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ABSTRACT

Unsupervised Domain Adaptation (UDA) aims to leverage labeled data from a
source domain to address tasks in a related but unlabeled target domain. This
problem is particularly challenging when there is a significant gap between
the source and target domains. Traditional methods have largely focused on
minimizing this domain gap by learning domain-invariant feature representations
using convolutional neural networks (CNNs). However, recent advances in
vision transformers, such as the Swin Transformer, have demonstrated superior
performance in various vision tasks. In this work, we propose a novel UDA
approach based on the Swin Transformer, introducing three key modules to
improve domain adaptation. First, we develop a Graph Domain Discriminator
that plays a crucial role in domain alignment by capturing pixel-wise correla-
tions through a graph convolutional layer, operating on both shallow and deep
features in the transformer. This module also calculates the entropy for the
key attention features of the attention block to better distinguish between the
source and target domains. Second, we present an Adaptive Double Attention
module that simultaneously processes Windows and Shifted Windows attention to
increase long-range dependency features. An attention reweighting mechanism
is employed to dynamically adjust the contributions of the attention values,
thereby improving feature alignment between domains. Finally, we introduce
Cross-Feature Transform, where random Swin Transformer blocks are selectively
transformed using our proposed transform module, enhancing the model’s ability
to generalize across domains by transferring the source to the target features.
Extensive experiments demonstrate that our method improves the state-of-the-
art on several challenging UDA benchmarks, confirming the effectiveness of
our approach. In particular, our model does not include a task-specific domain
alignment module, making it more versatile for various applications.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success in various machine learning tasks,
particularly in computer vision (Wang et al., |2022a; Qian et al., 2021} Jiang et al., [2022; [Tan et al.|
2019; |Chen et al) [2021b} [Jiang et al. 2021). However, their performance often relies on large
amounts of labeled training data, which can be costly and time-consuming to collect (Csurkal 2017}
Zhao et al., 2020; [Zhang et al.| 2020; Oza et al., [2021). To address this, Unsupervised Domain
Adaptation (UDA) has emerged as a viable alternative, transferring knowledge from a labeled source
domain to an unlabeled target domain and mitigating challenges posed by domain shifts (Bousmalis
et al., |2017; |[Kuroki et al., 2019; [Wilson & Cookl 2020; [VS et al., 2021)).

Traditional UDA methods have used Convolutional Neural Networks (CNNs) to align source and
target domains by learning transferable features across varying distributions (Kang et al., 2019;
Zhang et al.| 2019; Jiang et al., [2020; [Li et al.l 2021b). While these methods have made strides
in reducing domain discrepancies through adversarial training and feature normalization, they
can struggle with complex domain shifts and variability in visual patterns, highlighting ongoing
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challenges in domain generalization and cross-domain alignment (Morerio et al.,|2020; Jiang et al.,
2020).

The advent of transformers has revolutionized feature learning in both natural language processing
(NLP) (Vaswani et al.,[2017;|Devlin et al.,2018)) and computer vision (Dosovitskiy et al., [ 2020; Han
et al.l [2020; [He et al., [2021; |[Khan et al., 2021). The Swin Transformer (Liu et al., [2021)) excels
in modeling long-range dependencies and processes images in non-overlapping patches, enabling
effective localized adaptation. This multiscale approach is well-suited for UDA tasks, ensuring
robust feature representation and precise domain alignment.

This work introduces TransAdapter, a novel framework leveraging the Swin Transformer for UDA.
It addresses the limitations of traditional CNN-based methods by incorporating three key modules:
a Graph Domain Discriminator, an Adaptive Double Attention module, and a Cross-Feature
Transform module. These components enhance domain adaptation performance by facilitating
better alignment and improving local and global feature consistency across domains.

Contributions of this paper are summarized as follows:

* The Graph Domain Discriminator captures both shallow and deep features using graph con-
volutional layers, enhancing pixel-wise correlation and domain alignment. we incorporate
entropy in the key attention features, preventing the attention mechanism from focusing too
narrowly on specific regions, leading to more balanced and transferable representations.

