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ABSTRACT

Despite the powerful representation ability of GNNs, recent works have demon-
strated that the performance of GNNs can severely degrade when the number of
labeled nodes is limited in training data. Few-shot Node Classification is one of
the problems with an extreme shortage of node labels and has drawn growing
attention lately. The current modus operandi, i.e., meta-learning, has succeeded
in transferring the structural knowledge learned from base classes with abundant
labeled nodes to few-shot novel classes. However, for real-world scenarios, it is
often the case that all the classes on the graph have limited labeled nodes, thus
meta-learning cannot be directly deployed. In this work, we generalize the few-
shot node classification by removing the assumption that there exist abundant la-
beled nodes for the base classes. In the meantime, we propose a novel Few-shot
Node Prompt Tuning method to effectively elicit substantial prior knowledge in
the input graph for solving few-shot node classification tasks without labeled base
classes. Specifically, we fix a pretrained graph transformer as the encoder and
inject virtual nodes as soft prompts in the embedding space to bridge the gap of
training objectives between the pretexts and downstream few-shot node classifica-
tion tasks. Such prompts are small tensors and can be efficiently optimized with
a simple classifier corresponding to the few labeled nodes. Since a single pre-
trained encoder is shared across different tasks, the proposed method retains the
efficiency and potential for the model ensemble. Extensive experiments on four
prevalent node classification datasets show that the proposed method, FS-NPT, is
an efficient and effective way to tackle the general few-shot node classification
problem. Our implementation is released1.

1 INTRODUCTION

With the rising of deep learning, various Graph Neural Networks (GNNs) (Kipf & Welling, 2017;
Hamilton et al., 2017; Veličković et al., 2018; Xu et al., 2019) have been proposed for effective graph
representation learning. However, recent works (Zhang et al., 2018; Ding et al., 2020; Wang et al.,
2020b) find that the performance of those GNNs will degrade severely when the number of labeled
nodes is insufficient. Such a label scarcity issue prevailingly exists in large graphs where the cost
for manual data collection and labeling is overwhelming. This challenge has led to a proliferation of
studies (Huang & Zitnik, 2020; Lan et al., 2020; Wang et al., 2022) that try to learn fast-adaptable
GNNs for unseen tasks with extremely scarce ground-truth labels, i.e., Few-Shot Node Classification
(FSNC) tasks. Conventionally, if the target FSNC task contains N classes with K labeled nodes per
class, the problem is denoted as an N -way K-shot node classification task, where the K labeled
nodes are termed as a support set, and the unlabeled nodes are termed as a query set for evaluation.

The current modus operandi, i.e., meta-learning, has become a predominate and successful paradigm
to tackle the issue of label shortage on graphs (Zhang et al., 2018; Ding et al., 2020; Huang & Zitnik,
2020; Wang et al., 2022). Besides the target node classes (termed as novel classes) with few labeled
nodes, meta-learning based methods assume the existence of a set of base classes, which is disjoint
with the novel classes set and has substantial labeled nodes in each class to sample a number of meta-
tasks, or episodes, to train the GNN model while emulating the target N -way K-shot task structure.
This emulation-based training has been proved helpful for fast adaptation to target FSNC tasks (Lan
et al., 2020; Wang et al., 2020b). Despite astonishing breakthroughs having been made, Tan et al.
(2022) firstly points out that those meta-learning based methods suffer from the piecemeal graph
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knowledge issue, which implies that only a small portion of nodes are involved in each episode, thus
hindering the generalizability of the learned GNN models regarding unseen novel classes. Moreover,
the assumption of the existence of disjoint base and novel classes could be untenable for real-world
graphs where there might be no base class (e.g., all the classes on the given graph only contain a few
labeled nodes, and we want to do node classification on all classes). In a nutshell, meta-learning is a
successful method for FSNC tasks, but also has its own limitations in effectiveness and applicability.

Based on these limitations in the existing efforts, in this work, we first relax the assumption in the
traditional definition of FSNC tasks to cover the scenarios where there could be no base classes at
all (e.g., all the classes on the given graph only contain a few labeled nodes, and node classification
is performed over all classes, or the number of base classes is very small). Then, to facilitate suffi-
cient training for obtaining a powerful graph encoder, we choose Graph Transformers (GTs) (Zhang
et al., 2020; Chen et al., 2022) as the encoder to learn representative node embeddings. Recently,
large transformer-based (Vaswani et al., 2017) models have thrived in various domains, such as lan-
guages (Devlin et al., 2018), images (Dosovitskiy et al., 2020), as well as graphs (Hu et al., 2020b).
Compared to traditional GNNs, GTs have a much larger magnitude of parameter numbers, which
have shown unique advantages in modeling graph data and acquiring structural knowledge (Zhang
et al., 2020; Chen et al., 2022). Furthermore, pretrained in an unsupervised manner, GTs can learn
from a large number of unlabeled nodes by enforcing the model to learn from pre-defined pretext
tasks (e.g. masked link restoration, masked node recovery, etc.) (Zhang et al., 2020; Hu et al.,
2020b). In other words, no node label information is needed for obtaining pretrained GTs enriched
with topological and semantic knowledge. Thus, the pretraining does not need labeled nodes from
base classes. However, following Tan et al. (2022), we conduct an experiment in Section 4.3, which
shows that directly transferring node embedding from GTs and fine-tuning another classifier on
the support set will lead to unsatisfactory performance on the corresponding FSNC task. This is
because directly transferring node embeddings neglects the inherent gap between the training ob-
jective of the pretexts and that of the downstream FSNC tasks. Also, naive fine-tuning with the few
labeled nodes will lead to severe overfitting. Both these two factors can render the transferred node
embeddings sub-optimal for target FSNC tasks. Accordingly, to elicit the learned substantial graph
knowledge from GTs with only a few labels from each target task, we propose a method, Few-shot
Node Prompt Tuning (FS-NPT), that can efficiently modulate the GTs to customize the pretrained
node embeddings for different FSNC tasks.

