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Abstract

Visual Anomaly Detection (VAD) has gained significant re-
search attention for its ability to identify anomalous images
and pinpoint the specific areas responsible for the anomaly.
A key advantage of VAD is its unsupervised nature, which
eliminates the need for costly and time-consuming labeled
data collection. However, despite its potential for real-
world applications, the literature has given limited focus
to resource-efficient VAD, particularly for deployment on
edge devices. This work addresses this gap by leveraging
lightweight neural networks to reduce memory and compu-
tation requirements, enabling VAD deployment on resource-
constrained edge devices. We benchmark the major VAD
algorithms within this framework and demonstrate the fea-
sibility of edge-based VAD using the well-known MVTec
dataset. Furthermore, we introduce a novel algorithm, Par-
tially Shared Teacher-student (PaSTe), designed to address
the high resource demands of the existing Student Teacher
Feature Pyramid Matching (STFPM) approach. Our results
show that PaSTe decreases the inference time by 25%, while
reducing the training time by 33% and peak RAM usage
during training by 76%.

1. Introduction

Visual Anomaly Detection (VAD) is a computer vision task
that aims to identify images containing anomalies and pin-
point the specific pixels within the image responsible for the
anomaly. This is performed using the unsupervised learning
paradigm, avoiding the costly label collection phase neces-

sary for pixel-level anomaly tagging.
VAD has many applications in various fields, such as

manufacturing, medicine, and autonomous vehicles [3, 4,
6]. However, its relevance is limited by the constraint of its
deployment in real-world environments. Most of the current
literature focuses on VAD performance as the only impor-
tant metric, excluding other practical considerations regard-
ing memory, inference time, and processing power. How-
ever, in most real-world application scenarios, it is not un-
usual that VAD algorithms run on edge devices with limited
resources, making it challenging to deploy complex deep
learning models typically used in VAD, such as WideRes-
Net50 [29].

In this work, we provide a benchmark for resource-
efficient VAD (also known as tinyAD) by testing the most
well-known VAD methods in the literature, considering rel-
evant metrics for edge deployment. This is crucial for real-
time applications and deployments in environments where
resources are limited. To perform this study, we con-
sider lightweight networks that enable the implementation
of VAD on edge devices, these networks are often con-
strained in terms of processing power, memory, and energy
consumption.

Moreover, we propose a new algorithm called Partially
Shared Teacher-student (PaSTe). This new algorithm is
based on the Student-Teacher Feature Pyramid (STFPM)
[25] approach and is intended for edge deployment.

We prove the feasibility of deploying AD methods on the
edge and the superiority of PaSTe over STFPM by evaluat-
ing with the MVTEC dataset, the most well-known VAD
dataset, which consists of ten objects and five textures.

Our contributions can be summarized as follows:

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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• We test several edge architectures in the context of VAD.
• We propose a novel AD algorithm specifically designed

for the edge, called PaSTe.
• We compare several edge architectures and VAD meth-

ods, providing a benchmark for resource-efficient VAD
by evaluating using the well-known MVTec dataset.
The outline of the paper is as follows. In Section 2,

we describe the VAD algorithms present in the literature
and the relevant developments in edge-oriented neural net-
works. In Section 3, we introduce the proposed framework
for tinyAD and the specific method, PaSTe, proposed to re-
duce STFPM resource consumption on the edge. In Section
4, we describe the experimental setup for all the AD meth-
ods and the tiny backbones considered. Finally, in Section
5, we present our findings before concluding in Section 6.

Figure 1. We show on the x-axis the inference time and on the
y-axis, the performance. Each color represents a different AD
method, while each symbol represents a different tiny backbone.
The size represents the total memory required.

2. Related Work
2.1. Visual Anomaly Detection
AD approaches find many applications in Computer Vi-
sion (CV) where safety is crucial, encompassing manufac-
turing, the medical domain, autonomous vehicles, security
systems, and more [3, 4, 6]. In fact, identifying anomalous
samples helps users in their decision-making process. In
addition, recent approaches focused on providing explain-
ability. This is achieved by enhancing the model predictions
from image-level to fine-grained, pixel-level detail. Ensur-
ing the explainability of these systems can lead to safer op-
erations in various fields. These approaches focus on the
unsupervised paradigm, eliminating the need for a time-
consuming and resource-intensive label collection phase re-
quiring human expertise.

