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ABSTRACT

While neural networks allow highly accurate predictions in many tasks, their lack
of robustness towards even slight input perturbations hampers their deployment in
many real-world applications. White-box adversarial attacks such as the seminal
projected gradient descent (PGD) offer an effective means to evaluate the model
robustness and dedicated solutions have been proposed for example for attacks on
semantic segmentation or on optical flow. To streamline the evaluation process,
we propose an efficient white-box adversarial attack, termed CosPGD, that can be
applied to any pixel-wise prediction task in a unified setting. To this end, CosPGD
employs a simple loss scaling based on the cosine similarity between the distribu-
tions over the predictions and ground truth (or target, for targeted attacks). This
leads to efficient evaluations of a model’s robustness for pixelwise classification
as well as regression models, providing new insights into their performance at
earlier attack stages. We outperform the SotA on semantic segmentation attacks
in our experiments on PASCAL VOC2012 and CityScapes. Further, we showcase
CosPGD’s versatility by evaluating optical flow as well as image restoration mod-
els. We provide code for the CosPGD algorithm and example usage at https:
//anonymous.4open.science/r/cospgd-iclr2024-909/.

1 INTRODUCTION

Deep Neural Networks (DNNs) have been gaining popularity for estimating solutions to various
complex tasks including numerous vision tasks like classification (Krizhevsky et al., 2012; He et al.,
2015; Xie et al., 2016; Liu et al., 2022), semantic segmentation (Ronneberger et al., 2015; Zhao
et al., 2017), or disparity (Li et al., 2020) and optical flow (Fischer et al., 2015; Ilg et al., 2016; Teed
and Deng, 2020) estimation, due to their overall precise predictions. However, DNNs are inherently
black-box function approximators (Buhrmester et al., 2019), known to find shortcuts to map the input
to a target (Geirhos et al., 2020) or to learn biases (Geirhos et al., 2018). Thus, we have limited
information on the quality of representations learned by the network and their robustness.

An adversarial attack adds a crafted, small (epsilon-sized) perturbation to the input of a neural network
that aims to alter the prediction, thus assessing a network’s robustness as in the benchmarks (Croce
et al., 2021; Jung et al., 2023). Due to the practical relevance to evaluate and analyze DNN models,
such attacks have been extensively studied (Goodfellow et al., 2014; Kurakin et al., 2017; Wong et al.,
2020b; Madry et al., 2017; Moosavi-Dezfooli et al., 2015; Kurakin et al., 2016). Single step attacks
such as FGSM (Goodfellow et al., 2014) are most efficient but often less effective and reliable than
multistep versions such as projected gradient descent (PGD) (Kurakin et al., 2017) and subsequent
attacks (Schrodi et al., 2022; Croce and Hein, 2020; 2021) for image classification.

Existing approaches predominantly focus on attacking image classification models. However, ar-
guably, the robustness of models for pixel-wise prediction tasks is highly relevant for many safety-
critical applications such as motion estimation in autonomous driving or image segmentation. The
application of existing attacks to pixel-wise prediction tasks such as semantic segmentation or optical
flow estimation is possible in principle (e.g. as in Arnab et al. (2017)), albeit carrying only limited
information since the pixel-specific loss information is not fully leveraged. In Figure 1, we illustrate
this effect for a targeted attack on optical flow estimation and show that classical classification attacks
such as PGD (see Figure 1(e)) can only fool the network predictions to some extent: PGD tends to
only fit the target (all zeros, i.e. white) in parts of the optical flow, while CosPGD is more coherent.
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(a) Input at time = t (b) Input at time = t+ 1 (c) Target flow
−→
0

(d) Initial flow prediction (e) PGD attack 40 iterations (f) CosPGD attack 40 iterations

Figure 1: Optical flow predictions using RAFT (Teed and Deng, 2020) on Sintel (Butler et al., 2012;
Wulff et al., 2012) validation. (a) and (b) show two consecutive frames for which the initial optical
flow in (d) was predicted. The results of attacking the model with target

−→
0 (c) are depicted in (e)

for PGD and (f) for CosPGD. For the same perturbation magnitude and number of iterations, the
proposed CosPGD alters the estimated optical flow more strongly and brings it closer to target (c).

For semantic segmentation, Gu et al. (2022) showed that harnessing pixel-wise information for
adversarial attacks leads to much stronger attacks. They argue that, during the attack, the loss to
be backpropagated needs to be altered such that already flipped pixel predictions are less important
for the gradient computation. Thus, SegPGD (Gu et al., 2022) makes a binary decision for each
pixel based on the classification result at this location in order to weigh the attack loss for incorrect
and correct model predictions individually. While this is intuitive for semantic segmentation, it
can not extend to pixel-wise regression tasks by definition. Furthermore, SegPGD has to fade back
in the loss of already incorrectly predicted pixels over time, since otherwise the overall gradient
vanishes or becomes instable (Gu et al., 2022). We hypothesize that this leads to SegPGD needing
more iterations than necessary. Soft decisions on each pixel’s impact to the overall attack update are
therefore beneficial to increase attack efficiency.

In this work, we propose CosPGD, an efficient white-box adversarial attack that considers the
cosine-similarity between the prediction and target for each pixel. Due to its principled formulation,
CosPGD can be used for a wide range of pixel-wise prediction tasks beyond semantic segmentation.
Figure 1(f) shows its effect on optical flow estimation, where it can fit the target at almost all locations.
Since it leverages the posterior distribution of the prediction for loss computation, it can significantly
outperform SegPGD on semantic segmentation. This additionally enables CosPGD to gauge the
model’s robustness correctly with significantly fewer iterations than SegPGD, thus making the attack
efficient. The main contributions of this work are as follows:

• We propose an efficient white-box adversarial attack, CosPGD that can be used to attack
all pixel-wise prediction tasks, including semantic segmentation as well as optical flow
prediction, and thus allows for an efficient evaluation of their robustness in a unified setting.

• For semantic segmentation, we compare CosPGD to the recently proposed SegPGD which
also uses pixel-wise information for generating attacks but can only be applied to semantic
segmentation models. CosPGD outperforms SegPGD by a significant margin.

• The proposed CosPGD can be used as a targeted attack and as a non-targeted attack. We
provide implementations for both l2 and l∞ bounded CosPGD attacks to allow for a wide
range of evaluation scenarios.

• To demonstrate CosPGD’s versatility, we also evaluate it on optical flow estimation and
image restoration in several settings and on several datasets and compare to previous attacks.

2 RELATED WORK

The vulnerability of DNNs to adversarial attacks was first explored in Goodfellow et al. (2014) for
image classification, proposing the Fast Gradient Sign Method (FGSM). FGSM is a single-step (one
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iteration) white-box adversarial attack that perturbs the input in the direction of its gradient, generated
from backpropagating the loss, with a small step size, such that the model prediction becomes
incorrect. Due to its fast computation, it is still a widely used approach. Numerous subsequent
works have been directed towards generating effective adversarial attacks for diverse tasks including
NLP (Morris et al., 2020; Ribeiro et al., 2018; Iyyer et al., 2018), or 3D tasks (Zhang et al., 2021;
Sun et al., 2021). Yet, the high input dimensionality of image classification models results in the
striking effectiveness of adversarial attacks in this field (Goodfellow et al., 2014; Jia et al., 2022).
A vast line of work has been dedicated to assessing the quality and robustness of representations
learned by the network, including the curation of dedicated evaluation data for particular tasks (Kang
et al., 2019; Hendrycks and Dietterich, 2019; Hendrycks et al., 2019) or the crafting of effective
adversarial attacks. These adversarial attacks can be image-wide or localized in a small region or
patch. These perturbations are in a small region of the image and are called Patch Attacks (e.g. Brown
et al. (2017)),while methods such as proposed in Goodfellow et al. (2014); Kurakin et al. (2017);
Madry et al. (2017); Wong et al. (2020b); Moosavi-Dezfooli et al. (2015); Croce and Hein (2020);
Andriushchenko et al. (2020); Carlini and Wagner (2017); Rony et al. (2019); Dong et al. (2018)
argue in a Lipschitz continuity motivated way that a robust network’s prediction should not change
drastically if the perturbed image is within the epsilon-ball of the original image and thus optimize
attacks globally within the epsilon neighborhood of the original input. Our proposed CosPGD
approach follows this line of work.

White-box attacks assume full access to the model and its gradients (Goodfellow et al., 2014; Kurakin
et al., 2017; Madry et al., 2017; Wong et al., 2020b; Gu et al., 2022; Moosavi-Dezfooli et al.,
2015; Rony et al., 2023a; Dong et al., 2018) while black-box attacks optimize the perturbation in
a randomized way (Andriushchenko et al., 2020; Ilyas et al., 2018; Qu et al., 2023). The proposed
CosPGD derives its optimization objective from Projected Gradient Descent PGD (Kurakin et al.,
2017) and is a white-box attack.

