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Abstract

Geometric molecule generative models have found expanding applications across
various scientific domains, but their generation inefficiency has become a critical
bottleneck. Through a systematic investigation of the generative trajectory, we
discover a unique challenge for molecule geometric graph generation: generative
models require determining the permutation order of atoms in the molecule be-
fore refining its atomic feature values. Based on this insight, we decompose the
generation process into permutation phase and adjustment phase, and propose a
geometric-informed prior and consistency parameter objective to accelerate each
phase. Extensive experiments demonstrate that our approach achieves competitive
performance with approximately 10 sampling steps, 7.5 X faster than previous
state-of-the-art models and approximately 100 x faster than diffusion-based mod-
els, offering a significant step towards scalable molecular generation. Code is
available at https://github.com/GenSI-THUAIR/MolTD

1 Introduction

Geometric generative models have achieved notable progress in various important scientific tasks,
including protein folding [1]], de novo drug design [2 3], and crystal generation [4]. Previous progress
are largely driven by the adoption of advanced generative models, particularly diffusion models,
which could refine a cloud of atoms into precise molecular structures through iterative sampling.
A notable example is AlphaFold3, which employs a diffusion-based network to predict the joint
structures of molecular complexes [[1].

However, the iterative sampling process of these advanced geometric generative models can lead to
inefficiencies in practice. For instance, the AlphaFold3-level structure prediction system requires
around 200 diffusion steps, which significantly contributes to the heavy inference pipeline and usually
5 sampling procedures are conducted with different seeds for a single structure prediction task to
obtain comparable performance [5]. As application scenarios expand, generation inefficiency has
become a critical bottleneck, especially given the growing demand for scalable inference to produce
large-scale synthetic data [6] and to integrate generative models into real-time scientific workflows
in drug discovery [7]] and material design [4]]. Therefore, enhancing the efficiency of geometric
generative models has emerged as a key research direction.

Recent efforts have adapted techniques from general domains such as image generation to improve
sampling efficiency in the molecular generation setting. However, even the most efficient methods
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still require approximately a hundred or more steps—for example, 90 steps in GOAT [8]] and 200
steps in EquiFM [9]. In contrast, state-of-the-art image generation techniques only take as few as 1-2
steps to achieve desirable results [[10} [11]. This discrepancy raises two key questions: 1) What are
the fundamental bottlenecks limiting the efficiency of 3D molecular generative models? 2) Can we
achieve a substantial improvement in efficiency, potentially reducing the required sampling steps by
an order of magnitude?

The challenge of efficient molecule generation is fundamentally distinct from that of image generation
due to the structural nature of the data. While images have a fixed spatial ordering (e.g., pixel positions
remain constant), 3D molecular generative models that generate the structure holistically requires
determining the permutation order of atoms before refining their atomic feature values. This
permutation step is unique to 3D geometric generation and have not been adequately addressed by
directly applying acceleration techniques designed for image domains.

In this paper, we first conduct a systematic and theoretical investigation of the generative trajectory
to analyze this permutation component. Building on the insights from this analysis, we propose
decomposing the geometric generation into two phases: the reordering of permutations and the
adjustment of atomic features, and propose MOLTD (Molecule Trajectory Diagnosis) with novel
acceleration methods for both phases. For the permutation phase, we introduce a geometric-informed
prior to the sampling process with a corresponding accuracy scheduler which could efficiently reduce
the procedure of reordering; For the adjustment phase, we demonstrate that previous acceleration
approaches from general domains, such as consistency training [[10]], can be significantly beneficial
for efficient generation when specifically adapted for geometric generation in the adjustment phase.
To sum up, our paper makes the following contributions:

 To analyze the intrinsic properties and underlying challenges in efficient geometric gener-
ation, we propose a quantitative framework for analyzing the generative trajectory. This
approach allows us to identify key considerations for developing improved methods while
highlighting the fundamental differences between 3D molecular generation and general
domains.

» We further introduce effective modifications targeting different decomposed phases of the
generation process. For the permutation phase, a geometric-informed prior is adopted
to accelerate the generation of stable structures. For the adjustment phase, we propose
consistency parameter objective to improve the accuracy of atomic feature adjustment.

* We demonstrate the effectiveness of the proposed methods on two molecule datasets: QM9
[12] and GEOM-DRUG [[13]]. For the first time, our approach enables the generation of large
molecules using approximately 10 steps while reaching new state-of-the-art performance
on both datasets: on QM9, MOLTD achieves molecule stability of 93.16%, and on GEOM-
DRUG it achieves Atom stability of 86.88% . This represents a significant improvement in
generation efficiency: 7.5 X faster than flow matching models, 8.3 x faster than Bayesian
Flow Network models, and nearly 100 xfaster than diffusion-based models.

* We demonstrate the broad applicability of MOLTD by generalizing to different tasks and
generative backbones. In the task of structure-based drug design, MOLTD achieves state-of-
the-art performance using only 25 NFEs — a 40 x speedup over diffusion-based models.
Ablation studies further confirm that our approach significantly accelerates both diffusion
models and Bayesian Flow Networks.

2 Related Work

2.1 Efficient Generation in General Domains

Advancements have been made to enhance the sampling efficiency of generative models. For diffusion
models, DDIM [14] introduced an adaptable diffusion process for faster inference, while DiffFlow
[[LS]] optimized the diffusion trajectory. Another line of works focuses on improving ODE solvers
to reduce discretization error, for instance, DPM-Solver [16] introduced a high-order, training-free
solver that reduces sampling steps to just 12. For flow matching models, recent efforts aim to improve
the coupling between prior and target distributions. Concurrent works [17} [18] approximate optimal
transport coupling to create a more straight trajectory, while Rectified Flow [19] employs iterative
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Figure 1: Illustration of MOLTD. To accelerate the generation in the first phase, we introduce a
geometric-informed prior to the sampling process based on the aligned molecules in the dataset.
For the second phase, we propose a consistency parameter objective to accelerate the adjustment of
atomic features.

distillation to straighten it. Most recently, Consistency Models [10} 20] propose consistency training,
which enables one-step generation without sacrificing quality. While these advancements primarily
focus on general domains like image generation, they have inspired improvements in geometric
generative models.

2.2 Advancements in 3D Molecule Generative Models and Sampling Techniques

Extensive prior work has focused on generating molecules as 2D graphs [21} 22| 23], but there is
growing interest in 3D molecule generation. Autoregressive methods like G-Schnet and GSphereNet
[24}125] iteratively connecting fragments to build molecules, but they require complex action design.
Another approach models molecules as atomic density grids, generating densities over voxelized 3D
space [26].

