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Abstract
Interpretation of feature importance values often
relies on the relative order of the features rather
than on the value itself, referred to as ranking.
However, the order may be unstable due to the
small sample sizes used in calculating the im-
portance values. We propose that post-hoc im-
portance methods produce a ranking and simul-
taneous confident sets for the ranking. Based on
pair-wise comparisons of the feature importance
values, our method is guaranteed to include the
“true” (infinite sample) ranking with high proba-
bility and allows for a selection of top-k sets.

1. Introduction
Complex non-linear prediction models are widely used to
augment or even replace human judgment; for example,
in healthcare (1) and finance (2). Regulators, users, and
developers of prediction models are all interested in under-
standing the relative contribution of the different inputs - the
features - toward the model’s predictions (3; 4). Commonly
used feature importance (FI) methods such as Permutation
Feature Importance (PFI, (5)) and SHAP (6; 7) measure the
effect of removing or perturbing a feature on the predicted
value or the loss. The specifics of this manipulation change
across different implementations of the methods (8; 9; 10).

Studies have demonstrated that post-hoc feature importance
methods, which are employed to explain trained predic-
tion models, may not be stable and reliable due to multiple
sources of uncertainty, such as the randomness of sampling
and the hyperparameters of the methods (11; 12; 13). We
focus on uncertainty in the sampling of the explanation set,
affecting the aggregation of local examples into a single
global value. Most methods for quantifying these types of
uncertainty produce per-feature spread estimates (or confi-
dence intervals) in the units of the FI method. These uncer-
tainty measures are insufficient, because it is often the rank
of the feature importance, rather than the value itself, which
affects the decision-making and reporting on the features. In
our analysis of Nature group articles from 2021 mentioning
“feature importance” (35 articles with at least 20 citations),
we found that all the articles either reported only the identity
of the top-k ranked features (14) or implicitly used rank to

choose which importance values to report (15). Considering
the instability of these values, ranking the features based
on the order of their importance values for a single sample
might be misleading.

Therefore, the uncertainty for the rank of feature importance
values should be estimated. We propose reporting a set
of possible ranks for each feature that would include, in
high probability, the true rank of every feature’s importance
value. Specifically, we estimate a simultaneous confidence
set-rank for the true feature ranking. We deduce the set-
ranks by testing all pairs of features for shifts in means and
counting the number of rejections for each feature. Figure 1
displays an example of the results. These results can be used
to derive feature sets that include the top-k features with
high confidence, and can be used to approximate how many
samples are needed for the feature importance methods.

2. Uncertainty in feature importance
Consider the supervised learning task of predicting a real-
value outcome Y ∈ Y from a vector of p features X =
(X1, ..., Xp) ∈ X . A prediction model f : X → Y is fit
on a training set Dtrain = {(x∗

i , y
∗
i )}Mi=1, and is found to

fit the data well according to standard metrics (e.g., MSE
or accuracy on external test sets). Researchers are then
interested in quantifying each feature’s predictive power to
the model, the feature importance value (17).

Feature importance post-hoc methods measure an impor-
tance value for each feature, Φ̂1, Φ̂2, . . . , Φ̂p ∈ R, based on
a sample Dexplain = {(xi, yi)}Ni=1, preferably independent
of Dtrain, and a trained model f . We assume a higher value
of Φ̂j indicates higher importance. In many case, the fea-
tures are ranked according to the FI values and only the top
k features are considered. If feature j has the maximal value
(j = argmax Φ̂k), then its observed rank is r̂j = p.

In many cases, the FI values are calculated by averaging
many independent runs:

• In SHAP (6) and PFI (8), the global FI is averaged
over the absolute values assigned to each example (the
local FI). Variability in the explanation set Dexplain

introduces the uncertainty into the global FI.

• Also in PFI, each local FI value is computed by aver-
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Confident Feature Ranking

Figure 1. Frequency of the mode rank of each feature across re-
peated rankings (top), global feature importance values (middle),
and ranking with confidence set (bottom) for the bike demand
dataset (16), with an XGBoost model and TreeSHAP. The impor-
tance values for the middle and bottom figures were obtained from
50 observations. The confidence set identifies uncertain feature
rankings in this sample size.

aging many randomized imputations (or permutations)
for the feature value. Here, variability in the set of
imputed values introduce uncertainty into the local FI.

