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Abstract

Molecule generation is central to a variety of applications. Current attention has
been paid to approaching the generation task as subgraph prediction and assembling.
Nevertheless, these methods usually rely on hand-crafted or external subgraph
construction, and the subgraph assembling depends solely on local arrangement.
In this paper, we define a novel notion, principal subgraph that is closely related to
the informative pattern within molecules. Interestingly, our proposed merge-and-
update subgraph extraction method can automatically discover frequent principal
subgraphs from the dataset, while previous methods are incapable of. Moreover,
we develop a two-step subgraph assembling strategy, which first predicts a set of
subgraphs in a sequence-wise manner and then assembles all generated subgraphs
globally as the final output molecule. Built upon graph variational auto-encoder,
our model is demonstrated to be effective in terms of several evaluation metrics
and efficiency, compared with state-of-the-art methods on distribution learning and
(constrained) property optimization tasks.

1 Introduction

Generating chemically valid molecules with desired properties is central to a variety of applications in
drug discovery and material science. In contrast to searching countless potential candidates by expert
chemists or pharmacologists, designing generative models that can produce molecules automatically
is more efficient and now a prevailing topic in machine learning. Recently, there have been various
works[18, 26, 47, 24, 9, 39, 20] utilizing graphs to characterize the distribution of molecules.
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Figure 1: Five frequent subgraphs in ZINC250K [16, 23] marked with their frequencies of occurrence.
In general, these graph-based generation methods can be clustered into two categories: the atom
level [25, 47, 26, 20] and the subgraph level [18, 19, 46], in terms of what the basic generation
unit is. Compared with the atom-level methods, exploring subgraphs for generating molecules (as
illustrated in Figure 1) exhibits three potential benefits. First, it can capture the regularities of atomic
combinations and discover repetitive patterns in molecules, thus more capable of generating realistic
molecules. Second, it is able to reflect chemical properties, since it has been revealed that the chemical
properties are closely related to certain substructures (i.e., subgraphs) [31, 20]. Finally, leveraging
subgraphs as the building blocks enables efficient training and inference, as the searching time is
remarkably reduced by representing a molecule as a set of subgraphs other than atoms.

∗Wenbing Huang and Yang Liu are corresponding authors.
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However, current subgraph-level methods [18, 19, 46] are still suboptimal in two senses. For one
thing, the vocabulary of the molecular fragments is constructed by simple hand-crafted rules [18, 19]
or borrowed straightly from external chemical fragment libraries [46], which is unable (at least
uncertain) to reveal the frequent patterns existing in the dataset. For another, the prediction and
the assembling of the subgraphs are conducted either autoregressively [19, 46] or according to a
pre-defined tree structure [18], both of which are inflexible and defective, since each newly predicted
subgraph is only allowed to attach a local set of previous subgraphs during the assembling process.

To address the above two pitfalls, this paper proposes a novel framework: Principal Subgraph
Variational Auto-Encoder (PS-VAE). PS-VAE first creates a vocabulary of molecular fragments from
any given dataset, which starts from all distinct atoms and then merges the neighboring fragments as
a new one to update the vocabulary. Interestingly, the fragments derived by such a merge-and-update
strategy are actually principal subgraphs which, as a novel concept defined by this paper, represent
the frequent and largest repetitive patterns of molecules. We also theoretically prove that any principal
subgraph can be universally covered by our vocabulary. Moreover, we develop a two-step subgraph
assembling strategy, which first sequentially predicts a set of fragments and then assembles all
generated subgraphs globally. This two-step fashion makes our method less permutation-dependent
and focus more on global connectivity against traditional methods [18, 19, 46].

We conduct extensive experiments on the ZINC250K [16] and QM9 [6, 37] datasets. Results demon-
strate that our PS-VAE outperforms state-of-the-art models on distribution learning, (constrained)
property optimization as well as GuacaMol goal-directed benchmarks [7]. Besides, PS-VAE is
efficient and about six times faster than the fastest autoregressive baseline.

2 Related Work

Molecule Generation. Regarding the representation of molecules, existing generation models can
be divided into two categories: text-based and graph-based methods. Text-based models [13, 23, 5]
usually adopt the Simplified Molecular-Input Line-entry System ([40], SMILES) to describe each
molecule, which is simple and efficient. However, they are not robust because slight perturbations
in SMILES could result in significant changes in molecule structure [47, 24]. The graph-based
counterparts [9, 39, 20], therefore, have gained increasing attention recently. Li et al. [25] proposed
a generation model for graphs and demonstrated it performed better than the text-based strategy.
You et al. [47] used reinforcement learning to generate molecules sequentially under the guidance
of mixed rewards in terms of the chemical validity and other property scores. Popova et al. [34]
proposed MRNN to autoregressively generate nodes and edges. Shi et al. [39] designed a flow-based
autoregressive model and exploited reinforcement learning for goal-directed generation. However,
these models use atoms as the basic generation unit, leading to long sequences and therefore time-
consuming training process. On the contrary, our method applies subgraph-level representation,
which not only captures chemical properties but also is computationally efficient.

