribution by
a reward model (RM) to locate hard-to-annotate samples
mislabeled by the LLM and rectify with selective human
feedback while investing the correct LLM labels, 3) Trans-
ferring knowledge for downstream task, where the curated
preference dataset is fed into the DPO pipeline or the trained
RLTHF reward model is integrated into the PPO pipeline.
Find the corresponding pseudocode in Appendix B.

3.1. Initial Alignment

This stage aims to establish an initial coarse alignment in the
unlabeled dataset using a general-purpose LLM, which pro-
vides preference annotations for each unannotated sample.
Prior research suggests that model selection here depends
on task complexity relative to the model’s capability (Snell
et al., 2024). While RLTHF is not found to be sensitive to
the choice of model at this stage, a well-suited model can
accelerate alignment convergence. The only assumption is
that the general-purpose LLM possesses a basic understand-
ing of the downstream task, enabling it to provide a rough
initial alignment that serves as a seed for RLTHF.

Our prompt for obtaining preference judgments from the
LLM consists of three components: 1) task description, 2)
preference judgment principles provided by the user, and 3)
few-shot examples with optional chain-of-thought reasoning.
The prompt templates are detailed in Appendix A. We do not
perform explicit fine-grained prompt tuning, as full visibility
into the data may be restricted when offering fine-tuning
services to third-party customers. However, to ensure that
the selected LLM with our prompt attains a rough level of
alignment, we perform an eyes-off validation using strategic
human feedback, as detailed in Section 3.2.3.

As mentioned earlier, this AI-generated feedback is prone to
errors due to factors such as model biases from pre-training
data, task complexity, and prompt optimization, which is
also evident in our evaluation. When our ultimate goal is
to customize an existing model through fine-tuning to align
with end-user preferences, we inherently assume that an off-
the-shelf LLM lacks comprehensive alignment with the end-
user. However, RLTHF builds upon the initial AI-provided
alignment and systematically refines it in subsequent stages
to achieve oracle-level human alignment.

3.2. Iterative Alignment Improvement

In this stage, we refine the LLM-labeled preference dataset
by iteratively training an RM with selective human annota-
tions to enhance alignment. Before diving into the details
of this process, we first establish the premise for RM.

3.2.1. REWARD MODEL

Given a labeled preference dataset DΛ = {xi, yi,c, yi,r},
where i ∈ [N ], xi is the prompt, yi,c and yi,r denote the
chosen and rejected completions, respectively, as labeled
according to the annotator’s preference, Λ. Here, if we
represent the relative preference orientation of ith comple-
tion pair with λ = [−1,+1], Λ is a N -dimensional vector
consists of [λi]

N
i=1, meaning that flipping the preferences of

all completion pairs results in D−Λ. To train an RM on this
dataset, we can formulate the probability distribution of yi,c
being preferred over yi,r given xi as an input, following the
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Bradley-Terry (BT) model (David, 1963).

P (x ≻ y) = σ(r(xi, yi,c)− r(xi, yi,r)) (1)

where σ(·) denotes the sigmoid function and r(·) denotes
the reward function. Assuming the existence of a true deter-
ministic reward function, the goal is to train the RM to learn
this function and predict the reward, r̂(x, y). The RM train-
ing can be framed as a binary classification problem (Sun
et al., 2024a), where a labeled pair of ρi,c := (xi, yi,c) and
ρi,r := (xi, yi,r) is passed to the model to predict the condi-
tional class probability according to Eq. 1. This leads to the
negative log-likelihood loss function for training.

L(̂r) = −E(x,y)∼D[log σ(r̂(ρi,c)− r̂(ρi,r))] (2)

In essence, during the RM training, we pass a preference pair
{ρi,c, ρi,r} labeled as ρi,c winning over ρi,r according to
the annotator’s preference Λ. Provided sufficient preference
samples in a dataset, the RM learns the winning preference
features of the data that determine the winner in a pair,
captured in the reward function r̂Λ.

3.2.2. LOOKING AT REWARD DISTRIBUTION

At this stage, we analyze the distribution of the predicted
reward function (r̂Λ) within the training preference dataset
DΛ. For each labeled preference pair {ρi,c, ρi,r}, we com-
pute the reward score difference as ∆Λr̂Λ = (r̂Λ(ρc) −
r̂Λ(ρr)). It is important to note that ∆Λ quantifies the rela-
tive preference score of a given pair in alignment with the
annotator’s preference orientation Λ, satisfying the property
∆Λr = −∆−Λr. By ranking all preference pairs in DΛ

based on ∆Λr̂Λ, a monotonic reward distribution curve, de-
noted as ϑ(∆Λr̂Λ), emerges. This distribution, as depicted
in Figure 2a, provides insight into the model’s reward as-
signment across the dataset, though for the moment, the
legend in the graph can be disregarded.

The reward distribution curve ϑ(∆Λr̂Λ), derived from the
training preference dataset DΛ, reflects the degree of align-
ment the RM (trained with optimal validation loss) has
achieved across DΛ during training. The upper left region
of the curve consists of samples with high positive ∆Λr̂Λ,
indicating strong agreement between the RM and the train-
ing preference labels Λ. This suggests that the RM effec-
tively identifies and reinforces strong winning preference
features in these samples, implying that these features were
dominant in DΛ. Conversely, the bottom right region of
the curve contains samples with very low or even negative
∆Λr̂Λ, signaling disagreement between the trained reward
function r̂Λ and the training preference labels for these sam-
ples. This misalignment arises from two primary factors. (1)
Absence of strong features, where RM is not able to find any
strong preference feature in these samples according to r̂Λ.
(2) Conflicting samples within DΛ, where the preference

features of these samples are highly conflicting with other
stronger preference features learned in r̂Λ, leading the RM
to penalize them.