Further, one distinguishes between targeted attacks (e.g.Wong et al. (2020a); Gajjar et al. (2022);
Schmalfuss et al. (2022)) that turn the network predictions towards a specific target and untar-
geted attacks (or non-targeted attacks) that optimize the attack to cause any incorrect prediction.
PGD (Kurakin et al., 2017), and CosPGD by extension, allows for both settings (Vo et al., 2022).

While previous attacks predominantly focus on classification tasks, only a few approaches specifically
address the analysis of pixel-wise prediction tasks such as semantic segmentation, optical flow, or
disparity estimation. For example, PCFA (Schmalfuss et al., 2022) was applied to the estimation of
optical flow and specifically minimizes the average end-point error (AEE) to a target flow field. A
notable exception of pixel-wise white-box adversarial attack is proposed in Gu et al. (2022). The
recent SegPGD attack could showcase the importance of pixel-wise attacks for semantic segmentation.
In this work, we propose CosPGD to provide a principled and efficient adversarial attack, that can be
applied to a wide range of pixel-wise prediction tasks.

Similar to SegPGD, the here proposed CosPGD is based on the optimization formulated in Projected
Gradient Descent (PGD) (Kurakin et al., 2017). PGD in its formulation is very similar to FGSM,
i.e. it aims to increase the network’s loss for an image by adding epsilon-bounded noise. Yet, it
is significantly more expensive to optimize than FGSM since it is allowed not one but multiple
optimization steps. We explain PGD in more detail in Section 3. SegPGD (Gu et al., 2022) extends
upon PGD for semantic segmentation by considering the loss per pixel. For effective optimization,
it splits the model’s predicted segmentation mask into correctly classified and incorrectly classified
pixels, by comparing it to the ground truth segmentation mask. Thus, the loss is scaled over the
iterations and the attack does not continue to increase the loss on already flipped pixel labels. While
SegPGD improves upon previous adversarial attacks, it is limited to pixel-wise classification tasks
(i.e. semantic segmentation) by definition and cannot be extended to regression-based tasks like
disparity estimation or optical flow estimation. Thus, we propose CosPGD. CosPGD uses the pixel-
wise cosine similarity between the distribution over the predictions and the distribution over the
targets to scale the loss for each pixel so that it can be applied to classification and regression tasks
in a principled way. Further, the cosine similarity can be evaluated on the prediction scores for
pixel-wise classification tasks and thereby leverage even more information from the network. Thus,
CosPGD outperforms SegPGD by a significant margin when attacking semantic segmentation models
while preserving the efficiency of SegPGD and extending it to other pixelwise prediction tasks.
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Algorithm 1 Algorithm for generating adversarial examples using CosPGD.

Require: model fnet(·), clean samples Xclean, perturbation range ϵ, step size α, attack iterations T , ground
truth/target Y
Xadv0 = Xclean + U(−ϵ,+ϵ) ▷ initialize adversarial example and clip to valid l∞ or l2 bound
for t ← 0 to T-1 do ▷ loop over attack iterations

P = fnet(X
advt) ▷ make predictions

cossim← CosineSimilarity(Ψ∗(P ),Ψ
′
(Y )) ▷ compute cosine similarity

if targeted attack:
cossim← 1− cossim ▷ punish dissimilarity to target
α← −α ▷ opposite direction for targeted attack

Lcos ← cossim · L(P,Y ) ▷ scaling the pixel-wise loss for sample updates

Xadvt+1 ←Xadvt + α · sign(∇XadvtLcos) ▷ update adversarial examples
δ ← ϕϵ(Xadvt+1 −Xclean) ▷ clip δ to valid l∞ or l2 bound
Xadvt+1 = ϕϵ(Xclean + δ) ▷ add δ to Xclean and clip into valid image range

end for
P = fnet(X

advT ) ▷ make predictions on adversarial examples

3 METHOD

CosPGD is an iterative white-box attack that uses the pixel-wise cosine similarity to generate strong
adversarial examples. It effectively extends PGD to all pixel-wise prediction tasks using the same
attack step as PGD, given by Equation 1 and Equation 2 and in Kurakin et al. (2017); Gu et al. (2022).

Xadvt+1 = Xadvt + α · sign∇XadvtL(fnet(X
advt),Y ), δ = ϕϵ(Xadvt+1 −Xclean) (1)

Xadvt+1 = ϕr(Xclean + δ) (2)
Here, L(·) is a one-differentiable function of the model prediction and the target, which defines
the loss the model aims to minimize, Xadvt+1 is a new adversarial example for time step t + 1,
generated using Xadvt , the adversarial example at time step t and initial clean sample Xclean. Y is
the ground truth label for non-targeted attacks and the target for targeted attacks, α is the step size
for the perturbation (α is multiplied by −1 for targeted attacks to take a step in the direction of the
target), and the function ϕϵ is clipping the δ in ϵ-ball for l∞-norm bounded attacks or the ϵ-projection
in l2-norm bounded attacks, complying with the l∞-norm or l2-norm constraints, respectively. ϕr

is clipping the generated example in the valid input range (usually between [0, 1]). ∇XadvtL(·)
denotes the gradient of Xadvt generated by backpropagating the loss and is used to determine the
direction of the perturbation step. SegPGD extends this formulation to tensor-valued predictions and
labels Y ∈ RH×W×M for images of size H ×W and categorical M output classes. This allows
specifically optimizing perturbations on pixels on which the segmentation is not yet flipped instead of
considering all positions equally important.

CosPGD The aim of the proposed CosPGD approach is to facilitate the effective application of
PGD-like adversarial attacks to pixel-wise prediction tasks in a principled way. To facilitate this,
we propose a unified way to scale the loss in classification and regression settings, allowing the
attack to appropriately focus on altering predictions that still need to be altered most. Specifically,
for non-targeted settings, we aim to penalize pixel-wise in proportion to the pixel-wise predictions’
similarity to the ground truth, while also accounting for the decrease in similarity over iterations.
For targeted settings, we aim to penalize the dissimilarity of the prediction to the target prediction.
We propose to use the cosine similarity as this measure, as it satisfies the desired properties. Cosine
similarity provides a measure of similarity between the direction of two vectors and should therefore
be well-suited to represent label similarities at the posterior level. Additionally, cosine similarity
scales in a fixed range [-1 , 1] so that there are no normalization issues that might affect the stability
during optimization.

The cosine similarity between the model predictions and target (ground truth) is calculated as shown
in Equation 3 for each output pixel location:

cos(
−−→
pred,

−−−→
target) =

−−→
pred · −−−→target

||
−−→
pred|| · ||−−−→target||

, (3)
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where
−−→
pred is the probability distribution of the predictions of a network fnet(·) for a position, and

−−−→
target is the distribution over the target predictions or ground truth at the same position. Untargeted
CosPGD intends to drive the model’s predictions away from the model’s intended target (or ground
truth). In the case of semantic segmentation, we obtain the distribution target by generating a one-hot
encoded vector of the target and we obtain the distribution over the predictions, by calculating the
softmax of the predictions before taking the argmax

−−→
pred = softmax(fnet(X)), softmax(xi) =

exp(xi)∑
j exp(xj)

. (4)

Thus, in Algorithm 1, Ψ∗ is always the softmax function, and Ψ
′

is one-hot encoding in case of
semantic segmentation while Ψ

′
is the softmax function when

−−−→
target is already a vector. Xadv

is initialized to the clean input sample Xclean with added randomized noise in the range [−ϵ,+ϵ],
ϵ being the maximum allowed perturbation. Over attack iterations X = Xadvt , the adversarial
example generated at iteration t, such that t ∈ [0, T ), where T is the total number of attack iterations.

As discussed, we finally propose to scale the pixel-wise loss using cosine similarity (cossim)
cos(

−−→
pred,

−−−→
target), such that for the non-targeted setting, pixels where the network predictions

are closer to the intended target (ground truth), have a higher similarity (approaching 1) and thus
higher loss. Pixels with lower similarity, have a lower loss but are not rendered benign. While for the
targeted setting, we consider cosine dissimilarities (refer to Equation 6), and thus, pixels where the
network predictions are closer to the target, have higher similarity and thus lower loss, and pixels
with lower similarity have a higher loss. Thus, the final loss over all pixels is calculated as shown
in Equation 5 & Equation 6. Then this loss is back propagated to obtain gradients over the sample
to perform the adversarial attack as shown in Equation 2 using Lcos instead of L. For non-targeted
attacks, we have

Lcos =
1

H ×W

∑
H×W

cos
(−−→
pred,

−−−→
target

)
· L

(
fnet(X

advt),Y
)
, (5)

and for targeted attacks, we have

Lcos =
1

H ×W

∑
H×W

(1− cos
(−−→
pred,

−−−→
target

)
) · L

(
fnet(X

advt),Y
)
, (6)

where H and W are the height and width of a sample X . CosPGD is summarized in Algorithm 1.