Subgraph-Level Molecule Generation Several works have been developed for subgraph-level
generation. In particular, Jin et al. [18] suggested generating molecules in the form of junction trees
where each node is a ring or edge. Jin et al. [19] decomposed molecules into subgraphs by breaking
all the bridge bonds. It used a complex hierarchical model for polymer generation and graph-to-graph
translation. Yang et al. [46] integrated reinforcement learning with the subgraph vocabulary created
from existing chemical fragment libraries. Different from Jin et al. [18, 19], Yang et al. [46] which
use manual rules to extract subgraphs or utilize existing libraries, we automatically extract frequent
principal subgraphs to better capture the regularities in molecules for subgraph-level decomposition.
Our work also relates to traditional subgraph mining literature [15, 45, 33]. While seeking generic
frequent subgraphs is known to be NP-hard [22, 17], our work focuses on finding frequent principal
subgraphs by merging two adjacent fragments, which alleviates time complexity to a large extent. To
the best of our knowledge, we are the first to utilize frequent subgraphs in generation tasks.

3 Our Proposed PS-VAE

This section presents the details of the proposed PS-VAE, consisting of the principal subgraph
definition and extraction in Section 3.1 and the two-step generation in Section 3.2.
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3.1 Principal Subgraph

A molecule can be represented as a graph G = ⟨V, E⟩, where V is a set of nodes corresponding
to atoms and E is a set of edges corresponding to chemical bonds. We define a subgraph of G as
S = ⟨Ṽ, Ẽ⟩ ⊆ G, were Ṽ ⊆ V and Ẽ ⊆ E . We say subgraph S spatially intersects with subgraph
S ′ if there are certain atoms in a molecule belong to both S and S ′, denoted as S ∩ S ′ ̸= ∅. Note
that if two subgraphs look the same (with the same topology), but they are constructed by different
atom instances, they are not spatial intersected. Similarly, if two subgraphs S and S ′ appear in the
same molecule, we call their spatially union subgraph as U = S

⋃
S ′, where the nodes of U are the

union set of Ṽ and Ṽ ′, and its edges are the union of Ẽ and Ẽ ′ plus all edges connecting S and S ′.
A decomposition of a molecule G is derived as a set of non-overlapped subgraphs {Si}ni and the
edges connecting them {Eij}n,ni,j , if G = (

⋃n
i Si)

⋃
(
⋃n,n

i,j Eij) and Si ∩ Sj = ∅ for any i ̸= j. The
frequency of a subgraph occurring in all molecules of a given dataset measures its repeability and
epidemicity, which should be an important property. Formally, we define the frequency of a subgraph
S as c(S) =

∑
i c(S|Gi) where c(S|Gi) computes the occurrence of S in a molecule Gi. Without

loss of generality, we assume all molecules and subgraphs we discuss are connected.

With the aforementioned notations, we propose a novel and central concept below.
Definition 3.1 (Principal Subgraph). We call subgraph S a principal subgraph, if any other subgraph
S ′ that spatially intersects with S in a certain molecule satisfies either S ′ ⊆ S or c(S ′) ≤ c(S).
Amongst all subgraphs of the larger frequency, a principal subgraph basically represents the “largest”
repetitive pattern in size within the data. It is desirable to leverage patterns of this kind as the
building blocks for molecule generation since those subgraphs with a larger size than them are less
frequent/reusable. We will prove that our designed vocabulary is capable of mining these subgraphs.

Now we introduce the proposed vocabulary construction process. We call each subgraph of the
constructed vocabulary as a fragment. We generate all fragments via the following stages:

Initialization. The vocabulary V is initialized with all unique atoms (subgraph with one node).

Merge. For every two neighboring fragments F and F ′ in the current vocabulary, we merge them by
deriving the union F

⋃
F ′. Here, the neighboring fragments of a given fragment F in a molecule is

defined as the ones that contain at least one first-order neighbor nodes of a certain node in F .

Update. We count the frequency of each identical merged subgraph in the last stage. We choose the
most frequent one as a new fragment in the vocabulary V. Then, we go back to the merge stage until
the vocabulary size reaches the predefined number N.
Algorithm 1 Principal Subgraph Extraction

1: Input: A set of graphsD and the desired number N of principal
subgraphs to learn.

2: Output: A set of principal subgraphs V and the counter C of
principal subgraphs.