Most approaches fall into two categories:
reconstruction- and feature-based [3, 26]. Reconstruction-
based methods use generative models like AutoEncoders
and GANs to reconstruct normal images [1, 4, 30, 31].These
methods identify anomalies by comparing the original and
reconstructed images; however, image domain process-
ing is computationally expensive and less effective than
feature-based methods [26].

By contrast, many state-of-the-art approaches belong to
the feature-based family. They considered embedding rep-
resentations from pre-trained models by dividing the fea-
ture map into patches. Analyzing regions separately helps
to identify local anomalies. These approaches include (i)
Teacher-Student based, (ii) Normalizing Flow, and (iii)
Memory Bank.
Memory Bank approaches capture the features of normal
images and store them in a memory bank [7, 11, 21]. Three
approaches are studied: PaDiM, PatchCore, and CFA.
While these methods show remarkable performance, they
require additional memory. PatchCore stores normal patch
features in a coreset and checks test image patches’ simi-
larity during inference, with distance determining anomaly
scores. In PaDiM, patch positions are represented by multi-
variate Gaussian distributions, using Mahalanobis distance
for anomaly scoring. CFA builds a patch memory to en-
hance normal feature concentration, increasing distance be-
tween normal and abnormal patches.
Teacher-Student approaches are based on two networks:
a teacher and a student. For example, the STFPM approach
takes advantage of knowledge distillation to transfer learned
knowledge from teacher to student, and when the features
deviate, it is assumed that there is an anomaly [25] (see Fig.
2a). A disadvantage of these methods is that they require
additional memory to store a student network.
One-class classification methods learn normal data repre-
sentation through self-supervised techniques. PatchSVDD
uses an encoder to aggregate normal patches but requires
memorizing normal patches [27]. CutPaste memorizes a
Gaussian distribution like PaDiM but needs training an en-
tire network [12].
Normalizing Flow approaches transform visual features
into a tractable distribution. However, their memory and
computation requirements make them unfeasible for edge
devices [10, 28].
While many AD algorithms improve performance, few
studies examine their implementation in resource-limited
devices.

2.2. Deep Learning for the Edge

Designing and deploying edge neural networks has been a
topic that recently attracted significant attention [2, 18, 20].
Common strategies differ on the basis of their trade-off and
design principles. Efficient neural architecture designs do
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not require ad hoc training and pruning strategies but rely
on provably efficient operations (e.g., convolution micro-
factorizations). These designs are usually parametric, and
their hyper-parameters scale the computational budgets ac-
cording to design-specific patterns. In this paper, we ex-
plore efficient designs based on various optimizations. Mo-
bileNetV2 [22], MCUNet [15], PhiNet [19] leverage the
inverted residual block sequence of pointwise, depthwise,
and pointwise convolutions to reduce the memory footprint
of the model. Despite these designs being based on the
same computational block, their scaling strategies differ, re-
sulting in diverse performance-complexity trade-offs. Mo-
bileNetV2 scales the number of input and output channels
of the convolutional block. MCUNet follows the same strat-
egy but removes the final network layers to reduce the min-
imum model footprint. PhiNet adds three scaling hyper-
parameters that enable a disjoint optimization of RAM,
operations, and FLASH usage by modifying the number
of channels in the convolutional blocks, the depth of the
network, and the expansion factor of the inverted residual
block. MicroNet [14], instead, reduces the number of oper-
ations of the model by proposing an efficient factorization
of the depthwise and pointwise convolutions.

3. Methodology
In this section, we present the methodology proposed in this
manuscript. Specifically, Sec. 3.1 presents the general ap-
proach to bringing AD methods into real-world applications
on tiny devices by changing the feature extractor from a
heavy architecture to a lightweight neural network. Then, in
Sec. 3.3, we describe our resource-efficient AD algorithm
based on the STFPM approach.

3.1. General Approach
Current state-of-the-art AD approaches are feature-based
methods which exploit the representations produced by a
pre-trained model. Although the proposed AD methods dif-
fer significantly from each other, a common component of
all these approaches is that they are based on a feature ex-
tractor.

AD approaches are developed and tested using large
models such as WideResNet50 [29], thus without consid-
ering the challenging scenario of deploying AD for edge
inference.