Loss scaling in previous approaches When optimizing δ for an adversarial attack, Gu et al. (2022)
argue that pixels which are already misclassified by the model are less relevant than pixels correctly
classified by the model, because the intention of the attack is to make the model misclassify as
many pixels as possible while perturbing the δ inside the ϵ-ball. As a consequence, they make a
hard decision based on each pixels argmax prediction as of whether it is taken into account for
attack computation. In consequence, as the number of misclassified pixels increases, the attack loses
effectiveness if it only focuses on correctly classified pixels. As remedy, Gu et al. (2022) propose to
scale the loss over iterations such that the scaling of the loss for correctly classified pixels is inversely
proportional to the scaling of the loss for the incorrectly classified pixels. This avoids the concern
of the attack becoming benign after a few iterations, yet it fades out the effect of SegPGD and may
reduce its efficiency. CosPGD, operating on continuous predictions, does not require such heuristic.

Furthermore, splitting the pixels into two categories, correctly and incorrectly classified pixels,
limits the applicability of SegPGD to pixel-wise classification tasks (like semantic segmentation) by
definition. For pixel-wise regression tasks (like optical flow, or image reconstruction) there is no
absolute measure of correctness, so SegPGD can not be applied.

Lastly, comparing the pixel-wise labels after taking the argmax only provides limited information
from the network prediction. CosPGD expands the scope of the categories such that it can encompass
the similarity between the predictions and the label to leverage it for more effective update steps,
resulting in improved efficiency after comparable numbers of iterations.

4 EXPERIMENTS

To demonstrate the wide applicability of CosPGD, we conduct our experiments on distinct down-
stream tasks: semantic segmentation, optical flow estimation, and image restoration. For semantic
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segmentation, we compare CosPGD to SegPGD and PGD, while for optical flow estimation and other
tasks (such as image deblurring and image denoising), we compare CosPGD to PGD. We observe
that CosPGD is a significantly stronger attack compared to SegPGD and PGD.

When evaluating l∞-norm constrained attacks, we use the same ϵ ≈ 8
255 for CosPGD, SegPGD, and

PGD. For α, we follow Gu et al. (2022) and set the step size to α = 0.01 (please refer to Appendix B.2
for an ablation study). Further, when evaluating the l2-norm constraint, we follow (Croce et al.,
2020; Wang et al., 2023) and use the same ϵ for CosPGD, SegPGD, and PGD i.e. ϵ ≈{ 64

255 ,
128
255} and

α ={0.01, 0.02}. We show in Appendix B.2.1 that CosPGD outperforms both PGD and SegPGD
(for segmentation) in the l2-norm constraint settings under all commonly used ϵ and α values.

Semantic Segmentation We use PASCAL VOC 2012 (Everingham et al., 2012), which contains
20 object classes and one background class, with 1464 training images, and 1449 validation images.
We follow common practice (Hariharan et al., 2015; Gu et al., 2022; Zhao, 2019; Zhao et al.,
2017), and use work by Hariharan et al. (2011), augmenting the training set to 10,582 images.
We evaluate on the validation set. Architectures used for our evaluations are PSPNet (Zhao et al.,
2017) and DeepLabV3 (Chen et al., 2017), both with ResNet50 (He et al., 2015) encoders, and
UNet (Ronneberger et al., 2015) with a ConvNeXt tiny encoder (Liu et al., 2022). Results are reported
in Appendix B.1. We report mean Intersection over Union (mIoU) and mean pixel accuracy (mAcc).

Optical Flow We use RAFT (Teed and Deng, 2020) and follow the evaluation procedure used
therein. Evaluations are performed on KITTI2015 (Menze and Geiger, 2015) and MPI Sintel (Butler
et al., 2012; Wulff et al., 2012) validation sets. We use the networks pre-trained on FlyingChairs (Doso-
vitskiy et al., 2015) and FlyingThings (Mayer et al., 2016) and fine-tuned on training datasets of
the specific evaluation, as provided by Teed and Deng (2020). For Sintel we report the end-point
error (epe) on both clean and final subsets, while for KITTI15 we report the epe and epe-f1-all. In
Appendix C.3 we compare CosPGD to PCFA across different networks.

Image Restoration For the image de-blurring task we use the GoPro dataset (Nah et al., 2017) as in
Chen et al. (2022). The images are split into 2103 training images and 1111 test images. We consider
the “Baseline network” and NAFNet as proposed by Chen et al. (2022). For the image restoration
tasks we report the PSNR and SSIM scores of the reconstructed images w.r.t. to the ground truth
images, averaged over all images. We provide further details in Appendix D.1.

Following Gu et al. (2022); Rony et al. (2023b); Kang et al. (2020), we compute l∞-norm and
l2-norm constrained non-targeted attacks for semantic segmentation. For optical flow estimation,
we compute l∞-norm targeted attacks and report results using l2-norm in Appendix C.3 to allow
for comparison to Schmalfuss et al. (2022). For image restoration, we use l∞-norm non-targeted
attacks.

4.1 SEMANTIC SEGMENTATION

(a) DeepLabV3
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Figure 2: CosPGD versus PGD and SegPGD (l∞-norm constrained) for semantic segmentation on
PASCAL VOC2012 validation set on DeepLabV3 and PSPNet. CosPGD outperforms competing
attacks even in early iterations by a large margin. See also Table 4 in Appendix B.

We report the comparison of CosPGD to the recently proposed SegPGD and to PGD in Fig-
ure 2. CosPGD yields a much stronger attack compared to PGD or SegPGD. This is consistent
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across the number of attack iterations, as CosPGD fools networks at much fewer iterations than
SegPGD as measured by both metrics mIoU and mAcc. For example in Figure 3 after 40 at-
tack iterations, all attacks are considerably fooling the network into making incorrect predictions.

Ground Truth PGD SegPGD CosPGD

mIoU= 6.79% mIoU= 2.69% mIoU= 0.08%

Figure 3: Example predictions of DeepLabV3
on PASCAL VOC 2012 val set after l∞ PGD,
SegPGD, and CosPGD attacks with 40 iters. The
ground truth segmentations are given on the left.
Both PGD and SegPGD are able to successfully
change most of the predicted labels to one of the
ground truth labels (here in green). Yet, the re-
gion with this label is predicted correctly.Here, the
benefit of CosPGD is aptly highlighted as it also
changes the prediction in this region to a third class.

However, once the dominant class label is
changed by SegPGD or PGD, they do not further
optimize over small regions of correct predic-
tion. In contrast, CosPGD successfully fools the
model into making incorrect predictions even
in these small regions by either swapping the
region prediction with an already existing class
or forcing the model into predicting a class not
existing in that sample.

Greedy approaches like PGD, originally de-
signed for image classification, are able to
bring down the mIoU of DeepLabV3 to 6.79%.
SegPGD, by naı̈vely utilizing the pixel-wise seg-
mentation error, deteriorates the model perfor-
mance further to 2.69%. However, CosPGD is
able to fool the network into making incorrect
predictions for almost all pixels of the samples,
bringing down the model performance to 0.08%
after 40 iterations and to approximately 0% after
100 iterations.

Additionally, in Table 4 (Appendix) we ob-
serve that at low attack iterations (iterations=3)
SegPGD implies that PSPNet is more adversarially robust than DeepLabV3. However, after more at-
tack iterations (iterations≥5), SegPGD reveals that DeepLabV3 is more robust than PSPNet. Contrary
to this, CosPGD even at low attack iterations correctly predicts DeepLabV3 to be more robust than
PSPNet. This is an insight that CosPGD provides with considerably fewer iterations, thus lower
overall computation time. Compute costs per iteration are comparable, see Table 2 (Appendix).

DeepLabV3 l2-norm constrained

Figure 4: l2-norm constrained CosPGD vs. PGD
and SegPGD for semantic segmentation over PAS-
CAL VOC2012 val set for DeepLabV3. See Ap-
pendix B.2 for results for more α and ϵ values.

Furthermore, the improved performance of
CosPGD is not limited to l∞-norm constrained
attacks that were observed in Figures 2 & 3. As
shown in Figure 4, it also extends to l2-norm
constrained attacks, where CosPGD again out-
performs both SegPGD and PGD across attack
iterations. Moreover, the gap in performance
of the three adversarial attacks significantly in-
creases when increasing the number of attack it-
erations. This demonstrates that CosPGD is able
to utilize the increase in attack iterations best
and highlights the significance of scaling the
pixel-wise loss with the cosine similarities rather
than using a heuristical scaling as in SegPGD.

Thus, we successfully demonstrate the benefit
of the proposed attack over existing adversarial
attacks for semantic segmentation. We provide more results on l∞-norm and l2-norm constrained
non-targeted adversarial attacks for semantic segmentation using UNet (Ronneberger et al., 2015)
with ConvNeXt backbone on CityScapes (Cordts et al., 2016) in Appendix B.1, further confirming
the benefit of CosPGD.