3: V ← {GraphToSMILES(⟨{a}, ∅⟩)}; {Initially, V corre-
sponds to all atoms a that appear inD.}

4: N ′ ← max(N, |V|);
5: while |V| < N ′ do
6: C ← EmptyMap(); {Initialize a counter.}
7: for G inD do
8: for ⟨Fi,Fj , Eij⟩ in G do
9: F ← Merge(⟨Fi,Fj , Eij⟩); {Merge neighboring

fragments into a new fragment.}
10: s← GraphToSMILES(F); {Convert the graph

to SMILES representation.}

11: C[s] = C[s] + 1; {Update the counter. The initial
value is 0.}

12: end for
13: end for
14: s = TopElem(C); {Find the most frequent merged frag-

ment.}
15: F ← SMILESToGraph(s); {Convert the SMILES string

to graph representation.}
16: V← V ∪ {s};D′ ← {};
17: for G inD do
18: G′ ← MergeSubGraph(G,F); {Update the graph

representation if possible.}
19: D′ ← D′ ∪ {G′};
20: end for
21: D ← D′;
22: end while

(a) Initialization (b) Iteration 1 (c) Iteration 2

Figure 2: Fragment extraction on {C=CC=C,CC=CC,C=CCC}. (a) Initialize vocabulary with atoms. (b)
Fragment CC is the most frequent and added to the vocabulary. All CC are merged and highlighted in
red. (c) Fragment C=CC is the most frequent and added to the vocabulary. All C=CC are merged and
highlighted in green (molecules 1 and 3). After 2 iterations the vocabulary is {C, CC, C=CC}.
Figure 2 illustrates the above processes and Algorithm 1 gives the flowchart. Notice that Algorithm 1
has exploited the conversion from molecular subgraph to SMILES [40] to not only ensure the
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Figure 3: Overview of the principal subgraph variational auto-encoder. (a) Subgraph-level de-
composition. Atoms and bonds of different principal subgraphs are highlighted in different colors.
(b) Molecular graph. We inject subgraph-level information into the molecular graph through atom
features. (c) Latent space encoding. We obtain the latent variable z through the graph encoder.
(d) Subgraph-level sequence generation. A sequence of principal subgraphs is autoregressively
decoded from the latent variable by a GRU. (e) Incomplete molecular graph. The generated principal
subgraphs form an incomplete molecular graph where inter-subgraph bonds are absent. (f) Bond
completion. Completion of inter-subgraph bonds is formalized as a link prediction task for a GNN.
After training, we can directly sample from the latent space to generate molecules.

uniqueness but also better calculate the occurrence of each merged subgraph by string comparison.
One notable merit is that we always track the decomposition of each molecule at each iteration, which
is crucial for the training of the two-step decoder introduced in the next subsection.

More importantly, we have the following theorem to demonstrate the benefit of Algorithm 1.
Theorem 3.2. The vocabulary V constructed by Algorithm 1 exhibits the following advantages.

(i) Monotonicity: The frequency of the non-single-atom fragments in V decreases monotoni-
cally, namely, ∀Fi,Fj ∈ V, c(Fi) ≤ c(Fj), if i ≥ j.

(ii) Significance: Each fragment F in V is a principal subgraph.

(iii) Completeness: For any principal subgraph S arising in the dataset, there always exists a
fragment F in V satisfying S ⊆ F , c(S) = c(F), when V has collected all fragments with
frequency no less than c(S).

The conclusion by Theorem 3.2 is interesting and valuable. It states that our algorithm is able
to discover frequent principal subgraphs, and any principal subgraph can be represented (at least
contained) by our certain extracted fragment if the size of the vocabulary is sufficiently large. This
is also a meaningful extension to traditional subgraph mining literature [17], in which seeking the
most frequent subgraphs is known to be NP-hard. Algorithm 1 can somehow address this problem
efficiently by focusing mainly on finding the most frequent principal subgraphs.

3.2 Two-step Molecule Generation

The molecule generation is modeled as a two-step task: first predicting which fragment should be
chosen from the vocabulary created in the last subsection, and then proceeding with how to assemble
the predicted fragments. Although in the first step we predict the fragments in a sequence-wise
manner, we globally investigate if every two predicted fragments should be linked in the second
step. This two-step fashion makes our method not only less permutation-dependent and thus more
sample-efficient than the generic autoregressive counterparts [25], but also more flexible than the
methods [18] that require predefined junction tree or adjacent connections between subgraphs. We
will provide experimental evaluations in Table 4 to justify the benefit of our proposed two-step
generation strategy. Below, we provide the details of the two steps.

What to assemble. This step is of the VAE style [21]. As shown in Figure 3, we use a GNN to
encode a molecular graph G into a latent variable z. Each node v has a feature vector xv which is the
concatenation of three learnable embeddings: its atomic type, fragment type and the generation order
of the fragment. Each edge has a feature vector indicating its bond type. Specifically, we utilize GIN
with edge feature [14] as the backbone GNN network, which computes the k-th layer as follows:
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a(k)
v =

∑
u∈N (v)

ReLU(h(k−1)
u + euv), (1)

h(k)
v = hΘ((1 + ε)h(k−1)

v + a(k)
v ), (2)

where, h(k)
v is the hidden activation of node v (h(0)

v = xv), euv is the edge feature between node u
and v,N (v) returns the neighbors of u, hΘ is a neural network, and ε is a constant. We implement hΘ

as a 2-layer Multi-Layer Perceptron ([10], MLP) with ReLU activation and set ε = 0. We obtain the
final representations of nodes as hv = [h

(1)
v , . . . ,h

(t)
v ] so that it contains the contextual information

from 1-hop to t-hop. The graph-level representation is given by summation hG =
∑

v∈V hv . We use
hG to obtain the mean µG and log variance σG of variational posterior approximation q(z|G) through
two separate linear layers and use the reparameterization trick [21] to sample from the distribution in
the training process.

