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ABSTRACT

Deep neural networks have achieved remarkable performance in various domains, but their
opacity remains a significant challenge, particularly in high-risk applications. Traditional
attribution methods highlight important input regions but fail to reveal the underlying se-
mantic concepts driving model decisions. Recent methods like TCAV and CRAFT attempt
to address this gap by extracting interpretable concepts, but they suffer from limitations
such as distribution mismatch between training and inference, reliance on non-negative
activation constraints, and the lack of a shared concept dictionary across categories. In
this paper, we introduce Consistent and Concept-Unified Matrix Factorization (C2MF)
method, a novel approach that overcomes these issues. By leveraging full-image repre-
sentations instead of cropped sub-regions, C2MF ensures consistency between training and
inference distributions, improving robustness and confidence calibration. We also relax the
non-negativity constraint, allowing both positive and negative concept activations, which
enhances the flexibility and fidelity of learned concepts. Furthermore, we propose a shared
global concept dictionary across all categories, enabling concept reuse and improving inter-
pretability. Through extensive experiments on ImageNet and CUB datasets, we demonstrate
that C2MF outperforms state-of-the-art methods in terms of concept faithfulness, category
reconstruction accuracy, and generalization across categories. Our code is available at:
[https://anonymous.4open.science/r/C2MF-E760/|

1 INTRODUCTION

Deep neural networks have achieved remarkable performance in various domains such as vision, language, and
more (Khan et al., |2020)). However, their opacity presents challenges in safety-critical applications (Wang &
Chung, [2022). In high-risk environments like healthcare (Corfmat et al.,|2025) and autonomous driving (Aje-
naghughrure et al., 2020)), understanding the reasons behind a model’s specific decisions is crucial, rather
than simply identifying the areas of focus. Many explanation techniques (Selvaraju et al.,|2017; Ribeiro et al.
2016 |[Lundberg & Lee, 2017)) generate saliency maps or heatmaps to highlight important input pixels, but
these attribution-based methods only show which parts of the input influence the model’s output, without
revealing the semantic concepts behind the model’s reasoning.

Concept-based interpretability methods aim to bridge this gap by constructing explanations with human-
understandable concepts. A notable example is the Concept Activation Vector Test (TCAV) (Kim et al.l
2018)), which starts with a set of user-defined concept examples (e.g., images with stripes or medical scans
showing specific lesions) to define a concept vector in the network’s activation space. TCAV then measures
the directional derivative of the model output with respect to the concept vector, quantifying the sensitivity of
predictions to that concept. By leveraging user-defined concept examples, TCAV provides semantic insights
into what the model has learned. However, TCAV requires manually curated concept datasets and cannot
automatically discover new concepts, which limits its ability to capture the full range of concepts learned by
the model based on human prior knowledge.

To address this issue, recent research has focused on automating concept discovery and attribution. The
Concept Recursive Activation FacTorization (CRAFT) (Fel et al., 2023) method extracts concepts and
their associated image locations simultaneously. Specifically, CRAFT collects a large set of activations
for target categories from intermediate layers of a pre-trained network (often using random cropping) and
applies Recursive Non-negative Matrix Factorization (NMF) (Lee & Seung, [1999) to these activations. The
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Figure 1: Structure of Consistent and Concept-Unified Matrix Factorization (C2MF).

decomposition generates a set of basis vectors, each representing a distinct high-level concept, along with
coefficients indicating the strength of each concept in each image. CRAFT then ranks these concepts using
global sensitivity metrics such as the Sobol index (Fel et al.; [2023)), generating concept attribution maps
that highlight the locations where each concept appears in the given input image. In this way, CRAFT
explains the concepts the model uses and their locations in the image, without the need for manually labeled
concepts.

However, CRAFT has several limitations: it learns concepts from random image patches but applies them
to full images, causing a distribution gap that leads to unreliable activations and overconfident explanations;
its non-negativity constraint forbids negative features, which may carry important contrasting information,
and removing them increases correlations between matrices and mixes background features, reducing decom-
position fidelity (see Section ; moreover, it extracts concepts independently for each category without
enforcing cross-category sparsity, resulting in redundant and less interpretable concepts.

To address these challenges, we propose Consistent and Concept-Unified Matrix Factorization (C2MF).
C2MF retains the concept decomposition framework but introduces three key innovations. First, it performs
concept learning and inference on intermediate layer feature representations of the model, rather than on
image patches. By aligning the training and testing distributions, this consistency significantly improves the
robustness and calibrability of concept activations. Second, C2MF removes the non-negativity constraint and
allows concept activation vectors to have signed values (positive or negative), leading to more reliable concept
decomposition. Third, C2MF introduces a unified global concept dictionary shared across all categories,
where each category adjusts the dictionary via sparse activation weights. We constrain each weight between
0 and 1 using a Sigmoid activation function and encourage sparsity through an L, penalty term, ensuring that
each category uses only a small subset of concepts. These innovations collectively produce a set of concepts
that can be shared and reused across categories, leading to more compact and interpretable explanations.
Figure [I] shows the structure of our C2MF. The main contributions of this paper are as follows:

e We propose a consistent training and inference framework for concept decomposition, which oper-
ates on the complete image and eliminates the distribution mismatch problem present in previous
methods, thereby enhancing the confidence and robustness of concept-based explanations.