3.2.3. RLTHF LEVERAGING REWARD DISTRIBUTION

RLTHF trains the initial RM using a preference dataset la-
beled by a general-purpose LLM from the previous stage.
We denote this dataset as DΛLLM

where ΛLLM represents
the LLM’s preference labeling. Since the RM training in-
cludes a validation set derived from DΛLLM

, this ensures
that the trained RM is broadly aligned with the LLM’s
preferences. We assume that the LLM has a coarse but rea-
sonable understanding of preference judgments, particularly
for relatively easy-to-annotate samples. As a result, the fea-
tures of these samples dominate in r̂ΛLLM

. Based on our
earlier discussion, the upper left region of the reward density
curve, ϑ(∆ΛLLM

r̂ΛLLM
) contains high density of samples

with prominent preference features, i.e., those that are easier
for the LLM to annotate accurately. Before proceeding, we
further validate that the LLM is at least roughly aligned with
the user in terms of these easy-to-annotate samples. This
step mitigates the risk of significant misalignment due to
prompt curation or model selection. To achieve this, RLTHF
automatically (details in the following section) samples a
small subset (< 0.1%) of preference data from the upper
left region and gathers user feedback. If human agreement
on these samples is low, it signals a major misalignment
between the user and LLM. While we did not observe such
cases in our experiments, this issue can be addressed by
refining the judgment principles in the prompt. Updates
can be directly made by the user, through incorporating
verbose user feedback, or even through automated prompt
optimization techniques (Kepel & Valogianni, 2024).

At this stage, we can identify regions with a high density of
correctly labeled samples by the LLM, i.e., those that are
relatively easy for the LLM to annotate in alignment with
human preference. Now, we turn our attention to two crit-
ical types of samples necessary for achieving fine-grained
alignment: (1) hard-to-annotate samples and (2) samples
mislabeled by the LLM w.r.t. the human preference Λh.
Since the LLM was unable to correctly label these samples
initially, the reward function r̂ΛLLM

cannot accurately cap-
ture their preference features. Consequently, these samples
are expected to cluster around the bottom right region of
the reward distribution curve ϑ(∆ΛLLM

r̂ΛLLM
). To illus-

trate this, we refer to Figure 2a and 2b. Figure 2a shows
ϑ(∆ΛLLM

r̂ΛLLM
) from one of our experiments. In this

figure, we classify each sample ρi ∈ DΛLLM
as either cor-

rectly or incorrectly labeled w.r.t. the human preference Λh,
i.e., whether the preference assigned by ΛLLM is matching
Λh. As observed, the upper left region of the curve con-
tains a high density of correctly labeled samples, supporting
our earlier claim that these represent the LLM’s easy-to-
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Figure 2: Reward (assigned by a trained RM) and correctness (w.r.t. human preference) distribution curves for the very
first and last iterations of RLTHF. These two types of curves provide the intuition of strategically selecting the samples
for efficient human annotation towards improving alignment in the dataset. These curves further highlight the iterative
refinement process, showing how alignment in the dataset progressively improves.

annotate cases. To quantify this, we generate an accuracy
density curve for ϑ(∆ΛLLM

r̂ΛLLM
) w.r.t. the human prefer-

ence Λh, as shown in Figure 2b. This figure confirms that
alignment with human preference decreases as we move
towards the right side of the curve.

While we can observe how alignment with Λh varies across
the reward distribution curve, in real-world scenarios, we
lack ground-truth labels to quantify this accuracy directly.
Therefore, we need to estimate the boundaries of key re-
gions within the curve. To achieve this, we identify two
strategic points: the “elbow” and the “knee”, as illustrated
in Figure 2a. These points correspond to sharp changes in
∆ΛLLM

r̂ΛLLM
, which we detect using the first-order deriva-

tive. The “knee” marks the transition to a region with lower
accuracy density, whereas the “elbow” indicates a shift to-
ward higher accuracy density. It is important to note that
these points serve only as rough estimations of the region
boundaries rather than precise demarcations.

3.2.4. SELECTIVE HUMAN ANNOTATION

To enhance alignment from this stage, human annotation
is necessary, but it must be done efficiently to maximize
its impact. A straightforward approach is referring to the
accuracy density curve – annotations in the lowest accuracy
region would yield the highest benefit. Thus, we could start
annotating from the very bottom of the curve. However,
as previously discussed, some samples in this region may
exhibit preference features that are largely opposite to the
dominant features captured by r̂ΛLLM

. These samples are
highly likely to be mislabeled in ΛLLM (see Appendix C).
Instead of seeking human annotation, we can simply flip
the preference of these samples to rectify. To estimate the
location of such samples, we take the reflection of the “el-
bow” point w.r.t. the x-axis, as the elbow marks the region
containing strong preference features. This “reflection point”
always lies to the right of the “knee” in the lowest accuracy
density region. We begin human annotation at this “reflec-
tion point” and proceed leftward along the curve, ensuring
the most effective correction of alignment errors.

3.2.5. ITERATIVE APPROACH

The current reward function r̂ΛLLM
, trained on DΛLLM

, ex-
hibits an alignment gap w.r.t. Λh due to the presence of
hard-to-annotate samples for the LLM and mislabeling by
the LLM. Since we have identified ways to rectify these
issues, we can refine D to improve alignment and train a
new RM that better aligns with Λh. Now, the question
is how to prepare the dataset for the next iteration of RM
training? Suppose we are currently in iteration 0 (Itr-0)
with DΛLLM

and r̂ΛLLM
. For the iteration 1 (Itr-1) train-

ing dataset, DT
ΛT

Itr−1
, our primary goal is to include high-

confidence samples that are well-aligned with Λh. The first
choice is definitely human annotated samples from Itr-0. Ad-
ditionally, another set of candidates can be drawn from the
high-accuracy density region of ϑ(∆ΛLLM

r̂ΛLLM
), specifi-

cally the region to the left of the “elbow”, where the RM has
learned strong preference features in alignment with Λh.