Given a latent variable z, our model first uses an autoregressive sequence generation model
P (Fi|F<i, z) to decode an sequence of graph fragments [F1, . . . ,Fn]. Note that the set of subgraphs
into which a molecule is decomposed should not be ordered. Here, although we violate this law
by using the ordered decoder, this issue is practically relieved by data augmentation of random
fragment permutations during training, and it is further mitigated by the second step (presented
later) where the assembling of the predicted subgraphs is not order-sensitive. During training, we
insert two special tokens “<start>” and “<end>” indicating the beginning and the end of sequence
generation, respectively. We implement the sequence model via a single layer of GRU [8] and project
the latent variable z to the initial state of GRU. The training objective of this stage is to minimize the
log-likelihood LP of the ground truth fragment sequence:

LF =

n∑
i=1

− logP (Fi|F<i, z). (3)

During testing, the generation stops when a “<end>” is outputted.

How to assemble. This step estimates all inter-fragment edges {Eij} non-autoregressively and
globally. Specifically, we use a GNN with the same architecture in the last step but with different
parameters to obtain the representations hv of each atom v in all fragments. Given nodes v and u in
two different fragments, we predict their connections as follows:

P (euv|z) = Hθ([hv;hu; z]), (4)

where Hθ is a 3-layer MLP with ReLU activation. Apart from the types of chemical bonds, we also
add a special type “<none>” to the edge vocabulary which indicates there is no connection between
two nodes. During training, we predict both P (euv) and P (evu) to let Hθ learn the undirected nature
of chemical bonds. We use negative sampling [12] to balance the ratio of “<none>” and chemical
bonds. Since only about 2% pairs of nodes has inter-fragment connections, negative sampling
significantly improves the computational efficiency and scalability. The training objective of this
stage is to minimize the log-likelihood:

LE =
∑

u∈Fi,v∈Fj ,i̸=j

− logP (euv|z). (5)

Joining the reconstruction losses of both steps (Eq. 3 and Eq. 5), we arrive at: Lrec = LF + LE .
When considering target property, we jointly train a 2-layer MLP from z to predict the scores of
target properties using the MSE loss. By denoting this extra loss as Lprop, the final objective of our
PS-VAE becomes:

L = αLrec + (1− α)Lprop + βDKL, (6)

where the the KL divergence DKL aligns the distribution of z with the prior distribution N (0, I); α
and β balance the trade-off between different losses.

To decode {Eij} in the inference phase, the decoder first assigns all possible inter-fragment con-
nections with a bond type and a corresponding confidence level. We try to add bonds that have a
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confidence level higher than δth = 0.5 to the molecule in order of confidence level from high to low.
For each attempt, we perform a valency and a cycle check to reject the connections that will cause
violation of valency or form unstable rings which are too small or too large. Since this procedure
may form unconnected graphs, we find the maximal connected component as the final result. The
pseudo code for inference is deferred to Appendix D.2

4 Experiments

Evaluation Tasks We first report the empirical results for the distribution-learning tasks in Gua-
caMol benchmarks [7] to evaluate if the model can generate realistic and diverse molecules. Then we
validate our model on two common problems and the goal-directed tasks of the GuacaMol bench-
marks. Property Optimization requires generating molecules with optimized properties. Constrained
Property Optimization concentrates on improving the properties of given molecules with a restricted
degree of modification. GuacaMol Goal-Directed Benchmarks consist of 20 molecular design tasks
carefully curated by domain-experts [48, 43, 11].

Baselines We compare our principal subgraph variational auto-encoder (PS-VAE) with the follow-
ing state-of-the-art models. JT-VAE [18] is a variational auto-encoder that represents molecules as
junction trees. It performs Bayesian optimization on the latent variable for property optimization.
GCPN [47] combines reinforcement learning and graph representation for goal-directed molecular
graph generation. MRNN [34] adopts two RNNs to autoregressively generate atoms and bonds
respectively. It combines policy gradient optimization to generate molecules with desired properties.
GraphAF [39] is a flow-based autoregressive model which is first pretrained for likelihood modeling
and then fine-tuned with reinforcement learning for property optimization. GraphDF [28] is another
flow-based autoregressive model but leverages discrete latent variables to better capture the discrete
distribution of graphs. GA [32] adopts genetic algorithms for property optimization and models the
selection of the subsequent population with a neural network. HierVAE [19] extracts fragments by
breaking bridge bonds in molecules and uses them as building blocks. FREED [46] is an RL-based
model and uses fragments from existing chemical libraries to construct the subgraph vocabulary.
MARS [44] adopts Markov chain Monte Carlo sampling for generation and is the state-of-the-art
approach on the GuacaMol goal-directed benchmarks. Since our generation model is universally
compatible with molecular decomposition of non-overlapping fragments, we also integrate vocab-
ularies from HierVAE and FREED into our two-step generation model, which are abbreviated as
H-VAE∗ and F-VAE∗, respectively.