¢ By removing the non-negativity constraint on concept activation functions and design a unified
global concept dictionary, we construct a more comprehensive matrix factorization model.

o FExtensive experiments on the CUB and ImageNet datasets demonstrate that our C2MF method
achieves optimal performance in terms of concept fidelity, concept sparsity, concept reconstruction
accuracy, consistency in concept decomposition, and concept clustering ablation.
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2 METHOD

In this section, we first introduce the problem definition and then present our C2MF approach. The Related
work section can be found in the App. [A] of this paper.

2.1 PROBLEM DEFINITION

In this section, we provide a formal definition of the problem. Let f(z) = h(g(x)) denote a pre-trained

deep network, where g(+) is the encoder that generates intermediate features, and h(-) is a specific classifier

that produces the predictions of the model. Given a dataset D = {(x(i),y(i)> . containing n samples,

where z(1) ¢ Rwh*3 (where h and w indicate the image height and width, 3 corresponds to the number of
channels, and Y denotes the number of classes). For each image z(® in the dataset, the intermediate feature
representation extracted by the encoder g(-) is denoted as x; € R*"*¢. The collection of all such feature
activations across the dataset forms a matrix A € R""*X¢ where n is the number of feature representations
extracted. Our goal is to extract k disentangled concept prototypes that represent the underlying semantic
factors within the activation space.

2.2  CONSISTENT & CONCEPT-UNIFIED MATRIX FACTORIZATION (C2MF)

To address the issues of training and inference inconsistency, non-negativity constraint distortion, and the
lack of a unified concept dictionary in the CRAFT method mentioned in the introduction, we propose a new
concept discovery approach—Consistency-Training and Concept-Unified Matrix Factorization (C2MF).

To perform non-negative matrix factorization, the CRAFT method constructs sub-regions z/(*) € R(s%5)%3

by randomly cropping the input image z(?), where s denotes the width and height of each sub-region. These
sub-regions are then resized to match the input image’s dimensions (i.e., w x h) for concept extraction.
It is worth noting that this approach causes a significant mismatch between the input distribution during
training, which is based on cropped sub-regions, and the whole-image distribution during inference. This
mismatch can lead to out-of-distribution (OOD) risks and miscalibrated confidence. The sub-region input
magnifies local textures while losing contextual information, whereas the whole-image input retains global
semantics. As a result, the features learned during training are often not aligned with the inference process,
thus exacerbating the out-of-distribution issue.

As illustrated in Fig. [fland discussed in App.[C] the confidence distributions of complete images and randomly
cropped image patches are nearly separable across datasets and backbones: complete images concentrate
in a high-confidence regime, whereas patches shift to markedly lower confidence with minimal overlap.
Consistently, our OOD evaluation in App. |B|(Tab. [4)) shows elevated operational errors (e.g., FPRQ95TPR)
when the scoring threshold must preserve high recall, indicating that scores induced by patch-based training
intrude less into the high-confidence region where whole images dominate. Together, these observations
substantiate that patch-based training induces a distributional shift that both degrades calibration and
increases OOD risk[]

In contrast, our C2MF method decomposes the intermediate features with spatial invariance during training
by directly using the whole image = € R®*M)X¢ a5 input. This ensures that the training distribution
aligns with the deployment distribution, thereby significantly reducing errors and overconfidence caused by
the inconsistency in cropping.

Additionally, C2MF is not limited to purely non-negative forms for concept representations. As a traditional
concept extraction method based on NMF, CRAFT requires the activation values A € R*"*¢ to be non-
negative. It decomposes the positive activation values through NMF into a concept activation matrix W €
REX¢ containing several non-negative bases, and a coefficient matrix U € R™"*¥_ Here, k is the predefined
number of concepts. This decomposition process can be expressed as follows:

A=UW, st.U>0and W >0 (1)

Although this approach aids in obtaining interpretable concept representations, it also introduces the com-
mon bias effect: to ensure the non-negativity of the concept activation matrix W and the coefficient matrix

Moreover, modern deep networks tend to be overconfident on unseen inputs (Zhang et al.,[2025), further weakening
the link between confidence and accuracy.
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U, the same positive component is added to both matrices during the matrix factorization process. This
makes the two matrices align more closely in the high-dimensional space, thereby exaggerating their cor-
relation. To address this, C2MF allows the concept activation vectors in W to take negative values, thus
avoiding the uniform positive bias inherent in non-negative bases. In other words, we relax the non-negativity
constraint and allow the concept activation matrix to have both positive and negative components during
the factorization process. This enables different concepts to cancel or distinguish each other, leading to more
flexible and mutually exclusive semantic representations. This is particularly beneficial in networks that do
not use ReLLU or other non-negative activation functions, as relying excessively on NMF may struggle to
capture the complex structure of the original activation space. Below we give the mathematical proof of
artificially increasing the correlation between matrices by adding the same positive component during the
matrix factorization process.