Therefore, to make it more feasible to deploy the AD al-
gorithms on edge, we propose replacing the heavy feature
extractor used in the AD methods with a light feature ex-
tractor. Our first goal is to analyze the features produced
by such networks and to evaluate if they can still provide
enough good representations to perform the AD task. Sub-
sequently, following this framework, we propose a bench-
mark for resource-efficient VAD by evaluating several state-
of-the-art AD methods by replacing computationally heavy

feature extractors with light architectures and comparing
several edge-oriented backbones in terms of performance
and required resources.

3.2. Feasibility of VAD models at the edge
It should be noted that some AD methods could be more
suitable for the edge than others. For example, PatchCore
does not have trainable weights, avoiding the costly train-
ing of a neural network. However, additional memory is
required to store the training of normal patches.

Another advantage is that lightweight architectures typ-
ically produce smaller feature maps than larger models.
This reduction in feature map size further contributes to
lower memory requirements, particularly for Memory-Bank
methods such as PatchCore, PaDiM, and CFA, where the
size of the memory bank is directly related to the feature
map dimensions.

Moreover, while some AD methods, like CFA and
STFPM, require learning neural network weights, they in-
volve fewer parameters and computations than larger net-
works. This leads to faster and more efficient training pro-
cesses, which makes it easier to deploy and update VAD
models on edge devices [5, 26].

CFA uses some trainable weights that are much less than
those of the frozen feature extractor. In contrast, STFPM
does not require a memory bank; it needs to store a fea-
ture extractor plus a trainable architecture, which increases
training time and inference time. To avoid this major con-
straint of the STFPM and make its use on the edge feasible,
we propose some modifications that significantly reduce the
resource for training and inference time.

Eventually, lightweight networks allow faster inference
times. This is essential for real-time VAD applications
where quick anomaly detection is critical.

3.3. Partially Shared Teacher Student (PaSTe)
Changing the feature extractor allows significant reductions
in the required computational resources, but tailor-made
modifications in the AD models could help the deploy-
ment in even smaller devices. Specifically, in this work,
we propose a modified version of STFPM, called Partially
Shared Teacher-student (PaSTe), significantly reducing the
resources for the training.

The STFPM approach passes the input image through a
Teacher network and a Student network. The Teacher net-
work is typically pre-trained, while the Student network is
trained to mimic the teacher’s output. During the process,
the features extracted at various levels from the Teacher and
Student are compared (denoted as FT for the teacher and
FS for the student) across different layers. The comparison
aims to identify discrepancies between the Teacher and Stu-
dent representations, which could indicate anomalies (see
Fig. 2a for an overview). However, one of the major draw-
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(a) STFPM (b) Paste

Figure 2. Comparison between their and our approach. It requires memorizing two architectures and performing backward on the entire
architecture. It reduces the memory required for and computation resources at the minimum.

backs of STFPM is that it requires storing two full archi-
tectures in memory and performing backpropagation across
both. This significantly increases memory usage and com-
putational complexity.

Our solution, PaSTe, offers significant improvements
over the traditional STFPM method by optimizing memory
usage, reducing inference time, and lowering the computa-
tional power and RAM needed for training. The proposed
approach is depicted in Fig. 2b. The approach focuses on
intermediate layers instead of comparing features of the first
layers for both the Teacher and Student models. The idea is
based on the insight that the first layers are not fundamen-
tal for performance. The first layers have the advantage of
being the ones with more granularity, but they are also the
ones with very generic features and could not be so relevant
to detect anomalies, even the smallest ones.

Therefore, we assume that even if the first layers are
common for teacher and student architectures, the perfor-
mance using the subsequent layers should not deteriorate
significantly. This formulation has the advantage that the
first layers, which are common for teacher and student ar-
chitectures, can be saved only once, saving a portion of
memory and reducing the inference time during deploy-
ment. Moreover, since the first part of the student archi-
tecture is frozen during training, only the last part needs to
be trained, significantly reducing the RAM and computa-
tional power required for training. Therefore, our solution
has the potential to decrease the resources needed to per-
form the STFPM approach on the edge, making it a more
scalable and efficient solution for visual anomaly detection
tasks on tiny devices.

4. Experimental Setting

This work introduces a benchmark to evaluate visual tiny
anomaly detection in real-world environments, specifically

focusing on resource-constrained devices (Edge comput-
ing). Therefore, Sec. 4.1 provides information on all edge
models tested, while Sec. 4.2 gives implementation details
of all the AD methods that use such backbones. Then, Sec.
4.3 describes the dataset used to evaluate AD algorithms,
and Sec. 4.4 describes all the metrics considered to com-
pare the AD methods. Finally, Sec. 4.5 describes how the
layers used for the feature extractor were chosen for each
backbone.