* The Adaptive Double Attention module captures long-range dependencies by simul-
taneously processing window and shifted window attention. This dual mechanism
maintains global and local features, while an attention reweighting module enhances
feature alignment and overall model performance.

* The Cross Feature Transform module adapts the Swin Transformer for UDA tasks. By
randomly selecting a transformer block and applying a specialized transform module in
each iteration, the model dynamically explores different aspects of the feature space. This
enhances domain adaptation and improves performance across diverse datasets.

In summary, integrating these three modules within the Swin Transformer framework provides a
robust solution for UDA, effectively addressing domain shift challenges and advancing the state-of-
the-art in domain adaptation for computer vision tasks.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTATION (UDA) AND TRANSFER LEARNING

Unsupervised Domain Adaptation (UDA) within transfer learning aims to learn transferable
knowledge that is generalizable across different domains with varying data distributions. The main
challenge lies in addressing the domain shift the discrepancy in the probability distributions between
source and target domains.

Early UDA methods, such as Deep Domain Confusion (DDC), focused on learning domain-
invariant characteristics by minimizing the maximum mean discrepancy (MMD) between two
domains (Tzeng et al., |2014a). This helped align the marginal distributions of the source and target
domain data at a feature level. Long et al. (Long et al.,|2015b) enhanced this approach by embedding
hidden representations in a reproducing kernel Hilbert space (RKHS) and applying a multiple-kernel
variant of MMD to measure the domain distance more effectively. These hidden representations
refer to the activations within layers of a deep neural network, where each layer captures different
hierarchical features of the input data.

To further improve alignment, Long et al. (Long et al.,[2017) proposed aligning the joint distributions
of multiple domain-specific layers across domains using a joint maximum mean discrepancy
(JMMD) metric. These layers refer to the different layers in a neural network, where each layer
encodes various aspects of the data, from low-level features in earlier layers to high-level semantic
information in deeper layers. The idea is to align not only the marginal distributions of individual
layers but also the joint distribution of features across multiple layers, ensuring that both lower-
level and higher-level representations are aligned between domains. Adversarial learning methods,



Under review as a conference paper at ICLR 2025

HI4 X HIA X

H/16 X H/16 x 4C H/32 X H/32 x 8C

Stage 4

[ —» Target flow
—>8 —> Fos — Source flow
S

ZMADA —e P

1
|
1
|
1
|
1
|
1
|
1
|
1
|
H/32 X HI32 X 8C !
T e Fapy Jocal 4L >é’<—— MADA || )é'

' 44

: '
: '
Swin H ! =
Transformer | —» Fapv_global 1
Block : - 1
: 1
: v Zia
! R ‘
2 /

2

(a) Architecture (b) Swin Transformer Block

Figure 1: (a) The architecture of the proposed TransAdapter; (b) a Swin Transformer Blocks
(notation presented with Eq. [Z_f} MADA is multi-head adaptive double attention module, respectively.

inspired by GANS, have also been widely used in UDA. In these methods, an encoder is trained
to generate domain-invariant features by deceiving a domain discriminator, making it unable to
distinguish between the source and target domains (Goodfellow et al., 2014} [Tzeng et al.| [2017).
This adversarial process encourages the model to learn features that generalize well across different
domains, despite the domain shift.

2.2 UDA WITH VISION TRANSFORMERS

While transformers have gained popularity in NLP, their application in UDA for vision tasks is
still in its early stages. Some recent work has integrated transformers into CNNs to improve
domain adaptation, focusing on critical regions of images (Xu et al., [2021a} |Yang et al., 2021b).
For example, methods such as cross-attention have been used to blend source and target image
representations (Chen et al.,|2021a)), while others employ multibranch architectures to leverage self-
attention and cross-attention mechanisms for feature learning and domain alignment (Saito et al.,
2019). The Swin Transformer has also been explored in the context of UDA, where its ability
to model local and global relationships in images is harnessed for domain adaptation. However,
most of these methods require additional components or specific training strategies to prevent model
collapse in challenging tasks (Liu et al., 2022} |Yang et al.| 2021a).