Proof. First, we prove that shifting the data to be non-negative (i.e., A’ = A+6-1,,n15,6 > 0),d = min(A)
makes it easier for NMF to introduce a uniform positive component when learning U and W. Let A € R™whxe,
NMF uses the following loss function:

min_ A —UW|%, A =A+6 1,17, 6>0 (2)
U>0,W>0

Where 1”wh(1cT) are vectors of all 1. Due to the fact that NMF can only "non-negative" (i.e., the optimization
is constrained to non-negative values), to minimize the loss, the best approach is to have all vectors pointing
in the same direction (along 1), i.e., learning the global alignment. Let’s define the (,) the sum of all

elements. For any decomposition UW = Zle upwy (ur € RMwh>o,w, € RS,), we have:

k
(rwp, Lpwn) = (1Tu) 1 w,) = (W, 117) =) (1" w,) (1" w,) (3)
r=1
If UW is close to A’ = A+ 6117, then the total sum must satisfy:
k
Z(lTuT)(lTwr) ~ 1L A1, + Senwh 4)
r=1

When comparing with A, the right-side term increases by denwh. Due to the fact that (17u,.), (17w,) > 0,
the direct form of this "external factor" is to increase the impact of all w,,w, in the direction of 1 (i.e.,
aligning all the vectors along the same direction, a "unified basis"). In the case of non-negative constraints,
this addition of 1 can only increase the similarity in the same direction (because negative values cannot be
used in this case), so this "regularization" term is inevitable. In addition, the objective function f(U, W) =
||A” — UW|% has the following gradients:

Vof=UOW—-AYW =(UW — AW — 511 )W (5)

Vwf=OW-AY'U=@wUw-A)Tu-sa"U (6)

Note that (117)W = 1,,,, (117 W) is completely aligned along each row. Therefore, —§(117)W represents
a consistent bias term (< 0) for Vi f, which drives U and W to move towards increasing the positive values,
i.e., learning to share the positive base line (unified correct term). The same applies to Vyy f.

Next, we need to show that using a uniform positive component will exaggerate the correlation. Let a,b > 0.
Consider the following formula for vectors:

w; =w,+b- 1., u; =ur+a-Lpyp (7)

Where 1,,,,, and 1. are vectors of all 1 in the respective dimensions. This means that we are adding a
positive constant in the direction of 1 to each concept’s vector. This will influence the similarity: (i) The
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two components within the matrix are more aligned (more similar); (ii) The concept similarity across the
dimensions (i.e., across different concepts) is improved. For the similarity increase within the same matrix,
if we consider two vectors w, and wq (p # ¢), and we have:

(wp + bl)T(wq + 1)
[|wp + 01| [lwg + b1 ||

(b) = cos (L(w, + bL,w, + b)) = (®)

By adding a positive constant in the direction of 1, we prove: when b > 0 increases, ¢(b) increases, and as
b — o0, it reaches 1 (both vectors become fully aligned).

Intuitively, by adding a positive constant to each row, we are pushing them in the same direction, aligning
them on the same hyperplane. The cosine between the two vectors (maximum pairwise cosine) increases,
and thus the similarity increases.

For cross-matrix (between U and W) similarity increases, if we consider matrices U and W, and let u,, w,
be the row vectors in these matrices, we have:

ur +al)T (w, + b1
) = eos (Lo +atws + 1) = (e L T ®)

When using this expression, 1 increases as a and b increase, implying that the cosine similarity between U
and W increases. This suggests that the "unified optimization" between the matrices U and W strengthens,
leading to improved alignment between the concepts.

O

Finally, to address the issue in traditional matrix factorization methods where each class independently
activates a large number of concepts and lacks sharing, C2MF introduces a shared concept dictionary and a
class-specific weight mechanism. In the typical low-rank decomposition A =~ UW, each category or sample
activates a large number of concepts, making it difficult to highlight the key concepts. In contrast, C2MF
constructs a shared concept 1ibrar%1 matrix W*, and for each category y(¥ € Y predicted by the classifier
h(z), it learns a weight vector A(y*)) € R* to modulate the extent to which each concept is used. We map

AMy@) to the interval (0,1) using the Sigmoid activation function, obtaining A\*(y(®) = sigmoid(A(y®)).
Then, we modulate the concept dictionary using the diagonal matrix diag(A*(y(?)), so that the activation
representation for category y(*) is given by:

Ay = Udiag\ (yD)W*, st.U >0 (10)

Thus, the optimization objective of C2MF is:

9 Y
F—&-QZ‘

y()=1 y(H=1

Y
n > HA(y ) — Udiag(X*(y*))W

NI (1)

Where a > 0 is the weight coefficient controlling the sparsity, and |[|-|| » denotes the Frobenius norm. CRAFT
can only analyze concepts corresponding to multiple categories through clustering, but its performance is
poor (as we demonstrated in Section . Therefore, even though their features lie within the same feature
space, the decomposed features clearly do not belong to that space.