We use the ZINC250K [16] dataset for training, which contains 250,000 drug-like molecules up to
38 atoms. For GuacaMol benchmark, we add extra results on the QM9 [6, 37] dataset, which has
133,014 molecules up to 23 atoms. We choose N = 300 for property optimization and N = 500
for constrained property optimization. PS-VAE is trained for 6 epochs with a batch size of 32 and
a learning rate of 0.001. We set α = 0.1 and initialize β = 0. We adopt a warm-up method that
increases β by 0.002 every 1000 steps to a maximum of 0.01. More details are in Appendix G.

4.1 Results

GuacaMol Distribution-Learning Benchmarks These benchmarks evaluate four metrics on
10,000 molecules generated by the models. Since all methods introduce validity check into generation,
they can always generate chemically valid molecules. Uniqueness measures the ratio of unique ones
in generated molecules. Novelty assesses the ability of the models to generate molecules not contained
in the training set. KL Divergence evaluates the closeness between the training set molecules and
the generated molecules in terms of the distributions of various physicochemical properties. Fréchet
ChemNet Distance (FCD) calculates the closeness of the two sets of molecules with respect to their
hidden representations in the ChemNet [35]. Each metric is normalized to 0 to 1, and a higher value
indicates better performance. Table 1 shows the results of distribution-learning benchmarks on QM9
and ZINC250K. Our model achieves competitive results in all four metrics, which indicates our
model can generate realistic molecules and prevent overfitting the training set. In addition, with
the same vocabulary, H-VAE∗ surpasses HierVAE consistently, confirming the advantage of our
two-step generation model over the one used in HierVAE. Moreover, even sharing the same two-step

2Codes for our PS-VAE are availabel at https://github.com/THUNLP-MT/PS-VAE.
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decoder, PS-VAE is still better than H-VAE∗ and F-VAE∗ consistently, which is probably because our
constructed vocabulary discovers more meaningful and reusable patterns than H-VAE∗ and F-VAE∗.
We have displayed some molecules sampled from the prior distribution in Appendix L.

Table 1: Results of GuacaMol distribution-learning benchmarks on QM9 and ZINC250K. Uniq, KL
Div and FCD refer to Uniqueness, KL Divergence and Fréchet ChemNet Distance, respectively.

Model QM9 ZINC250K
Uniq(↑) Novelty(↑) KL Div(↑) FCD(↑) Uniq(↑) Novelty(↑) KL Div(↑) FCD(↑)

JT-VAE 0.549 0.386 0.891 0.588 0.988 0.988 0.882 0.263
GCPN 0.533 0.320 0.552 0.174 0.982 0.982 0.456 0.003

GraphAF 0.500 0.453 0.761 0.326 0.288 0.287 0.508 0.023
GraphDF 0.672 0.672 0.601 0.137 0.998 0.998 0.459 0.001

GA 0.008 0.008 0.429 0.004 0.008 0.008 0.705 0.001
MARS 0.659 0.612 0.547 0.123 0.737 0.737 0.798 0.271

HierVAE 0.416 0.285 0.802 0.426 0.131 0.131 0.602 0.001
H-VAE* 0.619 0.487 0.869 0.588 0.991 0.991 0.611 0.037
F-VAE* 0.466 0.400 0.889 0.490 0.988 0.988 0.676 0.085

PS-VAE (ours) 0.673 0.523 0.921 0.659 0.997 0.997 0.850 0.318

Property Optimization This task focuses on generating molecules with optimized Penalized logP
([23], PlogP) and QED [4]. PlogP is logP penalized by synthesis accessibility and ring size which
has an unbounded range. QED measures the drug-likeness of molecules with a range of [0, 1]. Both
properties are calculated by empirical prediction models [42, 4], and are widely used in previous
works [18, 47, 39]. We constrain all models to generate molecules under 60 atoms to prevent them
from utilizing the flaw of PlogP by keeping extending the carbon chain [39]. We first train a predictor
on the latent space of previously-trained VAE models to simulate the scoring functions, then perform
gradient ascending to search for optimized molecules [18, 27]. Hyperparameters can be found in
Appendix G. Following previous works [18, 47, 39], we generate 10,000 optimized molecules and
report the top-3 scores found by each model. Results in Table 2 show that our model surpasses the
baselines consistently. Note that with the same vocabulary, F-VAE achieves much better results than
FREED, which indicates the superiority of our two-step generation strategy to the one in FREED.