Additionally, we ablate over the attack step size α for l∞-norm constrained attacks on DeepLabV3
using PASCAL VOC2012 validation dataset in Appendix B.2.2 and over multiple attack step size
α and permissible perturbation ϵ for l2-norm constrained attacks on DeepLabV3 using PASCAL
VOC2012 validation dataset in Appendix B.2. Thus demonstrating the versatility of CosPGD.
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Figure 5: Comparison of performance of CosPGD to PGD for optical flow estimation over KITTI-
2015 (left) and Sintel (clean → centre and final → right) validation datasets as l∞-norm constrained
targeted attacks using RAFT. We observe that CosPGD as an attack is stronger than PGD. We also
report these results in Table 6 in Appendix C.1.

(a) Target flow (b) PGD 5 itrs epe = 14.42 (c) PGD 40 itrs epe = 7.32

(d) Initial flow epe = 31.1 (e) CosPGD 5 itrs epe = 14.28 (f) CosPGD 40 itrs epe = 4.84

Figure 6: Comparing PGD and CosPGD as a targeted l∞-norm constrained attack on RAFT using
KITTI15 validation set over various iterations. (a) shows the targeted prediction, a

−→
0 , and (d) shows

the initial optical flow estimation by the network before adversarial attacks. EPEs between the target
and the final prediction are reported, thus lower epe is better. (b) and (c) show flow predictions after
PGD attack over 5 and 40 iterations respectively, while figures (e) and (f) show flow predictions
after CosPGD attack over 5 and 40 iterations respectively. CosPGD significantly changes the overall
structure of the optical flow field, bringing is visibly closer to target (a).

4.2 OPTICAL FLOW

For optical flow, we explore the l∞-norm constrained targeted setting. A comparison of CosPGD
to PGD is shown in Figure 5. Here we quantitatively observe the better performance of CosPGD
compared to PGD. As this is the targeted setting, we intend to close the gap between the target
prediction and the model predictions, thus a lower epe of the model prediction w.r.t the target
prediction is desired. As the attack iterations increase, across datasets, CosPGD is able to significantly
fool the network into making predictions closer to the target, bringing down the epe to as low as
1.55 for Sintel (final). We qualitatively observe in Figure 6 that the initial optical flow estimation
by the model (which is very different from the target) is only moderately changed when the model
is attacked with a strong adversarial attack like PGD. As the attack was originally designed for
classification tasks, the model is not significantly fooled even as the intensity of the attack is increased
to 40 iterations. Figure 6(b), shows qualitatively that the model predictions are not significantly
different from the initial predictions. The shape of the moving car is preserved to a considerable
extent. The limited effectiveness of the PGD attack is further highlighted on increasing the attack
strength to 40 iterations (see Figure 6(c)). Here, some initial predictions are still preserved, for
example the bark of the tree. This is in contrast to when the model is attacked using CosPGD, a
method that utilizes pixel-wise information. In Figure 6(e), we observe that even at a low intensity of
the attack (5 iterations), the model predictions are significantly different from the initial predictions,
especially in the background and the shape of the moving car. The model is incorrectly predicting
the motion of the pixels around the moving car. At high attack intensity, as shown in Figure 6(f)
with 40 iterations, the model’s optical flow predictions are significantly inaccurate and exceedingly
different from the initial predictions and very close to the target of

−→
0 . The model fails to differentiate

the moving car from its background, moreover, the bark of the tree has completely vanished. In a
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real-world scenario, this vulnerability of the model to a relatively small perturbation (ϵ = 8
255 ) could

be hazardous. CosPGD provides us with this new insight. A similar observation is made for the Sintel
dataset as shown in Figure 1. The benefit of CosPGD over PGD for optical flow can be quantitatively
seen in Figure 5 and Table 6 provided in the supplementary material. In addition, we provide results
comparing CosPGD to PGD as a l∞-constrained non-targeted attack for optical flow estimation in
Appendix C.2. We also provide a comparison to PCFA (Schmalfuss et al., 2022) in Appendix. C.3.

4.3 IMAGE RESTORATION
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Figure 7: Non-targeted l∞-norm constrained
CosPGD, PGD, and SegPGD attacks on NAFNet,
recently proposed by Chen et al. (2022) as the state-
of-the-art network for image de-blurring on the Go-
Pro dataset.CosPGD significantly outperforms the
other attacks. Lower PSNR and SSIM indicate a
worse restoration and thus a stronger attack.

CosPGD can be very useful in predicting a
new model’s robustness efficiently. To demon-
strate its versatility, we consider the new vi-
sion transformer-based image restoration model
NAFNet (Chen et al., 2022). NAFNet outper-
forms Restormer (Zamir et al., 2022) for image
restoration tasks like image de-blurring and im-
age denoising on clean data, thus implying that
NAFNet learns good representations.

Here, we compare the adversarial robustness of
these networks and discuss interesting findings.
Figure 7 depicts results for NAFNet on image
deblurring of the GoPro dataset images. We
observe that CosPGD is a significantly stronger
attack than both PGD and SegPGD. To enable
the applicability of SegPGD on this task, we
implement SegPGD by comparing the equality
of the pixel values to use their proposed loss for
comparison. We observe that at low number of attack iterations (3 attack iterations) it performs
significantly worse than PGD, thus demonstrating its limitation on this task. Interestingly, after 5
attack iterations, SegPGD is stronger than PGD. This exhibits the strength of pixel-wise scaling of the
loss. Nonetheless, CosPGD is able to provide us with both wide applicability and an even stronger
attack while being more efficient.

We provide further discussion and results on Restormer (Zamir et al., 2022) and the “Baseline
network” (Chen et al., 2022) in Appendix D.1. We additionally discuss results on the image denoising
task in Appendix D.2.

5 CONCLUSION

In this work, we demonstrated across different downstream tasks and architectures that our proposed
adversarial attack, CosPGD, is significantly more effective than other existing and commonly used
adversarial attacks on several pixel-wise prediction tasks. We provide a new algorithm for evaluating
the adversarial robustness of models on pixel-wise tasks. By comparing CosPGD to attacks like
PGD, which were originally proposed for image classification tasks, we expanded on the work by Gu
et al. (2022) and highlighted the need and effectiveness of attacks specifically designed for pixel-wise
prediction tasks beyond segmentation. We illustrated the intuition behind using cosine similarity
as a measure for generating stronger adversaries and leveraging more information from the model
and backed it with experimental results from different downstream tasks. This further highlights
the simplicity and principled formulation of CosPGD, thus making it applicable to a wide range
of pixel-wise prediction tasks and in principle extendable to all Lipschitz continuous bounds as a
targeted or a non-targeted attack.

Limitations There are settings, especially for non-targeted attacks, where approaches like pixel-
wise PGD would work at par with CosPGD as the epe can be increased equally well by either changing
all pixel-wise regression estimates slightly (sophisticated attack like CosPGD) or by changing only a
few of them drastically (brute force attacks like PGD). We discuss this further in detail in Appendix E.
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ETHICS STATEMENT

We have carefully read the ICLR 2024 Code of Ethics and confirm that we adhere to it. The proposed
work is original and novel. To the best of our knowledge, all literature used in this work has been
referenced correctly. Our work did not involve any human subjects and does not pose a threat to
humans or the environment. Adversarial attacks are time and computation exhaustive. And thus,
our proposed adversarial attack, CosPGD helps in this regards as it can provide new insights into a
model’s robustness and vulnerabilities with much less time and thus computation.

REPRODUCIBILITY

Our work is completely reproducible. We use publicly available code bases for our work.
The code for CosPGD attack is available at https://anonymous.4open.science/r/
cospgd-iclr2024-909/ with instructions to reproduce the results. The provided code can
be used in a plug-and-play fashion with any pixel-wise prediction task. The code will be made
publicly available upon acceptance. We provide further details in Appendix A.1.1
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CosPGD: an efficient and unified white-box adversarial attack for
pixel-wise prediction tasks

Supplementary Material

We include the following information in the supplementary material:

• Section A Additional Details:

– Section A.1 : Hardware details
– Section A.1.1: Implementation details including code and example usage.
– Section A.1.3: We provide additional experimental details for the image deblurring

experiments.
– Section A.1.4: We compare the time taken by different adversarial attacks for different

tasks.
– Section A.1.2: Details on calculating epe-f1-all.

• Section B: Semantic Segmentation Additional Results:

– Section B.1: We provide extra l∞-norm and l2-norm constrained non-targeted adver-
sarial attack results from Semantic Segmentation using the UNet architecture with
ConvNeXt backbone on the CityScapes dataset (Cordts et al., 2016).

– Section B.2: We provide an ablation study on attack step size α and ϵ for l2-norm
bounded for non-targeted adversarial attack results from Semantic Segmentation using
DeepLabV3 on the PASCAL VOC 2012 dataset.

– Section B.2.2 We provide an ablation study on attack step size α for l∞-norm
bounded for non-targeted adversarial attack results from Semantic Segmentation using
DeepLabV3 on the PASCAL VOC 2012 dataset.