To evaluate AD methods with different feature extractor
backbones, we use pre-trained models from ImageNet and
trim them to the last considered layer to save resources.

4.1. Deep Learning models for Edge

All the experiments used CNN feature extractors trained on
ImageNet [8] and the results are compared to the WideRes-
Net50 which is the original backbone for AD methods,
along with efficient alternatives: MobileNetV2 [8], and ver-
sions of MicroNet [13], PhiNet [16], and MCUNet [17]
matching MobileNetV2 in input size and MACs. Full de-
tails are provided in the supplementary material.

Table 1. Index of the layer groups used for feature extraction, for
the MobileNetV2 backbone in the grid search. Low, Mid, and High
refer to the depth of the layer group in the particular backbone
architecture. Equiv refers to the layers which are equivalent in
terms of %MACs to the first three of the WideResNet50 backbone.
Finally, PaSTe refers to the same layers as in the Equiv group, but
the first layers have been shifted to account for the Partial Teacher
Sharing technique. The other backbones layers are provided in the
supplementary material.

Low Mid High Equiv PaSTe

[4, 7, 10] [7, 10, 13] [10, 13, 16] [3, 8, 14] [7, 10, 14]
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4.2. AD methods
PatchCore: Both the memory size and the random projec-
tion uses the same original parameters [23].
CFA: The Patch-Descriptor network has been dynamically
adapted to the dimensions of the feature vectors extracted
by the considered backbones, which change for each
feature extractor. The other training parameters, such as
batch size, optimizers, and so on, are the same as the
original implementation [24]
PaDiM: tested by considering the default training and
evaluation parameters [7].
STFPM: All hyper-parameters are the same as the orig-
inal [9], except when using the MicroNet-m1 backbone,
where the learning rate of SGD optimizer had to be lowered
to 1/10 the original one due to training instability and, in
turn, multiplied by 10 the number of epochs.

4.3. Dataset
Our experiments have been conducted in the MVTec
Anomaly Detection (AD) [4]. Other experiments have been
conducted in the Visa Dataset [32] and can be accessed in
the supplementary material 1.

4.4. Evaluation metrics
Various evaluation metrics are commonly employed to as-
sess the performance of AD techniques. In general, the eval-
uation metrics can be image-level or pixel-level. Image-
level metrics determine if the whole image is anomalous,
while pixel-level metrics assess how well the model could
identify the anomalous parts of the image. For both im-
age and pixel levels, ROC AUC and F1 metrics are usually
considered. As the main metric for assessing the anomaly
segmentation performance, we decided to choose the F1
pixel level metric, which is a robust metric when there is
an imbalance in pixel classes: the typical scenario in Visual
Anomaly Detection where a lot of pixels are normal and
only a small portion of them is anomalous. Furthermore,
the F1 pixel level score is the strictest metric, so a high score
on this metric guarantees a high score on the other metrics
as well.

For the purpose of our contributions, we move beyond
the AD performance and report other important metrics for
edge, such as the AD Model memory footprint and the infer-
ence MACs (multiply-accumulate operations). Specifically,
the memory footprint represents the memory occupied not
only by the feature extractor but also by additional compo-
nents used by the AD methods, such as the memory bank for
PatchCore, PaDiM, and CFA, as well as additional architec-
tures like the Student for STFPM and the PatchDescriptor
for the CFA.

1https://github.com/AMCO-UniPD/PaSTe

4.5. Feature Extraction Layers Selection
Depending on the chosen layers to perform feature extrac-
tion, different performances and levels of granularity can be
obtained. For example, the first layers of every CNN extract
very low-level features but with the highest granularity. In
contrast, the last layers extract high-level features that are
more related to the dataset where the CNN is trained, but
they also have worse granularity. Therefore, we will eval-
uate the different architectures by performing a grid search
on the layer groups used for feature extraction by consider-
ing both low-level and high-level layers.

For every feature extractor, we have defined groups of
layers with a low, middle, high depth. The choice of the
layers for every group has been defined based on the to-
tal number of layers and by considering a minimum ”dis-
tance” between the layers to vary their receptive fields start-
ing from the ”center” backbone layer. For example, for Mo-
bileNetV2, which has a total of 18 layers, we defined the
mid-level group of layers by considering the center layer
(more or less layer with index 10), and by considering an
offset of 3 layers, we considered the others: 7 and 13. The
low-level and high-level layers are [4,7,10] and [10,13,16],
respectively, by applying the same offset and criteria to the
left and right. All the combinations of feature extractor lay-
ers considered in the experiments are reported in Tab. 1.