Recent advances leverage diffusion models and flow matching for 3D molecular generation [27, 9],
antibody design [28]], and protein design [29]. However, these methods typically require hundreds of
sampling steps. To accelerate the generation, EquiFM [9]] introduced optimal transport objectives
with adaptive ODE solvers, GOAT [8]] applied optimal transport in a joint latent space, and GeoLDM
[30] leveraged a latent space to reduce dimensionality. However, even the most efficient methods
still require 90-200 steps, whereas state-of-the-art image generation achieves high quality in just 1-2
steps [LLO, [L1]).

3 Background

3.1 Notations and Definition

To differentiate between geometric representations and atomic property features, we represent 3D
molecules using the tuple g = (x, h). Here, ¢ = (x',...,z") € X denotes the atomic coordinate
matrix, and h = (hl, ..., RN ) € RV xd represents the node feature matrix, which includes attributes

such as atomic types and charges. Here X = {z € RV*3 : L Zi\il x' = 0} is the Zero Center-of-
Mass (Zero CoM) space, which means the average of the N elements should be 0. For Bayesian
Flow Networks, we use 0, to denote the parameter encoding the information of the molecule at time
t. We use ¢ to denote the data distribution and py as learned distribution.

To analyze the generative trajectory, we introduce additional notations: 7 € RV *¥ is the permutation

of N elements, and R € RYV*3 is a rotation matrix in 3D space, V' (x; ) is an open ball centered at
x with radius .



3.2 General Formulation of Generation Process

Most advanced geometric generative models employ iterative sampling processes to progressively
transform noisy latent variables into valid molecule. This approach is exemplified by diffusion models
(DMs), flow-matching models (FMs), and Bayesian Flow Networks (BFNs) [27, 16, [31]], and their
sampling process can be unified as follows:

gt = atgr—1 —+ /th)(gt—lat — 1) —+ ’ytet,t € {1, 27 e ,T} (1)

where g; is the noisy latent at time step ¢, T denotes the total number of sampling steps, €; is a
standard Gaussain random vector, ® represents the neural network, and o, 3;, y; are parameters to
be instantiated according to specific generative model and sampling technique.

For diffusion-based models and flow-matching-based models [32, 33} 134]], the iterative generation
process aims to discretizing and solve the differential equation:

dg.

It t 2

d t Vo (gt, ) ( )
which transports the prior distribution p(go) to the target distribution p(gr). Typically, the network ®
in Equation (1) is trained to approximate the velocity term vy by estimating a conditioned version of
the ground truth velocity. However, since discretization inevitably introduces errors into the sampling
process, these models generally require a large number of sampling steps to effectively approximate
the learned differential equations and generate high-quality samples [35 [16].

In contrast, Bayesian Flow Networks (BFNs) generate data without requiring discretization by
performing Bayesian updates based on observed noisy random variables [36]]. This approach provides
a unified framework for handling diverse data modalities, including continuous, discretized, and
discrete data. Each modality is addressed with a specifically adapted Bayesian update rule, as outlined
in Equation (T)). The network @ is trained to reconstruct the ground truth molecules. In previous work
[31], effectively approximating the data distribution with a BFNs-based model required hundreds of
sampling steps. We include a more detailed introduction of BFNs in Appendix [B]

4 Method

In this section, we systematically and theoretically investigate the generative trajectory of geomet-
ric generative models and introduce a decomposition framework for 3D molecule generation in
Section[4.1] Building on insights gained from this analysis, we introduce the geometric-informed
prior in Sectiond.2]and the consistency parameter objective in Section [4.3|to accelerate the first and
second phase, respectively. Proofs for the propositions presented in this section are provided in the

Appendix
4.1 Decomposition of the Generative Trajectory

We focus on advanced geometric generative models, including the diffusion-based approach EDM
[27]], the flow-matching-based approach EquiFM [9], and the Bayesian flow network-based approach
GeoBFN [31]. These methods generate a trajectory of noisy molecules g1, . . . , g7 through iterative
sampling described in Section[3.2] We quantify the change of molecular geometry along this trajectory
to investigate the characteristics of the generation process.

To evaluate the changes in molecular geometry, we compare the intermediate molecules {gi}g;l
generated along the trajectory, against the final molecule g1 obtained at the end of the trajectory. We
define two metrics to evaluate the geometric changes: Dgyucrure (g;) measures structural changes at
the molecular level, while Dy (g;) captures changes in atom types at the atomic level:

Definition 4.1. (Metrics for the change of geometry)
The structural difference between g; and g is defined as

Al =1l

Dstructure(gi) - T7 (3)

where
77, R} = argmin||7(Rx;) — 1|2 4
m,R
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Figure 2: Left: The structural difference measured by Dgyycrure- The Stable point ¢y, represent
the dividing point in time between the first generation phase and the second phase. Middle: The
change of atom types measured by Dyy,.. Right: Illustration of the two phases. In the trajectory of
(23, 23) = (21,2%) — (2, 22), the (21, 2?) lies in the second phase and is aligned with (z3, 23),
while (23, 23) lies in the first phase where permutation reordering is required.

Here «; is the molecular structure, |7} — I||o is the number of permutation (i.e., transpositions)
performed by 7.

And the difference of atom types is defined as

Diype(gi) = == : Q)

where ¢ is the Dirac delta function.

We randomly sample 1000 generative trajectories and report the mean of these metrics. More imple-
mentation details about the investigation and additional experiments can be found in Appendix

The results of geometric changes along the generated trajectory are presented in the left and middle
of Figure[2] We could observe the trajectory of generated molecules exhibits a two-phase pattern
across all analyzed generative models, and these two phases are delineated by the stable point:

Definition 4.2. The stable point is a time step in the generative trajectory that distinguishes two

phases:
tstable = argminDstructure (g’L)) S-t~Dstructure S € (6)
4

where € is a small positive number, e.g., le — 3.

For t < table, ¢ requires permutations to align with the final molecules, a phase we term as the
reordering of permutations. This process highlights a unique challenge in molecular generation,
distinguishing it from other generative tasks such as image generation. In general image generation,
intermediate samples inherently follow a fixed permutation order consistent with the final output, i.e.,
m(x;) = I, where I represents the identity map. In contrast, the geometric generative models must
first resolve the correct permutation mapping for intermediate molecular structures.

For t > tuble, the molecular structure stabilizes, and the generative models refine atomic features
including both atom coordinates and atom types to finalize the molecular geometry. In this phase,
the molecule can be treated as general data, as 7(x;) = I, allowing the application of advanced
techniques from general domains to accelerate generation.

In fact, the existence of the two phases is theoretically justified as follows:

Theorem 4.3. Let 2} € V(z{;r), i € {1,2,---, N}. The radius r is chosen as v = 1 min;; ||z} —
o, Wherei,j € {1,2,--- N} and j # i. Then,

argmin ||7(x1) — zoll2 = Inxn,
s

o

where 7 is an N X N permutation matrix, and I« v is the identity matrix.