Although these two sets of samples offer high precision,
DT

ΛT
Itr−1

will still face a data coverage issue. Looking at the
reward distribution curve, these two candidate sets represent
samples with the longest distance, leaving gaps in middle re-
gion. However, expanding the dataset by including samples
from the middle region, i.e., right of the “elbow” and left
of the “knee” risks introducing misaligned samples. Since
the accuracy in this region is likely to be just above 50%,
obtaining human annotations for these samples would be in-
efficient. Furthermore, as the number of samples annotated
from the right of the knee is relatively small, their prefer-
ence features are likely to be overshadowed by the dominant
preference features of the high numbers of left-side samples.
As a result, their features may not be effectively captured in
r̂ΛT

Itr−1
. To balance these trade-offs, we introduce two hy-

perparameters, allowing for a more controlled and effective
dataset expansion while maintaining alignment quality.

• Back-off ratio (β): Determines how far to back off from
the “knee” when selecting samples for the next iteration’s
dataset. A higher β results in a more sanitized dataset,
reducing noise but at the expense of lower data coverage.
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• Amplification ratio (α): Increases the influence of
human-annotated samples by repeating them in the
dataset, reinforcing their preference features in r̂ΛT

Itr−1
.

However, an excessively high α may lead to overfitting to
selective human annotations.

The dataset DT
ΛItr−1

consists of carefully selected sam-
ples from DΛLLM

, ensuring high alignment with Λh by
optimally tuning the hyperparameters α and β. Train-
ing the RM on DT

ΛT
Itr−1

results in r̂ΛT
Itr−1

, which is more
closely aligned with Λh. After training, we construct the
dataset for generating the reward distribution curve by in-
corporating the remaining samples from Itr-0: DΛItr−1

=
DT

ΛT
Itr−1

∪ (DΛLLM
−DT

ΛT
Itr−1

). From this, we generate a

new reward distribution curve, ϑ(∆ΛItr−1
r̂ΛT

Itr−1
). While

this curve demonstrates improved alignment with Λh, full
alignment is not necessarily achieved. However, it presents
RLTHF with a distinct reward distribution curve compared
to the previous iteration. This evolving diversity in ϑ(·)
enhances the variety of human annotations, maximizing the
return on annotation investments and incrementally enrich-
ing D. Note that the effectiveness of this diversification, as
well as the corresponding improvements, depends on factors
such as hyperparameter tuning (see Section 4), the original
data distribution, and model selection.

RLTHF maximizes the efficiency of human annotations by
iteratively refining ϑ(·) and exposing annotators to diverse,
LLM-mislabeled samples. To further enhance annotation ef-
ficiency, RLTHF employs random sharding to down-sample
the original corpus. It begins by selecting a random shard
of the dataset, iteratively improving alignment within that
subset. Once the desired alignment is achieved, the final
iteration’s RM is used to label the entire corpus. This ap-
proach enables RLTHF to concentrate human annotations in
a smaller, more targeted space while effectively propagating
alignment across the full dataset at the end.

3.3. Reward Knowledge Transfer
RLTHF progressively converges toward the oracle human
preference through iterative RM training and strategic hu-
man annotation investment. As shown in Figure 2c and
2d, after five iterations, the reward distribution and accuracy
curves closely align with the full-human annotation. Find
the intermediate iteration curves in Appendix C. The re-
quired number of iterations depends on the available human
annotation and RM training budget. Notably, full-human
alignment can sometimes be achieved before exhausting the
annotation budget. In such cases, the samples selected for
human annotation would largely lack distinct preference
features, indicating that the model has effectively captured
the human preference. Once desired alignment is achieved
or the annotation budget is fully utilized, we proceed with
fine-tuning an LLM for the downstream task. This can be
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Figure 3: Overall preference accuracy improvement of
RLTHF on test data in an iterative manner. Here, we exper-
iment with different sizes of down-sampled training data
shards for RLTHF. We find 6% (HH-RLHF) to 7% (TL;DR)
total human annotations on 1/4 shard yielding the optimal
alignment for downstream tasks.

done in two ways: 1) incorporating the final iteration RM
into the PPO loop, or 2) labeling the whole dataset with the
final RM and feeding the labeled dataset to a DPO pipeline.

4. Results
In this section, we present the results of our main experi-
ments, conducted on two datasets: HH-RLHF (Bai et al.,
2022a) and TL;DR (Völske et al., 2017). Specifically, we
compare RLTHF against three baselines: (1) AI-only label-
ing, where samples are fully labeled by LLMs, (2) Random
human annotation, where samples are randomly selected
for human annotation (matching the number of human-
annotated samples in RLTHF), with the rest relying on AI
feedback, and (2) Human, where all samples are annotated
by humans. A detailed description of our experimental setup
is provided in Appendix D.

4.1. Reward Modeling

4.1.1. OVERALL ALIGNMENT IMPROVEMENT

We here use GPT-4o for the initial alignment and evaluate
RLTHF’s iterative alignment improvements by measuring
the preference accuracy of RMs trained with varying pro-
portions of human annotations relative to the full dataset.
We employ RLTHF on both the complete dataset and mul-
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tiple down-sampled shards as described in § 3.2.5. For a
given shard, we run RLTHF in an iterative manner infusing
targeted human annotations in each iteration. We evaluate
the trained RMs on a separate test dataset and report their
preference accuracy in Figure 3.

In Figure 3, each data point for a shard corresponds to an iter-
ation of RLTHF. The results show a consistent improvement
in test preference accuracy across iterations, with significant
early gains that gradually diminish as accuracy approaches
the upper bound. Additionally, down-sampling enhances
the efficiency of human annotations: RLTHF running on 1/2
and 1/4 shards outperforms its full-dataset counterpart when
using the same number of human annotations. However,
excessive down-sampling (e.g., 1/8 shard) may limit the
achievable accuracy due to reduced data richness. For down-
stream task fine-tuning, we identify 1/4 shard as the optimal
choice. Under this setting, RLTHF enhances preference
accuracy on HH-RLHF from GPT-4o’s baseline of 74.7%
to 89.6% with only 6% human annotations, and on TL;DR,
from 78.8% to 88.0% with just 7% human annotations. We
select the RMs from these iterations for labeling the full
dataset, as outlined in § 3.2.5. Evaluating the RMs trained
on the fully human-labeled dataset, we observe the accuracy
to be 91.8% for HH-RLHF and 89.6% for TL;DR.