3 EXPERIMENT

3.1 DATASET

We evaluate the proposed C2MF framework on two benchmark datasets: CUB-200-2011 (CUB) (Wah
et al.l [2011) and ImageNet (Deng et al.l |2009). All the details of the experiment are available in our open
source code

https://anonymous.4open.science/r/C2MF-E760/
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3.2 MODELS AND BASELINES

To evaluate the proposed C2MF framework, we adopt two representative backbone architectures: NF-
ResNet50 (Brock et all [2021)) and ViT-B/32 (Dosovitskiy et al., 2021, and compare them against three
baselines, including our own method (Ours) and two competitive baselines: CRAFT and PCA.

3.3 EVALUATION METRICS

Concept faithfulness evaluation based on insertion & deletion scores (Petsiuk et al., 2018) To
assess the importance and faithfulness of each concept, we first perform a ranking based on their relative
significance. Specifically, we employ either Grad-CAM (Selvaraju et al.,|2017) or Integrated Gradients (Sun-
dararajan et al., 2017)) to compute the contribution of each concept, and then evaluate their importance and
faithfulness using the Insertion & Deletion scores. Concretely, Grad-CAM and IG estimate the impact of
each concept on the model’s output by leveraging gradient information, thereby producing spatial importance
weights for concepts. Based on these weights, we rank the concepts in descending order of importance. In
the insertion test, concepts are sequentially added to the input according to their importance (with the most
important concepts inserted first), and changes in model accuracy are recorded. Conversely, in the deletion
test, concepts are progressively removed. Ideally, inserting highly important concepts should significantly
improve accuracy (with a larger area under the insertion curve being preferable), while their removal should
substantially reduce accuracy (with a smaller area under the deletion curve being better).

Concept sparsity evaluation based on pearson correlation and cosine similarity Ensuring low
correlation between concepts during the extraction and selection process is crucial. This helps reduce redun-
dancy among concepts, enhances the independence of each concept, and improves both the interpretability
and generalization ability of the model. Therefore, we require the extracted concepts to be as orthogonal
as possible, meaning their similarity should be minimized so that each concept focuses on distinct visual
factors. To assess the correlation between extracted concepts, we measure their pearson correlation and
cosine similarity. Here lower pearson correlation and cosine similarity indicate lower correlation between
concepts.

Concept reconstruction accuracy in each category For each category, we use the concept basis W*
obtained from the training set to project the activation matrix of the test set Aot onto this basis (i.e., by
fixing W* and solving for the new coefficient matrix Utest such that Agess & UtestW™*). The reconstructed
features U W™ are then fed into the classifier, and its classification accuracy is measured. This accuracy
reflects the ability of the concept reconstruction to preserve class-specific feature information. We compute
the reconstruction accuracy for each category on the test set and report the mean and standard deviation
as statistical measures.

Decomposition consistency evaluation based on mean square error To evaluate the consistency
of the decomposition between the training and test sets, we compute a distance metric between the original
activation matrix A and the reconstructed matrix UW, using the Frobenius norm as the reconstruction loss.
Since our decomposition objective is to minimize this reconstruction loss, a lower loss indicates higher de-
composition quality and more expressive concept representations. Ideally, if the concept basis W generalizes
well to the test set, the reconstruction error on the test set should be close to that on the training set. We
compute the Mean Squared Error (MSE) between the original activation matrix A and the reconstructed
matrix UW separately for the training and test sets, and calculate the difference between training and test
MSEs to compare the train-test discrepancy of each method. A smaller difference indicates stronger gener-
alization of the extracted concepts between the training and test sets, meaning the decomposition is more
consistent.