Theorem [4.3|establishes that if the two structures, o1 and 2, lie within the open ball of the corre-
sponding target, as shown on the right side of Figure 2] then no further permutation is required. This
explains why permutation for alignment is not needed in the second phase.



For the first phase, because of the significant difference between the prior and the target, permutation
is inevitable at the beginning of generation. The following theorem provides the conditions under
which permutation occurs. Since all permutations can be decomposed into products of pairwise
permutations, in the following theorem, we focus on pairwise permutations between two atoms:

Theorem 4.4. Assume x5 ¢ V(xh;r), i € {1,2,---,N}. Forj € {1,2,---,N}\ {i}, a per-
mutation between the i-th and j-th rows is required if and only if @}, lies outside one sheet of the
two-sheeted hyperboloid defined by the foci x, and x,, passing through x5

We now apply the proposed tools to analyze the inefficiencies in advanced geometric generative
models. Based on the results in the left and middle of Figure 2| we identify the permutation phase
as a key bottleneck in the generation efficiency of current models. Both diffusion-based EDM and
flow matching-based EquiFM require hundreds of sampling steps, and a large proportion of steps are
spent in finding the stable structure in the first phase. In contrast, GeoBFN benefits from a smoother
trajectory and the capability of unified modeling of different modalities, enabling it to reach a stable
point earlier than previous methods, and thus significantly reduce the necessary sampling steps.
However, GeoBFN still experiences a large number of permutations at the start of the first phase.

Building on this analysis, we gained valuable insights into accelerating each geometric generative
model. In this study, we focus on optimizing GeoBFN, as it effectively disentangles the two phases
of the generation process and exhibits the highest generation efficiency among the models analyzed.
Although these methods are tailored for BFNs, we demonstrate that they can be readily generalized
to other generative models, such as diffusion models, paving the way for efficient acceleration in
large-scale molecular generation systems.

To address the challenges of each phase, we propose two techniques specifically designed for the first
and second phases, respectively. These techniques are discussed in detail in the following sections.
With the proposed methods, our approach achieves an earlier stable point, more accurate atom-type
predictions, and largely reduces the redundant steps, as demonstrated in Figure

4.2 Accelerating the Permutation-Reordering Phase with Geometric-Informed Prior

In this section, we focus on accelerating the first phase of generation by leveraging the intrinsic
structural information present in the molecular dataset. In drug discovery, it is well recognized that
molecules can be decomposed into stable and conserved substructures, such as scaffold-arm decom-
position [37] and fragment-based decomposition [38]. Inspired by this fact, we propose utilizing
the “representative structures" within the molecule dataset that capture the general characteristics of
most molecular structures, as an effective starting point for efficient generation of stable structure.
To this end, we extract representative structural information from the dataset, summarize it into a
geometric-informed prior, and seamlessly incorporate it into the sampling process.

The extraction of representative structural information consists of two main steps:

* In order to extract fine-grained geometric information, we stratify the molecules in the
dataset based on their number of nodes IV, since molecules with different number of nodes
show distinct structural patterns [27, 39]. We provide visualization in the Appendix [G]to
support this claim.

* We perform Equivariant Optimal Transport (EOT) [9] to align the geometric structures
within the stratified molecules. By eliminating variations due to rotation and translation
while preserving the relative spatial configuration of atoms, we could extract representa-
tive structural features by simply taking the mean of all atomic features over the aligned
molecules. The resulting representative structure is denoted as g.

A detailed description of the above process can be found in Algorithm|[I}

The framework of BFN provides an efficient approach to utilize g in the sampling process, without
the need to train the model from scratch. First, as g still lies in the sample space, we utilize the
Bayesian update distribution to map it to the parameter space:

0, = E 5(6, — h(yp, 60, ,)) @)

ps(Yplg,op)

where 0, is the geometric-informed prior, ps and h are sender distribution and Bayesian update
function, basic components of BFNs that are defined in Appendix @ «y, is the accuracy schedule,



which determine the signal-to-noise ratio in the prior. We provide an ablation study on the choose
of v, in Appendix |F} Finally, we perform standard Bayesian update in BFNs with 6, as the prior.
Notably, the sampling process of MOLTD starts with 6, a random vector embedding intrinsic
structural information, in contrast to the fixed, uninformative prior used in the original BFNs.

Based on our construction, the prior already specifies an orientation in 3D, and thus p, that starts
from the prior 8,, enjoys the rotational-equivariant property:

Proposition 4.5. The density induced by the geometric-informed prior is rotational-equivariant:

Ps(916p) = py(Rg | RO,), ®

where R is any orthogonal matrix.

4.3 Accelerating the Adjustment Phase with Consistency Parameter Objective

In the adjustment phase, the permutation orders of the generated molecules are fixed, allowing us to
adapt state-of-the-art acceleration techniques from domains such as image generation.

While consistency training [[10]] has shown remarkable success in accelerating generation tasks, it is
primarily designed for continuous data like images. To address the challenges posed by the multi-
modal nature of 3D molecules, we introduce a consistency parameter objective—a novel objective
function that enforces consistency in the parameter space of BFNs. Our key insight is that the
continuous parameter space of BFNs provides a smooth and structured representation of multi-modal
molecular information, which in turn enhances the stability and effectiveness of consistency training
in this domain.

The proposed consistency parameter objective is formulated as follows (we highlight the differences
with standard consistency training using color blue):

N-1
[’¢(g) = Z Equ)(etwti) - q)_(0t1+17ti+1)||§ (9)

1=1,t; >tgaple

where @~ is neural network with stop-gradient, ts.pe is the stable point, ensuring that the consistency
parameter objective is only computed in the second phase. And {t;} Y ; denotes discretized time steps
based on pre-defined curriculum [20]. More implementation details can be found in Appendix

Similar to standard consistency training, the goal of the consistency parameter objective is to
accurately predict ground-truth molecule—but from the parameter space rather than the sample space.
This objective is naturally aligned with the original training goal of BFNs, where the network & is
optimized to perform accurate Bayesian updates by predicting the ground-truth molecule g:

Proposition 4.6. In the original formulation BFNs, the objective is upper bounded by the estimation
error of ground truth molecules:

E D s 7t G,t 5 E d ’(I) O,t 10
B Dripwla oo 0) S B dlg.0(6.0) (10)

where d(-,-) is a measure of differences that depends on the data modality.
This insight enabled us to jointly optimize consistency parameter objective as well as the original

BFN objective to stabilize the training dynamics.