Table 2: Comparison of the top-3 property scores.

Method Penalized logP QED
1st 2nd 3rd 1st 2nd 3rd

JT-VAE 5.30 4.93 4.49 0.925 0.911 0.910
GCPN 7.98 7.85 7.80 0.948 0.947 0.946
MRNN 8.63 6.08 4.73 0.844 0.796 0.736

GraphAF 12.23 11.29 11.05 0.948 0.948 0.947
GraphDF 13.70 13.18 13.17 0.948 0.948 0.948

GA 12.25 12.22 12.20 0.946 0.944 0.932
MARS 7.24 6.44 6.43 0.944 0.943 0.942
FREED 6.74 6.65 6.42 0.920 0.919 0.908
H-VAE∗ 11.41 9.67 9.31 0.947 0.946 0.946
F-VAE∗ 13.50 12.62 12.40 0.948 0.948 0.947

PS-VAE (ours) 13.95 13.83 13.65 0.948 0.948 0.948

Constrained Property Optimization This task refines molecular properties under the constraint
that the Tanimoto similarity with Morgan fingerprint [36] is above a threshold δ. As suggested by
previous works [18, 47, 39], we optimize 800 molecules with the lowest PlogP in the test set of
ZINC250K. Similar to the property optimization task, we perform gradient ascending on the latent
variable with a max step of 80. We collect all latent variables which have better-predicted scores than
the previous iteration and decode each of them 5 times, namely up to 400 molecules. Following Shi
et al. [39], we initialize the generation with sub-graphs sampled from the original molecules. Then
we choose the highest scoring one from the molecules that meet the similarity constraint. Table 3
shows our model can generate molecules with a higher PlogP score under the similarity constraints.
Since our model uses subgraphs as building blocks, the degree of modification tends to be greater
than atom-level models, leading to a lower success rate. Even so, the success rates by our model are
still on par with the atom-level counterparts and are the best among all subgraph-level methods.

GuacaMol Goal-Directed Benchmarks To further explore the efficacy of PS-VAE, we provide
the results for GuacaMol goal-directed benchmarks [7] in Table 4. All scores are continuous values
between 0 and 1, and the higher, the better. In order to obtain more discernible results between
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Table 3: Mean (standard deviation) on improvement in constrained property optimization.

Model δ = 0.2 δ = 0.4 δ = 0.6
Improvement Success Improvement Success Improvement Success

JT-VAE 1.68±1.85 97.1% 0.84±1.45 83.6% 0.21±0.71 46.4%
GCPN 4.12±1.19 100% 2.49±1.30 100% 0.79±0.63 100%

GraphAF 4.99±1.38 100% 3.74±1.25 100% 1.95±0.99 98.4%
GraphDF 5.62±1.65 100% 4.13±1.41 100% 1.72±1.15 93.0%

GA 3.04±1.60 100% 2.34±1.34 100% 1.35±1.06 95.9%
MARS 4.13±1.23 100% 2.41±0.76 99.2% 1.21±0.64 69.6%

H-VAE∗ 3.42±1.65 89.9% 2.68±1.44 74.0% 1.90±1.06 51.5%
F-VAE∗ 4.82±1.57 98.9% 3.60±1.39 89.9% 2.40±1.17 68.6%

PS-VAE (ours) 6.42±1.86 99.9% 4.19±1.30 98.9% 2.52±1.12 90.3%

different approaches, we conduct experiments on QM9 and ZINC250K which have much less high-
scoring molecules than ChEMBL [30] to make the tasks more challenging. Otherwise the majority
of the benchmarks are easy to be optimized to the upper bound [1]. We adopt the same optimizing
strategy as in the property optimization tasks. Hyperparameters can be found in Appendix G. Table
4 shows that our model remarkably performs better than H-VAE∗ and F-VAE∗, and thus exhibits
the benefit of our subgraph extraction method. The superior of H-VAE∗ to HierVAE indicates the
advantage of our two-step assembling over the sequential sampling strategy.

Table 4: Results for GuacaMol goal-directed benchmarks. H-VAE∗, F-VAE∗ and PS-VAE refer to
VAE models with vocabularies from HierVAE, FREED and our principal subgraphs, respectively.

benchmark JT-VAE GA H-VAE∗ F-VAE∗ HierVAE MARS PS-VAE

ZINC250K
Celecoxib rediscovery 0.245 0.073 0.252 0.310 0.223 0.137 0.451

Troglitazone rediscovery 0.171 0.080 0.205 0.215 0.181 0.163 0.254
Thiothixene rediscovery 0.225 0.091 0.240 0.236 0.191 0.072 0.286
Aripiprazole similarity 0.351 0.240 0.382 0.390 0.240 0.350 0.432