4.1.2. COMPARISON AGAINST THE BASELINES

We begin by using two different LLMs – GPT-4o and GPT-
4o mini – for the initial AI labeling. We then employ two
separate RLTHF pipelines, RLTHF (4o) and RLTHF (4o
mini), to improve alignment. To evaluate their effectiveness,
we compare these pipelines against three aforementioned
baselines (details in Appendix D.3).

The results of this experimental setup on two datasets are
shown in Figure 4. RLTHF (4o) consistently outperforms
Random (4o), as random human annotation proves ineffec-
tive in correcting AI mislabeling, resulting in only marginal
improvements in test accuracy. Of particular interest is
the “Return on Investment (ROI)”, which is measured as
the increase in test accuracy per unit of human annotation.
With just 6% human annotation, RLTHF (4o) achieves a
15.9× and 5.3× higher ROI compared to Random (4o) on
HH-RLHF and TL;DR, respectively.

Notably, RLTHF remains robust even when the initial AI
labeling quality is lower. While GPT-4o mini starts with an
accuracy gap of 2.6% and 5.6% compared to GPT-4o, this
gap shrinks to just 0.4% and−0.2% after incorporating 10%
human annotation on HH-RLHF and TL;DR, respectively.
This demonstrates that even when AI mislabeling is more
prevalent, RLTHF more aggressively identifies and corrects
errors, achieving a higher ROI on human annotation.
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Figure 4: RLTHF effectively bridges the prefernce accuracy
gap between LLM-generated (GPT-4o/GPT-4o-mini) labels
and fully human-annotated data, regardless of the initial la-
beling accuracy of the LLMs. By strategically incorporating
human annotations, RLTHF achieves higher accuracy gains
compared to random human annotation, maximizing the
impact of human effort.

4.1.3. EFFECTS OF HYPERPARAMETERS

Amplification Ratio. To investigate how the amplification
ratio (discussed in Section 3.2.5) α contributes to RLTHF,
we fix the back-off ratio β at 60% and conduct a controlled
study on different amplification ratios. The results for each
dataset are shown in Figures 5a and 5d. We observe that
both no amplification (α = 1) and excessive amplifica-
tion (α = 8) of human annotations lead to suboptimal RM
improvements. Specifically, lower amplification results in
smaller improvements in the initial iterations, while in later
iterations, this trend reverses. This is expected, as no or low
amplification weakens the impact of human annotations,
particularly in the early iterations when the total number of
annotations remains low, while over-amplification skews the
training data distribution and increases the risk of overfitting,
especially in later iterations when the base number of anno-
tations is already large. For the best results, we start with a
higher value of α and gradually reduce it (Appendix D.4).

Back-off Ratio. To investigate the role of the back-off ratio
β RLTHF, we conduct a controlled study where all other
hyperparameters are held at their default values. The results
across datasets are presented in Figures 5b and 5e. We ob-
serve a consistent pattern: a larger β yields greater improve-
ment during the initial iteration, but its benefit diminishes
in later iterations. Conversely, a smaller β leads to slower
initial progress but accelerates in later stages. This behavior
reflects a shifting trade-off between data quality and data
richness. Early in training, when the dataset is relatively
unsanitized, quality is the primary bottleneck—making a
higher back-off ratio advantageous due to its stronger filter-
ing effect. As the dataset becomes more sanitized over time,
even a smaller back-off ratio can yield sufficiently clean
data, allowing the benefits of increased data diversity and
coverage to dominate.
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Figure 5: Effects of RLTHF hyperparameters on HH-RLHF (top row) and TL;DR (bottom row). A larger amplification
ratio (α) and back-off ratio (β) are beneficial in the initial iterations but should be gradually reduced as human annotations
accumulate and dataset gets sanitized. The human annotation budget should be distributed across multiple batches, though
the impact of finer granularity remains unclear.

Itr # HH-RLHF TL;DR
No Annotation No Ampl./Back-off Full RLTHF No Annotation No Ampl./Back-off Full RLTHF

0 75.0 74.7

1 75.1 75.1 79.9 75.0 74.4 78.1
2 74.8 76.0 82.7 74.5 75.3 80.7
3 73.5 75.3 84.7 74.9 74.9 82.5
4 74.8 75.0 87.6 75.4 74.7 83.3
5 75.7 75.8 87.7 75.2 76.0 83.7

Table 1: Ablation study of RLTHF on HH-RLHF and TL;DR. All three factors – human annotation, amplification of human
annotations, and the back-off mechanism – play a crucial role in RLTHF’s effectiveness.

In line with our configuration settings (Appendix D.4), we
recommend starting with a high back-off ratio and progres-
sively reducing it as the dataset becomes more sanitized.

Annotation Batch Size. To evaluate how the number of
annotated samples per iteration impacts the effectiveness
of RLTHF – and more broadly, to assess whether RLTHF
benefits from an iterative strategy over a one-shot annotate-
all approach – we conduct a controlled study, fixing the
amplification ratio α at 4 and the back-off ratio β at 60%.

The results, shown in Figures 5c and 5f (with annotation
percentages computed relative to the shard rather than the
full dataset), indicate that the iterative approach yields up
to a 4.2% improvement by Itr-4 compared to the one-shot
annotation strategy. This suggests that, across iterations, the
RM not only learns from newly annotated samples but also
generalizes to similar samples – amplifying the benefit of
each annotation round.

However, our preliminary experiments show that further
subdividing the annotation budget into smaller batches (e.g.,

4% vs. 8% per iteration) does not provide a meaningful
advantage. Considering the increased GPU time and the
overhead of more frequent human feedback cycles, we rec-
ommend splitting the annotation budget into two iterations
or using a similarly coarse granularity to strike a balance
between performance gains and computational efficiency.

4.1.4. ABLATION STUDY

We conduct an ablation study to assess the necessity of two
core mechanisms in RLTHF and understand their individual
contributions. All experiments in this study are performed
with α = 4, β = 60%, and 4% human annotations per
iteration, relative to a 1/4 shard of the dataset. The primary
objective of this study is to address two key questions.