S Experiments

In this section, we justify the advantages of MOLTD with comprehensive experiments. We first
introduce our experimental setup in Section[5.1} Then we report and analyze the evaluation results in
Section[5.2] We also provide further ablation studies in Section [5.3]to investigate the effect of several
model designs. The ablation on sampling steps is shown in the Appendix [

5.1 Experiment Setup

Task and Datasets. Following the setting of prior works [24} 25| 140} 27, 41]], we focus on molecular
modeling and efficient generation, which measure the efficiency of the models to generate chemically



Table 1: Results on QM9 and DRUG datasets, including NFE, atom stability, molecule stability,
validity, and validity x uniqueness xnovelty (V&U%N). A higher number indicates a better generation
quality. Metrics are calculated with 10000 samples generated from each model, we run the evaluation
for 3 times and report the derivation. Compared with previous methods, MOLTD enables around
10x speed up while generate stable and valid molecules.

QM9 DRUG

# Metrics NFE Atom Sta (%) Mol Sta(%) Valid (%) V&U&N (%) | Atom Sta (%) Valid (%)
Data | - 99.0 95.2 97.7 - \ 86.5 99.9
ENF - 85.0 4.9 40.2 - - -
G-Schnet - 95.7 68.1 85.5 - - -
GDM-AUG | 1000 97.6 71.6 90.4 66.8 77.1 91.8
EDM 1000 98.7 82.0 91.9 59.6 813 92.6
EDM-Bridge | 1000 98.8 84.6 92.0 - 82.4 92.8
GeoLDM 1000 98.9 89.4 93.8 53.9 84.4 99.3
EquifFM 200 98.9 88.3 94.7 53.7 84.1 98.9
GeoBFN 100 98.6 87.2 93.0 64.4 78.9 93.1
GOAT 90 99.2 - 92.9 723 84.8 96.2
MoOLTD 12 9940+£0.1 9253+£02 96.04+04 67.03+06 86.88 95.33

*Note that, for DRUG dataset, molecule stability and uniqueness metric are omitted since they are nearly 0% and 100%
respectively for all the methods, expect that MOLTD achieves molecule stability with 6.37 %.

valid and structurally diverse molecules, and their capacity to learn molecular distribution. We
evaluate benchmarks over two widely adopted datasets, including QM9 [12]] and the GEOM-DRUG
[42]. QM09 is a standard dataset that contains 130k 3D molecules with a maximum of 29 atoms,
while GEOM-DRUG is a more challenging dataset containing around 450K molecules, each with an
average of 44 atoms and up to 181 atoms. And the data configurations directly follow previous works
[43] 141} 130% 31].

Evaluation Metrics The evaluation configuration follows the prior works [27, 41l 30]. After
generating 10000 molecular geometries, the bond types are first predicted (single, double, triple, or
none) based on pair-wise atomic distance and atom types [27]]. To qualify the sampling efficiency,
we report the number of function evaluations (NFE) utilized in sampling for each generative model.
With the obtained molecular graph, we evaluate the quality by calculating both atom stability and
molecule stability metrics. The validity (based on RDK:it) is also reported, which is the percentage
of valid molecules among all generated compounds. To comprehensively evaluate the capability of
de novo molecule design [44], we report validity x uniqueness xnovelty (V%U%N), to quantify
the percentage of valid, unique, and novel molecules among the generated samples. On QM9, we
additionally evaluate how well the model learns the molecular distribution. We report the total
variation distance of atom types, and the Wasserstein distance of the bond angles and bond lengths
between generated molecules and test set. We also report the strain energy to qualify the overall
structure of the generated structure.

Baselines We compare MOLTD to several competitive baseline models. G-Schnet [24] and Equiv-
ariant Normalizing Flows (ENF) [40] are previous equivariant generative models for molecules,
built on autoregressive and flow-based models respectively. Equivariant Graph Diffusion Models
(EDM) with its non-equivariant variant (GDM) [27]] are based on diffusion models for molecule
generation. EDM-Bridge [41] further boosts the performance of EDM with well-designed informative
prior bridges. Furthermore, MOLTD is compared with recent advancements for efficient molecular
generation. EquiFM [9] and GOAT [45]] are flow-matching models with equivariant optimal transport
objective. GeoBFN [31] is the first work that leverages Bayesian flow networks for 3D molecular
generation.

5.2 Main Results

The results of efficient molecular generation are presented in Tableﬂ} As shown, MOLTD establishes
a new state-of-the-art in generating high-quality molecules with only 12 sampling steps on both
QM9 and GEOM-DRUG datasets. Notably, MOLTD achieves 7.5 x faster generation than flow
matching models, 8.3 x faster than Bayesian Flow Network models, and nearly 100 x faster
than diffusion-based models, while maintaining superior generation quality. The actual runtime
comparison in Table [ shows that MOLTD’s efficiency gain mirrors the improvements observed in
the NFEs. Moreover, the results highlight MOLTD’s ability to generate diverse and novel molecular



Table 2: Ablation results on QM9 and DRUG datasets. P stands for geometric-informed Prior and C
stands for Consistency parameter objective. Metrics include atom stability, molecule stability, and
validity. A higher number indicates a better generation quality. In all experiments, NFE is set to 12.

QM9 DRUG
# Components | Atom Sta (%) Mol Sta (%) Valid (%) V&U&N (%) | Atom Sta (%) Mol Sta (%) Valid (%)
Data \ 99.0 95.2 97.7 86.5 \ - 99.9
w/o P and C 20.8 2.8 65.4 5.1 3.6 0.0 0.0
w/o P 87.54 48.51 64.10 54.06 69.57 542 94.20
w/o C 98.97 90.01 96.10 66.93 77.48 3.02 93.01
MoLTD \ 99.40 + 0.1 9253 £0.2 96.04 +04 67.03 £0.6 \ 86.88 6.37 95.33

geometries, indicating that it is not over-fitted to a specific subset of the training data. This strong
generalization capability underscores the potential of the MOLTD for broad applications in molecular
design and drug discovery.

Results on molecular distribution learning, presented in Table 3] demonstrate that MOLTD achieves
competitive or superior performance across all evaluated metrics. These results highlight MOLTD’s
capability for accurate distribution learning and fast sampling convergence.

5.3 Ablation Studi
ation Studies Table 3: Additional results on QM9, including NFE,

atom type total variation, Wasserstein distance of bond
length and bond angles, and strain energy. A lower
number indicates a better generation quality.