Addressing these examples in a single framework, we iden-
tify a two level FI hierarchy: the observed global FI is an
average of a set of independent base FI values. In the first
example, the base FIs correspond to local values for multiple
examples in the explanation set, and the global correspond
to the usual global post-hoc values. In the second example,
the base examples correspond to different imputations, and
the global corresponds to a single local example.

Setting notations, define matrix v to be the matrix of base FI
values, with rows v1, ..., vn ∈ Rp representing FI value for

each feature1. vj are the columns of this matrix, referring
to the base FI values for the j’th feature. Then the observed
global importance is written Φ̂j =

1
n

∑
vij .

Probability model and true global FI We model the rows
vi as independent samples from distribution Fv with mean
vector E[vi] = (Φ1, ...,Φp), the true global FI values. For
finite n, Φ̂j would be an unbiased but noisy version of
Φj ; we are interested in understanding the effects of this
deviation on the possible feature rankings.

3. Ranking confidence sets
In contrast to the observed noisy rankings, the true ranking
are based on the true FI values Φ1, ...,Φp. To allow for
features with identical true importance, we follow (18) in
redefining the true ranks to account for ties:

Definition 3.1 (Set-rank) Define the lower-rank of Φj by
lj = 1+#{k : Φj > Φk, j ̸= k} and the upper-rank of Φj

by uj = p−#{k : Φj < Φk, j ̸= k}. Then the set-rank of
Φj is the set of natural numbers {lj , lj+1, . . . , uj} denoted
here [lj , uj ].

If there are no ties, the lower and upper ranks are identical
and equal to the standard definition.

Our inferential goal is to construct a confidence set of ranks,
estimated from the data, for each feature’s importance such
that with high probability, all sets cover the true set-ranks.

Definition 3.2 (simultaneous coverage) The set of confi-
dence intervals {[Lj , Uj ]}j=1...p has simultaneous cover-
age at level 1− α if

P ([lj , uj ] ⊆ [Lj , Uj ], ∀j ∈ {1, . . . , p}) ≥ 1− α.

Lj , Uj are functions of v the observed base FI. Different
sets of observed base FI values would produce different
confidence sets. In a simultaneous 1 − α confidence set,
the probability that all intervals in the set cover the true
set-ranks is at least 1− α. Note that simultaneous coverage
is conservative and can result in relatively large intervals.

An advantage of simultaneous coverage requirement is that
coverage is also maintained for many functions of the ob-
served ranks across features. One example is the top-k sets:
instead of selecting the most important feature (or most
important k features) based on the observed data, we may
prefer selecting all features that could be ranked in the top-k
as n increases based on the confidence sets. With simul-
taneous coverage, the error probability for this selection
is controlled (19). Furthermore, the confidence intervals
for the features currently ranked top-k still have marginal

1If base FI are the local values, n = N the size of Dexplain.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Confident Feature Ranking

coverage. These two properties are not guaranteed by the
usual marginal coverage(20).

4. Confident simultaneous feature ranking
Our method uses pairwise hypothesis tests to form lower
and upper bounds of the true rank of each feature. To see the
relationship between tests and ranking, consider a feature
pair j, k for which we can reject with high probability the
hypothesis Hj≤k : Φj ≤ Φk. Then, with a high probability
Φj > Φk, in that case, and its true rank is > 1. Our method
is based on (21), and we compare in Section ??.

Theoretically, we would like to form for each feature pair
j, k two hypothesis tests:

H0
jk :Φj ≤ Φk versus H1

jk : Φj > Φk,

H0
kj :Φk ≤ Φj versus H1

kj : Φk > Φj .

In practice, when both tests use the same data and the prob-
ability of false rejection is small, the two null hypotheses
will not be rejected together. We can therefore use a single
two-sided test for the hypotheses:

H0
j,k : Φj = Φk versus H1

jk : Φj ̸= Φk.