Albuterol similarity 0.426 0.437 0.404 0.484 0.430 0.567 0.611
Mestranol similarity 0.278 0.337 0.360 0.377 0.281 0.297 0.515

C11H24 0.004 0.244 0.014 0.050 0.050 0.124 0.634
C9H10N2O2PF2Cl 0.200 0.659 0.523 0.567 0.023 0.435 0.782
Median molecules 1 0.161 0.190 0.191 0.204 0.115 0.167 0.263
Median molecules 2 0.166 0.111 0.178 0.198 0.126 0.166 0.199
Osimertinib MPO 0.693 0.585 0.758 0.768 0.538 0.745 0.800

Fexofenadine MPO 0.607 0.495 0.655 0.685 0.523 0.682 0.715
Ranolazine MPO 0.330 0.280 0.411 0.532 0.305 0.552 0.688
Perindopril MPO 0.370 0.239 0.394 0.403 0.361 0.418 0.429
Amlodipine MPO 0.442 0.413 0.477 0.463 0.341 0.477 0.544
Sitagliptin MPO 0.160 0.243 0.246 0.350 0.092 0.261 0.439
Zaleplon MPO 0.393 0.259 0.394 0.450 0.268 0.329 0.495

Valsartan SMARTS 0 0 0 0 0 0 5.398× 10−12

Deco Hop 0.576 0.530 0.577 0.577 0.559 0.572 0.601
Scaffold Hop 0.440 0.375 0.443 0.450 0.417 0.442 0.486

QM9
Celecoxib rediscovery 0.056 0.106 0.111 0.129 0.059 0.023 0.210

Troglitazone rediscovery 0.070 0.110 0.124 0.131 0.121 0.085 0.152
Thiothixene rediscovery 0.047 0.061 0.115 0.100 0.059 0.037 0.146
Aripiprazole similarity 0.099 0.095 0.167 0.178 0.167 0.104 0.214

Albuterol similarity 0.301 0.243 0.305 0.277 0.380 0.305 0.463
Mestranol similarity 0.170 0.134 0.157 0.122 0.234 0.233 0.198

C11H24 9.734× 10−7 2.148× 10−7 6.899× 10−7 2.979× 10−6 0.007 1.959× 10−45 0.015
C9H10N2O2PF2Cl 0.182 0.066 0.236 0.109 0.250 0.190 0.381
Median molecules 1 0.226 0.185 0.195 0.194 0.229 0.143 0.261
Median molecules 2 0.063 0.062 0.091 0.091 0.081 0.085 0.112
Osimertinib MPO 0.408 0.556 0.541 0.554 0.561 0.555 0.636

Fexofenadine MPO 0.217 0.403 0.307 0.290 0.355 0.443 0.373
Ranolazine MPO 0.004 0.170 0.007 0.010 0.011 0.032 0.018
Perindopril MPO 0.104 0.061 0.166 0.165 0.116 0.145 0.205
Amlodipine MPO 0.192 0.166 0.258 0.211 0.300 0.284 0.303
Sitagliptin MPO 2.556× 10−6 1.688× 10−6 2.807× 10−5 5.114× 10−5 0.951× 10−4 0.138× 10−2 0.319× 10−3

Zaleplon MPO 6.564× 10−5 0.03 3.41× 10−5 5.647× 10−5 0.771× 10−4 0.033 0.085
Valsartan SMARTS 0 0 0 0 0 0 0

Deco Hop 0.505 0.525 0.506 0.492 0.512 0.513 0.545
Scaffold Hop 0.341 0.361 0.340 0.354 0.351 0.362 0.393

4.2 Ablation Study

We conduct an ablation study to further validate the effects of principal subgraphs and the two-step
generation approach. We first downgrade the vocabulary to contain only single atoms. Then we
replace the two-step decoder with a fully autoregressive decoder. We present the performance on
(constrained) property optimization in Table 5 and Table 6. The direct introduction of the two-step
generation approach leads to improvement in property optimization but harms the performance on
constrained property optimization. This is reasonable as separating the generation of atoms and
bonds brings in information loss of bonds for the atom-level generation process. However, the
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adoption of principal subgraphs as building blocks alleviates this negative effect since the principal
subgraphs themselves contain rich bond information. Therefore, integrating principal subgraphs with
our two-step generation approach leads to the best choice in our model design. Furthermore, we
provide the runtime cost of baselines and PS-VAE in Appendix F to demonstrate the improvement in
efficiency brought by the principal subgraphs and the two-step generation approach.

Table 5: Comparison of the top-3 property scores found by PS-VAE without certain modules

Method Penalized logP QED
1st 2nd 3rd 1st 2nd 3rd

PS-VAE 13.95 13.83 13.65 0.948 0.948 0.948
- PS 6.91 5.50 5.12 0.870 0.869 0.869

- two-step 3.54 3.54 3.22 0.737 0.734 0.729

Table 6: Comparison of PS-VAE without certain modules on constrained property optimization.