3 METHOD

This section introduces three key modules: the Graph Domain Discriminator (GDD), Adaptive
Double Attention (ADA), and Cross-Feature Transform (CFT). GDD models domain relationships
using graphs and attention, ADA enhances feature alignment (Deng et al.| 2024) via double attention
(Zhang et all [2022), and CFT boosts feature transfer with cross-attention and dynamic gating.
Together, they enable efficient domain alignment. The overall architecture is demonstrated in

Figure/[I]
3.1 GRAPH DOMAIN DISCRIMINATOR

The proposed unsupervised domain adaptation method introduces a Graph Domain Discriminator
(GDD), as shown in Figure 2l The GDD enhances both local and global adaptation by utilizing
structural relationships between samples from source and target domains.

For local adaptation, the GDD leverages key features from the third transformer block’s attention
mechanisms to capture fine-grained details. This includes processing features from windows and
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Figure 2: The architecture of the Graph Domain Discriminator uses K¢ and K to represent source
and target key features of MADA, respectively.

shifted windows to align local characteristics, illustrated in Figure[] For global adaptation, it uses
the MLP output from the final transformer block to capture abstract global representations, also
depicted in Figure [I] By integrating these strategies, the GDD aligns deep and shallow features,
improving the model’s generalization across domains.

A vital element of the GDD is the adjacency matrix, which represents the graph structure for
convolution operations. It begins with two samples selected by a learnable parameter during training,
which are processed through a projection layer P(Xsample;) and P(Xsample; ) to fit the adjacency
matrix’s requirements. The adjacency between samples ¢ and j is defined by cosine similarity:

. P(Xsample,y) . P(xsamplej)
||P(Xsa'rnplei)|| HP(Xsamplej)H

Here, A;; is the adjacency matrix element for samples ¢ and j, and 0;; is the angle between the
projected vectors.

(D

Aij = cos(&ij)

The adjacency matrix A is utilized in three layers of graph convolution, each followed by a ReLU
activation, facilitating the aggregation of information from individual samples and their neighbors.
After the first graph convolutional layer, a pooling operation is applied to reduce the dimensionality
and focus on the most salient features, enabling more efficient information processing. To promote
domain invariance, a Gradient Reversal Layer (GRL) is introduced, establishing a min-max game
between the feature extractor and the domain discriminator. The feature extractor aims to generate
features that confuse the discriminator, maximizing the discrepancy for the domain discriminator
while minimizing it for the main task, ultimately encouraging the learning of domain-invariant
features (Ganin & Lempitsky,|[2015]).

3.2 ADAPTIVE DOUBLE ATTENTION

The adaptive double attention module, shown in Figure [3] processes windows attention and shifted
windows attention simultaneously in each transformer block, termed double attention. It employs
a cross-attention mechanism between windows and shifted windows features to enhance alignment
and interaction, improving long-range dependency capture and adaptation through dynamic attention
re-weighting.

Initially, the module performs feature correction on target domain data to address discrepancies with
source features, utilizing a correction block as proposed in (Li et al.||2021a). This block, depicted in
Figure , modifies the target representation C'(Fy, ., ., . ;) to align it more closely with the source
representation, thereby reducing the domain gap and enhancing adaptation.

The correction block consists of two fully connected (FC) layers with ReLU activations. The output
of the correction block, ACY(Fy, 4, .. +.)» adjusts the representation of the target feature according
to the following equation:

Ol(Flmi’t,shift) = Cl(FiCtJ«‘t,shift) =+ Acl(Fxt,’lt,shift) (2)
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The aim is to make the modified target representation él(Fmt,CEt,Sh,ift) similar to the source

representation. By doing so, domain alignment is facilitated between C'(Fy, 4, .. +¢)» ensuring
that the correction block effectively captures and adjusts discrepancies in the target data to improve
the overall adaptation process.

After feature correction, the transformer’s attention mechanism processes two feature sets: win-
dows attention features and shifted windows attention features, represented as @, K,V and
Qshift, Kshift, Vsnigse, respectively. These matrices correspond to the query, key, and value
components of both attention mechanisms (Zhang et al.| 2022)). By processing them in parallel,
the model captures long-range dependencies, enhancing spatial relationship understanding across
the image.