If the null hypothesis is rejected, the sign of the observed
difference can indicate which directional hypothesis was
rejected. The paired test takes vectors vj ,vk and returns a
p-value pj,k and a sign sjk = sign(Φ̂j − Φ̂k). Denote as

(sjk, pj,k) = pairedTest(vj ,vk).

A decision is made by comparing pj,k to the threshold α,
and then choosing the directional hypothesis based on sjk.
For example, if pj,k < α and sjk = −1, we conclude that
Φj < Φk. Note that sign decisions are always for strict
inequalities, as these narrow down the set of possible ranks.

4.1. Controlling the family wise error

Define D the set of sign decisions from all pairwise tests
D = {(j, k) : H1

jkwas accepted2}. We make a sign error if
there is a pair (j′, k′) ∈ D for which Φj′ ≤ Φk′ . A level α
calibrated test3 assures that the probability of this event is
less than α. However, for simultaneous confidence intervals,
we need a stronger condition.

Definition 4.1 (Family wise error rate) The pairwise tests
{pairedTest(vj ,vk)}j<k control the family wise error
rate (FWER) at level α if P (Making any sign error) ≤ α.

2It is more common to use “reject the null“ rather than “accept
the alternative”. However, here, we indeed have complimentary
sets, hence rejecting H0 means accepting H1.

3See definition of calibrated test in Appendix B.

Indeed, the probability of making at least one error increases
with more tests, and thus we need more conservative tests
to control the FWER. We use the sequential Holm (22)
procedure to adjust (increase) the p-values. The adjusted
p-values are then compared to the requested level α; if the p-
values are calibrated, the FWER for the rejected tests (after
Holm) is controlled at level α, regardless of dependence.
See (23) on using Holm for pair-wise comparisons.

4.2. Confident feature ranking

Once a family of pairwise tests is available with FWER
control, we derive the simultaneous confidence rank set:

Theorem 4.2 Let D be the set of sign decisions with FWER
control at level α. For j = 1, ..., p, define

Lj = 1 +#{k : (j, k) ∈ D},
Uj = p−#{k : (k, j) ∈ D}.

Then the sets {[Lj , Uj ] for j ∈ [p]} are simultaneous (1−α)
confidence sets for the ranks of the true global FI values.

The construction naturally extends the definition of ranks
used in Definition 3.1. The idea in this proof is that a cover-
age failure means that the set of true (one-sided) differences
was smaller than the set of (one-sided) sign decisions. This
means that at least one sign decision was an error. Therefore
the FWER upper bounds the probability of an error in the
confidence sets. See proof in Appendix B.3.

Algorithm 1 describes the complete method. The algorithm
works directly on the base FI matrix without requiring ac-
cess to the trained model, FI method, or the explanation data
set. The main assumption is that our paired test is calibrated
for the family of possible distributions for base FI values.

Algorithm 1 Confident sets of ranks

Require: • Base FI values v

• Level of confidence 1− α > 0;

• A suitable paired test;
for j, k ∈ [p], j < k do
(sjk, pj,k)← pairedTest(vj ,vk).

end for
{padjj,k }j<k ← Holm({pj,k}j<k)

D ← {(j, k) : padjj,k < α, sjk = 1}
D ← D ∪ {(k, j) : padjj,k < α, sjk = −1}
for j ∈ [p] do
Lj ← 1 + #{k : (j, k) ∈ D}
Uj ← p−#{k : (k, j) ∈ D}

end for
[L1, U1], . . . , [Lp, Up].
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Paired test In the paper, we use the parametric paired t-test:
Set d = vj − vk to be the vector of differences, write d̄ for
the sample average and sd for the sample standard deviation.
Then the two-sided α level test rejects the null hypothesis if
|d̄/(sd/

√
n)| > Tn−1(1− α/2), where the r.h.s. marks the

1− α/2 quantile of student-t (n− 1 df). The paired t-test is
fairly robust to departures from normality(24).