With the recent developments in natural language processing (NLP), prompting has become a
new fashion to adapt large-scale transformer-based language models to new few-shot or zero-shot
tasks (Liu et al., 2021a). It refers to prepending language instructions to the input text so that those
language models can better understand the new task and give more customized replies. However,
such a technique cannot be straightforwardly applied to GTs due to the significant disparity be-
tween the two types of data: graphs and texts. Given the symbolic graph data, it is infeasible and
counter-intuitive to manually design semantic prompts like human languages for each target FSNC
task. Inspired by more recent works (Lester et al., 2021; Jia et al., 2022), instead of manually de-
vising prompts in the raw graph data space (e.g., nodes and edges), we propose to inject different
continuous vectors as task-specific virtual nodes in the node embedding space to function as soft
prompts to elicit the substantial knowledge contained in the learned GTs. In the fine-tuning phase,
these prompts can be optimized via the few-shot labeled nodes from the support set in each FSNC
task. Such a simple tuning with virtual node prompts can modulate the learned node embeddings
according to arbitrary FSNC tasks. We have conducted extensive experiments to show the effective-
ness of the proposed FS-NPT method, and the results further exhibit the great potential of prompt
initialization and ensemble in terms of both accuracy and efficiency.

We hope our proposed FS-NPT can provide a new promising path forward. Our contributions are:

Problem Generalization. We relax the assumption in conventional few-shot node classification
(FSNC) tasks to cover scenarios where there are no base classes with substantial labeled nodes.

Method Proposed. We propose a simple yet effective method, Few-shot Node Prompt Tuning (FS-
NPT), that directly injects virtual nodes in the embedding space to function as prompts to customize
the pretrained node embeddings for each FSNC task. Such prompts can be learned through back-
propagation and do not require any human involvement. Since only a small prompt tensor and a
simple classifier are retrained, and the single pretrained GT is recycled for all downstream FSNC
tasks, our method considerably reduces the per-task storage and computation cost.
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Comprehensive Experiment. We conduct extensive experiments on the four most widely used
real-world datasets to show the effectiveness and applicability of our proposed method. We find
that, without any assumption for base classes, FS-NPT can still outperform all the existing methods
even if they are given labels of nodes in base classes. Further analysis also indicates that the proposed
FS-NPT method can considerably benefit from prompt initialization and ensemble.

2 PROBLEM FORMULATION

In this work, we focus on few-shot node classification (FSNC) on a single graph. Formally, given an
attributed network G = (V, E ,X) = (A,X), where V denotes the set of vertices {v1, v2, ..., vV },
E denotes the set of edges {e1, e2, ..., eM}, X = [x1;x2; ...;xV ] denotes all the node features, and
A = {0, 1}V×V is the adjacency matrix representing the network structure. Specifically, Aj,k = 1
indicates that there is an edge between node vj and node vk; otherwise, Aj,k = 0. The few-shot node
classification problem assumes the existence of a series of node classification tasks, T = {Ti}Ii=1,
where Ti denotes the given dataset of a task, I denotes the number of such tasks. Those tasks
are formed from target novel classes (i.e. Cnovel), where only a few labeled nodes are available
per class. Traditional FSNC tasks assume there exists a disjoint set of base classes (i.e. Cbase,
Cbase ∩ Cnovel = ∅) on the graph where substantial labeled nodes are accessible during training.
Then, the traditional few-shot node classification problem can be defined as follows:

Definition 1 Traditional Few-shot Node Classification: Given an attributed graph G = (A,X)
with a divided node label space C = {Cbase,Cnovel}, substantial labeled nodes for Cbase are
available, and the number of base classes, i.e. |Cbase|, is sufficiently large for sampling meta-
tasks. On the contrary, only few-shot labeled nodes (support set S) are available for the target novel
classes, Cnovel. The task is to predict the labels for unlabeled nodes (query set Q) from Cnovel. If
the support set in each target (test) task has N novel classes with K labeled nodes, then we term
this task a traditional N -way K-shot node classification task.

However, the assumption of the existence of a disjoint set of base classes with substantial labeled
nodes could be untenable for real-world graphs. For example, all the classes on a given graph may
only have a few labeled nodes, and node classification is performed over all classes, or the number
of base classes is very small. Considering this limitation, in this paper, we generalize the definition
of FSNC such that it has no assumption for base classes. It is formulated as follows:

Definition 2 General Few-shot Node Classification: Given an attributed graph G = (A,X) with
a target node label space C, only few-shot labeled nodes (support set S) are available for each class
c ∈ C. The task is to predict the labels for unlabeled nodes (query set Q) from C. If the support set
in each target (test) task has N novel classes with K labeled nodes, then we term this task a general
N -way K-shot node classification task.

Our paper is the first to work on this more realistic yet challenging problem formulation of FSNC
tasks. Without the assumption that there exists abundant labeled nodes from the base classes, the
meta-learning based existing methods cannot be directly deployed. However, to explicitly demon-
strate the advantages of our model, in Section 4, we compare our model trained under the general
FSNC setting and the existing methods trained under the traditional setting, and find that the pro-
posed method still can significantly outperform all the baselines even if our method is trained with
much less labeled data.

3 METHODOLOGY

3.1 PRELIMINARY: GRAPH TRANSFORMERS

Graph transformers (GTs) (Zhang et al., 2020; Rong et al., 2020; Chen et al., 2022) are trans-
former (Vaswani et al., 2017)-based Graph Neural Networks (GNNs) without relying on convolution
or aggregation operations. Following BERT (Devlin et al., 2018) for large-scale natural language
modeling, aD-layer GT is used to project the node attribute xj of each node vj (∀j ∈ N, 1 ≤ j ≤ V )
into the embeddings ej . GTs usually have a much larger number of parameters than traditional
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GNNs and are often trained in a self-supervised manner, without the need for substantial gold-
labeled nodes. For the sake of generality, we choose two simplest and most universally-used pretext
tasks, node attribute reconstruction and structure recovery, to pretrain the GT encoder (Zhang et al.,
2020; Chen et al., 2022). An exhaustive discussion of methods for pretraining GTs is out of the
scope of this paper, please see more details for GT pretraining in Appendix B. Then, with a pre-
trained GT, each node vj , or say the graph G, is projected into a F -dimensional embedding space.
Both node attribute and topology (or position) structure are considered:

E0 = [e01; ...; e
0
j ; ...; e

0
V ] = Embed(G) = Embed(X,A) ∈ RV×F , (1)

where n is the number of nodes in the given graph G and V is the embedding size. Then, the node
embeddings Ed−1 computed by the d − 1-th layer are fed into the following transformer layer Ld
(∀d ∈ N, 1 ≤ d ≤ D) to get more high-level node representations, which can be formulated as:

Ed = [ed1; ...; e
d
j ; ...; e

d
V ] = Ld(Ed−1) ∈ RV×F . (2)

Conventionally, to adapt the pretrained GT to different downstream tasks, further fine-tuning of
the GT on the corresponding datasets (Zhang et al., 2020; Rong et al., 2020; Chen et al., 2022) is
performed. However, according to our experiments in Section 4, this vanilla approach suffers from
the following limitations when applied to FSNC tasks: (1) The number of labeled nodes for each
FSNC task is very limited (usually less than 5), making the fine-tuned GT highly overfit on them
and hard to generalize to query set. (2) This method neglects the inherent gap between the training
objective of the pretext tasks and that of the downstream FSNC tasks, rendering the transferred node
embeddings sub-optimal for the target FSNC tasks. (3) For every new task, all the parameters of GT
models need to be updated, making the model hard to converge and greatly raising the cost to apply
GTs to real-world applications. This work is the first to propose a simple yet effective and efficient
prompting method for GTs to tackle the three aforementioned limitations.

3.2 FEW-SHOT NODE PROMPT TUNING

Since the GT encoder is pretrained on the given graph in a self-supervised manner, it does not
require any label information from base classes. Then, in this section, we introduce the proposed
Few-shot Node Prompt Tuning (FS-NPT) method which effectively utilizes the limited few labeled
nodes in the support set S from the target label space C to customize the node representations from
the pretrained GT for each specific FSNC task.

We introduce an extra set of p randomly initialized continuous parameters with the same embedding
size F , i.e. prompt, denoted as P = [p1; ...;pp; ...;pP ], (pp ∈ RF ). Our prompt tuning strategy
is simple to implement. We fix the pretrained weights of the GT encoder during fine-tuning while
keeping the prompt parameter P trainable, and we concatenate this prompt with the pretrained node
embedding right after the embedding layer and feed it to the first transformer layer of the GT. The
injected prompts can be viewed as task-specific virtual nodes that help modulate the pretrained node
representations and elicit the learned substantial knowledge from the pretrained GT for different
target FSNC tasks. In such a manner, our approach allows the frozen large transformer layers to
update the intermediate-layer node representations for different tasks, as contextualized by those
virtual nodes (more detailed discussion about the effect from those virtual nodes on target FSNC
tasks is presented in Section 4.3 and 4.5):

[E1||Z1] = L1([E0||P ]) ∈ R(V+P )×F , (3)
where || denotes the concatenation operator. Then we feed the learned node representations and the
prompt to the following transformer layers Ld (∀d ∈ N, 2 ≤ d ≤ D), which is formulated as:

[Ed||Zd] = Ld([Ed−1||Z1]) ∈ R(V+P )×F . (4)
With the modulated node representations, we can get the predicted label for any node vj by applying
a simple classifier, fψ (e.g. SVM, Logistic Regression, shallow MLP, etc.):

y = fψ(e
d
j ). (5)

Then, for each target N -way K-shot FSNC task Ti = {Si,Qi}, we can predict labels for all the few
labeled nodes in the support set Si, and calculate the Cross-entropy loss, LCE , to update the prompt
parameters P and the simple classifier fψ . This optimization procedure can be formulated as:

P , ψ = argmin
P ,ψ

LCE(Si;P , ψ). (6)
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Finally, following the same procedure, we use the fine-tuned prompt P , classifier fψ , and node
representations from the pretrained GT to predict labels for unlabeled nodes in the query set Qi. It
is notable that the parameters of the pretrained GT are frozen throughout the node prompt tuning
process and are recycled for all downstream FSNC tasks. In other words, to adapt to a new FSNC
task, we only need to train a small prompt tensor P to modulate the intermediate-layer node repre-
sentations to be customized by the few labeled nodes, which is computationally similar to training a
very shallow MLP. This signifies that the proposed FS-NPT method requires a low per-task storage
and computation cost to retain its effectiveness.

4 EXPERIMENTAL STUDY

4.1 EXPERIMENTAL SETTINGS

We conduct systematic experiments to compare the proposed FS-NPT method with the baselines
on the few-shot node classification task. In this work, we consider two categories of baselines, i.e.,
meta-learning based methods and graph contrastive learning (GCL) based self-supervised learning
methods (Tan et al., 2022). For meta-learning, we test typical methods including: Meta-GNN (Zhou
et al., 2019), G-Meta (Huang & Zitnik, 2020), GPN (Ding et al., 2020), AMM-GNN (Wang et al.,
2020b), and TENT (Wang et al., 2022). For GCL based self-supervised learning, the chosen pre-
training methods contain: MVGRL (Hassani & Khasahmadi, 2020), GraphCL (You et al., 2020),
GRACE (Zhu et al., 2020), and BGRL (Thakoor et al., 2021). For these GCL based methods and
the proposed FS-NPT, we choose Logistic Regression as the classifier fψ . We describe the details
of these models in Appendix A. For comprehensive studies, we report the results of those meth-
ods on four prevalent real-world graph datasets: CoraFull (Bojchevski & Günnemann, 2018),
ogbn-arxiv (Hu et al., 2020a), Cora (Yang et al., 2016), CiteSeer (Yang et al., 2016). Specif-
ically, each dataset is a graph that contains a considerable number of node classes. This ensures that
the evaluation consists of various tasks for a more comprehensive evaluation. A more detailed de-
scription of those datasets is provided in Appendix D, with their statistics and class splits in Table 6
in Appendix C. It is notable that our method does not have any assumption for base classes, but this
assumption is necessary for all the baselines. For explicit comparison, we still provide base classes
for all the baselines (our method does not use any label information from base classes), and we
compare our method with them under various N -way K-shot settings.