Self-attention focuses on windows features, calculating attention via the scaled dot product of )
and K, normalized by feature dimension d. This allows for local dependency enhancement. Cross-
attention combines the query from windows attention (()) with the shifted windows key (Ksp;f¢)
to capture complex spatial relationships. Additionally, both attention types are reweighted using
entropy-based scaling to prioritize transferable features and suppress domain-specific ones, further
improving long-range dependency processing.

QK™
A= W ® H(Fg’raph)
OKT 3)
Agpipe = —1IE & H(F, )
shift \/a graph

Then, the two attention score matrices are concatenated and normalized using the softmax function
to produce attention weights (Deng et al., [2024). These final attention weights are applied to the
concatenated value matrices [V'; Vipif+] to produce the output:

MADA = Softmax(Concat(A, Agpire)) X [V Vanifi]
Zniapa = MADA(LN(Z,_1)) + Z_1 “)
Zy; = MLP(LN(ZyADpA)) + Zymapa

Here, Z;_; represents the input to the Transformer block, Z; 4p 4 is output of attention, and Z; is
the output after the multi-head adaptive double attention and feed-forward layers. In the context of
the Swin Transformer block, layer normalization (LN) is applied to the input of both the attention
and MLP layers. Residual connections are added after each operation, ensuring efficient information
flow. This architecture allows the model to effectively learn long-range dependencies through shifted
window attention.

By integrating both windows and the shifted windows attention mechanisms and applying entropy-
based reweighting, the module captures multiple aspects of the feature representations. This process
improves long-range dependencies and allows more effective adaptation across domains, improving
overall domain adaptation performance, as supported by (Yang et al.l 2023).

The module employs an entropy-based reweighting strategy for both self-attention and cross-
attention, reweighting the attention scores using the entropy derived from the graph domain
discriminator output features. The entropy function is defined as:

H(Fgraph) = - Z Fgraph log(Fgraph) (5)

The key and shifted key features of the transformer are first processed by the graph domain
discriminator, producing outputs F, , and F}, . These outputs are then used to calculate entropy,
allowing the module to dynamically reweight attention by emphasizing or suppressing features based
on domain-specific importance. This enhances adaptation in unsupervised domain adaptation (Yang
et al.,[2023) and improves the model’s generalization across different domains.
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Figure 3: The architecture of Adaptive Double Attention (ADA) module.

3.3 CROSS FEATURE TRANSFORM

The proposed Cross Feature Transform (CFT) module enhances domain adaptation within the
Transformer architecture by facilitating effective feature alignment between source and target
domains. Unlike static methods, the CFT module is applied dynamically after a randomly selected
transformer block in each iteration, providing a robust feature transformation approach and reducing
the likelihood of overfitting (Sun et al., 2022). The general architecture of the CFT module is
illustrated in Figure 4]

Central to the CFT module are bidirectional cross-attention mechanisms, which optimize feature
transferability between domains, enabling implicit mixing of features. This enhances the model’s
ability to learn domain-invariant representations, thereby improving generalization to the target
domain (Wang et al.,[2022b)). The computation of source-to-target attention features Fso; and target-
to-source attention features Fyo5 is performed as follows:

Fyo; = Softmax (f(XS)Tg(Xt))

6
Fyo, = Softmax (g(Xt)Tf(XS)) ©

To refine feature alignment, the CFT module incorporates a gating mechanism using a learnable
parameter v, balancing contributions from both directions:

Attngaiing = (1 — 0 (7)) - Feat + 0 (7) - Fias (7)

where o(7) is the sigmoid function. This adaptive formulation allows prioritization of source-to-
target or target-to-source transformations based on data context.

The pairwise distance between features is computed and combined with the gating attention output:

Fout = (Attngating X ||F52t - FtZSHg) + Xt (8)

Here, || Fso; — Fyo5|| represents the pairwise distance, Attngqyng the gating attention output, and X,
is the target feature added as a shortcut.