Ablation evaluation of multi-class concept clustering based on concept reconstruction accuracy
We conduct an ablation experiment on multi-class concept clustering to validate the rationale of using the
Sigmoid function as a concept weight activation in the context of multi-class image inputs. Methods such
as CRAFT typically extract concepts independently for each class (e.g., extracting k concepts per class),
then cluster the extracted concepts into a number of clusters equal to the number of classes. The concepts
closest to the cluster centroids are selected as the corresponding concepts for each class. In contrast, our
method enables cross-class concept sharing through the Sigmoid activation function, while directly unifying
the training and extraction of concepts that correspond one-to-one with each class.
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3.4 EXPERIMENTAL RESULTS

Experimental results of insertion & deletion scores In this experiment, we comprehensively com-
pared the average Insertion and Deletion scores of different baseline methods under two concept importance
ranking criteria, Grad-CAM and IG, across two datasets and two models. Specifically, as shown in Figure
under the Grad-CAM ranking, the Deletion curves of all three baseline methods decrease as the number of
deletion steps increases, indicating that the model’s confidence drops when important features are progres-
sively removed. The decline rate of the Ours curve is slower than that of CRAFT, but it clearly outperforms
PCA and achieves better performance than CRAFT after the 10th step. Regarding the Insertion curves,
our method increases rapidly and approaches nearly 1.0, demonstrating that progressively inserting features
can quickly restore model confidence, whereas CRAFT and PCA perform poorly.

Average Deletion Curves Average Insertion Curves
—&— Del Ours 109 —o— Ins Ours
0.8 Del Craft Ins Craft
—&— Del Pca —&— Ins Pca
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Figure 2: Average Insertion curve and average Deletion curve for Grad-CAM concept importance ranking.

On the other hand, as shown in Figure [3] under the IG ranking, the Deletion curves of all three baseline
methods stabilize and approach the CRAFT and PCA curves after the 10th step. For the Insertion curve,
our method also achieves the largest AUC. In summary, our method leads in the Insertion score and performs
consistently in the Deletion score. The specific ROC value of Insertion & Deletion score can be found in our

App
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Figure 3: Average Insertion curve and average Deletion curve for IG concept importance ranking.

Experimental results of pearson correlation and cosine similarity In this experiment, we present
the experimental results for concept sparsity in Table [} For the CRAFT method, the pearson correlation
and cosine similarity remain within the range of 0.1 to 0.3 across all datasets and models, indicating a
high degree of redundancy in the learned concepts. Most of the concepts capture similar visual features.
In contrast, for our method, the pearson correlation ranges from 0.068 to 0.089, and the cosine similarity
ranges from 0.065 to 0.096. Compared to the sparsity metrics of CRAFT, our method reduces these values
by 35-65%. This demonstrates that our method reduces redundant features, maintaining the independence
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Table 1: Experimental results for concept sparsity (lower is better). We report mean + std of pairwise
similarity between learned concepts using Pearson correlation and Cosine similarity across datasets and
backbones. The best results are highlighted in bold.

CUB / NF-ResNet50 CUB / ViT-B/32 ImageNet / NF-ResNet50 ImageNet / ViT-B/32
Variant Pearson Cosine Pearson Cosine Pearson Cosine Pearson Cosine

Ours  0.089 £ 0.018 0.096 + 0.020 0.079 + 0.023 0.079 £ 0.023 0.068 + 0.018 0.065 + 0.015 0.069 & 0.021 0.069 + 0.021
Craft 0.112 £+ 0.015 0.256 &+ 0.031 0.226 £+ 0.054 0.319 £+ 0.051 0.097 £+ 0.026 0.191 £ 0.047 0.168 + 0.060 0.243 £ 0.060
PCA 0.007 £ 0.008 0.000 £ 0.000 0.001 £ 0.000 0.000 £ 0.000 0.007 &+ 0.007 0.000 £ 0.000 0.001 £ 0.000 0.000 £ 0.000

between features. Notably, the pearson correlation and cosine similarity for the PCA method are almost zero,
which nearly eliminates the correlation between concepts. This phenomenon arises because PCA enforces
orthogonality between the principal components, ensuring "sparsity." However, these components lack clear
semantic interpretation, meaning that although the sparsity metrics are the lowest, they do not provide
practical interpretability. We also use a case study in the App. [E]to demonstrate the semantic interpretation
of concepts extracted by the C2MF method using the CLIP model.

Table 2: Per-class reconstruction accuracy (%) across datasets and backbones. Mean =+ std. Best results are
highlighted in bold.

CUB / NF-ResNet50 CUB / ViT-B/32 TmageNet / NF-ResNet50 TmageNet / ViT-B/32
#Concepts Ours Craft PCA Ours Craft PCA Ours Craft PCA Ours Craft PCA
10 98.6 & 5.4 71.8 £38.0 345403 98.3 £6.5 43.14+40.1 656345 98.7 £3.7 944 £194 945+19.0 95.1 £11.1 88.6 £20.5 90.7 %195
20 97.0 £ 7.1 749 £354 446 £388 99.6 £ 1.4 447385 647318 979 £5.0 951 +£174 935£200 96.9 6.0 86.3+£21.8 89.8+168
30 95.7 £ 8.3 758 £33.2 523 £364 99.7+ 1.1 47.7%36.7 652£292 97.5 58 952+£171 951x158 96.6 £5.8 86.5+£20.0 90.5% 128
40 94.5 £ 9.3 76.2 £330 541+£363 99.5+ 1.6 49.1+36.6 651291 97.5 6.1 95.0+£17.2 953 £12.7 96.7 £6.2 86.0+£19.6 88.1% 162
50 93.9 & 10.0 76.6 £32.8 56.1 =346 99.3 £1.9 509 %360 66.5£27.8 97.1 £7.2 951 +£17.1 954138 96.6 £6.2 86.2+£189 88.1%16.7