– Section B.3: We report results from Figure 2 in a tabular form.
– Section B.4: We report the results of adversarial training for semantic segmentation.

• Section C Optical Flow Additional Results:

– Section C.1: We report results from Figure 5 in a tabular form.
– Section C.2: We provide extra results comparing CosPGD to PGD as a l∞-norm

constrained non-targeted adversarial attack for optical flow estimation.
– Section C.3: We provide a comparison to the l2-constrained PCFA (Schmalfuss et al.,

2022), which is dedicated for optical flow.

• Section D: Image Restoration Results:

– Section D.1: We report the findings on the adversarial robustness of many recently
proposed transformer-based image deblurring models.

– Section D.2: We report the results on many recently proposed transformer-based image
denoising models.

In Table 1, we provide a look-up table for all experiments considered in this supplementary material.
We provide details on the downstream tasks, models, targeted and non-targeted attack settings, and
l∞-norm constrained and l2-norm constrained settings considered respectively do demonstrate the
wide-applicability of CosPGD.

Table 1: All considered experiments in this work.

Downstream Task Networks Dataset Non-targeted Attack Targeted Attack
l∞-norm constraint l2-norm constraint l∞-norm constraint l2-norm constraint

Semantic Segmentation
DeepLabV3

PASCAL VOC 2012, Cityscapes Sec. B.2.2
Sec. B.2.1

PSPNet
UNet

Optical Flow Estimation RAFT KITTI 2015, Sintel (clean and final) Sec. C.2 Sec. C Sec. C.3PWCNet, GMA, SpyNet

Image Deblurring Restormer, Baseline net, NAFNet GoPro Sec. D.1
Image Denoising Baseline net, NAFNet SSID Sec. D.2
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A APPENDIX

A.1 FURTHER EXPERIMENTAL DETAILS ON HARDWARE AND METRICS

Semantic Segmentation. For the experiments on DeepLabV3, we used NVIDIA Quadro RTX
8000 GPUs. For PSPNet, we used NVIDIA A100 GPUs. For the experiments with UNet, we used
NVIDIA GeForce RTX 3090 GPUs.

Image Restoration. For the experiments on Image de-blurring tasks, we used NVIDIA GeForce
RTX 3090 GPUs.

A single GPU was used for each run.

Optical Flow Estimation. We used NVIDIA V100 GPUs, a single GPU was used for each run.

A.1.1 CODE FOR THE ATTACK

The code for the functions used for generating adversarial samples using CosPGD and other con-
sidered adversarial attacks in the main paper is available at https://anonymous.4open.
science/r/cospgd-iclr2024-909/.

Additionally, we provide sample code demonstrating the usage of the packages for a UNet-
like architecture with detailed instructions at https://anonymous.4open.science/r/
cospgd-iclr2024-909/.

A.1.2 CALCULATING EPE-F1-ALL

Following the work by Teed and Deng (2020), f1− all is calculated by averaging out over all the
predicted optical flows. out is calculated using Equation equation 7,

out = epe > 3.0 ∪ epe

mag
> 0.05 (7)

Where, mag =
√

flow ground truth2 and epe is the Euclidean distance between the two vectors.

A.1.3 IMAGE DEBLURRING EXPERIMENTAL DETAILS

Chen et al. (2022) simplify a transformer-based architecture Restormer (Zamir et al., 2022) for image
restoration tasks and first propose a simplified architecture as a Baseline network, and then improve
upon it with intuitions backed by reasoning and ablation studies to propose Non-linear Activation
Free Networks abbreviated as NAFNet. In this work, we perform adversarial attacks on both the
Baseline network and NAFNet.

Dataset. Similar to Chen et al. (2022), for the image de-blurring task, we use the GoPro
dataset (Nah et al., 2017) which consists of 3124 realistically blurry images of resolution 1280×720
and corresponding ground truth sharp images obtained using a high-speed camera. The images are
split into 2103 training images and 1111 test images. For the image denoising task, we use the
Smartphone Image Denoising Dataset (SSID) (Abdelhamed et al., 2018). This dataset consists of 160
noisy images taken from 5 different smartphones and their corresponding high-quality ground truth
images.

Metrics. For both the image restoration tasks, we report the PSNR and SSIM scores of the
reconstructed images w.r.t. to the ground truth images, averaged over all images. PSNR stands for
Peak Signal-to-Noise ratio, a higher PSNR indicates a better quality image or an image closer to
the image to which it is being compared. SSIM stands for Structural similarity (Wang et al., 2004).

A.1.4 COMPARING TIME TAKEN BY DIFFERENT ADVERSARIAL ATTACKS

Following, we report the approximate time taken by each attack in minutes. Please note, this time
includes time taken for data-loading and saving of experimental results including images. For a given
task, network, and dataset, the time taken by different attacks is comparable and representative of the
time taken by the attacks as they followed the same attack procedures. We observe in Table 2 that the
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difference in time taken by the different attacks at the same number of iterations is negligible. This is
because operations like one-hot encoding and softmax take negligible time.

Thus, the ability of CosPGD to provide valuable insights into model robustness with significantly less
iterations than other methods, as discussed in Section 4.1 and Section 4.3 is a compelling advantage.

Table 2: Comparison of time taken in minutes by different attacks on different downstream tasks for
different amount of iterations. The computation times are comparable.

Task Network Dataset Attack method
Attack iterations

3 5 10 2 40
Time (mins) Time (mins) Time (mins) Time (mins) Time (mins)

Semantic
Segmenation UNet PASCAL VOC

2012
SegPGD 28.73 36.33 58.72 88.93 163.15
CosPGD 26.67 36.75 54.45 97.08 165.35

Optical Flow RAFT
KITTI2012 PGD 5.90 7.73 12.23 20.98 37.45

CosPGD 6.00 7.85 12.15 21.03 38.28

Sintel (clean +
final)

PGD 69.87 97.47 158.28 297.40 557.97
CosPGD 73.68 102.77 160.40 287.82 602.08

B SEMANTIC SEGMENTATION

B.1 SEMANTIC SEGMENTATION WITH UNET ON CITYSCAPES

In the following, we provide extra results on semantic segmentation with UNet on the Cityscapes
dataset.

B.1.1 EXPERIMENTAL SETUP

In this evaluation, we use a UNet architecture (Ronneberger et al., 2015) with a ConvNeXt tiny
encoder(Liu et al., 2022). We extend the implementation from username: mberkay0 (2023)(www.
github.com) to implement CosPGD, PGD, and SegPGD non-targeted l∞-norm and l2-norm
attacks.

We do these evaluations on the Cityscapes dataset (Cordts et al., 2016). Cityscapes contains a total of
5000 high-quality images and pixel-wise annotations for urban scene understanding. The dataset is
split into 2975, 500, and 1525 images for training, validation, and testing respectively. The model is
trained on the test split and attacks are evaluated on the validation split.

B.1.2 EXPERIMENTAL RESULTS AND DISCUSSION

In Figure 8, we report results from the comparison of non-targeted CosPGD to PGD and SegPGD
attacks across iterations and across lp-norm constraints: l∞-norm and l2-norm using UNet architecture
with a ConvNeXt tiny encoder on Cityscapes validation dataset. For the l∞-norm constraint, we use
the same α = 0.01 and ϵ ≈ 8

255 as in all previous evaluations. For the l2-norm constraint we follow
common work (Croce et al., 2020; Wang et al., 2023) and use the same ϵ for CosPGD, SegPGD, and
PGD i.e. ϵ ≈{ 64

255 ,
128
255} and α ={0.1, 0.2}.

Note, SegPGD has been proposed as an l∞-norm constrained attack. We extend it to the l2-norm
constraint merely for complete comparison and curiosity.

We observe in Figure 8 that CosPGD is a significantly stronger attack than both PGD and SegPGD,
across iterations and lp-norm constraints, and α and ϵ values. Even at low attack iterations, it
outperforms previous methods significantly, making it particularly efficient. Especially as an l2-norm
constrained attack, as shown before in Figure 4 for DeepLabV3 on PASCAL VOC 2012 dataset and
discussed before in Section 4.1, as attack iterationsincrease, CosPGD is able to increase the gap in
performance quite significantly.

B.2 ABLATION ON ATTACK STEP SIZE α

Further, we provide additional experimental results and ablation studies using DeepLabV3 for
semantic segmentation on the PASCAL VOC 2012 validation dataset.
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Figure 8: Comparing non-targeted CosPGD to PGD and SegPGD attacks across iterations and
lp-norm constraints, and α and ϵ values using UNet architecture with a ConvNeXt tiny encoder on
Cityscapes validation dataset. CosPGD significantly outperforms previous methods by a large margin,
even at few attack iterations.
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B.2.1 l2-NORM CONSTRAINED ADVERSARIAL ATTACKS

Further in Figure 9, we extend the results from Figure 4, to report l2-norm constrained attack
evaluations on commonly used (Croce et al., 2020; Wang et al., 2023) values of ϵ ≈{ 64

255 ,
128
255} and

α ={0.1, 0.2}.