4.2 COMPARABLE STUDY

Table 1: The overall comparison between the proposed FS-NPT method and meta-learning or GCL
pretraining based methods under different settings. Accuracy (↑) and confident interval (↓) are in %.
The best results are bold, and the second best results in each category of methods are underlined.
OOM denotes the out-of-memory issue. More results are included in Table 8 in Appendix H.

Dataset CoraFull Ogbn-arxiv CiteSeer Cora

Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot

Meta-GNN 55.33±2.43 70.50±2.02 27.14±1.94 31.52±1.71 56.14±2.62 67.34±2.10 65.27±2.93 72.51±1.91
GPN 52.75±2.32 72.82±1.88 37.81±2.34 50.50±2.13 53.10±2.39 63.09±2.50 62.61±2.71 67.39±2.33

AMM-GNN 58.77±2.32 75.61±1.78 33.92±1.80 48.94±1.87 54.53±2.51 62.93±2.42 65.23±2.67 82.30±2.07
G-Meta 60.44±2.48 75.84±1.70 31.48±1.70 47.16±1.73 55.15±2.68 64.53±2.35 67.03±3.22 80.05±1.98
TENT 55.44±2.08 70.10±1.73 48.26±1.73 61.38±1.72 62.75±3.23 72.95±2.13 53.05±2.78 62.15±2.13

MVGRL 59.91±2.39 76.76±1.63 OOM OOM 64.45±2.77 80.25±1.82 71.17±3.04 89.91±1.44
GraphCL 64.20±2.56 83.74±1.46 OOM OOM 73.51±3.09 92.38±1.24 73.50±3.18 92.35±1.30
GRACE 66.69±2.26 84.06±1.43 OOM OOM 69.85±2.75 85.93±1.57 69.13±2.69 88.68±1.37
BGRL 43.83±2.11 70.44±1.62 36.76±1.74 53.44±0.36 54.32±1.63 70.50±2.11 60.14±2.33 79.86±1.92

FS-NPT (Ours.) 68.50±2.13 84.56±2.15 50.40±1.97 74.91±1.87 70.60±2.15 86.23±1.75 84.50±1.94 90.50±1.55

Table 1 presents the performance comparison of all the methods on the few-shot node classification
task. Specifically, we present results under four different few-shot settings to exhibit a more com-
prehensive comparison: 5-way 1-shot, 5-way 5-shot, 2-way 1-shot, and 2-way 5-shot. We choose
the average classification accuracy and the 95% confidence interval over 5 repetitions with differ-
ent random seeds as the evaluation metrics. For each repetition, we sample 100 meta-test tasks for
evaluation and calculate the evaluation metrics. From Table 1, we obtain the following observations:
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• Even without any label information from base classes, the proposed method, FS-NPT,
can consistently outperform meta-learning based methods and outperform GCL based self-
supervised learning methods in most cases. This demonstrates the considerable superiority
of the proposed FS-NPT in terms of accuracy. The pretrained GT has learned substantial
prior knowledge and the injected virtual node prompts effectively elicit the knowledge for
different downstream FSNC tasks.

• Generally speaking, for both GCL and the proposed GT, self-supervised pretraining can
outperform meta-learning based method. However, one most recent pretraining method,
BGRL, when transferred for downstream FSNC tasks, shows surprisingly frustrating per-
formance. This further validates the impact from the gap of training objective between
pretexts and target FSNC tasks. The pretext of BGRL minimizes the Mean Square Error of
the original node representation and its slightly perturbed counterpart but does not enforce
the model to discriminate between different nodes as the other GCL baselines do. The
objective of this pretext deviates more from the downstream FSNC tasks, thus leading to
worse results. We further show the impact of this in ablation studies (see Section 4.3).

• Compared to all the baselines, the proposed FS-NPT method is more robust to extremely
scarce label scenarios, i.e, the number of labeled nodes in the support set K equals 1.
The performance degradation resulting from decreasing the number of shots K is
significant for all the methods. More detailed results can be found in Appendix F.1. Smaller
K makes the encoder or the classifier more prone to overfitting, thus leading to worse
generalization to query sets. In contrast, the proposed method injects virtual nodes into the
model, which have separate learnable embeddings for different FSNC tasks. This implies
that our method implicitly performs adaptable data augmentation for the few labeled nodes,
which makes our framework more robust to tasks with extremely scarce labeled nodes.
Further analysis and explanation are given in Section 4.5.

4.3 ABLATION STUDY

Table 2: Ablation study on Cora and Ogbn-arxiv datasets to analyze the effectiveness of differ-
ent components in our method.

Encoder Frozen Prompt Cora Ogbn-arxiv

2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

GCN 52.12±2.62 57.93±2.23 57.62±2.31 64.11±2.65 26.68±1.57 27.90±1.45
GCN ✓ 68.43±2.94 78.20±2.83 65.21±2.86 77.10±2.46 38.47±1.77 51.46±1.69

GT 67.50±2.24 79.42±1.89 63.00±2.35 79.84±1.98 40.73±2.65 55.35±1.88
GT ✓ 75.50±2.54 84.94±1.74 53.64±2.62 73.64±2.33 31.64±2.45 52.36±2.04

GT ✓ 77.85±1.99 85.43±1.84 71.82±2.58 82.73±2.14 36.36±2.74 65.45±2.31
GT ✓ ✓ 84.50±1.94 90.50±1.55 82.00±1.77 87.27±1.64 50.40±1.97 74.91±1.87

In this subsection, we conduct ablation studies to investigate the effectiveness of different compo-
nents in our framework. We present the results of experiments on the Cora and Ogbn-arxiv
datasets, under different N -way K-shot settings (similar results can be observed on the other
datasets and settings). For the GCN baseline, following the common practice (Zhou et al., 2019;
Ding et al., 2020), we pretrain a 2-layer GCN using all the data from base classes with Cross-
Entropy Loss. Specifically, Frozen means during fine-tuning, the GNN encoder is fixed, and only
the classifier is fine-tuned. Prompt refers to the proposed node prompt tuning method. The results
are shown in Table 3, from which we draw the following conclusions:

• Our simple implementation of GT can consistently achieve much better results than tradi-
tional GNNs such as GCN. This is because the GT has a much larger number of parameters,
making it capable of learning more complex relations among nodes. Besides, pretrained
with the two pretext tasks, i.e., node attribute reconstruction and structure recovery, in a
self-supervised manner, GT can learn much more transferable graph patterns compared to
those meta-learning based methods.

