
Published as a conference paper at ICLR 2022

GRAPH AUTO-ENCODER VIA
NEIGHBORHOOD WASSERSTEIN RECONSTRUCTION

Mingyue Tang1∗, Carl Yang2∗, Pan Li3†
1Department of Engineering Systems and Environment, University of Virginia
2Department of Computer Science, Emory University
3Department of Computer Science, Purdue University
utd8hj@virginia.edu, j.carlyang@emory.edu, panli@purdue.edu

ABSTRACT

Graph neural networks (GNNs) have drawn significant research attention recently,
mostly under the setting of semi-supervised learning. When task-agnostic rep-
resentations are preferred or supervision is simply unavailable, the auto-encoder
framework comes in handy with a natural graph reconstruction objective for un-
supervised GNN training. However, existing graph auto-encoders are designed to
reconstruct the direct links, so GNNs trained in this way are only optimized towards
proximity-oriented graph mining tasks, and will fall short when the topological
structures matter. In this work, we revisit the graph encoding process of GNNs
which essentially learns to encode the neighborhood information of each node into
an embedding vector, and propose a novel graph decoder to reconstruct the entire
neighborhood information regarding both proximity and structure via Neighbor-
hood Wasserstein Reconstruction (NWR). Specifically, from the GNN embedding
of each node, NWR jointly predicts its node degree and neighbor feature distribu-
tion, where the distribution prediction adopts an optimal-transport loss based on
the Wasserstein distance. Extensive experiments on both synthetic and real-world
network datasets show that the unsupervised node representations learned with
NWR have much more advantageous in structure-oriented graph mining tasks,
while also achieving competitive performance in proximity-oriented ones.1

1 INTRODUCTION

Network/Graph representation learning (a.k.a. embedding) aims to preserve the high-dimensional
complex graph information involving node features and link structures in a low-dimensional em-
bedding space, which requires effective feature selection and dimension reduction (Hamilton et al.,
2017b). Graph neural networks (GNNs) have done great jobs to this end, but most of them rely
on node labels from specific downstream tasks to be trained in a semi-supervised fashion (Kipf &
Welling, 2017; Hamilton et al., 2017a; Wu et al., 2019; Veličković et al., 2018a; Klicpera et al.,
2019; Chien et al., 2021). However, similar to other domains, unsupervised representation learning is
preferred in many cases, not only because labeled data is not always available (Hu et al., 2020; Xie
et al., 2021), but also task-agnostic representations can better transfer and generalize among different
scenarios (Erhan et al., 2010; Bengio, 2012; Radford et al., 2016).

To train GNNs in an unsupervised fashion, the classic auto-encoder framework (Baldi, 2012; Good-
fellow et al., 2016) provides a natural solution and has been widely explored such as the prominent
work (V)GAE (Kipf & Welling, 2016). Specifically, classic auto-encoders aim to decode from the
low-dimensional representations information in the entire receptive field of the neural networks. For
GNNs, the receptive field of a node representation is its entire neighborhood. However, existing graph
auto-encoders appear away from such a motivation and are designed to merely decode the direct
links between the node pairs by minimizing a link reconstruction loss. The fundamental difficulty to
reconstruct the entire receptive fields of GNNs is due to the non-trivial design of a reconstruction loss
on the irregular graph structures. Unfortunately, the over-simplification into link reconstruction makes
the learned node representations drop much information and thus provides undesired performance in
many downstream tasks.
∗Equal contribution. †Corresponding author.
1Code available at https://github.com/mtang724/NWR-GAE.
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Figure 1: A toy example (redrawn from real experiments) illustrating different types of information
in real-world graphs and the two-dimensional node embedding spaces learned by different models.
Colors indicates node features. The nodes with same digits are transitive in some graph automorphism.

Take Figure 1 as an example, where different types of information are mixed in a graph (e.g., proximity
and structure information as illustrated in Figure 5 in Appendix B (Cui et al., 2021)). The node
representations learned by existing graph auto-encoders such as GAE (Kipf & Welling, 2016) are
driven too much to be similar on linked nodes due to their simple link reconstruction objective,
and thus fail to distinguish node pairs like (2, 4) and (3, 5) in the cliques, though they clearly have
different structural roles and node features. On the other hand, structure-oriented embedding models
like GraphWave (Donnat et al., 2018) cannot consider node features and spatial proximity, and thus
fail to distinguish node pairs like (0, 1), (2, 4) and (3, 5) though they have different features, as well
as (2, 5) and (3, 4) though they are further apart. An ideal unsupervised node representation learning
model as we advocate in this work is expected to be task-agnostic and encode as much information as
possible of all types in a low-dimensional embedding space.