Additionally, in Table 3 we provide comparison to C&W Carlini and Wagner (2017) and other
l2-norm constrained adversarial attacks with α=0.2 and epsilon ≈ 128

255 on PASCAL VOC 2012
validation dataset using DeepLabV3 with a ResNet50 backbone.

Table 3: Comparison of performance of CosPGD to SegPGD, PGD and C&W as a l2-norm constrained
attack with α=0.2 and ϵ ≈ 128

255 where applicable for semantic segmentation over PASCAL VOC2012
validation dataset. We observe that CosPGD is a significantly stronger attack compared to all the
other attacks for both metrics.

Network Attack method
Attack iterations

3 5 10 20 40 100
mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%)

DeepLabV3
C&W (c=1) 72.35 84.32 72.02 84.13 71.87 84.05 71.81 84.02 71.78 84.01 71.77 84.00

PGD 41.81 64.36 34.5 59.03 27.61 54.0 23.73 50.77 21.47 48.58 19.84 47.04
SegPGD 37.51 60.4 29.9 54.4 22.72 47.51 19.2 43.78 16.8 40.75 14.77 37.88
CosPGD 36.17 59.41 27.12 51.6 18.68 42.8 14.35 37.02 12.23 33.71 10.97 31.3

B.2.2 l∞-NORM CONSTRAINED ADVERSARIAL ATTACKS

Following, we ablate over the attack step size α for the l∞-norm constrained adversarial attacks and
report the findings in Figure 10. We consider α ∈ {0.005, 0.01, 0.02, 0.04, 0.1}. We can observe
that the scaling in CosPGD ensures less susceptibility to the choice of step size given that it is set
small enough (α ≤ ϵ). In our work, we use step size α=0.01 to maintain consistency with previous
work (Kurakin et al., 2017; Gu et al., 2022).

B.3 TABULAR RESULTS

Here we report the quantitative results that have already been presented in the main paper in Fig-
ures 2in tabular form. For the results reported in Figure 2, we report the results in tables 4. Here we
observe that at low attack iterations (iterations=3) SegPGD implies that PSPNet is more adversarially
robust than both DeepLabV3. However, after more attack iterations (iterations ≥ 5), SegPGD cor-
rectly implies that DeepLabV3 is more robust than PSPNet. Contrary to this, CosPGD even at low
attack iterations correctly predicts DeepLabV3 to be more robust than PSPNet. This is an insight that
CosPGD provides with considerably less computation.

Table 4: Comparison of performance of CosPGD to SegPGD for semantic segmentation over PASCAL
VOC2012 validation dataset. We observe that CosPGD is a significantly stronger attack compared to
SegPGD for both metrics and all models.

Network Attack method
Attack iterations

3 5 10 20 40 100
mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%)

UNet SegPGD 12.38 32.41 7.75 25.27 4.46 18.36 2.98 14.24 2.20 11.66 1.55 8.66
CosPGD 9.67 29.46 3.71 15.89 0.61 3.39 0.06 0.38 0.03 0.16 0.01 0.04

PSPNet
PGD 13.79 31.91 7.59 21.15 5.44 16.96 4.48 14.78 3.80 13.13 3.72 13.21

SegPGD 9.19 23.25 4.7 14.25 2.72 9.5 1.82 7.39 1.3 5.77 0.83 3.86
CosPGD 7.03 19.73 2.15 7.6 0.408 1.44 0.04 0.11 0.005 0.021 0.0002 0.0007

DeepLabV3
PGD 10.69 28.76 8.0 25.29 7.02 24.05 6.84 23.87 6.79 23.81 7.01 24.13

MI-FGSM 10.86 29.39 7.75 24.97 6.95 24.06 6.67 23.52 6.57 23.48 – –
SegPGD 6.76 19.78 4.86 16.49 3.84 14.29 3.31 12.40 2.69 10.81 2.15 9.25
CosPGD 4.44 14.97 1.84 7.89 0.69 3.18 0.12 0.48 0.08 0.25 0.005 0.16

B.4 ADVERSARIAL TRAINING

In Figure 11 we show the segmentation masks predicted by UNet after being adversarially trained.
We observe that even after 100 attack iterations, the model adversarially trained using CosPGD is
making reasonable predictions. However, the model trained with SegPGD is merely predicting a
blob.

In Table 5 we report the performance of models trained with various adversarial attacks against
different commonly used adversarial attacks across multiple attack iterations. We observe that the
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Figure 9: Comparing CosPGD to PGD and SegPGD across iterations as l2-norm constrained attacks,
and across α and ϵ values using DeepLabV3 architecture with a ResNet50 on PASCAL VOC 2012
validation dataset. Again, CosPGD outperforms previous attacks be a large margin at all attack
iterations.
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Figure 10: We ablate step sizes α for l∞-norm constrained CosPGD, SegPGD, and PGD attacks
given different number of iterations ∈ {3, 5, 10, 20, 40, 100} by attacking DeepLabV3 trained on the
PASCAL VOC2012 dataset with maximal perturbation of ϵ = 0.03. We can observe that the scaling
in CosPGD ensures less susceptibility to the choice of step size given that it is set small enough
(α ≤ ϵ).
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Table 5: Evaluating the adversarial performance of models on PASCAL VOC2012 validation dataset
that are adversarially trained using PASCAL VOC2012 training dataset. “Training method” specifies
the adversarial attack used during training, such that “Clean” stands for no adversarial attack being
used during training. During training, 3 attack iterations were used for all adversarial attacks with
α=0.01 and ϵ ≈ 8

255 . These models were evaluated against multiple adversarial attacks denoted by
“Attack method”. We observe that models trained with CosPGD substantially outperform all the other
adversarial training methods.

Network Training method Attack method
Attack iterations

3 5 10 20 40 100
mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%)

UNet

Clean

PGD

23.18 46.64 14.58 35.89 8.21 24.99 5.57 18.57 4.14 14.53 3.6 11.72
PGD 29.26 57.52 21.28 51.06 13.74 41.57 9.29 32.51 7.47 27.46 6.38 22.43

SegPGD 31.77 63.91 22.77 57.82 14.86 48.09 11.03 40.25 8.98 34.29 7.45 28.4
CosPGD 47.35 68.67 43.75 66.34 38.1 62.85 34.33 60.06 32.28 58.64 30.55 57.51

Clean

SegPGD

12.38 32.41 7.75 25.27 4.46 18.36 2.98 14.24 2.20 11.66 1.55 8.66
PGD 29.38 57.82 21.31 51.35 13.77 41.72 9.39 33.15 7.45 26.98 6.38 22.26

SegPGD 31.69 63.94 22.47 57.07 14.82 47.94 10.9 40.32 9.09 34.68 7.33 27.99
CosPGD 47.16 68.51 43.85 66.41 37.64 62.58 33.99 59.8 31.91 58.31 30.48 57.01

Clean

CosPGD

9.67 29.46 3.71 15.89 0.61 3.39 0.06 0.38 0.03 0.16 0.01 0.04
PGD 29.23 57.71 21.09 50.73 13.49 40.91 9.28 32.68 7.36 27.02 6.29 22.0

SegPGD 31.53 63.96 22.46 57.23 14.81 48.09 10.86 40.26 9.20 35.33 7.28 28.03
CosPGD 47.07 68.39 43.95 66.52 37.64 62.38 34.01 60.03 32.0 58.47 30.55 57.28

DeepLab

Clean

PGD

11.02 30.96 8.50 27.34 7.63 26.35 7.57 26.30 7.59 26.19 7.39 25.98
PGD 21.05 29.07 16.74 24.61 14.45 22.19 13.82 21.56 13.58 21.32 13.42 21.17

SegPGD 22.67 31.87 17.85 26.99 15.21 24.26 14.42 23.47 14.11 23.16 13.90 22.93
CosPGD 23.13 32.21 18.33 27.34 15.68 24.60 14.80 23.61 14.49 23.29 14.27 23.06

Clean

SegPGD

6.78 20.50 5.05 17.40 3.99 14.95 3.32 12.94 2.60 10.57 1.80 8.05
PGD 20.62 28.54 16.12 23.79 13.95 21.42 13.41 20.84 13.20 20.61 13.04 20.42

SegPGD 22.06 31.37 16.89 26.02 14.27 23.23 13.57 22.50 13.33 22.23 13.09 21.92
CosPGD 22.33 31.48 17.15 26.07 14.54 23.18 13.89 22.45 13.67 22.22 13.54 22.15

Clean

CosPGD

4.71 16.35 1.94 8.09 0.61 3.32 0.24 1.59 0.09 0.53 0.08 0.59
PGD 20.56 28.48 16.05 23.75 13.87 21.45 13.38 20.92 13.18 20.72 13.07 20.59

SegPGD 21.87 31.19 16.62 25.77 13.91 22.93 13.19 22.17 12.92 21.87 12.78 21.72
CosPGD 22.14 31.33 16.88 25.85 14.18 22.99 13.48 22.21 13.20 21.90 13.05 21.76

Clean Image and GT Mask Trained with CosPGD Trained with SegPGD
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Figure 11: Predictions using UNet with ConvNeXt backbone on PASCAL VOC2012 validation
dataset after 100 iterations adversarial attacks on adversarially trained models. We observe that the
models adversarially trained with CosPGD are predicting reasonable masks even after 100 attack
iterations, while the model trained with SegPGD is providing much worse results under both SegPGD
and CosPGD attacks.

model trained with CosPGD performs the best against all considered adversarial attacks. The models
were trained with 3 attack iterations of the respective “Training Method” attack during training.