• Freezing the GNN encoder during fine-tuning on the downstream FSNC tasks consistently
leads to better results. This shows that fine-tuning the graph encoder on the few labeled
nodes would in turn impair the quality of the learned node embedding.
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• The proposed method, FS-NPT, which contains a frozen pretrained GT encoder with
prompt tuning can provide the best performance. This implies that the introduced virtual
node prompt can help the model better modulate the learned substantial graph knowledge
for each FSNC task while avoiding impairing the pretrained node embeddings.

4.4 CLASSIFICATION OVER ALL CLASSES ON GRAPH DATASETS

Table 3: The FSNC results of the vanilla GT and the
proposed FS-NPT methods over all the node classes
on Cora and CiteSeer datasets.

Dataset Cora CiteSeer

Setting 7-way 1-shot 7-way 5-shot 6-way 1-shot 6-way 5-shot

GT 34.55 61.30 21.94 43.64
FS-NPT 50.13 74.55 29.36 63.51

As aforementioned in this paper, the pro-
posed FS-NPT method does not require
any assumption on the availability of a sep-
arate base class set disjoint with the target
few-shot classes. It means that, given few-
shot labeled nodes from each class, FS-
NPT can perform node classification over
all the classes in the graph. We conduct
this experiment on Cora and CiteSeer
datasets and list the results in Table 3. From the table, we can see that the original GT cannot
perform well due to the shortage of supervision. But the proposed FS-GPT can improve the perfor-
mance significantly, especially for larger shot numbers, K.

4.5 INTERPRETATION OF VIRTUAL NODES AS PROMPT

Y

Z

X

Y

Z

X

Few Labeled Node

Virtual Node

Virtual Nodes as Prompt
Existing Edge
Predicted Edge

Figure 1: The illustration of effect from introduced virtual nodes under 2-way node classification
setting. Different colors indicate different node classes.

Table 4: The L2 distance and cosine simi-
larity scores between prompting nodes and
real nodes from two novel classes on Cora
dataset. P denotes virtual node prompts, N
denotes existing nodes.

Metrics L2 Cosine L2 Cosine
Nodes P in class-1 P in class-2

N in class-1 0.0622 0.7625 0.6725 0.2344
N in class-2 0.6520 0.8627 0.0548 0.1165

Different from the pioneer works in NLP (Brown
et al., 2020; Liu et al., 2021a), where prompts consist
of human languages that are naturally interpretable to
humans. For graph data, we inject the virtual nodes in
the node embedding space rather than the raw graph
space (e.g., nodes and edges). Hence, it is hard to
interpret the effect of the proposed node prompts.
To better understand the behavior of the virtual node
prompts, we leverage Walkpooling (Pan et al., 2021),
which is the state-of-the-art for the link prediction
task, to predict the links that are the most likely to exist between the virtual nodes and the few
labeled nodes from the support set of each task. We train the model on the whole graph dataset and
use it to predict the most possible links between the virtual nodes and the existing ones. Specifically,
we only consider potential links with at least one virtual node as their vertex. Under the 2-way
few-shot node classification setting, we initialize half of the virtual node prompts as the prototype
vector of the first class, and the other half of the virtual node as the prototype vector of the second
class. As indicated in Fig. 1, after the convergence of prompt tuning, we notice that the vertices
of the most possible links are always connecting existing nodes with virtual prompt nodes from the
same classes. This implies that the introduced virtual node prompts can learn node representations
semantically similar to those from the same class, thus helping push node representations from
the same classes closer. To further validate this, on Cora dataset, we calculate the average cosine
similarities and L2 distances (normalized by the longest distance of any pair of nodes) for virtual
nodes and existing nodes from the two novel classes. As presented in Table 4, we can see that the
virtual nodes and existing nodes from the same classes have smaller L2 distances and larger cosine
similarities. We give further analyses of the effect from different numbers of such virtual nodes in
Fig. 5 in Appendix F.2.
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4.6 NODE REPRESENTATIONS CLUSTERING ON NOVEL CLASSES

In this section, we analyze the quality of the learned node representations from different training
strategies. Particularly, we leverage two prevalent clustering evaluation metrics: Normalized Mutual
Information (NMI) and adjusted random index (ARI), on learned node embeddings clustered based
on K-Means. Also, we deploy t-SNE to visualize them and compare them with those learned by
baseline methods on the CoraFull dataset. We choose nodes from 5 randomly selected novel
classes for visualization. The results are presented in Table 7 and Fig. 3 in Appendix E. We observe
that the proposed FS-NPT method enhances the quality of the node representations of GTs, and
achieves the best clustering performance on novel classes. Also, based on the visualization, we dis-
cover that a vanilla GT without prompt tuning cannot learn node embeddings that are discriminative
enough compared to strong baselines like TENT and GRACE. However, when equipped with the
proposed FS-NPT, a GT can learn highly discriminative node embeddings. This also authenticates
that the added prompts can help elicit more customized knowledge for each downstream FSNC task.