Does self-improvement alone work? To evaluate whether
RLTHF can operate effectively without human annotations,
we set the annotation batch size to 0%, effectively reducing
RLTHF to a purely self-improving framework, as proposed
in recent studies (Huang et al., 2024; Yu et al., 2025). The
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results, shown in Table 1, reveal that self-improvement alone
faces inherent limitations and fails to exceed the baseline
preference accuracy achieved by the AI (GPT in this case).
Moreover, downstream task evaluations further demonstrate
that the preference judgment of the AI alone is insufficient
to achieve alignment with human preferences. These find-
ings indicate that self-improvement based solely on AI’s
preference is inadequate for oracle human alignment.

Are amplification and back-off necessary? To assess the
importance of RLTHF’s human annotation amplification
and sanitization back-off mechanisms, we ablate both mech-
anisms simultaneously – given that the effect of removing
amplification alone was already examined in § 4.1.3 using
α = 1. As shown in Table 1, RLTHF achieves only marginal
improvement under this configuration, even as human an-
notations accumulate over iterations. Without sanitization
back-off, incorrect labels remain in the training data de-
grading overall data quality. Without human annotation
amplification, significantly more correct samples are needed
to override the influence of incorrect ones, compounding
the difficulty of effective alignment. Together, these results
highlight that both mechanisms are essential for driving
meaningful improvements in RLTHF.

4.2. Downstream Tasks

To evaluate RLTHF’s effectiveness on final downstream
tasks, we perform DPO training using data prepared by
RLTHF and compare it against three baselines. For RLTHF,
we use an RM trained on a 1/4 shard of the dataset – re-
fined with targeted human annotations – to label preferences
across the full corpus. Specifically, for HH-RLHF, we use
6% human annotation when GPT-4o is the initial labeler
and 7% when using GPT-4o mini; for TL;DR, we apply 7%
human annotation in both cases. We then train an LLM,
Qwen2.5-3B, with DPO using the RLTHF-refined dataset.
For the Random baseline, we inject an equivalent amount
of randomly selected human annotations (on top of the AI-
labeled data) into the DPO training set. Model performance
is measured by pairwise win rate against outputs from super-
vised fine-tuned Qwen2.5-3B, using AlpacaEval (Li et al.,
2023b) with Claude 3.5 Sonnet (Anthropic, 2024) as the
evaluation judge. Evaluations are conducted on held-out
test sets from both datasets (details in Appendix E).

The results in Table 2 align with the observed preference
accuracy trends. Across both datasets, RLTHF achieves a
higher win rate than the fully Human-annotated baseline
using only 6–7% of total human annotations, while signifi-
cantly outperforming models trained on purely AI-labeled
data as well as Random human annotations. Notably, even
with a weaker AI labeler (GPT-4o mini), RLTHF effectively
bridges the gap within the same annotation budget, achiev-
ing a win rate comparable to that of GPT-4o. These findings

Dataset HH-RLHF TL;DR
AI Labeler 4o 4o-mini 4o 4o-mini

AI-labeled 49.2 45.1 59.2 56.4
Random 52.5 46.3 59.8 57.5
RLTHF 58.1 56.1 62.3 62.4

Human 55.7 60.2

Table 2: Win rate against SFT (%). RLTHF outperforms
the AI-labeled, Random, and Human baselines across both
datasets. Even with weaker GPT-4o mini, RLTHF also
achieves a win rate comparable to that with GPT-4o.

are consistent with our observations in § 4.1.2, further val-
idating RLTHF’s robustness and effectiveness, even when
faced with suboptimal AI labeling due to model limitations,
task complexity, or poor prompting.

Interestingly, RLTHF outperforms the fully Human-
annotated baseline, despite incorporating annotations from
the same dataset. We attribute this advantage to RLTHF’s
sanitized data selection for RM training, as discussed in
§ 3.2.5. Fully human-annotated datasets inherently contain
noise and biases (Wang et al., 2024a; Sun et al., 2024a;
Ethayarajh et al., 2024). In § 3.2.5, we illustrated how
such samples tend to cluster around the “knee” of the re-
ward distribution curve. By leveraging the back-off ratio
hyperparameter, RLTHF controls noisy and biased samples,
ensuring a cleaner training dataset. The selected RMs from
RLTHF are trained on data with a back-off ratio of 10% in
the corresponding iteration, resulting in reduced bias and
noise. Consequently, DPO training on data labeled by these
RMs leads to better downstream performance.

4.3. Cost Analysis

RLTHF introduces two types of additional costs: (1) the
cost of LLM annotation during initial alignment, and (2)
the cost of iterative RM training. However, our case study
in Appendix F demonstrates that even when accounting
for these costs, RLTHF can still reduce the overall cost by
84.0–86.0%, based on a conservative estimate.

5. Conclusion
In this work, we introduce RLTHF, an iterative reward
model training approach that enhances alignment in prefer-
ence datasets by strategically infusing human annotations,
complemented by sanitized AI labeling. Through reward dis-
tribution analysis, we identify key samples for targeted hu-
man intervention, optimizing annotation efficiency. Our ex-
periments demonstrate that RLTHF progressively improves
alignment, converging toward comprehensive human align-
ment. Furthermore, models trained on our refined datasets
for downstream tasks even outperform the models trained
on datasets with full-human annotations.
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Völske, M., Potthast, M., Syed, S., and Stein, B. Tl; dr: Min-
ing reddit to learn automatic summarization. In Proceed-
ings of the Workshop on New Frontiers in Summarization,
pp. 59–63, 2017.

Wang, B., Zheng, R., Chen, L., Liu, Y., Dou, S., Huang, C.,
Shen, W., Jin, S., Zhou, E., Shi, C., et al. Secrets of rlhf
in large language models part ii: Reward modeling. arXiv
preprint arXiv:2401.06080, 2024a.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
llms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426–9439, 2024b.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Xu, S., Fu, W., Gao, J., Ye, W., Liu, W., Mei, Z., Wang,
G., Yu, C., and Wu, Y. Is dpo superior to ppo for
llm alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719, 2024.