WideResNet50, which is commonly used in AD meth-
ods, examines the features produced by three different
layers, each at different depths and granularities. Intu-
itively, this is a good strategy since the anomalies vary in
size. Therefore, considering features extracted from differ-
ent layers simultaneously is essential to evaluating anoma-
lies by exploiting different receptive fields. Therefore, in
our analysis, we defined an equivalent feature layer group,
which uses layers that are equivalent in terms of %MACs to
the heavy backbone layers considered by the official im-
plementations of the AD models. For example, the first
three layers of a WideResNet50 use 18.39%, 43.64% and
80.61% of network MACs, and the MobileNetV2 layers that
have similar amounts of MACs are layers 3,8,4, which use
25.31%, 43.78% and 75.28%.

For our method, PaSTe, the chosen layers must be
adapted, as it freezes the initial layers of the network. These
layers cannot be used for feature extraction, requiring the
selection of deeper layers. Our experiments focus on the
edge-backbones, so we will not apply PaSTe to WideRes-
Net50. Focusing on the equivalent layers for each back-
bone (Tab. 1), we shift the selected layers to account for
feature sharing. For example, the equivalent layers of Mo-
bileNetV2 are [3, 8, 14] and we chose to share up to the
6th layer, starting the student from the 7th layer. The last
layer of the group is the same to have a fair comparison be-
tween the methods. The resulting feature extraction layers
when using PaSTe for MobileNetV2 are [7, 10, 14], where
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Figure 3. Overall plot of our benchmark. Layers groups L (low), M (middle), H (high), and E: equivalent (Tab. 1) for each category are
represented by a bar. The bar height represents the average F1 pixel-level score of the AD methods using the layer group, while its color is
the variance of that score to show differences in the methods. Above each bar group it is written the max F1 score of the group. Category
”all” represents the average of all the categories. See supplementary material for the complete plot.

Table 2. Comparison of STFPM to our optimized version, PaSTe
with layers frozen up to the 6th. MobileNetV2 serves as the
backbone, the feature extraction layers are the ones equivalent
to WideResNet50 (1). While memory improvements are modest,
there are significant gains in inference, training computation, and
training memory, with a slight change in AD performance.

STFPM PaSTe Improvement [%]

Memory [MB] 5.32 5.11 3.9
Inference [MAC] 454.4M 341.2M 24.9
Training [MAC] 297.5M 198.4M 33.3
RAM Training [MB] 96.15 22.9 76.2
AD Performance [F1] 0.52 0.53 1.5

the central layer depth has been increased to have a better
spread inside the range.

5. Results
Sec. 5.1 shows the results of our benchmark, where we
use lightweight neural networks to allow AD methods to be
deployed on the edge. Then, Sec. 5.2 investigates deeply
how the chosen layers of the feature extractor affect the fi-
nal performance. Eventually, Sec. 5.3 discusses how our
novel algorithm, PaSTe, reduces the resources required by
the STFPM approach.

5.1. Efficient Neural Networks vs Main AD Methods
Our first contribution is the evaluation of the behavior of
the main AD methods under constrained computational
resources. To achieve this, we replace the backbone in

feature-based methods, shifting from a large backbone
like WideResNet50, commonly used in the literature, to
lightweight neural networks like MobileNetV2.

In Tab. 3, a comparison is provided in terms of perfor-
mance and required resources between AD methods when
using the WideResNet50 as feature extractor or a Mo-
bileNetV2 with equivalent layers (a comparison table with
all edge backbones is provided in the Supplementary Ma-
terial 1. Each AD method has unique characteristics that
make some more memory-intensive or computationally de-
manding than others. Therefore, the optimal AD method is
determined not only by its AD performance but also by the
available resources on the target edge device.

In general, all the tested AD methods perform well on
edge, with AD performance comparable to using WideRes-
Net50. For example, PatchCore obtains 0.57 and 0.53
for WideResNet50 and MobileNetV2, respectively. How-
ever, other AD methods are even less affected by changing
the underlying backbone. For instance, STFPM achieves
the same performance with MobileNetV2 as it does with
WideResNet50.