4.7 PROMPT INITIALIZATION

The results in Section 4.5 imply that carefully initializing the virtual node prompts as prototype rep-
resentations could be beneficial to the virtual node prompt tuning process. Intuitively, given a test
node, an ideal model should produce an output node embedding that is close to the corresponding
class prototype representations. Initializing the prompts with prototype embeddings that enumerate
the node embedding space might give the model some hints about the target categories, thus helping
improve the optimization process. Specifically, we initialize equal portions of virtual prompt nodes
to all novel node classes as their prototype representations. The corresponding results are given in
Table 5. We can observe that such a simple initialization can consistently enhance the performance
on target downstream FSNC tasks. Note that even though promising improvement is observed by
this prototype-based prompt initialization strategy, we still choose random initialization as the de-
fault option for the other experiments for its simplicity and generality.

Table 5: The accuracy scores of FS-NPT on Cora and Ogbn-arxiv datasets. Init. indicates the
prototype-based prompt initialization strategy described in Section 4.7. Method without Init. means
the prompts are randomly initialized. The best results are bold. MV refers to majority voting.

FS-GPT Cora Ogbn-arxiv

Init. Ensemble 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

84.50 90.50 82.00 87.27 50.40 74.91

✓ 85.25 91.30 83.05 88.34 51.06 75.86

✓ ✓
Avg. 85.50 89.64 82.50 89.65 48.82 75.65
Best 86.24 92.38 85.45 90.63 53.68 78.82
MV 87.63 92.52 84.72 91.50 52.15 79.60

4.8 PROMPT ENSEMBLE

Lester et al. (2021) has demonstrated the efficiency of prompt for model ensembling. Since the large
transformer backbone is frozen after pretraining and can always be reused, only the small prompt
tensors require extra space to store. Furthermore, during inference, only one pass is needed with
a specially-designed batch with replicated original data and variously initialized prompts (Lester
et al., 2021; Jia et al., 2022). Given such advantages, we investigate the effectiveness of enabling
prompt ensembling for FS-NPT. Concretely, to facilitate the ensembling with the prompt initializa-
tion strategy, we add independently sampled Gaussian noise tensors to 5 prompts for each FSNC
task. Each prompt contains virtual nodes initialized as node class prototypes. We use simple major-
ity voting to compute final predictions from the ensemble. Table 5 shows that the ensembled model
can outperform the average or even the best single prompt counterpart.

4.9 EFFECTIVENESS ACCORDING TO THE SCALE OF MODEL

In Fig. 2, we present the accuracy of the proposed framework against the scale of the GT encoder
as a heat map. We consider the width (embedding size F ) and the depth (the number of transformer
layersD) of the GT. The results shown are from the Cora dataset under the 2-way 1-shot setting and
we observe similar trends on other datasets under different settings. We have the following findings:
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• As the depth increases, the final accuracy decreases. This is because we only inject the
virtual node prompt before the first transformer layer. The effect vanishes as the prompt
goes deeper. On the other hand, it shows that naively increasing the depth of the GT
encoder is not necessarily helpful for the downstream FSNC tasks, and the proposed FS-
NPT method is effective and necessary for better adaptation.

• As the width increases, the final accuracy increases. Larger embedding size implies
the input node embeddings contain richer semantic and topological knowledge, and the
injected prompt can learn to modulate the node embeddings more precisely.

5 BACKGROUND AND RELATED WORK
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Figure 2: The 2-way 1-shot accuracy (%) of
the proposed FS-NPT according to the scale
of the GT encode on the Cora dataset.

Few-shot Node Classification. Recently, episodic
meta-learning (Finn et al., 2017) has become the
most dominant paradigm for FSNC tasks. It trains
the GNN encoders by explicitly emulating the test
environment for few-shot learning (Zhou et al.,
2019; Ding et al., 2020). However, those methods
rely on the assumption that there exist base classes
with substantial labeled nodes per class to sample
episodes. So the existing methods cannot work for
the general FSNC problem defined in this paper. A
more detailed review is given in Appendix I.

Graph Transformer. Graph Transformers (GTs) (Zhang et al., 2020; Rong et al., 2020; Chen et al.,
2022) are a new category of GNNs that are based on transformers (Vaswani et al., 2017). Usually,
GTs contain two parts: A embedding network that projects the raw graphs to the embedding space.
Then, a transformer-based network is involved to learn the complicated relationships among embed-
dings. GTs have a larger magnitude of parameter numbers to contain richer knowledge. Typically,
GTs are trained in a self-supervised manner with pre-designed pretexts, such as node attribute recon-
struction (Zhang et al., 2020) and structure recovery (Chen et al., 2022). GTs have shown promising
performance for general transfer learning, but there is no existing work succeeding in adapting the
huge GTs to few-shot scenarios where the labels are extremely scarce.

Learning with Prompts. In NLP, prompting (Liu et al., 2021a; Lester et al., 2021) has become a
new fashion recently for adapting huge language models to different downstream tasks by prepend-
ing task descriptions to the input texts. However, this requires human involvement to design descrip-
tions in human words, making it costly and hard to deploy on symbolic graphs. More recently, some
works (Lester et al., 2021; Jia et al., 2022) find that by introducing external learnable parameters
as soft prompts, those language models can fast adapt to new tasks without human labor. However,
no work has been done for symbolic graph data due to the significant uniqueness of graphs that the
instances on graphs, nodes, are not i.i.d. Our work is the first to provide a prompt-based method for
learning representative node embeddings on graphs, especially, under the extreme few-shot setting.

6 CONCLUSION

In this paper, we first extend the traditional FSNC problem setting to a more realistic yet challenging
formulation, where the assumption for the existence of base classes may not necessarily hold. To
tackle this problem, we propose FS-NPT as an efficient solution to modulate pretrained GTs ac-
cording to different FSNC tasks. Concretely, a GT encoder is pretrained on the whole graph in a
self-supervised manner by two widely-used pretext tasks. Then, virtual nodes are involved in the
embedding space to customize the learned node embeddings from GT for different FSNC tasks. We
conduct rigorous empirical studies to validate the effectiveness of the proposed FS-NPT method
on four widely-used real-world graph datasets. The results also demonstrate the great potential for
prompt initialization and ensemble.