Model δ = 0.2 δ = 0.4 δ = 0.6
Improvement Success Improvement Success Improvement Success

PS-VAE 6.42±1.86 99.9% 4.19±1.30 98.9% 2.52±1.12 90.3%
- PS 2.33±1.46 74.8% 2.12±1.36 50.9% 1.87±1.12 27.0%

- two-step 3.36±1.58 98.6% 2.72±1.24 82.0% 1.88±1.05 45.1%

5 Analysis

Principal Subgraph Statistics We compare the distributions of the vocabulary of JT-VAE, FREED,
HierVAE, and the vocabulary constructed by our principal subgraph extraction methods with a size of
100, 300, 500, and 700. Figure 4 shows the proportion of fragments with different numbers of atoms
in the vocabulary and their frequencies of occurrence in the ZINC250K dataset. The fragments in the
vocabulary of JT-VAE mainly contain 5 to 8 atoms with a sharp distribution. However, starting from
fragments with 3 atoms, the frequency of occurrence is already close to zero. Therefore, the majority
of fragments in the vocabulary of JT-VAE are actually not common fragments. On the contrary, the
fragments in the vocabulary of principal subgraphs have a relatively smooth distribution over 4 to
10 atoms. Moreover, these fragments also have a much higher frequency of occurrence compared
to those by JT-VAE. Vocabularies constructed by our method show similar advantages compared to
those of HierVAE and FREED. We present samples of principal subgraphs in Appendix K.

Figure 4: The left and right figures show the proportion of and frequency of occurrence of fragments
with different number of atoms in the vocabulary, respectively.

Principal Subgraph - Property Correlation To analyze the principal subgraph - property corre-
lation and whether our model can discover and utilize the correlation, we present the normalized
distribution of generated fragments and Pearson correlation coefficient between the fragments and
Penalized logP (PlogP) in Figure 5. The curve indicates that some fragments positively correlate
with PlogP while some negatively correlate with it. Compared with the flat distribution under the
non-optimization setting, the generated distribution shifts towards the fragments positively correlated
with PlogP under the PlogP-optimization setting. The generation of fragments negatively correlated
with PlogP is also suppressed. Therefore, correlations exist between fragments and PlogP, and our
model can accurately discover and utilize these correlations.

Proper Granularity A larger N in the principal subgraph extraction process leads to an increase
in the number of atoms in extracted fragments and a decrease in their frequency of occurrence, as
illustrated in Figure 6. These two factors affect model performance in opposite ways. On the one hand,
the entropy of the dataset decreases with more coarse-grained decomposition [29], which benefits
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Figure 5: The distributions of generated fragments with and without optimization of PlogP, as well
as Pearson correlation coefficient between the fragments and the score of PlogP. PlogP refers to
Penalized logP. The distributions are normalized by the distribution of the training set, which means
the frequency of occurrence of a fragment is divided by its count of occurrence in the training set.

model learning [3]. On the other hand, the sparsity problem worsens as the frequency of fragments
decreases, which hurts model learning [2]. We propose a quantified method to balance entropy and
sparsity. The entropy of the dataset given a set of fragments V is defined by the sum of the entropy
of each fragment normalized by the average number of atoms: HV = − 1

nV

∑
F∈V P (F) logP (F),

where P (F) is the relative frequency of fragment F in the dataset and nV is the average number of
atoms of fragments in V. The sparsity of V is defined as the reciprocal of the average frequency of
fragments fV normalized by the size of the dataset M : SV = M/fV. Then the entropy - sparsity
trade-off (T ) can be expressed as: TV = HV + γSV, where γ balances the impacts of entropy and
sparsity since the impacts vary across different tasks. We assume that TV negatively correlates with
downstream tasks. Given a task, we first sample several values of N to calculate their values of
T and then compute the γ that minimize the Pearson correlation coefficient between T and the
corresponding performance on the task. With the proper γ, Pearson correlation coefficients for the
first three downstream tasks in this paper are -0.987, -0.999, and -0.707, indicating strong negative
correlations. For example, Figure 6 shows the curve of entropy - sparsity trade-off with a maximum
of 3,000 iteration steps for the property optimization task. From the curve, we choose N = 300 for
the property optimization task. Please refer to Appendix B for more experimental details.

Figure 6: Entropy - Sparsity trade-off, average number of atoms in principal subgraphs and average
frequency of occurrence of principal subgraphs with a maximum of 3,000 iteration steps.

6 Conclusion

We propose an algorithm to automatically discover the regularity in molecules and extract them
as principal subgraphs. With the extracted principle subgraphs at hand, we generate molecules in
two phases. Our model consistently outperforms state-of-the-art models on distribution-learning,
(constrained) property optimization, and GuacaMol goal-directed benchmarks, and exhibits higher
computational efficiency than certain widely-used baselines. Our work provides insights into the
selection of subgraphs on molecular graph generation and can inspire future search in this direction.
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