In this work, we aim to fundamentally address the above limitations of existing unsupervised node
representation learning models by proposing a novel graph auto-encoder framework for unsupervised
GNN training. The new framework is equipped with a powerful decoder that fully reconstructs the
information from the entire receptive field of a node representation. Our key technical contribution
lies in designing a principled and easy-to-compute loss to reconstruct the entire irregular structures of
the node neighborhood. Specifically, we characterize the decoding procedure as iteratively sampling
from a series of probability distributions defined over multi-hop neighbors’ representations obtained
through the GNN encoder. Then, the reconstruction loss can be decomposed into three parts, for
sampling numbers (node degrees), neighbor-representation distributions and node features. All of
these terms are easy to compute but may represent the entire receptive field of a node instead of just
the linkage information to its direct neighbors. For the most novel and important term, neighbor-
representation distribution reconstruction, we adopt an optimal-transport loss based on Wasserstein
distance (Frogner et al., 2015) and thus name this new framework as Neighborhood Wasserstein
Reconstruction Graph Auto-Encoder (NWR-GAE). As also illustrated in Figure 1, NWR-GAE can
effectively distinguish all pairs of nodes dissimilar in different perspectives, and concisely reflect
their similarities in the low-dimensional embedding space.

We have conducted extensive experiments on four synthetic datasets and nine real-world datasets.
Among the real-world datasets, three have proximity-oriented tasks, three have structure-oriented
tasks, and three have proximity-structure-mixed tasks. We can observe significant improvements
brought by NWR-GAE over the best method among the state-of-the-art baselines on all structure-
oriented tasks (8.74% to 18.48%) and proximity-structure-mixed tasks (-2.98% to 8.62%), and
competitive performance on proximity-oriented tasks (-3.21% to -0.32%). In-depth ablation and
hyper-parameter studies further consolidate the claimed advantages of NWR-GAE.

2 PRELIMINARIES, MOTIVATIONS & OTHER RELATED WORKS

In this work, we focus on the auto-encoder framework for unsupervised task-agnostic graph repre-
sentation learning. The original motivation of auto-encoders is to perform neural-network-based
dimension reduction of the data that originally lies in a high-dimensional space (Hinton & Salakhutdi-
nov, 2006). Specifically, an auto-encoder consists of two components, an encoder and a decoder. The
encoder works to compress each data point into a low-dimensional vector representation, while the
decoder works to reconstruct the original information from this vector. By minimizing the reconstruc-
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Figure 2: The information source/receptive �eld of the node representationh(2)
v .

tion error, the encoder automatically converges to a good compressor that allows the low-dimensional
representations to capture as much information as possible from the original data.

Although the above high-level idea of auto-encoders is clear, when it is applied to graph structured
data, the problem becomes challenging. This is because in graph-structured data, information of data
points (nodes to be speci�c as most widely studied) is correlated due to the ambient graph structure.
Without a speci�c task needed in a priori, the learned low-dimensional representation of a node
should carry as much information as possible from not only its own features but also the features of
the nodes it connects to (both directly and indirectly).

This implies that when building auto-encoders for graph-structure data, we expect the node represen-
tations to be able to reconstruct all correlated node features. However, existing graph auto-encoders
seem to be away from this motivation. Previous prominent works such as unsupervised Graph-
SAGE (Hamilton et al., 2017a), GAE (Kipf & Welling, 2016), their generative variants such as
VGAE (Kipf & Welling, 2016), CondGen (Yang et al., 2019) (), and many others (Grover et al.,
2019; Pan et al., 2018; Shi et al., 2020; Yang et al., 2021), use GNNs to encode graph structured
data into node representations. Without exception, they follow the rationale of traditional network
embedding techniques (Perozzi et al., 2014; Qiu et al., 2018; Grover & Leskovec, 2016) and adopt
link reconstruction in the decoder as the main drive to optimize their GNN encoders. The obtained
node representations best record the network linkage information but lose much of other important
information, such as local structures, neighbors' features, etc. Hence, these auto-encoders will most
likely fail in other tasks such as node classi�cations (especially structure-oriented ones as manifested
in Figure 1).

To better understand this point, we carefully analyze the source of information encoded in each
node representation via a GNN. Suppose a standard message-passing GNN (Gilmer et al., 2017) is
adopted as the encoder, which is a general framework that includes GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017a), GAT (Veli�cković et al., 2018a), GIN (Xu et al., 2019c) and so
on. Afterk-hop message passing, the source of information encoded in the representation of a nodev
essentially comes from thek-hop neighborhood ofv (Fig. 2). Therefore, a good representation of
nodev should capture the information of features from all nodes in itsk-hop neighborhood, which is
agnostic to downstream tasks. Note that this may not be ideal as nodes out ofk-hop neighborhood may
also provide useful information, but this is what GNN-based graph auto-encoders can be expected
to do due to the architectures of GNN encoders. This observation motivates our study on a novel
graph decoder that can better facilitate the goal of GNN-based graph auto-encoders, based on the
neighborhood reconstruction principle. We will formalize this principle in Sec. 3.

