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Figure 1: Comparative results of SAM2 and FusionSAM under the MFNet and FMB datasets:
FusionSAM demonstrates superior boundary accuracy and structural completeness, while SAM2
struggles with misclassifications and unclear boundaries. To ensure fairness, the input is the fusion
feature map of our method, annotations for points and boxes prompts are shown in the figure.

ABSTRACT

Multimodal image fusion and semantic segmentation are critical for autonomous
driving. Despite advancements, current models often struggle with segmenting
densely packed elements due to a lack of comprehensive fusion features for guid-
ance during training. While the Segment Anything Model (SAM) allows precise
control during fine-tuning through its flexible prompting encoder, its potential re-
mains largely unexplored in the context of multimodal segmentation for natural
images. In this paper, we introduce SAM into multimodal image segmentation
for the first time, proposing a novel framework that combines Latent Space Token
Generation (LSTG) and Fusion Mask Prompting (FMP) modules. This approach
transforms the training methodology for multimodal segmentation from a tradi-
tional black-box approach to a controllable, prompt-based mechanism. Specif-
ically, we obtain latent space features for both modalities through vector quan-
tization and embed them into a cross-attention-based inter-domain fusion mod-
ule to establish long-range dependencies between modalities. We then use these
comprehensive fusion features as prompts to guide precise pixel-level segmen-
tation. Extensive experiments on multiple public datasets demonstrate that our
method significantly outperforms SAM and SAM2 in multimodal autonomous
driving scenarios, achieving at least a 3.9% improvement in segmentation mIoU
over state-of-the-art methods.
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1 INTRODUCTION

Accurate and comprehensive scene understanding is crucial for autonomous driving (Zhang &
Demiris, 2023). Due to the limitations of sensor imaging devices, no single modality sensor can
independently provide a complete description of the scene (Zhou et al., 2024; Xue & Marculescu,
2023; Cao et al., 2023b; Xu et al., 2023). For instance, infrared sensors capture thermal radiation in-
formation, highlighting objects of interest such as pedestrians and vehicles (Bellagente et al., 2024).
Conversely, visible light sensors capture reflected light, generating scenes rich in texture details (Liu
et al., 2024). By combining these modalities, complementary details that might be missed by indi-
vidual sensors can be captured, enhancing the model’s ability to perform semantic segmentation of
the complete scene (Cao et al., 2023a). Therefore, the fusion of infrared and visible light images
has become a mainstream solution for improving scene understanding and semantic segmentation.
However, current semantic segmentation models struggle to comprehend densely packed elements in
multimodal driving scenes, failing to fully represent the captured information for better subsequent
segmentation results.

In recent decades, advancements in semantic segmentation within deep learning have significantly
propelled the understanding of multimodal scenes. Capturing efficient multimodal fusion represen-
tations is key to enhancing segmentation performance. A common approach involves feature-level
fusion of infrared and visible light images using Convolutional Neural Networks (CNNs) to extract
rich semantic representations, but the local constraints of CNNs make it challenging to effectively
merge information from different modalities. As an alternative, Transformer architectures, with
their attention mechanisms and ability to model long-range dependencies, facilitate better global
fusion and utilization of complementary information (Li et al., 2023; Zhang et al., 2024). How-
ever, pure transformer architectures lack the flexibility required for scene understanding, especially
in autonomous driving scenarios where elements are densely packed (Cao et al., 2023c), and edge
textures of segmented categories are blurred due to varying lighting conditions and nighttime en-
vironments. Without intermediate fine-tuning guidance to focus on critical regions, segmentation
distortions can occur, hindering better scene parsing. The Segment Anything Model (SAM) has
emerged as a transformative method for single-modal natural scene segmentation due to its flexible
prompting architecture (Ravi et al., 2024; Kirillov et al., 2023). Remarkably, the prompt architecture
of SAM enhances the model’s ability to focus on detailed features. Through the guiding mechanism
of prompts, SAM can more effectively direct the segmentation process compared to transformers
that lack fine-tuned control. This is crucial for the dense element segmentation required in au-
tonomous driving scenarios. However, SAM has not yet been extensively studied in the realm of
multimodal fusion.

To address these challenges, we innovatively propose FusionSAM, a Latent Space driven Segment
Anything Model for Multi-Modal Fusion and Segmentation, which endows SAM with efficient
multimodal image fusion and segmentation capabilities. Specifically, we first capture latent space
feature embeddings of the two modalities through vector quantization to obtain efficient downsam-
pled representations. Then, we establish long-range dependencies between the modalities using a
cross-attention-based inter-domain fusion module, capturing comprehensive information as fusion
features to guide precise pixel-level segmentation. To the best of our knowledge, this is the first
study to apply the SAM to multimodal visual segmentation tasks in natural images, and it outper-
forms current state-of-the-art methods as shown in Figure 1. Our main contributions are as follows:

• We extend SAM to multimodal image segmentation in natural images for the first time.
Through SAM’s flexible prompt encoder we achieve efficient fusion and segmentation of
multimodal images, meeting the complex requirements of autonomous driving scenarios
with dense elements and varying lighting conditions.

• We propose a novel FusionSAM framework that includes the Latent Space Token Gen-
eration (LSTG) and Fusion Mask Prompting (FMP) Module. By capturing latent space
representations through vector quantization and performing cross-domain fusion of these
features, we generate precise segmentation prompts.

• Extensive experiments on public datasets and benchmarks show that FusionSAM signifi-
cantly outperforms state-of-the-art methods, including SAM and SAM2, in multimodal au-
tonomous driving scenarios, achieving a notable 3.9% improvement in segmentation IoU,
validating its effectiveness and robustness.
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Figure 2: Overview of FusionSAM framework for multimodal visual segmentation, which enhances
multimodal visual understanding on the original SAM architecture. The main improvements include
Latent Space Token Generation (LSTG) Module and Fusion Mask Prompting (FMP) Module.
All parts of the architecture except the image encoder participate in the training phase.