4 EXPERIMENTS

4.1 DATASETS

We utilize four widely recognized benchmark datasets for our experiments: Office31 (Saenko et al.|
2010), Office-Home (Venkateswara et al.| [2017)), and VisDA-2017 (Peng et al., 2017). Following
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Figure 4: The architecture of Cross Feature Transform (CFT) module. s and x; represents source
and target feature, respectively.

the methodology in (Long et al., [2018), we create transfer tasks across these datasets. The Office-
31 dataset comprises 4,652 images across 31 categories, divided into three domains: Amazon (A),
DSLR (D), and Webcam (W), each sourced from different environments. The Office-Home dataset
features images from four domains: Artistic (Ar), Clip Art (Cl), Product (Pr), and Real-World (Rw),
each containing 65 categories, thus providing a diverse evaluation benchmark. Lastly, the VisDA-
2017 dataset, utilized in the 2018 VisDA challenge, focuses on a synthesis-to-real object recognition
task with 12 categories, containing 152,397 synthetic images for the source domain and 55,388 real-
world images for the target domain.

4.2 DATA AUGMENTATION

We employ CutMix (Yun et all 2019) and
MixUp (Zhang} 2017) as pixel-wise augmenta-

tion strategies on raw images to improve feature & “ [
transferability between domains. Although | & ¢ % " ;'0"’
these methods generally necessitate labeled Qt ."" ,"J..' o» - {,,,,

data, our unsupervised domain adaptation task . 4:.'s "g o N .r 1
operates without ground truth labels in the

target domain. To tackle this issue, we generate - a &
pseudo-labels for the target data using a source- onoor oo
only model trained on the source domain. L 4 »

To reduce noise in these pseudo-labels, we » "' » O'{_ '
implement a confidence threshold based on the ~ « o ";.4 .f. » ':" -«
model’s accuracy, retaining only predictions .. %‘. e ® ‘e W't b A §
that exceed this threshold for the augmentation P < P
operations. These augmentations are applied ) s ¥ : 0“ -

solely to the source data, as our network
incorporates a Cross Feature Transform (CFT)
module that enhances feature transferability
between domains, thus diminishing the neces-
sity for direct augmentation on the target data.
The pixel-wise CutMix and MixUp operations,
guided by high-confidence pseudo-labels, are
illustrated in Figure[I]

Figure 5: t-SNE visualization of Office-Home
dataset, where red and blue points indicate the
source and the target domain, respectively. (top
left) Swin-B, (top right) +GDD, (bottom left)
+CFT, (bottom right) +ADA (TransAdapter)

4.3 IMPLEMENTATION DETAILS

For all domain adaptation (DA) tasks, we utilize the Swin-B model, pretrained on the ImageNet
dataset (Deng et al.l |2009), as the backbone network in our proposed TransAdapter method,
integrating 12 dual transformer blocks from Swin-B within the TransAdapter framework. The
model is optimized using the Stochastic Gradient Descent (SGD) algorithm (Bottou| [2010), with
a momentum of 0.9 and a weight decay parameter of 1 x 10~2. We employ a base learning rate of
1 x 1072 for the Office-31, and Office-Home datasets, while a lower learning rate of 1 x 1073 is
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applied for the VisDA-2017 dataset. The learning rate follows a warmup cosine scheduler, gradually
increasing during the initial training phase and subsequently decaying throughout the remaining
iterations. Across all datasets, the batch size is consistently set to 32, and the model is trained over
15,000 iterations. The hyperparameters Ajgcat, and Agiobar in the TransAdapter method are set to 0.1,
and 0.01, respectively, for all DA tasks, as shown in Equation

4.4 OBIJECTIVE FUNCTION

Our domain adaptive model’s objective function combines cross-entropy loss for classification, local
adaptation loss (strong alignment), and global adaptation loss (weak alignment) The classification
layer is a single fully connected layer. For the labeled source domain, the cross-entropy loss is
defined as:

Lo = CE(G(Fcls)7 ys) 9)

where G(-) normalizes and flattens the transformer features, y; is the ground truth for the source
data, and CE(-, -) denotes the cross-entropy loss, using only the source domain features F;;.