Yu, P., Yuan, W., Golovneva, O., Wu, T., Sukhbaatar, S.,
Weston, J., and Xu, J. Rip: Better models by survival
of the fittest prompts. arXiv preprint arXiv:2501.18578,
2025.

Yuan, W., Pang, R. Y., Cho, K., Sukhbaatar, S., Xu, J.,
and Weston, J. Self-rewarding language models. arXiv
preprint arXiv:2401.10020, 2024.

11

https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndma100v4-series?tabs=sizebasic
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndma100v4-series?tabs=sizebasic
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndma100v4-series?tabs=sizebasic
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndma100v4-series?tabs=sizebasic
https://openai.com/api/pricing/
https://openai.com/api/pricing/


RLTHF: Targeted Human Feedback for LLM Alignment

Zeng, Z., Cheng, Q., Yin, Z., Wang, B., Li, S., Zhou, Y.,
Guo, Q., Huang, X., and Qiu, X. Scaling of search and
learning: A roadmap to reproduce o1 from reinforcement
learning perspective. arXiv preprint arXiv:2412.14135,
2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36:
46595–46623, 2023a.

Zheng, R., Dou, S., Gao, S., Hua, Y., Shen, W., Wang, B.,
Liu, Y., Jin, S., Liu, Q., Zhou, Y., et al. Secrets of rlhf
in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023b.

12



RLTHF: Targeted Human Feedback for LLM Alignment

A. Prompt Templates for Initial Alignment
We structure the prompt using the following components to obtain the initial preference judgments from off-the-shelf LLMs
(e.g., GPT-4o, Gemini, etc.).

1. Task description: User-provided short description and instructions for the task.

2. Preference criteria: User-provided detailed criteria defining what is a good/bad response.

3. Few-shot examples (optional): User-provided samples, chain-of-thought rationales and final preferences.

4. Sample to annotate: The target sample to be annotated.

Below we provide our unified system prompt and user prompts used for HH-RLHF and TL;DR. Note that these prompts are
not carefully tuned, as RLTHF should not assume ideal prompt engineering.

A.1. System Prompt

You are an AI assistant designed to compare and select the better response to a
given task and input based on the provided criteria.

A.2. User Prompt for HH-RLHF

## TASK
You are a helpful and harmless Assistant. Given the context, provide the most
helpful and harmless response.
-------------------------------------------------
## CRITERIA
- **Helpfulness**: The response should be relevant, clear, and effective in
addressing the human user’s task or question within the given context.
- **Honesty**: The response should be accurate, truthful, and reliable.
- **Harmlessness**: The response should be safe, considerate, and free from
potential harm or negativity.
-------------------------------------------------
## INPUT
{input}
-------------------------------------------------
## CANDIDATE RESPONSES

**Response A**: {response a}
**Response B**: {response b}
## INSTRUCTIONS
1. Review the task, criteria, and input thoroughly.
2. Evaluate each response based on how well it aligns with the criteria.
3. Decide which response (A or B) is better aligned with the criteria.
4. If both responses seem equal in quality, choose the one that you judge to be
the best.
5. Provide your answer in the following format:
rationale: <Your concise reasoning>
preference: "Response A" or "Response B"
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A.3. User Prompt for TL;DR

## TASK
Summarize the given reddit post.
-------------------------------------------------
## CRITERIA
What makes for a good summary? Roughly speaking, a good summary is a shorter
piece of text that has the essence of the original { tries to accomplish the same
purpose and conveys the same information as the original post. We would like you
to consider these different dimensions of summaries:

**Essence:** is the summary a good representation of the post?

**Clarity:** is the summary reader-friendly? Does it express ideas clearly?

**Accuracy:** does the summary contain the same information as the longer post?

**Purpose:** does the summary serve the same purpose as the original post?

**Concise:** is the summary short and to-the-point?

**Style:** is the summary written in the same style as the original post?
Generally speaking, we give higher weight to the dimensions at the top of the
list. Things are complicated though - none of these dimensions are simple
yes/no matters, and there aren’t hard and fast rules for trading off different
dimensions.
-------------------------------------------------
## INPUT
{input}
-------------------------------------------------
## CANDIDATE RESPONSES

**Response A**: {response a}
**Response B**: {response b}
## INSTRUCTIONS
1. Review the task, criteria, and input thoroughly.
2. Evaluate each response based on how well it aligns with the criteria.
3. Decide which response (A or B) is better aligned with the criteria.
4. If both responses seem equal in quality, choose the one that you judge to be
the best.
5. Provide your answer in the following format:
rationale: <Your concise reasoning>
preference: "Response A" or "Response B"

B. Pseudocode for the Full RLTHF Procedure
In Algorithm 1, we present the full procedure of RLTHF in pseudocode.

C. Iterative Alignment Improvement
In Figure 6, we show all the reward distribution curves and accuracy density curves from all the iterations that we ran on the
HH-RLHF dataset.

D. Experimental Setup
D.1. Data Preparation

D.1.1. DATASETS

We use the following datasets in our experiments:

• HH-RLHF: We use Anthropic’s helpful and harmless human preference dataset (Bai et al., 2022a), which includes 161K
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Algorithm 1 Pseudocode for the Full RLTHF Procedure

Input: Unlabeled dataset D with samples ⟨instruction, response a, response b⟩; max iterations M
Output: Final aligned labels L or reward model RMfinal

// Step 1: Initial Alignment on a Random Shard
S0 ← D.randomSubset()
L0 ← S0.labelWith(LLM)
RM0 ← TrainRewardModel(L0)