Comparison to ICranks Algorithm 1 is similar to the
ICranks (21), with some differences. In ICranks, they used
the Tukey correction (25) for the normal distribution to
control all differences between ranks simultaneously. It as-
sumes normality and independence between features and
is hard to replace with non-parametric tests. In contrast,
our algorithm applies tests to each feature pair and uses
the Holm correction; hence, it can be used with robust or
non-parametric location tests (26).

5. Evaluation
We briefly discuss our experimental setup and results. More
details and more results are in Appendix C.

Synthetic data We use synthetic data to check the validity
and efficiency of the method. For validity, we need to iden-
tify the true global importance value. We used the following
two approaches: (a) Mock importance values - we simulated
the base FI values from a multivariate normal distribution
with predetermined means and covariance matrices; (b) Low-
variance importance values - we built a prediction model
and calculated Φ̂1, . . . Φ̂p based on a sufficiently large sam-
ple as a low variance estimator of Φ1, . . .Φp (27).

Prediction model We used the XGBoost model (28) in
all experiments, due to its computational efficiency and
performance on high-dimensional tabular data.

Feature importance methods We selected two commonly
used post-hoc feature importance methods TreeSHAP (6)
and PFI (5). In both cases, we defined the base FI to be the
local values associated with individual examples. Additional
details are in Appendix A.

Metrics We use the the following metrics suggested by (18):
Simultaneous coverage: The proportion of experiments
where all true ranks are covered by their confidence sets.
Efficiency: the average relative size of the confidence sets:

1
p·(p−1)

∑p
j=1(Uj − Lj). Lower efficiency is better.

5.1. Results

Simultaneous coverage In both the mock feature impor-
tancce and model feature importance, the ranking maintains
simultaneous coverage levels of almost 1. This indicates that
the method is overly conservative compared to the nominal
required simultaneous coverage of 1− α = 90%.

Figure 2. Ranking efficiency as a function of p for two levels of
correlations (ρ = 0.1 and ρ = 0.9) and two ranking methods
(our method is dashed, ICRanks is solid). SD of base FI are high
(green), medium (orange), or low (blue). Low values mean smaller
sets and are therefore better. Both methods maintain simultaneous
coverage levels of 1̃ in all conditions; our method is more efficient.

Figure 3. Ranking efficiency for p = 15 (left) and p = 50 (right)
features. The efficiency is presented as a function of the number
of important features, the number of base FI values (n), and the FI
method: TreeSHAP (solid) and PFI (dashed). Efficiency decreases
with n as expected. The efficiency of TreeSHAP is better than the
PFI method, but it may depend on the number of permutations.

Mock data: Efficiency compared to ICRanks We com-
pared our efficiency to the ICRanks (18) method, for differ-
ent number of features (p) and base FI values (n). The
results are in Figure 2. When FI are highly correlated
(ρ = 0.9), our method is more efficient than ICRanks.
Simulated FI: Efficiency comparing FI methods Here we
study the efficiency under multiple simulation conditions,
varying the FI algorithm (TreeSHAP and PFI), p, number
of relevant features, and n. Figure 3 shows the results. In
general, the ranking is inefficient with a small number of
important features, since the noisy features may be indistin-
guishable inducing large true rank-sets.

5.2. Concluding remarks

We view this method as a step to producing new types of sta-
bility checks in explainable machine learning. Our current
algorithm is conservative, as demonstrated in simulations
where the coverage level surpasses the requested 90%. Fu-
ture research aims to narrow the confidence sets while main-
taining nominal coverage. We seek to reduce the impact
of the number of features on coverage and enhance prac-
titioner confidence through the implementation of robust
tests, which currently do not appear to affect coverage.
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A. Unifying global feature importance
methods

In this section, we will use our framework to define the base
and global levels of importance values for TreeSHAP and
Permutation Feature Importance.

Tree SHAP TreeSHAP is a post-hoc local feature impor-
tance method for tree-based ML models. It is a model-
specific version of SHapley Additive exPlanation (SHAP)
values (6), that exactly computes the Shapley values from co-
operative game theory (29). SHAP is a method to compute
Shapley values for the conditional expectation of the predic-
tions of the model E[f(X)|XS = xS ]. For a tree model the
conditional expectation can be estimated recursively based
on the tree structure and therefore allow to compute the
SHAP values in polynomial instead of exponential time.
The TreeSHAP method is exact and not stochastic.