Local-Global Adaptation Loss: The combined loss function is computed by averaging the cross-
entropy loss for local adaptation and the focal loss for global adaptation across both source and
target domains:

=

Llocal - 2 (CE(G(F;ZTSVJOC“I)’ gSTC) + CE(G(FZI%VJocal)? gtgt))

(10)
l 1 src NSTC ! ~
global = 5 (FL(G(FADV—Qlobal)’ )+ E (G(F,zglgv,global)v ytgt))

Where, §°7¢ and §'9¢ denote the ground truth labels for source and target data, respectively.

Specifically, §°7¢ is set to 1 for source data and 4*9¢ is set to 0 for target data. The terms £y DV _global
and FApv _jocar are illustrated in Figure The function G(-) refers to a flattening operation followed
by a fully connected layer. CE represents cross-entropy loss and F'L(-) represents focal loss to
address class imbalance by down-weighting the contribution of easy-to-classify examples.

The overall objective function is:

['[otal = )\localﬁlocal + )\global»cglobul + »Cclassiﬁer (1 l)
where Ajgcal and Agiopar are the coefficients for the respective loss components.

4.5 RESULTS OF OBJECT RECOGNITION

Table E], E] and E]present the accuracy results on the Office-31 (Saenko et al.,|2010), Office-Home
(Venkateswara et al.,|2017)), and VisDA-2017 (Peng et al.,2017) datasets, respectively. Comparisons
are made across multiple backbones, including AlexNet, ResNet, DeiT, Swin, and ViT, with methods
such as Source Only, DDC (Tzeng et al.l 2014b), DAN (Long et al., [2015a)), RevGrad (Ganin &
Lempitskyl, 2015), FFAN (Chen et al., [2019), TAT (Liu et al., [2019), SHOT (Liang et al., |2020),
ALDA (Chen et al., [2020), CDTrans (Xu et al., [2021b), BCAT (Wang et al., 2022b), WinTR (Ma
et al.l 2021), TVT (Yang et al.,|2023)), and the proposed TransAdapter.

In Table [2) on the Office-31 (Saenko et al.l [2010) dataset, the Swin backbone achieves state-of-the-
art performance, particularly excelling in the W — D task, where it matches the highest accuracy
of 100%. In particular, the proposed TransAdapter model outperforms BCAT (Wang et al., 2022b)
in most tasks, leading to an overall average accuracy of 95.5%, compared to BCAT (Wang et al.,
2022b)) 95.0%.

Table E] presents the results on the Office-Home (Venkateswara et al., 2017) dataset, where
TransAdapter again achieves superior performance with the Swin backbone. It achieves the
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Table 1: Accuracy (%) on the VisDA-2017 dataset. ”-B” indicates that the backbone is Base,
respectively. The best performance is marked as bold.

Method ‘plane beycl bus car  house knife meycl person plant sktbrd train truck‘Avg
ResNet Backbone

Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 [524

RevGrad|Ganin & Lempitsky|(2015)|81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 519 54.6 82.8 7.8 |57.4

MCD |Saito et al.[(2018) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 |71.9

ALDA (Chen et al.[(2020) 93.8 74.1 82.469.4 90.6 872 8.0 67.6 934 76.1 87.7 222|778

DTA [Lee et al.|(2019) 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 781 86.4 32.1|81.5

SHOT Liang et al.|(2020) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 |82.9

B DeiT Backbone
Source Only-B 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 |67.1
CDTrans-B [Xu et al.|(2021b) 97.1 90.5 82.4 77.596.6 96.1 93.6 88.6 979 86.9 90.3 62.8|88.4
B Swin Backbone

Source Only 98.7 63.0 86.7 68.594.6 59.4 98.0 22.0 819 91.4 96.7 25.7 [73.9

BCAT Wang et al.|(2022b) 99.1 91.6 86.6 72.3 98.7 979 96.5 82.3 94.2 96.0 93.9 61.3 |89.2

TransAdapter (ours) 98.6 94.1 88.3 75.2 989 97.2 979 87.1 96.8 97.7 93.2 67.6 |91.2

ViT Backbone
Source Only 98.2 73.0 82.562.097.3 63.5 96.5 29.8 68.7 86.7 96.7 23.7[73.2
TVT|Yang et al.|[(2023) 97.1 92,9 85.366.497.1 97.1 89.3 755 95.0 94.7 94.5 55.1 |86.7

Table 2: Accuracy (%) on the Office-31 dataset. ”-S” and ”-B” indicates that the backbone is Small
and Base, respectively. The best performance is marked as bold.