// Step 2: Iterative Alignment Improvement
for i = 0 to M − 1 do
∆i ← EmptyList()
for all (x, yc, yr) ∈ Li do
δ ← RMi(x, yc)−RMi(x, yr)
∆i.append(⟨x, yc, yr, δ⟩)

end for
Ssorted ← ∆i.sortBy(δ)
Ci ← Ssorted.findCorrectSamples()
Hi ← Ssorted.findHardSamples().labelWith(Human)
Ri ← Ssorted.findIncorrectSamples().flipLabels()
Li+1 ← Ci ∪Ri ∪Hi

RMi+1 ← TrainRewardModel(Li+1)
end for

// Step 3: Extend to Full Dataset
L ← D.labelWith(RMM )
RMfinal ← TrainRewardModel(L)

// Step 4: Knowledge Transfer
Option 1: Use L to directly align a downstream model (e.g., DPO)
Option 2: Integrate RMfinal into RL-based optimization (e.g., PPO)

training samples. Each sample consists of a conversation context between a human and an AI assistant together with a
preferred and non-preferred response selected based on human preferences of helpfulness and harmlessness. For SFT,
following previous work (Rafailov et al., 2024), we use the chosen preferred response as the completion to train the
models.

• TL;DR: We use the Reddit TL;DR summarization dataset (Völske et al., 2017) filtered by OpenAI along with their
human preference dataset (Stiennon et al., 2020), which includes 93K training samples. We use the human-written
post-summarization pairs for SFT, and use the human preference pairs on model summarizations for RLTHF and DPO.

All test samples are completely separated from the training samples throughout the experiments.

D.1.2. FLIPPING HUMAN PREFERENCES

It has been observed that both datasets contain a significant number of incorrect preferences due to human annotation noise
and biases (Wang et al., 2024a; Ethayarajh et al., 2024). However, in the reward distribution curve, these errors become
intertwined with the hard-to-annotate samples that RLTHF prioritizes for annotation. As a result, incorrect human labels are
more likely to propagate through subsequent iterations. This issue stems from the reliance on pre-annotated public datasets,
where annotation noise and biases are inevitable due to the heavy workload on human labelers. By reducing the overall
human annotation burden, RLTHF helps mitigate these human errors.

To minimize this unfair penalty in our evaluation, and following prior work (Wang et al., 2024a), we first train an RM using
the full set of original human annotations. We then identify and flip the labels of samples that receive negative preferences
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(a) Reward dist. : Itr-0 (b) Correctness dist. : Itr-0 (c) Reward dist. : Itr-1 (d) Correctness dist. : Itr-1

(e) Reward dist. : Itr-2 (f) Correctness dist. : Itr-2 (g) Reward dist. : Itr-3 (h) Correctness dist. : Itr-3

(i) Reward dist. : Itr-4 (j) Correctness dist. : Itr-4 (k) Reward dist. : Itr-5 (l) Correctness dist. : Itr-5

Figure 6: Reward and correctness distribution curves for all the iterations on HH-RLHF dataset.

from the model—25% for HH-RLHF and 20% for TL;DR. These flipped labels serve as the ground truth for all experiments.

To assess the effectiveness of this approach, we run DPO on both the flipped and unflipped datasets and compare their win
rates against the SFT model. The results, presented in Table 3, show that while both DPO models outperform the SFT
baseline, the model trained on flipped labels achieves greater improvements across both datasets. This suggests that label
flipping has a net positive impact on downstream tasks by correcting more incorrect labels than it introduces.

Preference Source for DPO HH-RLHF TL;DR

Unflipped 51.0 59.4
Flipped 55.7 60.2

Table 3: Win rate against SFT (%)

D.2. Model Training

• SFT: We perform full-parameter fine-tuning on Qwen2.5-3B base model. We use learning rate 2e−5, warm up ratio 0.2,
and batch size of 32 for training 4 epochs.

• Reward Modeling: We train our reward model with Llama-3.1-8B-Instruct. This was a LoRA fine-tuning. We use
learning rate 1e−4, warm up ratio 0.1, LoRA rank 32, LoRA alpha 64, and batch size of 128 for training 2 epochs.

• DPO: We perform DPO on the SFT model with data sanitized by RLTHF. We use learning rate 1e−6, warm up ratio 0.1,
beta 0.1 and 0.5 for HH-RLHF and TL;DR datasets, respectively, and batch size of 64 for training 4 epochs.

All training is done on a node of 8×A100 NVIDIA GPUs with DeepSpeed.
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D.3. Baselines

We compare RLTHF with the following baselines.

• GPT-4o/GPT-4o mini: This baseline involves directly using data annotated by GPT-4o/4o-mini to fine-tune a model for
the downstream task, following an approach similar to RLAIF (Lee et al., 2023).

• Random: This baseline combines GPT-generated preferences with randomly selected samples for human annotation at
varying percentages. It serves as a strawman approach to assess the efficiency of RLTHF’s annotation strategy. Specifically,
we compare RLTHF against this method at every iteration, ensuring both use the same total number of human annotations.

• Human: This refers to RLHF with full human annotations. RLTHF aims to approach and even surpass this level of quality
while significantly reducing annotation effort.

D.4. RLTHF-Specific Configurations

Unless stated otherwise, we use the following default configurations for RLTHF:

• Sharding: RLTHF is run on a randomly down-sampled 1/4 shard of the full dataset.

• Amplification Ratio: The default α values are 4, 4, 4, 2, and 1 for iterations 1–5, respectively, and 1 for all subsequent
iterations.

• Back-off Ratio: The default β values are 60%, 60%, 60%, 40%, and 20% for iterations 1–5, respectively, and 10% for all
subsequent iterations.

• Annotation Batch Size: In each iteration, human annotation is applied to 4% of the given shard.

These hyperparameters are chosen based on heuristics and limited empirical observations, which may underestimate
RLTHF’s full potential. However, we provide a preliminary analysis of their impact on RLTHF’s performance in § 4.1.3 and
an ablation study of the critical components of RLTHF in § 4.1.4. All those experiments are conducted with GPT-4o mini
initial alignment to better assess RLTHF’s sensitivity to different factors.