First, we evaluate the effectiveness of the
two proposed acceleration techniques.
Results in Table E] demonstrate that, while
each technique independently enhances

. ’ : #Metrics | NFE | Atom TV~ Length W1 Angles W1 S-Energy

the quality of few-step generation, nei- —— - | 00 00 0.0 o4
ther achieves state-of-the-art performance

o - . . EDM 1000 | 0.9 12 9.1 25.8
in isolation. This underscores the impor-  GeoLDM | 1000 0.9 1.4 92 26.0
tance of designing tailored methods for  “gouipv | 200 s 06 92 251
each phase of the generative process and  GeoBFN | 100 13 1.4 8.7 253
integrating them to achieve optimal results, _MOLTD | 12 12 10 8.1 249

*Results in the table are obtained by our own experiments.
Furthermore, we demonstrate the general

applicability of proposed techniques in
two scenarios:

First, we adapt both techniques to EDM, a diffusion-based
molecular generative model. Specifically, we inject rep-

! . 3 Quality vs. NFE
resentative structural information at the final step of the

*

forward process to construct an informed prior, and ini-
tialize sampling from this prior. Since diffusion models
lack an explicit parameter space, we apply consistency
distillation on a pre-trained EDM model to stabilize train-
ing, following [10]. As shown in Figure [3] the adapted
techniques significantly accelerate EDM to just 30 NFEs
while maintaining state-of-the-art stability. However, the
acceleration remains limited—MOLTD achieves better
quality with only 12 NFEs, owing to the advantage of the
explicit parameter space in BFNs for modeling molecular
geometry.

Secondly, we demonstrate the cross-data generalization
ability of the Geometric-informed Prior. We constructed
the geometric-prior using training data from GEOM-
DRUG, and plugged it into the generative model trained on
QM9—a dataset with distinct structural patterns (smaller
molecules, different atom types). Using 12 NFEs we gen-
erated 10000 molecules and evaluated on QM9: Atom

X,
MolTD \\
(12,92.5) .

% EDM-imp(oDeci
(30,90.9), "~
.

Molecule stability (%)

EquiFM
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Figure 3: The acceleration effect of pro-
posed method on BFN-based model and
diffusion-based models. Note that the
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stability 99.2% , Molecule stability 90.22%, Validity 94.58%. As the results show, using prior



Table 4: Comparison of structure-based drug design models. For Vina-based metrics, lower value
indicate better performance. For others, larger value indicate better performance. MolTD achieves
superior performance with significantly fewer NFEs.

Model NFE | QED SA Vina Score Vina Min
Mean Median Mean Median

TargetDiff 1000 | 0.48 0.58 -547 -630 -6.64 -6.83
Decomp-R 1000 | 0.51 0.66 -5.19 -527 -6.03 -6.00
MOoICRAFT 100 | 050 0.69 -659 -7.04 727 -7.26

MoICRAFT* | 25 051 0.65 -595 -6.70  -6.73 -6.89
MolTD 25 054 072 -6.60 -6.91 <736 -7.24

*Results in the table are obtained by our own experiments.

constructed from external dataset achieves the same accelerating effect as original MOLTD, demon-
strating that the prior captures fundamental geometric structures shared across datasets.

Thirdly, we applied MOLTD for structure-based drug design, integrating it with MolCRAFT [3], a
state-of-the-art method in this domain. The geometric-informed prior is constructed using Algorithm|T]
from the set of target ligands within the training set. Given that MolCRAFT also utilizes BFNS as its
generative backbone, we were able to seamlessly apply our consistency parameter objective to its
parameter space. We adhered to previously established evaluation settings to report our results, which
is detailed in the Appendix[E] As the results show in Table[d] our method demonstrates comparable
or superior performance with significantly fewer NFEs. This outcome underscores its considerable
practical potential.

6 Conclusion

In this paper, we introduce MOLTD, a novel approach to accelerating 3D molecule generative models
by addressing geometric generation challenges. Through theoretical and empirical analysis, we
identify a two-phase generative pattern—permutation reordering and atomic feature adjustment—and
propose two key techniques for accelerating each phase: a geometric-informed prior for faster re-
ordering and a consistency parameter objective for accelerated adjustment. Extensive experiments
demonstrate that MOLTD significantly improve sampling speed, achieving a speed-up of approxi-
mately 8 x compared to previous advancements, while maintaining state-of-the-art generation quality.
Beyond improving efficiency, MOLTD offers new insights into geometric generative models, with
applications in drug discovery, material design, and beyond.
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A Algorithms

For a better understanding of the whole procedure in construction the geometric-informed prior, we
involve the detailed algorithms in Algorithm|[I}

Algorithm 1 Construction of a Geometric-Informed Prior

Input: A set of M molecules {g,, }}1; of the same size, and accuracy level a,.
Output: The geometric-informed prior 8,,.
Initialize:
Set the reference molecule g,.f = g1, and initialize the aligned molecules list Mol = [gyef].
for i = 2 to M do
Compute the optimal permutation and rotation using the optimal transport (EOT) objective:

77, Ri = argmin||7(Rgi) — Grerl2
R
Append the aligned molecule to the list: Mol.append(7*(R*g;))

end for
Extract Information: Compute the average of the aligned molecules:

g = Mean(Mol)

Project to Parameter Space:

0, = E  6(0a, —h(y,0,ap))

ps(ylg,ap)

B Basic Introduction of Bayesian Flow Networks

In this section, we introduce the key components of Bayesian Flow Networks (BFNs) [36] from the
perspective of Bayesian inference. As in standard Bayesian inference, a prior distribution p;(6y) is
specified for each data modality. For example, for continuous data, we assume a Gaussian prior where
6 represents the mean and variance, whereas for discrete data, we use a categorical distribution
where 6 corresponds to the probability of each category.

The sender distribution serves as the likelihood function in Bayesian inference, generating noisy
observations y that iteratively update the prior parameters. These noisy signals are obtained by
perturbing g according to the following distribution:

N
41, Yalg) = [ [ s (wilg, ), (11)

i=1
where pg, referred to as the sender distribution, is typically modeled as a Gaussian. The parameters «;

control the noise level, ensuring that the sequence (y1, - - - , ¥, ) exhibits an increasing signal-to-noise
ratio.

These noisy signals are then used to iteratively update the posterior distribution by modifying the
parameter 6:

p[(g ‘ y70i7a) :pf(g ‘ 0i+1) :pf(g | h(y70i7a>)7 (]2)

where the deterministic function h, known as the Bayesian update function, governs the update rule:
0; < h(0;—1,yi, ;). (13)
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The explicit form of i depends on the data modality and the choice of pg, as derived in [36]. With
Equation and Equation (T3)), the distribution of the parameter can be formulated as

qu(0; ] 0;-1,9,0;) = E )5(01' — (Y, 0i—1,05)) (14)

ps(Yil0i—1,0
As the sequence (y1,- -+ , Y, ) provides increasing information about g, the posterior distribution is
progressively refined, yielding a more accurate approximation of the target distribution.

However, during generation, the target molecule g is unknown, meaning the true noisy observations
required for Bayesian updates are inaccessible. To address this, BFNs adopt a variational approach
by training a neural network ®(6;,t) to predict the noisy signal. Specifically, ®(0) is trained to
approximate the ground truth sample via the output distribution:

g ~po(g|6;®) = Hpo o(0)\), (15)

where po is referred to as the output distribution, and the output of ®(0) lies in its parameter space.
To generate predicted noisy signals ¢, we marginalize over the predicted g:
Pr(Yil0i-1, i, ¢) = E  ps(yilg’s i), (16)
po(g’160i—1;¢)

where pr, known as the receiver distribution, incorporates both the output distribution and the sender
distribution to approximate the true noisy signal.