Method ‘A*}WD*)WW%DA*)DD%AVV*)A‘AVg
AlexNet Backbone
Source Only 61.6 95.4 99.0 63.8 51.1 49.8 70.1
DDC Tzeng et al.|(2014b) 61.8 95.0 98.5 644 521 52.2 70.6
DAN |Long et al.|(2015a) 68.5 96.0 99.0 67.0 54.0 53.1 72.9
RevGrad|Ganin & Lempitsky|(2015)|73.0 96.4 99.2 72.3 53.4 51.2 74.3
FFAN |Chen et al.|(2019) 83.0 99.0 99.9 76.3 63.3 608 80.4
) ResNet Backbone
Source Only 68.4 96.7 99.3 689 625  60.7 76.1
DDC Tzeng et al.|(2014b) 75.6 96.0 98.2 76.5 62.2  61.5 78.3
DAN [Long et al.|[(2015a) 80.5 97.1 99.6 786 63.6 628 80.4
RevGrad|Ganin & Lempitsky|(2015)|82.0 96.9 99.1 79.7 68.2 67.4 82.2
TAT Liu et al.|[(2019) 92.5 99.3 100.0  93.2 73.1 72.1 88.4
SHOT |Liang et al.[(2020) 90.1 98.4 99.9 94.0 747 743 88.6
ALDA |Chen et al.|(2020) 95.6 97.7 100.0 94.0 722 725 88.7
DeiT Backbone
Source Only-S 86.9 97.7 99.6 876 749 735 86.7
CDTrans-S Xu et al.|(2021b) 93.5 98.2 99.6 94.6 784  78.0 90.4
Source Only-B 90.4 98.2 100.0 90.8 76.8 764 88.8
CDTrans-B [Xu et al.|(2021b) 96.7 99.9 100.0 97.0 81.1 81.9 92.6
Swin Backbone
Source Only 89.2 94.1 100.0 93.1 80.9 81.3 89.8
BCAT |Wang et al.|(2022b) 99.2 99.5 100.0 99.6  85.7  86.1 95.0
TransAdapter 99.1 98.9 100.0 999 88.3 87.2 95.5
ViT Backbone
Source Only 89.2 98.9 100.0 88.8  80.1 79.8 89.5
TVT|Yang et al.|(2023) 96.4 99.4 100.0 964 849  86.1 93.9

highest average accuracy of 88.3%, outperforming BCAT (Wang et al., [2022b) and other methods,

particularly in the tasks A — PA and A — AC, where it records 91.8% and 91.5%, respectively.

Finally, Table [I] highlights the performance on the VisDA-2017 (Peng et al 2017) dataset. Here,
the TransAdapter with the Swin backbone significantly outperforms other methods, achieving the
highest average accuracy of 91.2%. It shows remarkable performance in challenging categories
such as knife, bcycl, and train, where it meets or exceeds the accuracy of existing state-of-the-art

methods.

4.6 ABLATION STUDY

Table ] presents the results of the ablation study, showcasing the impact of each module on domain
adaptation performance. The baseline Source Only model achieved an average accuracy of 81.1%.
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Table 3: Accuracy (%) on the Office-Home dataset. ”-S” and ”-B” indicates that the backbone is
Small and Base, respectively. The best performance is marked as bold.