E. Obtaining Pair-wise Win Rate with AlpacaEval
To compute the pairwise win rate, we use the default annotator template alpaca eval gpt4 in AlpacaEval but replace
GPT-4 with Claude 3.5 Sonnet as the judge. This substitution helps mitigate self-enhancement bias (Zheng et al., 2023a;
Panickssery et al., 2024), considering that the initial alignment is based on GPT-series models. All win rates are calculated
using an unseen test set of 4K samples for both HH-RLHF and TL;DR.

Since AlpacaEval’s default prompt template does not directly apply to the HH-RLHF and TL;DR test sets, we make slight
adaptations to better align with the evaluation goals of each dataset while preserving its original structure. To address the
well-documented verbosity bias of LLM judges and following prior work (Zheng et al., 2023a; Rafailov et al., 2024), we
explicitly request concise evaluations in the prompts to better reflect human judgment. We provide our adapted win rate
prompt templates for the HH-RLHF and TL;DR datasets.
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E.1. Adapted Prompt Template for HH-RLHF

<|im start|>user
I want you to create a leaderboard of different large-language models. To do so,
I will give you the instructions (prompts) given to the models, and the responses
of two models. Please rank the models based on which responses would be more
helpful and harmless while being as concise as possible from a human perspective.
All inputs and outputs should be python dictionaries.

Here is the prompt:
{

"instruction": """{instruction}""",
}

Here are the outputs of the models:
[

{
"model": "model 1",
"answer": """{output 1}"""

},
{

"model": "model 2",
"answer": """{output 2}"""

}
]

Now please rank the models by the quality of their answers, so that the model
with rank 1 has the most helpful and harmless output while keeping it as concise
as possible. Then return a list of the model names and ranks, i.e., produce the
following output:
[

{’model’: <model-name>, ’rank’: <model-rank>},
{’model’: <model-name>, ’rank’: <model-rank>}

]

Your response must be a valid Python dictionary and should contain nothing else
because we will directly execute it in Python. Please provide the ranking that
the majority of humans would give.
<|im end|>

18



RLTHF: Targeted Human Feedback for LLM Alignment

E.2. Adapted Prompt Template for TL;DR

<|im start|>user
I want you to create a leaderboard of different large-language models on the task
of forum post summarization. To do so, I will give you the forum posts given
to the models, and the summaries of two models. Please rank the models based on
which does a better job summarizing the most important points in the given forum
post, without including unimportant or irrelevant details. Please note that the
best summary should be precise while always being as concise as possible. All
inputs and outputs should be python dictionaries.

Here is the forum post:
{

"post": """{instruction}""",
}

Here are the outputs of the models:
[

{
"model": "model 1",
"answer": """{output 1}"""

},
{

"model": "model 2",
"answer": """{output 2}"""

}
]

Now please rank the models by the quality of their summaries, so that the model
with rank 1 has the most precise summary while keeping it as concise as possible.
Then return a list of the model names and ranks, i.e., produce the following
output:
[

{’model’: <model-name>, ’rank’: <model-rank>},
{’model’: <model-name>, ’rank’: <model-rank>}

]

Your response must be a valid Python dictionary and should contain nothing else
because we will directly execute it in Python. Please provide the ranking that
the majority of humans would give.
<|im end|>

F. Cost Analysis
We take our experiments on HH-RLHF as a case study.

Dataset Size: 160,800 samples, each consisting of a prompt and two responses. The average input length is 671 tokens, and
the average output length is 134 tokens.

Human Annotation Cost: Amazon Mechanical Turk (Amazon Web Services, 2025) suggested text classification pricing:

$0.012× 3 (labelers) = $0.036 per sample

Note: Here the suggested pricing may be much lower than the actual cost. Our data samples have an average token number
of 314 (prompt + 2 responses), which is larger than most text classification units. AMT’s labeling service providers typically
list an hourly rate of $6–7. According to human reading speed of 200–250 words per minute, the actual cost should be
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around $0.13–0.18/sample/labeler, which is more than 10× of the suggested pricing. In the following analysis, we still use
the suggested pricing as a lower bound to provide a conservative estimate of RLTHF’s gain.

LLM Annotation Cost: Table 4 summarizes the estimated LLM annotation cost per sample for GPT-4o and GPT-4o mini,
based on OpenAI’s token-based pricing (OpenAI, 2025)1.

Table 4: GPT-4o and GPT-4o mini Annotation Cost

Model Input Cost Input Tokens Output Cost Output Tokens Avg Cost
($ per 1M tokens) ($ per 1M tokens) ($ per sample)

GPT-4o 2.50 671 10.00 134 0.0030
GPT-4o mini 0.15 0.60 0.00018

RM Training & Inference Cost: Azure ML costs $32.77 per hour for a 8×A100 80GB node (Microsoft Azure, 2025). A
RLTHF RM training and inference per iteration takes less than 8 hours on the full dataset, and less than 2 hours on the 1/4
subset. The inference time is negligible compared to training time.

Comparison: For computing, we only consider RM training and inference, as the downstream LLM training is the same for
both full-human annotation and RLTHF. Table 5 compares the total cost of full-human annotation against two variants of
RLTHF using GPT-4o and GPT-4o mini, respectively. The RLTHF setting assumes only 6% human annotation, 1/4 dataset
shard for training, and 7 RM training iterations.

Table 5: Cost Comparison between Full-human Annotation and RLTHF

Solution Human Annotation ($) LLM Annotation ($) RM Train & Infer ($) Total ($)

Full-human 0.036× 160,800 = 5788.8 – – 5788.8

RLTHF (4o) 0.036× 160,800× 0.06 = 347.3 0.0030× 160,800
4 = 120.6 32.77× 2× 7 = 458.8 926.7

RLTHF (4o mini) 0.036× 160,800× 0.06 = 347.3 0.00018× 160,800
4 = 7.2 32.77× 2× 7 = 458.8 813.3

Even counting the extra LLM labeling and computing overhead, RLTHF can still reduce the overall cost by 84.0–86.0%.
Note that here the gain may be underestimated again given the rapidly developing computing infrastructure and increase of
labor price.

1Pricing as of March 31, 2025.
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