Experimental results of concept reconstruction accuracy in each category In this experiment,
we evaluated the per-class reconstruction accuracy of three baseline methods across four different experi-
mental setups. As shown in Table 2| for the CUB/NF-ResNet50 setup, as the number of extracted concepts
increased, the reconstruction accuracy of our method decreased from 98.6% to 93.9%. The reconstruction
accuracy of the CRAFT method increased from 71.8% to 76.6%, but still remained below the minimum
accuracy of our method. The reconstruction accuracy of the PCA method rose from 34.5% to 56.%, showing
the lowest overall accuracy, indicating that it nearly failed to reconstruct and discriminate features. Under
optimal conditions, our method outperformed CRAFT by 26.8% and PCA by 64.1%. For the CUB/ViT-
B/32 setup, as the number of extracted concepts increased, the reconstruction accuracy of our method
increased from 98.3% to 99.3%. The reconstruction accuracy of the CRAFT method increased from 43.1%
to 50.9%, while the PCA method’s reconstruction accuracy slightly decreased from 65.6% to 65.5%. Under
optimal conditions, our method outperformed CRAFT by more than 50% and led PCA by about 35%. For
the ImageNet /NF-ResNet50 setup, as the number of extracted concepts increased, our method’s reconstruc-
tion accuracy decreased from 98.7% to 97.1%. The CRAFT method’s reconstruction accuracy increased
from 94.9% to 95.1%, while the PCA method’s reconstruction accuracy rose from 94.5% to 95.4%. Despite
the smaller accuracy differences among the three methods, our approach still outperformed the baselines
by 2%—-3%, maintaining the best performance. For the ImageNet/ViT-B/32 setup, as the number of ex-
tracted concepts increased, our method’s reconstruction accuracy increased slightly from 96.5% to 96.6%.
The CRAFT method’s reconstruction accuracy decreased from 86.3% to 86.2%, and the PCA method’s re-
construction accuracy decreased from 90.8% to 88.8%. Under optimal conditions, our method outperformed
CRAFT by about 10% and PCA by 7%—8%.

Table 3: Consistency check (MSE) across datasets and backbones. Mean + std. Variation = Train - Test
(lower is better). Best results are highlighted in bold.

CUB / NF-ResNet50 CUB / ViT-B/32 ImageNet / NF-ResNet50 ImageNet / ViT-B/32
Variant Train Test, Variation Train Test Variation Train Test Variation Train Test Variation

Ours 83.47 £19.56  54.29 + 18.91 29.18 1.21 £ 0.18 0.91 £0.21 0.30 0.84 £0.19 0.73 £ 0.18 0.11 1.36 £ 0.19 1.22 £0.21 0.14
Craft 158.21 + 36.66 1.87 + 0.46 156.34 2.55 £ 0.09 1.01 & 0.06 1.54 1.14 £ 0.19  0.10 £ 0.02 1.04 2.49 £0.10 1.14 + 0.07 1.35
PCA 176.33 = 40.48  5.56 = 1.10 170.77 1.80 £ 0.21  0.93 = 0.30 0.87 1.20 £ 0.20  0.19 + 0.03 1.01 1.85 +£0.20 1.06 + 0.29 0.79

Experimental results of mean square error In this experiment, we compared the training-test Mean
Squared Error (MSE) differences across various methods. Specifically, as shown in Table[3] for the CUB/NF-
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ResNet50 setup, our method exhibited the smallest training-test MSE variation, with a value of 29.18. In
contrast, both CRAFT and PCA showed severe overfitting, with variations of 156.34 and 170.77, respec-
tively. In the ImageNet /NF-ResNet50 setup, the training-test MSE variations for all three baseline methods
were relatively small, but our method still achieved the optimal result with a difference of 0.30. For the
ImageNet/ViT-B/32 setup, our method’s difference was 0.14, which is lower than CRAFT’s 1.35 and PCA’s
0.79. This demonstrates that even with more complex models, our method still exhibits stronger generaliz-
ability. In summary, given that our method consistently maintains the smallest training-test MSE variation
across all datasets and backbones, it effectively balances generalization and consistency, helping to avoid
overfitting.
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Figure 4: Multi-class concept reconstruction accuracy under different experimental settings.