Furthermore, the same or similar performance obtained
with WideResNet50 is achieved with a significant reduction
in resources (model memory footprint and inference MACs)
when using MobileNetV2. For example, when consider-
ing memory, MobileNetV2 reduces the PatchCore memory
footprint significantly from 300MB of WideResNet50 to 31
MB. However, this value may still be too demanding for
tiny devices, so other methods like CFA and STFPM are
preferred with, respectively, 6.2 MB and 5.3 MB. However,
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while CFA and STFPM are the lightest among the studied
approaches with similar memory usage, STFPM has an in-
ference time around six times smaller, making it the optimal
choice for real-time applications.

In general, we provide a benchmark by evaluating sev-
eral edge backbones, such as MobileNetV2 MCUNet, Mi-
croNet, and PhiNet on state-of-the-art AD methods, such as
PatchCore, PaDiM, CFA, and STFPM. In Fig. 1, for each
backbone and method, the results are shown, with the y-axis
representing the F1 pixel level performance, the x-axis the
memory (log scale), and the size of each point representing
the MACs. As can be seen in the figure, all the lightweight
neural networks show similar performance, though each re-
quires a different level of resources. The only exception is
the MicroNet architecture, which shows lower results. This
is because, even in its largest version, the network is much
smaller than the other edge models tested. Therefore, while
edge architectures are well-suited for deploying AD meth-
ods on edge devices, careful selection is necessary. Net-
works that are too small may fail to produce sufficiently rich
representations for AD algorithms, and depending on avail-
able resources, some methods may be preferable to others.

In conclusion, adopting edge architectures leads to sub-
stantial memory and inference reductions. For example,
STFPM achieves a 35-fold decrease in memory usage and
a 4-fold reduction in inference requirements. Even more
impressive is CFA, which lowers inference operations from
36.89 GMACs to 2.8 GMACs, a 13-fold reduction, and de-
creases memory usage by a factor of 23. Similarly, Patch-
Core reduces memory consumption by 9.6 times and infer-
ence demands by 4.4 times. Most notably, PaDiM delivers
the most significant improvements, slashing memory usage
from 3.72 GB to just 31.1 MB, representing a 75.4-fold re-
duction. However, even more significant is the inference
reduction factor of x224. This is due to the fact that the
Mahanabolois distance has cubic complexity with respect
to the number of features. For WideResNet50, the features
processed by PaDiM have a dimension of 550, while using
edge architecture, the feature maps are smaller, with a di-
mension of 62. These advancements underscore the effec-
tiveness of edge architectures in optimizing both memory
and computational efficiency.

5.2. Impact of Layer Selection on Performance

We deeply investigate how the layers chosen for feature ex-
traction affect performance. Specifically, as discussed in
Section 4, we defined groups of layers as low, middle, and
high based on their depth and an equivalent group of layers.
Fig. 3 shows the results for each backbone and group of lay-
ers. Each row represents a backbone with the groups of low,
middle, high, and equivalent layers considered (highlighted
with symbols L, M, H, and E), and in the column, the results
for each category are shown (by averaging the AD meth-

ods), while the color represents the variance in performance
with respect to the AD methods considered. In particular,
the categories shown on the x-axis are ordered from those
with the smaller anomaly sizes to those with the larger ones.
For example, the screw object contains anomalies of sizes
around 50 times smaller than the metal nut object.

The last column, all, gives us an idea of the performance
in all categories, where similar performance is achieved
for each backbone and layer.However, when examining the
categories individually, it emerges that, in general, for all
the backbones, categories with larger anomalies have better
performance, while the smaller ones perform worse.

In particular, while objects with bigger anomalies don’t
have notable differences among backbones and layers, this
does not hold for smaller anomalies, like for screw and
grid items. In fact, in this case, we can observe that the
WideResNet50 has the best overall performance, demon-
strating that when considering very small anomalies, larger
backbones still have an advantage over edge backbones.
Furthermore, for detecting small anomalies, the low-level
layers play a crucial role because they have a very small
field of view and because of the low-level features (such
as angles, lines, and so on) that are extracted from them.
Among the low, middle, and high groups, the low group of
layers is better than the other groups for every tiny back-
bone, as shown in Fig. 3.