Method ‘A — CA— PA— RC— AC— PC— RP— AP— CP— RR— AR— CR— P ‘ Avg
AlexNet Backbone

Source Only 26.4 32.6 41.3 22.1 41.7 42.1 20.5 20.3 51.1 31.0 279 549 | 34.3

DAN Long et al.|(2015a) 31.7 43.2 55.1 338 48.6 50.8 30.1 35.1 57.7 44.6 39.3 63.7 | 445

RevGrad|Ganin & Lempitsky|(2015) 36.4 45.2 54.7 352 51.8 55.1 31.6 39.7 59.3 457 464 659 | 473

ResNet Backbone

Source Only 34.9 50.0 58.0 374 419 46.2 38.5 31.2 60.4 539 41.2 599 | 46.1

DAN |Long et al.|(2015a) 43.6 57.0 67.9 458 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 | 56.3

RevGrad|Ganin & Lempitsky|(2015) 45.6 59.3 70.1 470 585 609 46.1 43.7 685 63.2 51.8 76.8 | 57.6

SHOT |Liang et al.|(2020) 57.1 78.1 81.5 68.0 782 781 67.4 549 822 733 588 843 | 71.8
B DeiT Backbone

Source Only-S 55.6 73.0 79.4 70.6 729 76.3 67.5 51.0 81.0 74.5 53.2 82.7 | 69.8

CDTrans-S [Xu et al.|(2021b) 60.0 79.5 824 756 81.0 823 725 56.7 84.4 77.0 59.1 855 | 74.7

Source Only-B 61.8 79.5 843 754 788 81.2 72.8 55.7 844 783 59.3 86.0 | 74.8

CDTrans-B |[Xu et al.|(2021b) 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 882 82.0 66.0 90.6 | 80.5

WinTR-S Ma et al.|(2021) 65.3 84.1 85.0 76.8 84.5 844 73.4 60.0 857 772 63.1 86.8 | 77.2
R Swin Backbone

Source Only 64.5 84.8 87.6 82.2 84.6 86.7 788 60.3 889 828 65.3 89.6 | 79.7

BCAT Wang et al.|(2022b) 75.3 90.0 929 88.6 90.3 92.7 874 73.7 925 86.7 754 93.5 | 86.6

TransAdapter 77.6 91.8 928 91.5 923 926 903 77.6 928 879 79.1 92.8 | 883
ViT Backbone

Source Only 66.2 84.3 86.6 779 83.3 84.3 76.0 62.7 88.7 80.1 66.2 88.7 | 787

TVT|Yang et al.|(2023) 74.9 86.8 89.5 82.8 83.0 883 798 71.9 90.1 855 74.6 90.6 | 83.6

Adding the Graph Domain Discriminator (GDD) improved accuracy to 84.0%, while incorporating
the Cross Feature Transform (CFT) module raised it to 87.4%. The complete model, including the
Adaptive Double Attention (ADA) module, achieved the highest accuracy of 91.0%, highlighting the
ADA module’s role in capturing long-range dependencies. Figure[5|visualizes the domain separation
performance of each module using t-SNE on the Office Home dataset, demonstrating improved
domain separation with each addition, particularly with the complete model featuring the + AD A
module (TransAdapter).

5 CONCLUSION

In this paper, we introduce TransAdapter,

a novel framework that leverages the Method [Office-3T Office-Home VisDA-2017[Avg
Sw.in Transfor.mer for Unsupervised Do- Source Only 308 797 739 Q11
main Adaptation (UDA). Our approach +GDA 91.7  81.6 78.8 84.0
features three specialized modules: a  +CFT 93.5 841 84.6 87.4

+ADA (TransAdapter)|95.5 87.5 90.2 91.0

graph domain discriminator, adaptive
double attention, and cross-feature trans- Table 4: Ablation study of each module (%). The best
form, which enhance the Swin Trans- performance is marked as bold. Last row corresponds
former’s ability to capture both shallow the proposed model.

and deep features while improving long-

range dependency modeling. Experimental results on standard UDA benchmarks show that
TransAdapter significantly outperforms existing methods and demonstrates robustness against
domain shifts. However, the combined use of window and shifted window attention may
increase computational complexity, and our current implementation lacks task-specific adaptation
mechanisms for detection and segmentation. Future work will focus on extending the model for
these applications and exploring ways to reduce computational complexity while maintaining long-
range dependency modeling.
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