Multi-class concept clustering ablation analysis In this experiment, we present in Figure {4] the vari-
ation of concept reconstruction accuracy with the number of clusters (or the number of extracted concepts).
It is evident that the accuracy curve of our method shows the steepest increase and continues to rise as
the number of concepts increases. Although CRAFT also improves as the number of clusters increases, its
performance remains inferior. The accuracy curve for PCA remains the lowest across all four experimental
setups, with minimal fluctuation. This indicates that our shared mechanism based on the Sigmoid activa-
tion function significantly enhances the performance of multi-class concept reconstruction. Furthermore, the
minimal fluctuation in PCA’s accuracy as the number of clusters increases corroborates the inability of PCA
to form effective discriminative concepts.

4  CONCLUSION

In this work, we presented C2MF, a novel framework for interpretable concept learning that addresses key
limitations of existing methods. By maintaining distributional consistency through full-image representa-
tions, relaxing restrictive non-negativity constraints, and introducing a shared global concept dictionary,
C2MF achieves both higher flexibility in concept activation and stronger cross-category interpretability. Ex-
tensive experiments on large-scale benchmarks confirm its superior performance in terms of concept fidelity,
classification accuracy, and generalization ability. These results highlight the potential of C2MF as a prin-
cipled approach for enhancing transparency and trustworthiness in deep neural networks, particularly in
domains where reliable interpretability is essential.
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LLM USAGE DISCLOSURE

We used large language models (OpenAl GPT-40 and GPT-5) as auxiliary tools for grammar checking and
language polishing of the manuscript. These models were not involved in research ideation, experimental
design, implementation, or analysis. The authors take full responsibility for all content.

A  RELATED WORK

A.1 TRADITIONAL ATTRIBUTION METHODS

Traditional neural network interpretability methods primarily rely on feature attribution to generate pixel-
level or region-level heatmaps. For instance, saliency maps, Grad-CAM (Selvaraju et al.,[2017)), and surrogate
model-based methods such as LIME (Ribeiro et al.,2016) and SHAP (Lundberg & Lee, 2017) explain model
decisions by assigning importance scores to input pixels or regions. These attribution methods provide
intuitive insights into where the input contributes to the model’s output, but they typically fail to clarify
which high-level semantic concepts the model has focused on. In other words, these methods reveal the input
regions that influence decision-making but do not explain the concepts identified by the model within these
regions. As a result, they cannot uncover the abstract concepts that the model attends to. This limitation
is also present in state-of-the-art attribution methods such as MFABA (Zhu et al., |2024c), ISA (Zhu et al.,
2024a) and AttEXplore (Zhu et al., [2024b)).

A.2 TYPICAL ATTRIBUTION DECOMPOSITION METHODS: TCAV aND CRAFT

In recent years, a class of methods has attempted to decompose model explanations into interpretable
concepts. [Kim et al.| (2018]) proposed the Testing with Concept Activation Vectors (TCAV) method, which
trains concept vectors (CAVs) based on a set of concept examples provided by the user, and uses the
directional derivative to measure the model’s sensitivity to a specific concept. For example, TCAV can
quantify the model’s response to the concept of "stripes" when predicting "zebra." This method tests the model
with a predefined set of concepts but requires manually collecting concept examples and training the concept
vectors. The Concept Recursive Activation Factorization (CRAFT) method, proposed by [Fel et al.| (2023),
further automates the extraction of concepts and generates concept-based explanations. CRAFT recursively
factorizes activations across network layers to detect concepts and uses the Sobol index to more accurately
estimate the importance of each concept. In addition, CRAFT simultaneously generates attribution maps
in the concept space, answering both what the model attends to and where, thereby partially addressing the
limitation of traditional heatmap methods that can only answer where the model focuses.

A.3 EXPLORED CONCEPT-BASED INTERPRETABILITY METHODS

In recent years, researchers have proposed various concept-based interpretability methods to understand
and compare the internal representations of deep models. An existing review work (Lee et al., |2024)) have
systematically examined this field and suggested that future developments should focus on three dimensions:
concept types, representation methods, and concept control, with a particular emphasis on integrating
knowledge representation and logical reasoning to further enhance model interpretability and controllability.
More specifically, the RSVC method (Kondapaneni et al., [2025]) decomposes model activations into concept
bases and corresponding coefficients, and measures the similarity between model representations at the
concept level by comparing the consistency of concept responses across different models on a shared image
set. To further simplify concept explanations, [Kondapaneni et al.| (2024) proposed the DCNE framework,
which leverages a large number of neuron attribution maps generated by CRP, and refines them into a
small set of representative concepts through NMF compression and DBSCAN clustering, thereby achieving
a more concise explanation. In the area of concept modeling, Wang et al.| (2024) introduced the PACE
framework, which represents the features of Vision Transformers as multi-level Gaussian mixture concepts
using hierarchical Bayesian modeling, providing stable and sparse explanations. Meanwhile, Rao et al.| (2024)
proposed the DN-CBM method, which automatically discovers concepts from CLIP features using sparse
autoencoders, aligns them with the text space, and generates natural language labels, achieving task-agnostic
concept discovery without manual pre-definition. On the other hand, to compare the differences between
models, [Kondapaneni et al.| (2025) introduced the RDX method, which locates sample clusters that are
similar in one model but dissimilar in another by analyzing the differences in the similarity matrix using
spectral clustering, thus revealing differences at the representation level. [Shah et al.| (2023]) proposed the
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Figure 5: Confidence distributions of complete images vs. image patches on CUB and ImageNet with NF-
ResNet50 and ViT-B/32. Complete-image mass concentrates in a high-confidence region, whereas patch
scores shift toward lower confidence, yielding little overlap.