BFNs is trained to approximate the distribution of (y1, -,y ), in order to acquire accurate signal
for Bayesian updates. The variational lower bound is optimized:

(g Y1, YUn)Pe (Y1, -, Yn)
logpe(g) > E {log
¢( ) e Q(ylv---7yn|g)
= _DKL(QHP¢(Q17 cee >yn))
+Eyy,..yn~g 10806 (g | Y1, - -, Yn)]

where py(g | Y1, ..., Yn) = po(g|60yn; ®). From this perspective, BFNs can be viewed as a latent
variable model (y1,- - - , yy,) in the parameter space:

a7

p¢(00>"'7 0 |01 1,0&1)
(18)

0 Oiih Aiaei— y O
(el ani (9i,0i-1, i)

-1l
-1l

It could also be view as a latent variable model in the sample space:

Po (Y1, -+, Yn) = Po(Y1) Hp¢(yi | Yiii-1y)
=2

n
= E i 7{7 a;)l,
HPO(Q [16i—1;®) [pS(y ‘g )]

C Details of Investigation of Generative Trajectory

C.1 Implementation Details

In this section, we provide more details on the investigation of the generative trajectory. In the
investigation, we utilize official checkpoints from the open-source repositories of the geometric
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Figure 4: Investigation on trajectory of predicted molecules. Left: Dgyycre along the trajectory.

Right: Dy along the trajectory. MOLTD achieve the earliest stable point among the baselines with
accurate atom type prediction.

generative models, including EDM [27]], EquiFM [9], and GeoBFN [31]. Each model requires
different sampling steps to achieve comparable performance, and thus we use 1000 steps for EDM,
200 sampling for EquiFM with Euler discretization [46], and 100 steps for GeoBFN. We randomly
sample 1000 trajectories for each model and calculate the mean of Dyyycyre and Dyypes at each time
step.

C.2 Investigation on the Generative Trajectory of Predicted Molecules

Furthermore, we analysis the generative trajectory of predicted molecules. GeoBFN directly generate
of sequence of predicted molecules in the sampling process, while EDM and EquiFM could predict
the molecules by denoising the noisy sample. For EDM, the molecules at time step ¢ are predicted by:

. 1 ot ,
Go= —gi — —€g(z,1) (19)
(077 (077

where «; and o, are the noise schedules of EDM, éy(z;, t) is the predicted noise. For EquiFM, the
noisy molecules are generated by g; = (1 — t)go + te, and the estimated velocity vy(g¢, t) is trained
to approximate —go + €. As a result, the predicted molecules at time step ¢ can be calculated by:

go = gi — tvy (20)
We conduct the same analysis as described in the main body of the paper, with the results presented
in Figure 4] As shown, the trajectories of the predicted molecules exhibit a similar pattern to those of
the noisy samples analyzed earlier. These trajectories display a distinct two-phase structure, with
MOLTD achieving the earliest stable point among the baselines while maintaining accurate atom
type predictions.

C.3 Analyzing the Distinct Generative Pattern of Different Generative Models

EDM typically requires around 1000 sampling steps to generate valid molecules, with the majority of
these steps spent in the first phase to achieve structural stability, as shown in Figure[2] This inefficiency
can be attributed to the stochastic nature of diffusion models, which necessitates numerous denoising
steps to stabilize the structure.

EquiFM achieves minimal structural difference at the start of generation by employing the EOT
objective for training. However, our analysis reveals that EquiFM also spends a large proportion
of sampling steps in the first phase. This inefficiency can be attributed to the inaccurate prediction
of atom types, as shown in the middle of Figure 2] which complicates the convergence to stable
structures.

GeoBFN benefits from a smoother, less noisy trajectory compared to EDM, which leads to a faster
convergence rate in the first phase. Additionally, its capability to handle multi-modal features
in molecules enables accurate atom-type predictions. Consequently, GeoBFN reaches an earlier
stable point compared with previous methods. However, GeoBFN experiences a large number of
permutations at the start of the first phase, as its iterative sampling process begins with a fixed,
uninformative prior. Furthermore, with a relatively long time span during the second phase, GeoBFN
fails to apply acceleration techniques to further improve efficiency.
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D Formal Proof of Theorems and Propositions

D.1 Proof of Theorem 4.3

Proof. Without loss of generality, assume that ¢ = 1 and j = 2. Consider a permutation operator

that swaps 1 and 22,
(0 1
=1 0)
such that 7o (x1) = 2% and 7o(27) = x1. From the definition of r, we know that 1 ¢ V(z2;7) and
22 ¢ V(x;r). Thus,
Imo(21) = 2gll2 + llmo(2?) — a3l = llaT = wgllz + |21 — 2gll2 > 2r > [log — zgll2 + (2T — 252
This shows that after the permutation, |7 (z1) — || increases. Therefore,

argmin | 7(x1) — zoll2 = InxN-
s

D.2 Proof of Theorem 4.4
Proof. Without loss of generality, assume i = 1 and j = 2. Given the known condition, x1 ¢
V (xd; 7). First, consider the 2D case, where 23 lies on the plane C; formed by z, 2, and x3.

The condition for no permutation is
lz3 = @gll2 + [l23 — @fll2 < oz — 2]l + [l23 - zpl2,

implies that the sum of the distances to the targets is smaller than the sum of the distances after the
permutation. This is equivalent to

oz — gl — 23 — 252 < [|l25 — 2ll2 — [l23 — 23]l2,
Further, this is equivalent to 2} and 22 lying outside one sheet of the hyperbola with foci at x§ and

x3, passing through x3. Thus, we have shown that the original statement holds for the 2D case.