In broader terms, this work is the first to investigate the general FSNC tasks and explore an effective
method to introduce prompt tuning for symbolic graphs under such an extreme shortage of label sce-
narios. We hope our work can provide a novel path forwarding the learning with scarce supervision
on graphs, and an alternative way to fine-tune large GTs for the target domain.
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Liming Pan, Cheng Shi, and Ivan Dokmanić. Neural link prediction with walk pooling. In Interna-
tional Conference on Learning Representations, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems, 2017.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NeurIPS, 2017.

Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. A simple yet effective pretraining strategy
for graph few-shot learning. arXiv preprint arXiv:2203.15936, 2022.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Remi Munos, Petar Veličković,
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A BASELINE DESCRIPTION

In this section, we provide further details about the baselines used in our experiments.

Meta-learning based methods:

• ProtoNet (Snell et al., 2017): ProtoNet learns a prototype for each class in meta-tasks by
averaging the embeddings of samples in this class. Then it conducts classification on query
instances based on their distances to prototypes.

• MAML (Finn et al., 2017): MAML first optimizes model parameters according to the
gradients calculated on the support instances for several steps. Then it meta-updates pa-
rameters based on the loss of query instances calculated with the parameters updated on
support instances.

• Meta-GNN (Zhou et al., 2019): Meta-GNN combines GNNs with the MAML strategy to
apply meta-learning to graph-structured data. Specifically, Meta-GNN learns node embed-
dings with GNNs, while updating and meta-updating the GNN parameters based on the
MAML strategy.

• G-Meta (Huang & Zitnik, 2020): G-Meta extracts a subgraph for each node to learn the
node representation with GNNs. Then it conducts the classification on query nodes based
on the MAML strategy to update and meta-update the parameters of GNNs.

• GPN (Ding et al., 2020): GPN proposes to learn node importance for each node in meta-
tasks to select more beneficial nodes for classification. Then GPN utilizes PN to learn node
prototypes via averaging node embeddings in a weighted manner.

• AMM-GNN (Wang et al., 2020b): AMM-GNN proposes to extend MAML with an at-
tribute matching mechanism. Specifically, the node embeddings will be adjusted according
to the embeddings of nodes in the entire meta-task in an adaptive manner.

• TENT (Wang et al., 2022): TENT reduces the variance among different meta-tasks for
better generalization performance. In particular, TENT learns node and class representa-
tions by conducting node-level and class-level adaptations. It also incorporates task-level
adaptations that maximize the mutual information between the support set and the query
set.

Self-supervised GCL Pretraining methods:
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• MVGRL (Hassani & Khasahmadi, 2020): MVGRL learns node and graph-level represen-
tations by contrasting the representations of two structural views of graphs, which include
first-order neighbors and a graph diffusion. It utilizes a Jensen-Shannon Divergence based
contrastive loss LJSD.

• GraphCL (You et al., 2020): GraphCL proposes to leverage combinations of different
transformations in GCL to facilitate GNNs with generalizability, transferability, and ro-
bustness without sophisticated architectures. It also uses LJSD as the objective.

• GRACE (Zhu et al., 2020): GRACE proposes a hybrid scheme for generating different
graph views on both structure and attribute levels. GRACE further provides theoretical
justifications behind the motivation. It proposes a variant of Information Noise Contrastive
Estimation LInfoNCE as the contrastive loss.

• BGRL (Thakoor et al., 2021): BGRL leverages the concept of BYOL (Grill et al., 2020)
and applies it to graph-structured data by enforcing the agreement between positive views
without any explicitly designs on negative views. Especially, it uses Mean Squared Error
LMSE between positive views as the final loss.

B IMPLEMENTATION DETAIL

B.1 GENERAL SETTINGS

All experiments are implemented using PyTorch Paszke et al. (2017). We run all experiments on a
single 80GB Nvidia A100 GPU.

B.2 IMPLEMENTATION OF THE SIMPLIFIED GT

For the sake of generality, we try to keep the used GT encoder very simple and easy to transfer to
other complicated architectures. Specifically, we use 1-layer MLP to project the raw graph, includ-
ing node attributes and structural positions into the embedding space. We use simple summation
to merge those embeddings together and feed them into the following transformer layers. We use
the transformer module released by huggingface (Wolf et al., 2019). We perform a grid search like
Section 4.9 to get the width and depth of the GT.

For pretraining, we utilize two prevailing pretext tasks, node attribute reconstruction and structure
recovery, to train the GT encoder in a self-supervised manner. Concretely, for node attribute recon-
struction pretext, given a node, we minimize the Mean Square Error (MSE) between the original
node attributes and the reconstructed version via a fully connected layer and the learned node embed-
ding from the GT. For structure recovery pretext, given any pair of nodes, we try to predict if there is
a link between them and compare the result with the ground truth by an MSE loss. To accommodate
a larger graph, similar to Jiao et al. (2020); Mo et al. (2022), we adopt the mini-batch strategy to
sample a portion of nodes with their subgraphs (based on PPR) in each epoch for pretraining.

C STATISTICS OF BENCHMARK DATASETS

Table 6: Statistics of benchmark node classification datasets. Ctrain denotes the base classes for
training, Cdev and Ctest denote novel classes for validation and test respectively.

Dataset # Nodes # Edges # Features |C| |Ctrain| |Cdev| |Ctest|

CoraFull 19,793 63,421 8,710 70 40 15 15

Ogbn-arxiv 169,343 1,166,243 128 40 20 10 10

Cora 2,708 5,278 1,433 7 3 2 2

CiteSeer 3,327 4,552 3,703 6 2 2 2
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D DESCRIPTION OF DATASETS

In this section, we provide detailed descriptions of the benchmark datasets used in our experiments.
All the datasets are public and available on both PyTorch-Geometric (Fey & Lenssen, 2019) and
DGL (Wang et al., 2019).

• CoraFull (Bojchevski & Günnemann, 2018) is a citation network that extends the preva-
lent small Cora network. Specifically, it is achieved from the entire citation network,
where nodes are papers, and edges denote the citation relations. The classes of nodes
are obtained based on the paper topic. For this dataset, we use 40/15/15 node classes for
Ctrain/Cdev/Ctest.