However, the best results for small anomalies are usu-
ally observed when the analysis considers the equivalent
layer group, as in the case of MobileNetV2 and MCUNet
backbones. This suggests that the additional information of
middle-level and high-level layers can improve the detec-
tion, though considering low layers remains fundamental.
Therefore, in general, a good solution to identify both small
and large anomalies seems to involve selecting a group of
feature extraction layers that contains a combination of low-
, middle- and high-depth layers, as originally considered for
WideResNet50.

5.3. PaSTe
To optimize the STFPM beyond changing the backbone, we
introduce PaSTe, which is compared using MobileNetV2 as
the backbone in Tab. 2 shows that the inference computa-
tion was reduced by 24.9%. However, the memory footprint
does not show a significant improvement and is reduced by
only 3.9%. Remarkably, during training, the computation is
reduced by more than 33%. In addition, when considering
the RAM usage required by training, our method requires
only 22.9MB compared to 96.15MB of STFPM, with a re-
duction of 76.2%. Similar improvements are achieved for
PhiNet and MCUNet backbones.

Therefore, our method can significantly reduce the re-
quired resources, making it more viable for deployment at
the edge compared to STFPM.
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Table 3. AD methods comparison with MobileNetV2 backbone, and equivalent group of layers (Tab. 1) for feature extraction. For every
AD Model, the F1 pixel level score, the memory footprint and the inference MACs are reported. Inference MACs and memory footprint
of models drop dramatically, with minimal change of F1 score.

WideResNet50 MobileNetV2

PatchCore PaDiM CFA STFPM PatchCore PaDiM CFA STFPM PaSTe

Total Memory [MB] 300 3.72G 141 189.7 31.11 49.4 6.16 5.32 5.11
Inference [MAC] 10,42G 101,44G 36,89G 18.3G 235.6M 451M 2.8G 454.4M 341.2M
AD Performance [F1] 0.57 0.57 0.60 0.51 0.53 0.49 0.55 0.52 0.53

Fig. 4 shows a clear improvement in computing and
RAM memory resources, with almost no negative impact
on performance, which even improves for some backbones.

Instead, MicroNet shows limited gains, primarily due to
its extremely compact size, which already operates at its
resource-efficiency limits. Its original layer configuration
of [2, 3, 5] translates to [3, 4, 5] when adapted to PaSTe,
resulting in the freezing of only a few layers. As a result,
the potential for improvement is minimal with such limited
layer adjustments.

These advantages are achieved while achieving similar
performance or, in the case of some backbones like Mo-
bileNetV2, even better performance. Indeed, with Mo-
bileNetV2, STFPM achieves 0.52 f1 pixel-level compared
to 0.53 of PaSTe. Furthermore, the performance for small
anomalies appears to be slightly improved with PaSTe (see
the results of the PaSTe approach for each category and the
backbone in the Supplementary Material 1.

This is justified by the fact that the first layers are im-
portant, but choosing layers too close to the input could be
damaging, further motivating the freezing of such layers in
PaSTe.

Figure 4. Difference between PaSTe and original STFPM method.
For each backbone, we compare them as performance (F1),
Params (MB), Inference (MMAC), Training (Million MACs), and
RAM (MB).

6. Conclusion
This work provides a benchmark for visual anomaly detec-
tion in resource-constrained devices, impacting various do-

mains such as manufacturing, medicine, and autonomous
vehicles. We benchmark lightweight neural networks, such
as MobileNetV2 and PhiNet, and explore various anomaly
detection approaches, including PatchCore, CFA, PaDiM,
and STFPM, analyzing their suitability for edge devices.
Several edge architectures are implemented, proving their
ability to significantly reduce memory and computation
constraints, making AD algorithms more feasible for de-
ployment on the edge.

In addition, we introduce a novel algorithm called
PaSTe, which addresses the memory and computational
limitations of the original STFPM method, making it more
scalable and efficient for edge deployment. PaSTe can re-
duce more than half the training time and more than four
times the RAM for training while obtaining the same per-
formance and reducing the inference time by 30%. Evalu-
ating all the methods and architectures on the well-known
MVTec AD Dataset (and VisA) proves the feasibility of AD
algorithms for edge and the superiority of memory-efficient
STFPM to STFPM.

This work opens several promising research directions,
including optimizing AD algorithms for tiny devices and
addressing their struggles in detecting very small anoma-
lies, such as those in screws. Additionally, the behavior
of edge architectures in specific scenarios, such as noisy
AD settings or data-stream environments, remains under-
explored compared to larger architectures.
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