In Figure 19 we present the training curves for training DeepLabV3 on the PASCAL VOC2012
training dataset using adversarial training with 50% minibatch being used for generating adversarial
samples. All models are evaluated against 10 attack iterations of the respective attack.
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Table 6: Comparison of performance of CosPGD to PGD as a targeted attack for optical flow
estimation over KITTI15 and Sintel validation datasets using RAFT for different numbers of attack
iterations. epe values are compared, with respect to both, the Target i.e.

−→
0 where a lower epe

indicates a better attack and Initial flow prediction (optical flow estimated by the model before any
adversarial attack) where a higher epe indicates a better attack. CosPGD and PGD perform similarly
for a low number of iterations, where CosPGD fits the target slightly better. CosPGD significantly
outperforms PGD from the 10th iteration on both metrics.

Attack KITTI 2015 MPI Sintel
clean final

Iterations SegPGD PGD CosPGD SegPGD PGD CosPGD SegPGD PGD CosPGD
Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑

3 20.57 11.28 20.7 11.4 20.6 11.2 8.35 6.83 8.3 6.8 8.1 6.6 7.58 7.52 7.6 7.3 7.5 7.3
5 14.33 17.75 14.4 17.8 14.3 17.7 6.06 8.97 6.1 9.0 5.8 8.8 5.44 9.43 5.6 9.4 5.2 9.3
10 11.08 21.36 10.5 22.1 9.0 23.4 3.51 11.16 3.4 11.2 2.9 11.4 3.13 11.32 3.1 11.3 2.6 11.5
20 7.76 24.55 8.1 24.6 6.5 25.8 2.97 11.61 2.8 11.7 2.0 12.1 2.62 11.7 2.5 11.8 1.6 12.1
40 7.53 24.89 7.3 25.0 4.8 27.4 2.66 11.8 2.8 11.7 1.6 12.4 2.4 11.83 2.6 12.3 1.3 12.3

C OPTICAL FLOW ESTIMATION

C.1 TABULAR RESULTS

Here we report the results from Figure 5 comparing CosPGD to PGD as a targeted attack using RAFT
for KITTI15 and Sintel datasets in tabular form in Table 6. We observe that CosPGD is more effective
than PGD to change the predictions toward the targeted prediction. During a low number of iterations
(iterations = 3 and 5), PGD is on par with CosPGD in increasing the epe values of the predictions
compared to the initial predictions on non-attacked images. However, as the number of iterations
increases, CosPGD outperforms PGD for this metric as well. In the following, we report further
results and compare CosPGD to a recently proposed sophisticated l2-norm constrained targeted attack
PCFA.

C.2 NON-TARGETED ATTACKS FOR OPTICAL FLOW ESTIMATION

For l∞-norm constrained non-targeted attacks, CosPGD changes pixels values temperately over
a larger region of the image, while PGD changes it drastically but only for a small region in the
image. This can be observed in Figure 12 when CosPGD and PGD are compared as l∞-norm
constrained non-targeted attacks for optical flow estimation. We observe that both CosPGD and
PGD are performing at par as both have very similar epe values across iterations. However, CosPGD
across iterations has a lower epe-f1-all value. As shown by Equation 7 in Section A.1.2, epe-f1-all
is the measure of average overall epe values that are above a modest threshold. Therefore, both
CosPGD and PGD have very similar epe scores while CosPGD has a significantly lower epe-f1-all
compared to PGD. This implies that CosPGD and PGD are performing at par, however, PGD is
drastically changing epe values at certain pixels, while CosPGD is changing epe values temperately
over considerably more pixels. Figure 13 shows this qualitatively for 4 randomly chosen samples.

C.3 COMPARISON TO PCFA

Further, we compare CosPGD as a l2-norm constrained targeted attack to the recently proposed
state-of-the-art l2-norm constrained targeted attack PCFA (Schmalfuss et al., 2022). For comparison.
we use the same settings as those used by the authors for both attacks, for 20 attack iterations
(steps), generating adversarial patches for each image individually, bounded under the change of
variables methods proposed by Schmalfuss et al. (2022). Here, we observe that a sophisticated
l2-norm constrained targeted attack, PCFA that does not utilise pixel-wise information for generating
adversarial patches over all considered networks and datasets, performs similar to CosPGD. We
compare over the performance over RAFT, PWCNet (Sun et al., 2018), GMA (Jiang et al., 2021)
and SpyNet (Ranjan and Black, 2017) We consider both targeted settings proposed by Schmalfuss
et al. (2022), i.e. target being a zero vector

−→
0 and target being the negative of the initial prediction

(negative flow). We compare the average epe over all images. A lower AEE is w.r.t. Target and
higher AEE w.r.t. initial indicate a stronger attack. In Table 8(currently included at the end of the
appendix to not disturb the table numbers), we compare PCFA and CosPGD on multiple datasets,
multiple networks over 3 random seeds.
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Figure 12: Comparing CosPGD and PGD as l∞-norm constrained non-targeted attacks for optical
flow estimation using RAFT on KITTI 2015 validation dataset.

PGD attack CosPGD attack

Figure 13: Comparing change in pixel-wise epe values w.r.t. initial epe values after 40 iterations of
PGD and CosPGD as non-targeted l∞-norm constrained attacks on RAFT using KITTI15 validation
set. The values for each image are: |epeadv−epeinitial|

max(epeadv)
where epeadv & epeinitial are pixel-wise epe

values of the final adversarial sample and the initial non-attacked image, respectively.

Figure 14, provides an overview of the comparison between the two methods, using targets as
−→
0

and negative flow. Figures 15, 16, provide further details compares both methods when using
−→
0 and

negative flow as the target, respectively.
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Figure 14: Comparison of mean and standard deviation of the results using different targets,
−→
0 and

negative flow for CosPGD and PCFA. A lower AEE is w.r.t. Target and a higher AEE w.r.t. initial
indicate a stronger attack.
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Figure 15: Comparison of PCFA and CosPGD when using
−→
0 as the target. A lower AEE is w.r.t.

Target and a higher AEE w.r.t. initial indicate a stronger attack.
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Figure 16: Comparison of PCFA and CosPGD when using negative flow as the target. A lower AEE
is w.r.t. Target and a higher AEE w.r.t. initial indicate a stronger attack.

D IMAGE RESTORATION TASKS

Following, we provide further results and discussion on the two considered image restoration tasks
namely, Image Deblurring in Section D.1 and Image Denoising in Section D.2

D.1 IMAGE DEBLURRING MODELS

In Figure 17 for the Baseline network, we observe that both CosPGD and PGD are performing at par.
While for the newly proposed NAFNet, PGD is still estimating NAFNet’s adversarial robustness to
be very similar to the Baseline network and only after 20 attack iterations it is estimating correctly
that NAFNet is not as robust as the Baseline network. However, CosPGD reveals that NAFNet is
not as robust as the baseline even at a low number of iterations (3 attack iterations). This valuable
insight regarding model robustness of newly proposed transformer-based image restoration models is
provided by CosPGD with considerably less computation.

Following the discussion from Section 4.3, in Figure 7 for the Baseline network we also observe that
SegPGD here is significantly weaker due to its limitation to image classification tasks as discussed in
Section 3. However, for NAFNet, from 5 attack iterations onwards SegPGD is outperforming PGD,
while still being weaker than CosPGD. This, interesting improvement in the performance of SegPGD
as an adversarial attack can be attributed to the pixel-wise nature of the attack, similar to CosPGD
further highlighting the benefits of utilizing pixel-wise information when crafting adversarial attacks
for pixel-wise prediction tasks.

Additionally, we report the findings on many recently proposed state-of-the-art image restoration
models using CosPGD in Table 7.