• Ogbn-arxiv (Hu et al., 2020a) is a directed citation network that consists of CS papers
from MAG (Wang et al., 2020a). Here nodes represent CS arXiv papers, and edges denote
the citation relations. The classes of nodes are assigned based on the 40 subject areas of
CS papers in arXiv. For this dataset, we use 20/10/10 node classes for Ctrain/Cdev/Ctest.

• Cora (Yang et al., 2016) is a citation network dataset where nodes mean paper and edges
mean citation relationships. Each node has a predefined feature with 1433 dimensions. The
dataset is designed for the node classification task. The task is to predict the category of a
certain paper. For this dataset, we use 3/2/2 node classes for Ctrain/Cdev/Ctest.

• CiteSeer (Yang et al., 2016) is also a citation network dataset where nodes mean scientific
publications and edges mean citation relationships. Each node has a predefined feature
with 3703 dimensions. The dataset is designed for the node classification task. The task is
to predict the category of a certain publication. For this dataset, we use 2/2/2 node classes
for Ctrain/Cdev/Ctest.

E NODE REPRESENTATION CLUSTERING RESULTS

Table 7: The overall NMI (↑) and ARI (↑) scores of baselines and proposed FS-NPT on CoraFull
and CiteSeer datasets. The best and second best results are bold and underlined, respectively.

Dataset CoraFull CiteSeer

Metrics NMI ARI NMI ARI

AMM-GNN 0.6247 0.5087 0.2090 0.1781

G-Meta 0.5003 0.3702 0.1913 0.1502

Meta-GNN 0.5534 0.4196 0.1317 0.1171

GPN 0.6001 0.4599 0.2119 0.2087

TENT 0.5760 0.4652 0.0930 0.0811

MVGRL 0.6227 0.4788 0.2554 0.2232

GraphCL 0.7023 0.5628 0.5579 0.5890

GRACE 0.6781 0.5856 0.2663 0.2778

BGRL 0.5137 0.4382 0.2051 0.1875

GT 0.5225 0.3864 0.3452 0.3189

FS-NPT 0.7768 0.6427 0.5998 0.6331
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(a) TENT (b) GRACE (c) GT (d) FS-NPT

Figure 3: The t-SNE visualization results on CoraFull (5-way) dataset.

F PARAMETER STUDY

In this section, we experiment on important sensitive parameters for the proposed FS-NPT method,
including different N -way K-shot settings and different numbers of virtual nodes per prompt.

F.1 N-WAY K-SHOT SETTINGS
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Figure 4: The accuracy (%) under different N-way K-shot settings on the CoraFull dataset.

F.2 NUMBER OF VIRTUAL NODES

The number of virtual nodes P is an important hyper-parameter to tune. On the four benchmark
datasets, we give the results under the 2-way 5-shot setting. Specifically, we use a parameter α to
control the number of virtual nodes. For aN -wayK-shot FSNC task, we define α = P

N ·K . Larger α
means more virtual nodes are introduced. From the results shown in Fig. 5, we find that when α = 1,
the proposed FS-NPT can give the best performance. Therefore, we choose P = α×(N ·K) = N ·K
as the default number of virtual nodes per prompt.
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Figure 5: The test accuracy (%) under different α values on four benchmark datasets.

G BOX-PLOT ILLUSTRATION
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Figure 6: The box-plot illustrates the performance of state-of-the-art FSNC methods on the
CoraFull dataset under the 5-way 1-shot setting

H MORE RESULTS ON CORAFULL AND OGBN-ARXIV DATASETS

Table 8: More comparison results between the proposed FS-NPT method and meta-learning or GCL
pretraining based methods under different settings. Accuracy (↑) and confident interval (↓) are in %.
The best results are bold, and the second best results in each category of methods are underlined.
OOM denotes the out-of-memory issue.

Dataset CoraFull Ogbn-arxiv

Setting 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot

Meta-GNN 75.28±3.85 84.59±2.89 62.52±3.41 70.15±2.68
GPN 74.29±3.47 85.58±2.53 64.00±3.71 76.78±3.5

AMM-GNN 77.29±3.40 88.66±2.06 64.68±3.13 78.42±2.71
G-Meta 78.23±3.41 89.49±2.04 63.06±3.32 76.56±2.89
TENT 77.75±3.29 88.20±2.61 70.30±2.85 81.35±2.77

MVGRL 78.81±3.32 91.03±1.80 OOM OOM
GraphCL 78.50±3.26 91.30±2.11 OOM OOM
GRACE 80.71±3.01 91.68±1.57 OOM OOM
BGRL 61.08±2.64 85.03±2.25 59.91±2.36 76.75±1.86

FS-NPT (Ours.) 85.50±3.14 95.24±1.87 82.00±2.35 87.27±1.95

I A MORE DETAILED REVIEW FOR FEW-SHOT NODE CLASSIFICATION

The task of few-shot node classification targets learning a model to assign labels for unlabeled
nodes on graphs with only a few labeled nodes per class for training. Recently, episodic meta-
learning (Finn et al., 2017) has become the most dominant paradigm to deal with such label short-
ages for FSNC tasks. It trains the GNN encoders by explicitly emulating the test environment for
few-shot learning. For instance, Meta-GNN (Zhou et al., 2019) applies MAML (Finn et al., 2017)
to learn directions for optimization with limited labels. GPN (Ding et al., 2020) adopts Prototyp-
ical Networks (Snell et al., 2017) to perform the classification based on the distance between the
node feature and the prototypes. MetaTNE (Lan et al., 2020) and RALE (Liu et al., 2021b) also
use episodic meta-learning to enhance the adaptability of the learned GNN encoder and achieve
similar results. Furthermore, G-Meta (Huang & Zitnik, 2020), GFL-KT (Yao et al., 2020) and MI-
GNN (Wen et al., 2021) use meta-learning to transfer knowledge when other auxiliary graphs exist.
TNT (Wang et al., 2022) further takes variance among different meta-tasks into account. All those
methods rely on the assumption that there exist base classes with substantial labeled nodes per class
to sample episodes, thus not working for the general FSNC problem defined in this paper.
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