Relation to the InfoMax principle. Recently, DGI (Veli�cković et al., 2018b), EGI (Zhu et al.,
2021) and others (Sun et al., 2020; Hu et al., 2020; You et al., 2020; Hassani & Khasahmadi, 2020;
Suresh et al., 2021) have used constrasive learning for unsupervised GNN training methods and
may capture information beyond the directed links. They adopt the rule of mutual information
maximization (InfoMax), which essentially works to maximize certain correspondence between the
learned representations and the original data. For example, DGI (Veli�cković et al., 2018b) maximizes
the correspondence between a node representation and which graph the node belongs to, but this has
no guarantee to reconstruct the structural information of node neighborhoods. Recent works even
demonstrate that maximizing such correspondence risks capturing only the noisy information that
is irrelevant to the downsteam tasks because noisy information itself is suf�cient for the models to
achieve InfoMax (Tschannen et al., 2020; Suresh et al., 2021), which gets demonstrated again by
our experiments. Our goal instead is to let node representations not just capture the information to
distinguish nodes but capture as much information as possible to reconstruct the features and structure
of the neighborhood.
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Figure 3: The diagram of our model using an example with 2 GNN layers as the encoder.

Optimal-transport (OT) losses.Many machine learning problems depend on the characterization
of the distance between two probability measures. The familyf -divergence has the non-continuous
issue when the two measures of interest have non-overlapped support (Ali & Silvey, 1966). Therefore,
OT-losses are often adopted and have shown great success in generative models (Gulrajani et al.,
2017) and domain adaptation (Courty et al., 2016). OT-losses have been used to build variational
auto-encoders for non-graph data (Tolstikhin et al., 2018; Kolouri et al., 2018; Patrini et al., 2020).
But one should note the our work is not a graph-data-oriented generalization of these works: They
use OT-losses to characterize the distance between the variational distribution and the data empirical
distribution while our model even does not use a variational distribution. Our model may be further
improved by being reformulated as a variational autoencoder but we leave it as a future direction.

Here, we give a frequently-used OT loss based on 2-Wasserstein distance that will be used later.

De�nition 2.1. Let P; Q denote two probability distributions with �nite second moment de�ned on
Z � Rm . The2-Wasserstein distance betweenP andQ de�ned onZ ; Z 0 � Rm is the solution to
the optimal mass transportation problem with`2 transport cost (Villani, 2008):

W2(P; Q) =
�

inf
 2 �( P ;Q )

Z

Z�Z 0
kZ � Z 0k2

2d (Z; Z 0)
� 1=2

(1)

where�( P; Q) contains all joint distributions of(Z; Z 0) with marginalsP andQ respectively.

3 METHODS

3.1 NEIGHBORHOODRECONSTRUCTIONPRINCIPLE (NRP)

Let G = ( V; E; X ) denote the input graph whereV is the node set,E is the edge set andX =
f xv jv 2 Vg includes the node features. Given a nodev 2 V , we de�ne itsk-hop neighborhood as
the nodes which have shortest paths of length no greater thank from v. Let Nv denote the 1-hop
neighborhood ofv, anddv denote the degree of nodev.

We are to build an auto-encoder to learn a low-dimensional representation of each node. Speci�-
cally, the auto-encoder will have an encoder� and a decoder . � could be any message-passing
GNNs (Gilmer et al., 2017). The decoder further contains three parts = (  s;  p;  d). The physical
meaning of each part will be clear as we introduce them in the later subsections.

First-hop neighborhood reconstruction. To simplify the exposition, we start from1-hop neigh-
borhood reconstruction. We initialize the node representation byH (0) based onX . For every node
v 2 V , after being encoded by one GNN layer, its node representationh(1)

v collects information from
h(0)

v and its neighbors' representationsH (0)
N v

= f h(0)
u ju 2 N v g. Hence, we consider the following

principle that reconstructs the information from bothh(0)
v andH (0)

N v
. Therefore, we have

min
�; 

X

v2 V

M ((h(0)
v ; H (0)

N v
);  (h(1)

v )) ; s.t.h(1)
v = � (h(0)

v ; H (0)
N v

); 8v 2 V; (2)
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