For a single observation (x, y) the local TreeSHAP value of
a feature j is:

ṽTreeSHAP
j =

∑
S⊆[p]

|S|!(p− |S| − 1)!

p!

(
E[f(X)|XS = xS ]

−E[f(X)|XS\{j} = xS\{j}]
)

Where [p] is the set of all features and S is a subset of
features.

The global TreeSHAP averages over the absolute-value of
all observations in a sample of size N :

Φ̂TreeSHAP
j =

1

M

M∑
i=1

|vTreeSHAP
j |

Formally, the base explanation is vij
TreeSHAP =

|ṽijTreeSHAP |.

Permutation Feature Importance Permutation Feature
Importance (PFI) (5; 10) is also commonly used as a model-
agnostic post-hoc global feature importance method. The
feature importance is defined as the increase in a model loss
when a single feature value is randomly permuted.

Let L be a loss function, we defined the base level of PFI
for the j’th feature as the mean over B permutations:

vPFI
j =

1

B

B∑
b=1

L(f(xb
[j]), y)− L(f(x), y)

. Where x[j] is a replication of an observation x with a
permuted version of the j’th feature.

Respectively, the global level is defined as an average over

M base level importance values:

Φ̂PFI
j =

1

M

M∑
m=1

vPFI
j

=
1

B

B∑
b=1

L(f(Xb
[j]), Y )− L(f(X), Y )

Where X[j] is a replication of the data matrix X with M
rows, and a permuted version of the j’th feature. The right
term is the common definition of PFI.

B. Definitions and proofs
B.1. Calibration

Let X ∼ Fθ be a family of distributions parameterized by
θ ∈ Θ, and let Θ0 ⊂ Θ.

Definition B.1 (A calibrated test) The p-value p(X) for the
test H0 : θ ∈ Θ0 is calibrated if for any θ ∈ Θ0, and
α < 1 the test p(X) < α controls the type 1 error at level
α. Specifically:

Pθ∈Θ0
(pj,k < α) < α, for any α < 1, θ ∈ Θ0.

Whether a test is calibrated depends on the assumptions of
the test and the family of distributions associated with the
null hypothesis (H0).

B.2. Holm procedure

We describe the Holm procedure interms of the the adjust-
ment of the p-values.

Take a set of K p-values p1, ..., pK , and sort them p1 ≤
, ...,≤ p(K) ≤ 1.

Then
padj(1) = K · p1,
padj(2) = max{padj1 , (K − 1)p(2)},
so that the k’th p-value
padj(k) = max{padj(1) , ..., p

adj
(k−1)(K − k + 1)p(k},

and
padj(K) = max{padj(1) , ..., p

adj
(K−1), p(K)}.

Notes:

• After adjustments, the p-values are compared to a cho-
sen level α. Note that all p-values are inflated com-
pared to their original level, making it less likely to
reject the null hypothesis.

• Furthermore, the p-values keep their relative order after
adjustment. This is governed by the max function,
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which assures the order is kept. The resulting process
is sequential, in that for a given level α, after the first
non-rejected value, all others would not be rejected.

B.3. Proof of Theorem 4.2

Recall that D is the set of sign decisions, and that we assume
that the probability of any error in D is less than α. To prove
the theorem, we first show that any error in coverage of a
rank confidence interval must be caused by at least one sign
error in D:

Suppose that there is a coverage error for the set of confi-
dence intervals, and without loss of generality assume that
the coverage error occurs for feature 1,

[ℓ1, u1] ⊈ [L1, U1].

The coverage can break on one or both sides:

If ℓ1 < L1, then L1 > 1. Therefore, in D, there are
L1−1 > 0 pairs of the type (1, k) ∈ D. (Meaning, there are
L1−1 features that the test found to be significantly smaller
in FI compared to feature 1). At the same time, according
to Definition 3.1, ℓ1 − 1 = #{k : Φ1 > Φk}, meaning
there are only ℓ1 − 1 which are truely smaller than feature
1. Combining these two statements together, there must be
at least one feature k = 2, ..., p for which (1, k) ∈ D but
Φ1 ≯ Φk, meaning there is a sign error in D.