ModelDiff framework, which combines data models and input transformation designs to identify and validate
the key features relied upon by different learning algorithms.These frameworks demonstrate the significant
potential of concept decomposition in practical applications.

B OOD DETECTION EVALUATION

Setup and metrics. We report standard score-only OOD detection metrics on CUB and ImageNet with
two backbones (NF-ResNet50, ViT-B/32). Higher is better for AUROC and AUPR (In/Out); lower is
better for FPRQ95TPR. “AUPR-In” uses in-distribution as the positive class, while “AUPR-~-Out” treats
OOD as positive.

Dataset Backbone AUROCT FPR@95TPR) AUPR-IntT AUPR-Out?
CUB NF-ResNet50 0.8701 0.2442 0.7354 0.9790
CUB ViT-B/32 0.9282 0.4249 0.4944 0.9951
ImageNet NF-ResNet50 0.8804 0.7284 0.2348 0.9910
ImageNet ViT-B/32 0.8400 0.5872 0.3053 0.9854

Table 4: OOD detection results (higher is better except FPRQ95TPR).

C CONFIDENCE DISTRIBUTIONS: COMPLETE IMAGES VS. IMAGE PATCHES

As illustrated in Fig. [5] the confidence distributions of complete images and image patches exhibit minimal
overlap across datasets and backbones; see Figures [5a] to [5d] for per-setting views.
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Figure 6: Average AUC for Grad-CAM concept importance ranking.

We compare the model confidence distributions of complete images and their image patches across two
datasets (CUB, ImageNet) and two backbones (NF-ResNet50, ViT-B/32). Across all settings, the two dis-
tributions exhibit clearly separated modes with large mean gaps, indicating that patches occupy a markedly
lower-confidence regime while full images concentrate in a high-confidence regime.

Observed separation. On CUB, the mean confidence of complete images is p ~ 0.63 (NF-ResNet50)
and p=0.60 (ViT-B/32), whereas patches concentrate near p~ 0.21 in both cases; this yields mean gaps
of Ap=0.42 and Ap = 0.40, respectively. On ImageNet, complete images remain substantially higher
(1 =~ 0.88 for NF-ResNet50; p ~ 0.80 for ViT-B/32) than patches (1 = 0.46 and p =~ 0.53), resulting in
Ap=0.41 and Ap~0.27. In all four cases, the bulk of probability mass for patches lies in the low-to-mid
confidence range, while complete-image mass is skewed toward high confidence, yielding minimal overlap of
the dominant density regions.

Implication. The near-separable confidence profiles confirm that cropping to patches induces a systematic
distribution shift toward lower confidence, making patches a practical proxy for “hard” or out-of-distribution-
like inputs. This observation complements our OOD results (App.|B)) by explaining why patch-level inputs are
more frequently rejected at high-recall operating points: their scores rarely intrude into the high-confidence
region where complete images dominate.

D ROC VvALUE OF INSERTION & DELETION SCORE

E CASE STUDY

In this section, since concepts in interpretable deep learning typically refer to abstract, reusable feature
patterns, we conducted a case study to provide human-understandable explanations for the concepts ex-
tracted by our method. Specifically, we cropped local patches from the original images and fed them into
the CLIP model (Radford et al., [2021). These patches, which visually instantiate the concepts, can then be
matched with WordNet, allowing the output to provide the semantically closest textual representation of the
concept. As shown in Figure [8, We can observe that for concept 0, the most representative semantic terms
are "bird," "tern," and "penguin'. For concept 1, the most representative semantic terms are "cock," "bird,"
and "blackcock". This result demonstrates that the extracted concepts are not only visually distinct but also
semantically interpretable, aligning with human understanding. By mapping visual features to semantically
meaningful words, our approach offers clear, traceable explanations for the learned concepts. This enhances
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Figure 7: Average AUC for IG concept importance ranking.
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Figure 8: Semantic interpretation of extracted concepts using CLIP model

the transparency of the model and provides insight into how it interprets various features, thus increasing

both its interpretability and trustworthiness in high-stakes applications.
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