When 23 is not on the plane C, we can rotate C; around the line through z} and 22 as the axis, so
that 3, 23, x}, and 2% lie on a new plane Cs. In this case, the distances from z3 and z3 to x} and 23
remain unchanged, still satisfying the above equation. The hyperbola rotates along its imaginary axis,
producing a two-sheeted hyperboloid. Therefore, the original statement holds in 3D as well. O

D.3  Proof of Proposition

Proof. Based on the introduction of BFNs in Appendix [B] we could formulate the density function
of generated molecules as:

po(x|0p) = /p¢(m | 0p70;§+17 T ?0$+n)p¢(0;+17 T 79;-‘,-” ‘ ga)d0;+1:p+n

= /p¢(.’13 | 605 0) HpU (Op+i | Opri1504)dO 4, ,. (Markov property) (21)

i=1

Note that pg(x | 0%,,) = py(Rx | ROZ,,) = po (R(z) | R(6%,,,); ) due to the property
of EGNN. Furthermore, based on the same argument used in Theorem 3.1 in [31], we could

prove that py (Op+; | Op+i—1; i) satisfies the equivariant condition that pyy (@pyi | Opyi—1; ;) =
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pu (ROp+; | ROpyi_1; apyi). Thus, we could prove py(x|6),) is rotational-equivariant:

Po(x|0p) = /p¢(w ‘ 9p79§§+17 T ’0$+n)p¢(0$+1’ T 70;4»71 | aa)d6§+1:p+n

n

= /p¢(:fc 167.,) [T v (Opsi | Oprioas i) dOZ, 1., (22)
=1
= /p¢(Rw | R0$+n) HpU (R0p+i | R0P+i*1; a’i) d01$7+1:p+n (23)
=1
_ / po(Ra | ROZ, ) [[ v ROyri | RO 415 ,) [det(R)["AOZ, 0 (24)
- =1
= ps(Rz|RE,) (25)

Here we used the change of variable formula and the fact that |det(R)| = 1, as R is an rotation

matrix.

For completeness, we include the derivation of py (0; | 0;-1; ;) = pu (RO; | RO;_1; a;) from

[31]: Recall that pyy (0; | 0;—1; ;) = ( %E )(5 (0; — h(0;-1,¥i, @;)), then we have:
pPolYilbi—1;04

pu (RO; | RO;_1; ;) = E d(RO; — h(RO;_1,yi, )
po(yi|lRO;_1;0)

- / po (v | RO,_1:0) 5 (RO, — h (RO:_1, y1, ) dy, 26)

Then we apply integration-by-substitution and replace the variable y; with a new variable v}, i.e.
yi; = Ry, into the Eq.

/po (vi | RO;—1;04)§ (RO; — h (RO 1.y, o)) dy;
— [ b0 (Ry{ | RO:-1:0,) 3 (R6, — h (RO:_1, Ry, o)) dR]

The rotation matrix R is a SO(3) matrix, thus the |det(R)| = 1. And for the continuous coordinate
variable, the update function h for continuous data [36]] is also equivariant:

RO,_ i R (Vs
h(ROi_l,Ryi,ai) = i1 p1+ Yidi =Rh (Bi_l,yi,ai) (28)

Putting these conditions back to the Eq.[27] we have that

pu (RO; | RO;—1; ;) = /po (vi | RO;i—1;05) 6 (RO; — h (RO;—1,yi,05)) dy;
= /po (Ry; | RO;_1; ;) 0 (RO; — R (0;-1,y;, a;)) |det(R)|dy;

= /po (yi | Oi—1504) 0 (0; — h(0;-1,y;, o)) dy;
=pu (0; | 0i—1; ;) (29)

D.4 Proof of Proposition

Proof. We only need to show the conditioned inequality:

Dkr(ps(ylg, t)llpr(yl0,1)) < d(g, ®(6,1)) (30)
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Table 5: Ablation results of different sampling steps on QM9 and DRUG datasets. Metrics include
NFE, atom stability, molecule stability, validity, and significance. A higher number indicates a better
generation quality.

QM9 DRUG
#Metrics | NFE | Atom Sta (%) Mol Sta (%) Valid (%) V&U&N (%) | Atom Sta (%) Mol Sta (%) Valid (%)
Data | - |  99.0 95.2 97.7 | 865 - 99.9
100 98.6 87.2 93.0 64.1 78.9 - 93.1
GeoBFN | 500 98.8 88.4 93.4 62.1 81.4 - 93.5
1000 99.1 90.9 95.3 61.7 85.6 - 92.08
9 98.88 86.90 93.24 66.82 80.16 2.50 92.28
10 99.18 89.71 94.68 67.57 83.17 3.55 93.81
MoLTD | 11 99.29 91.20 95.02 67.33 85.40 4.98 94.77
12 99.40 92.56 96.04 67.03 86.88 637 95.33
13 99.52 93.49 96.49 64.77 87.95 8.13 96.06

For continuous modality, ps(y|g,t) = N (y|x, o I) and pr(y|@,t) = N (y|®(0,t),a:I). Since
the KL divergence between two Gaussains with the same variance is the square norm of their means,
we have:

Drr(ps(ylg,t)llpr(y10,t) < llg — ©(0, 1) G

For discrete data (atom types) or discretised data (number of charges), ps and pr are mixture of
Gaussain distributions, based on the formulation of BFNs [36, [31]. Here we focus on the discrete
data and the proof can be easily generalized to discretised data. For discrete data,

ps = N(ylow(Keg — 1), . KT), (32)

where eg4 is the one-hot encode of g and K is the total number of classes. And

pR—Z¢ 0.\ (ylay(Ke' — 1),0,KT), (33)

where the ®° is the i'" component of ®, which determines the weights for each gaussian, and el is
the one-hot encode of class ;. We use p* as a simplification of N'(y|a:(Ke* — 1), a: KI). Now we
have:

DKL(ps(y\gut)llpR(y|07t)) = /ps(x) log z%dx (34
K . .

— [ psta)loglps(a)do — [ ps(o)log(} @'p!())da (35)
i=1

< / s(z)log(ps(x))dx — Z@l /ps Ylog(p'(x))dr (Jensen's Inequality)  (36)

K
ps(x)
; / z)log 2 i) dx (37)

=W Cyx Y 0'|leg — €| (38)
i#g

where in (1) we again used the fact that the KL divergence between two Gaussains with the same
variance is the square norm of their means, C; is a constant depend on ¢. As a result, the KL
divergence is bounded by the probability of generating the wrong class ), £g P°. O

E Implementation Details

We implement the Bayesian Flow Network using EGNNs [47] within the PyTorch framework [48]].
The latent invariant feature dimension £ is set to 1 for QM9 and 2 for DRUG, significantly reducing
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the atomic feature dimensionality. Following the implementations of GeoBFN [31], we only take
atom charges as atomic features. For training the parameter network ®, we configure EGNNs with
9 layers and 256 hidden features for QM9, and 6 layers with 256 hidden features for DRUG, both
trained with a batch size of 64. The model employs SiLLU activations and is trained until convergence.
Across all experiments, we adopt the Adam optimizer [49] with a fixed learning rate of 10~ as the
default training configuration. The training process requires approximately 2000 epochs for QM9
and 20 epochs for DRUG using RTX 3090.