If instead u1 > U1, this means that the set {k ∈ 2, ..., p :
(k, 1) ∈ D} is larger than the set {k : Φk > Φ1}. Again,
this would mean that at least for one value of k we have a
sign error.

Then the event of at least one coverage error is contained
in the event of getting a sign error. So the probability of
coverage error is bounded by the FWER = α.

C. Experiments Details and Results
C.1. Synthetic data

C.1.1. FEATURE RANKING - MOCK IMPORTANCE
VALUES

Data description For this experiment, we generate
multivariate-normal data with off-diagonal correlations be-
tween the features and two levels of correlation: low
(ρ = 0.1) and high (ρ = 0.9). The variance of the fea-
tures was sampled from chi-squared distribution and was
scaled by different factors: 0.2, 1, 5. The structure of the
means vector is: µ = (1, . . . , p+ 1)β , where β gets differ-
ent values that affects the spread of the means: 0.5 (most
spread), 0.25, 0.1 (most compact). Figure 4 is a detailed
version of Figure 2, separated by the different values of the
exponent.

Figure 4. Ranking efficiency as a function of p for two levels of
correlations (ρ = 0.1 and ρ = 0.9) and different values of µ
exponent.

In addition, we analyzed the efficiency as a function of the
number of observations (n), see summary in Figure 5 and
the breakdown to different values of µ exponent in Figure 6.
To evaluate the efficiency and simultaneous coverage of the
ranking methods, we sampled 100 independent explanation
sets for each configuration and reported the average across
repetitions.

Figure 5. Ranking efficiency as a function of n for two levels of
correlations (ρ = 0.1 and ρ = 0.9).
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Figure 6. Ranking efficiency as a function of n for two levels of
correlations (ρ = 0.1 and ρ = 0.9) and different values of µ
exponent.

C.1.2. FEATURE RANKING - TREESHAP AND PFI
IMPORTANCE VALUES

Here we simulate a regression task with X sampled from the
following synthetic data: a multivariate normal distribution,
with µ = (1, . . . , p+ 1)0.5, a block-wise pairs correlation
matrix with ρ = 0.3, and a chi-squared variance. In addition,
we analyzed a different number of total features (p = 15 and
p = 50), with varying numbers of important features. The
value of Y was calculated based on the important features
as a linear combination of the features with interactions or
a trigonometric transformation of the sum of the important
features. Finally, we added noise to Y and standardized it.

For each configuration of (X,Y ), an XGBoost model was
trained and tested (70/30) on 500,000 observations. Then,
the true importance values were computed with TreeSHAP
and PFI using 50,000 observations for p = 50 and 10,000
for p = 15.

To measure our ranking method as a function of the number
of base importance values (n), we repeatedly (100 times)
sample data from the same distribution for each value of n,
compute the local TreeSHAP and PFI values, and ranked the
features with our method. Then, we measure the efficiency

and coverage. The reported results are the average across
repetitions.

In Figure 3 we presented the results for a linear Y with
interactions. Here (Figure 7) you can see the results for the
trigonometric Y .

Figure 7. Ranking efficiency for p = 15 (left) and p = 50 (right)
features with a trigonometric Y .

C.2. Real data

We demonstrated the motivation to use our confident feature
ranking method with the bike sharing demand dataset (16).

We created a 60/40 train and test sets and trained an XG-
Boost model (sklearn default implementation; train and test
R2 of 0.98 and 0.94, respectively). We used TreeSHAP to
build an explainer model and compute local SHAP values
for each observation in the test set. We define the base im-
portance values as the absolute values of the local SHAP
values.

Based on a single sample, the Naive ranking of the features
is the order of the bases’ means, where the feature with the
lowest mean is ranked as 1.

To measure the stability of the ranking as a function of the
number of base values, we re-sampled with replacements
from the test set. We evaluated the stability of the aggrega-
tion from base to global importance values. We define the
stability of a rank as the frequency of the most common rank
of the feature across repeated rankings (Naive rankings).