D.2 NON-TARGETED ATTACKS FOR IMAGE DENOISING TASK

Dataset. For the image denoising task, following work from Chen et al. (2022); Zamir et al. (2022)
we use the Smartphone Image Denoising Dataset (SSID) (Abdelhamed et al., 2018). This dataset
consists of 160 noisy images taken from 5 different smartphones and their corresponding high-quality
ground truth images. Similar to the image deblurring task, we report the PSNR and SSIM values
as metrics for this image restoration task as well.
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Figure 17: Non-targeted l∞-norm constrained CosPGD, PGD, and SegPGD attacks on the “Baseline
network” and NAFNet for image deblurring task on the GoPro dataset, recently proposed by Chen
et al. (2022) as the state-of-the-art networks for image restoration tasks. The “Baseline network” is
significantly more robust than the NAFNet and thus the performance of the Baseline network against
CosPGD attack is at par with its performance against PGD. However, PGD indicates at low attack
iterations (iterations ≤ 10) that NAFNet is more robust than “Baseline network” and only after 20
attack iterations its correctly indicates that NAFNet is less robust. However, CosPGD is able to draw
this conclusion at merely 3 attack iterations.
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Table 7: Comparison of clean and adversarial performance of image reconstruction models, as
considered by Agnihotri et al. (2023). ‘+ADV’ denotes FGSM adversarial training with a 50-50
mini-batch split for generating an adversarial sample.

Architecture
Clean CosPGD PGD

5 attack itrs 10 attack itrs 20 attack itrs 5 attack itrs 10 attack itrs 20 attack itrs
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer(Zamir et al., 2022) 31.99 0.9635 11.36 0.3236 9.05 0.2242 7.59 0.1548 11.41 0.3256 9.04 0.2234 7.58 0.1543
+ ADV 30.25 0.9453 24.49 0.81 23.48 0.78 21.58 0.7317 24.5 0.8079 23.5 0.7815 21.58 0.7315

Baseline(Chen et al., 2022) 32.48 0.9575 10.15 0.2745 8.71 0.2095 7.85 0.1685 10.15 0.2745 8.71 0.2094 7.85 0.1693
+ ADV 30.37 0.9355 15.47 0.5216 13.75 0.4593 12.25 0.4032 15.47 0.5215 13.75 0.4592 12.24 0.4026

NAFNet(Chen et al., 2022) 32.87 0.9606 8.67 0.2264 6.68 0.1127 5.81 0.0617 10.27 0.3179 8.66 0.2282 5.95 0.0714
+ ADV 29.91 0.9291 17.33 0.6046 14.68 0.509 12.30 0.4046 15.76 0.5228 13.91 0.4445 12.73 0.3859
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Figure 18: Comparing CosPGD to PGD and SegPGD as l∞-norm constrained non-targeted attacks
for the image denoising task using Baseline network (top row) and NAFNet (bottom row) on SSID
dataset. A lower value of PSNR and SSIM indicate a stronger attack.

Discussion. Further extending the findings from Section C.2 we report l∞-norm constrained
non-targeted attacks for the image denoising on the SSID dataset using the Baseline network and
NAFNet (as proposed by Chen et al. (2022)) in Figure. 18. We observe that both CosPGD and PGD
are performing at par for both, the Baseline network and NAFNet. Additionally, similar to findings in
Section 4.3, SegPGD is unable to perform at par with CosPGD and PGD.

After both CosPGD and PGD attacks it appears that the image denoising networks are relatively more
robust than image deblurring networks. These findings also correlate with Xie et al. (2019), as they
report that feature denonising improves model robustness against adversarial attacks.

E FURTHER DISCUSSION ON LIMITATIONS OF COSPGD

Similar to most white-box adversarial attacks (Goodfellow et al., 2014; Kurakin et al., 2017; Madry
et al., 2017; Wong et al., 2020b; Gu et al., 2022), CosPGD currently requires access to the model’s
gradients for generating adversarial examples. While this is beneficial for generating adversaries, it
limits the applications of the non-targeted settings as many benchmark datasets (Menze and Geiger,
2015; Butler et al., 2012; Wulff et al., 2012; Everingham et al., 2012) do not provide the ground
truth for test data. Evaluations of the validation datasets certainly show the merit of the attack
method. CosPGD mitigates this limitation by also being applicable as an effective targeted attack.
Nevertheless, it would be interesting to study the attack on test images as well in an untargeted
setting, due to the potential slight distribution shifts pre-existing in the test data. While CosPGD is
significantly more efficient than other existing adversarial attacks, all white-box adversarial attacks
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Figure 19: DeepLabV3 adversarially trained using different adversarial attacks for 3 iterations during
training using 50% of the minibatch for generating adversarial samples. All checkpoints are evaluated
against 10 attack iterations of the respective attacks. We observe that the model trained with CosPGD
outperforms all other adversarial training methods considered against all attacks.

are time and memory consuming and benchmarking them across multiple downstream tasks, datasets,
and networks is a very time-consuming process.

Additionally, as discussed in Section 5 paragraph Limitations, there would exist settings where
approaches like pixel-wise PGD work at par with CosPGD as the epe can be changed equally by
changing all pixel-wise regressing estimates slightly or changing only a few of them drastically, as
can also be seen in the results in C.2.

F ADVERSARIAL TRAINING CURVES FOR DEEPLABV3

In Figure 19 we present the training curves for training DeepLabV3 on the PASCAL VOC2012
training dataset using adversarial training with 50% minibatch being used for generating adversarial
samples.

Upon acceptance, we would include Figure 19 in Section B.4. It has been included here, for now, to
not disturb the figure numbering.

G EXTRA REBUTTAL RESULTS
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Table 8: Comparison of performance of CosPGD to PCFA as a targeted l2-norm constrained attack
for optical flow estimation over KITTI2015 and Sintel validation datasets using different optical flow
models over 3 random seeds. Average epe values are compared, with respect to both, the Target
where a lower epe indicates a better attack and Initial flow prediction (optical flow estimated by the
model before any adversarial attack) where a higher epe indicates a better attack. We compare over
both targets used by Schmalfuss et al. (2022), i.e. zero vector

−→
0 and Negative of the Initial Flow.

CosPGD and PCFA performance is very comparable. This table will be included in Section C.3
upon acceptance.

Model

KITTI 2015
Target

−→
0 Negative Initial Flow

AEE wrt Target↓ AEE wrt Initial↑ AEE wrt Target↓ AEE wrt Initial↑
CosPGD PCFA CosPGD PCFA CosPGD PCFA CosPGD PCFA

GMA 28.69 ± 0.12 28.67 ± 0.17 3.89 ± 0.09 3.89 ± 0.15 47.00 ± 0.40 47.08 ± 0.69 19.22 ± 0.53 19.20 ± 0.57
PWCNet 19.13 ± 0.04 18.96 ± 0.08 3.25 ± 0.08 3.47 ± 0.14 33.13 ± 0.25 33.13 ± 0.26 12.01 ± 0.20 12.02 ± 0.22
RAFT 29.09 ± 0.03 29.17 ± 0.11 3.75 ± 0.05 3.63 ± 0.10 48.83 ± 0.35 48.93 ± 0.29 17.97 ± 0.29 17.81 ± 0.27
SpyNet 9.00 ± 0.01 9.01 ± 0.03 5.31 ± 0.01 5.35 ± 0.06 12.10 ± 0.02 12.08 ± 0.05 16.47 ± 0.03 16.44 ± 0.05

MPI Sintel (clean)
GMA 16.87 ± 0.14 16.76 ± 0.11 1.75 ± 0.15 1.85 ± 0.10 29.25 ± 0.38 29.05 ± 0.38 8.58 ± 0.34 8.82 ± 0.37
PWCNet 12.20 ± 0.21 12.18 ± 0.07 4.87 ± 0.17 4.75 ± 0.12 20.57 ± 0.21 20.43 ± 0.21 13.20 ± 0.13 13.21 ± 0.29
RAFT 16.42 ± 0.03 16.46 ± 0.05 1.69 ± 0.04 1.65 ± 0.06 29.01 ± 0.11 29.20 ± 0.01 7.67 ± 0.11 7.47 ± 0.05
SpyNet 9.69 ± 0.01 9.75 ± 0.07 6.40 ± 0.05 6.35 ± 0.00 13.08 ± 0.01 13.17 ± 0.03 18.75 ± 0.02 18.76 ± 0.06

MPI Sintel (final)
GMA 17.34 ± 0.07 17.31 ± 0.11 0.53 ± 0.07 0.54 ± 0.11 32.11 ± 0.20 32.04 ± 0.24 4.57 ± 0.22 4.64 ± 0.24
PWCNet 13.61 ± 0.10 13.44 ± 0.14 3.52 ± 0.13 3.66 ± 0.12 23.00 ± 0.30 23.01 ± 0.06 10.84 ± 0.28 10.75 ± 0.05
RAFT 17.38 ± 0.04 17.36 ± 0.03 0.55 ± 0.09 0.50 ± 0.03 32.72 ± 0.22 32.72 ± 0.14 3.71 ± 0.21 3.75 ± 0.13
SpyNet 11.56 ± 0.01 11.59 ± 0.03 4.97 ± 0.01 4.97 ± 0.01 16.51 ± 0.01 16.55 ± 0.06 16.52 ± 0.01 16.47 ± 0.05
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