We provide more details on the implementation of proposed techniques. Regarding the geometric-
informed prior, we randomly sample 10 molecules for each molecular size to construct the prior. We
use the accuracy level at 0.85 in all evaluation, which achieves the highest uniqueness of 97% and
molecule stability of 90.0%. Regarding the consistency parameter objective, we use exponentially
increasing curriculum. In QM9, the discretization number of the time span N starts with 100 and
is doubled every 80 training epochs. In GEOM-DRUG, N starts with 100 and is doubled every
40000 training iterations. We enforce consistency of the predicted mean for atoms coordinates
and charges, and the predicted probability for atom types. As the proposed consistency parameter
objective could significantly accelerate the adjustment of atomic features, we perform early stop at
the second phase of sampling. Empirically, we found that the early-stop point for both QM9 and
GEOM-DRUG datasets could be chosen within [0.6, 0.8] to achieve balance between sample quality
and efficiency. To further improve the sample quality of few-step generation, we employed the noise
reduced sampling method propose in [3].
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Figure 5: Ablation study on the accuracy level of geometric-inform prior.

For structure-based drug design, we follow previously established evaluation protocol.

* We use the CrossDocked dataset for training and testing, which originally contains 22.5
million protein-ligand pairs, and after the RMSD-based filtering and 30% sequence identity
split by Luo et al [50], results in 100,000 training pairs and 100 test proteins. For each test
protein, we sample 100 molecules for evaluation.

* For baselines, we consider TargetDiff [2]], DecompDiff[51] and Molcraft[3]], which are
state-of-the-art methods in the fields.

 Evaluation metrics include Vina Score, a direct score of generated pose, Vina Min, which
scores the optimized pose after a local minimization of energy, Drug-likeliness (QED) and
synthetic accessibility (SA) ligand conformation. Sampling efficiency is evaluated by NFEs.

F Ablation Study

In this section, we present additional experimental results on QM9 and GEOM-DRUG to evaluate
the impact of the number of sampling steps. As shown in Table[5] increasing the number of sampling
steps enhances molecular stability and validity. Notably, with only 13 NFEs, MOLTD achieves

20



a record-breaking atom stability of 87.95% and a molecule stability of 8.13% on GEOM-DRUG.
Furthermore, we did not observe a significant decline in the diversity or novelty of the generated
molecules as the number of sampling steps increased.

Furthermore, we investigate the impact of varying accuracy levels in the geometric-informed prior,
which determine the starting point of the generation. We focus on molecule stability and the
uniqueness of generated molecules in the QM9 dataset, as presented in Figure[5} Since the prior is
derived from ground truth molecules within the dataset, higher accuracy improves molecular stability.
However, the uniqueness metric follows a concave trend with respect to accuracy level. At lower
accuracy levels, the prior introduces representative structural information and a degree of randomness
into the initial stages of generation, improving both stability and diversity compared to the fixed
prior commonly used in GeoBFN [31]. Conversely, at higher accuracy levels, the prior may lead
MOLTD to collapse onto a subset of molecules from which it was constructed. As shown in Figure[5]
an accuracy level within 8 ~ 18 strikes an optimal balance, achieving uniqueness above 90% and
stability around 90%.

In Table[6] we evaluate the efficiency gain in terms of actual runtime. We calculate the actual runtime
required to generate 1000 samples on the QM9 dataset, using a single RTX 3090 GPU with a batch
size of 64:

Table 6: Comparison of models based on NFEs and Time.

Model NFEs Time (seconds)

MoLTD 12 4.86
GeoBFN 100 34.52
EquiFM 200 180
EDM 1000 760

As the results demonstrate, MOLTD achieves a sampling speed over 100x faster than diffusion-based
models. Furthermore, the practical speed-up is even greater than what is reflected by the reduction in
NFEs alone, as MolTD benefit from a more efficient implementation.

G Visualization

We provide a T-SNE visualizations of the representations produced by Frad [52] on QM9 in Figure|[6}
From the figure, it is evident that molecules with different sizes often have distinct modes in structures,
which is reflected in their geometric representations learned by modern geometric encoders.

H Further discussion on the geometric-informed prior

In this section, we provide more discussion and analysis on the effect of geometric-informed prior.

We analysis the effect of distribution of molecule size. The geometric-informed priors are tailored to
the number of atoms (N) in a molecule, and the number of molecules available for each size varies
within different molecule datasets. And thus, with enlarged sample size, two factors contribute to
improved generation quality:

* A Better Prior: A structural prior derived from more extensive data better captures the full
spectrum of geometric features.

* A Better Generative Model: More training data yields a more robust generative model.

However, we highlight that our method could boost the generation efficiency, even with only 10
samples to construct the prior. We randomly sample 10 molecules for each N to create prior
and generated 10000 molecules on QM9. As shown in Table [/ 10-sample prior provide similar
acceleration effect as prior constructed form all training data. This result demonstrates the substantial
practical value of the geometric-informed prior, even in data-scarce settings.
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t-SNE Visualization
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Figure 6: T-SNE visualizations of the representations produced by Frad. It is evident that molecules
with different sizes often have distinct modes in structures, which is reflected in their geometric
representations learned by modern geometric encoders.

Table 7: MOLTD using only 10 samples in the training set to construct geometric-informed prior

Method NFE Atom Stability Mol Stability Validity
GeoBFN 100 98.6 87.2 93.0
EquiFM 200 98.9 88.3 94.7
MolTD 12 99.4 92.53 96.04
MolTD (Prior using 10 samples) 12 99.1 90.1 95.3

I Limitation and Impact Statement

Although we demonstrate the effectiveness of our algorithm across datasets at different scale with
comprehensive ablation studies, our focus is limited to the class of generative models based on
iterative denoising processes. We do not consider auto-regressive or VAE-based models in this work.
However, incorporating components from these architectures could potentially enhance the flexibility
and performance of our approach, and we leave this as a promising direction for future research.

In this work, we propose MOLTD, a pioneering framework that achieves effective molecule generation
in approximately 10 sampling steps, 7.5 faster than previous state-of-the-art methods. By reducing
the sampling steps by an order of magnitude, our method paves a new way for scalable molecule
generation, which may significantly enhance practical feasibility for real-world molecular design and
drug discovery applications.

Furthermore, our systematic analysis of generative trajectories reveals fundamental limitations in
conventional geometric diffusion paradigms, which drive our formulation of a phase-decoupled
generation framework. We believe the insights gained from our exploration will inspire more
researchers and bring more powerful methods to this field.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the experiments with QM9 and GEOM-DRUG datasets, we demonstrate
our algorithm has superior efficiency and quality compared to other baselines.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of our work is discussed in Appendix|l]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions of each theorem are sufficient, and the proofs are presented
in Appendix
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: In Appendix [E} we provide implementation details for all of our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All data utilized in this study are open-access. The code will be publicly
released upon paper acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In Section[5.T]and Appendix [E] we present the details of the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat the experiment on QM9 with multiple runs and reported the mean
and variance of the considered metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Discussion in Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow Code of Ethics during the research.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussion in Appendix|l]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The work does not present issues of high-risk misuse
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data sources and baseline models are open-sourced. They have been
properly credited and mentioned.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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