2 RELATED WORK

2.1 SEGMENT ANYTHING MODEL (SAM)

The SAM enables efficient object segmentation through simple prompt embeddings, like points or
bounding boxes, guiding the model to focus on specific regions (Ke et al., 2023; Schön et al., 2024;
Ren et al., 2024; Shen et al., 2024a; Wang et al., 2023; Ma et al., 2024; Huang et al., 2024). Derived
methods in single-modality segmentation include RobustSAM (Chen et al., 2024) by Chen et al.,
which improved SAM’s performance on low-quality images, and Crowd-SAM (Cai et al., 2024)
by Cai et al., which enhanced segmentation in crowded scenes with an Efficient Prompt Sampler
and Part-Whole Discriminator Network. SAM has also been adapted for cross-modal tasks in fields
like medical imaging and remote sensing. For example, Pandey et al. used YOLOv8 and SAM for
cross-modal segmentation (Pandey et al., 2023), while Yan et al. introduced RingMo-SAM (Yan
et al., 2023) for segmenting optical and SAR data. However, these methods only linearly adapt
SAM for multimodal tasks, missing the full potential of multimodal features. They also overlook
SAM’s powerful prompting architecture, which could better activate multimodal fusion features
during training to guide segmentation. Our proposed FusionSAM, on the other hand, captures latent
space representations through vector quantization, enabling comprehensive cross-domain fusion and
using these features as precise segmentation prompts.

2.2 MULTI-MODALITY IMAGE FUSION

In autonomous driving, integrating various sensors is essential for accurate scene understanding, as
single-modality data is insufficient (Liang et al., 2022; Li et al., 2024; Zhang et al., 2021; Sun et al.,
2022; Wang et al., 2020a; 2022; Zhang et al., 2020). Wang et al. proposed AsymFusion (Wang
et al., 2020b), which enhances multimodal feature interaction using a dual-branch structure with
asymmetric fusion blocks. Zhang et al. developed MRFS (Zhang et al., 2024), combining CNN-
based Interactive Gated Mixed Attention with transformer-based Progressive Cycle Attention to
overcome bottlenecks in infrared-visible fusion. Feng et al. introduced MAF-Net (Feng et al., 2022),
which effectively segments road potholes by fusing RGB and disparity data. Ma et al. proposed
SwinFusion (Ma et al., 2022), leveraging cross-domain long-range learning and Swin Transformer
for global information integration and complementary feature extraction. Most existing methods
rely on convolutional networks or transformers, which struggle with global information extraction
and flexible segmentation in dense scenes. To overcome these limitations, we apply multimodal
fusion within SAM, using its flexible prompting to enhance segmentation in complex autonomous
driving scenarios.
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3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

For the task of multimodal image fusion, we first assume visible image I1 ∈ RH×W×Cin and in-
frared image I2 ∈ RH×W×Cin , where the two source images from different domains are aligned.
Let H , W , and Cin denote the height, width, and channel number of input images, respectively.
To achieve pixel-level segmentation, we design an interactive neural network for fusion and seg-
mentation, and optimize the model to find a set of optimal parameters. The optimization model is
formulated as follows:

min
ωf ,ωs

ff (If ,Φ (I1, I2;ωf)) + fs (Is,Ψ(I1, I2;ωs)) , (1)

If ∈ RH×W×Cin and Is ∈ RH×W×Cin represent the fusion map and segmentation result, produced
by the fusion network Φ and segmentation network Ψ with learnable parameters ωf and ωs. The
functions ff(·) and fs(·) correspond to the objective functions for fusion and segmentation, measur-
ing the discrepancies between the predictions and their respective targets.

3.2 FUSION SEGMENT ANYTHING MODEL

We propose FusionSAM, which enhances image fusion while preserving the segmentation capabil-
ity of the SAM architecture. By integrating a fusion module that enables latent space representation
embedding and cross-modal consistency fusion into the original SAM architecture, so that its per-
formance will be greatly improved.

3.2.1 MODEL OVERVIEW

Figure 2 presents an overview of the proposed FusionSAM. The key contribution of FusionSAM
is its Latent Space Token Generation (LSTG) and Fusion Mask Prompting (FMP) modules. Unlike
methods that fine-tune or add adapters to SAM and SAM2, FusionSAM’s strength lies in its rigorous
and well-considered approach to efficient multimodal fusion and segmentation. This efficiency is
achieved by fusing compact and comprehensive latent space representations of both modalities,
rather than the original large-scale images, enabling more thorough and effective fusion.

Training. To train FusionSAM, we first generate efficient fused modality representations, which are
then input into the model. Initially, a vector encoder creates latent space representations for both
modalities, followed by cross-attention-guided fusion to achieve a comprehensive representation.
Unlike the original SAM, we modify the input tokens for segmentation into Full-fledged Output
Tokens (FOT), which are enhanced versions of the latent representations designed to capture the
full spectrum of fused features for segmentation. These FOTs, along with the prompt token, are
processed through the SAM decoding layers to generate the segmentation mask.

The LSTG block processes the raw images from both modalities and transforms them into efficient
latent space features. Simultaneously, the FMP module performs multimodal fusion on the obtained
latent features. It uses cross-attention mechanisms to learn features from different modality domains,
producing refined and comprehensive features. These refined fusion features are then fed into the
mask encoder to enhance segmentation quality.

In summary, the robust segmentation capability of the completed FusionSAM framework primar-
ily stems from the training of the LSTG and the FMP modules. Additionally, the decoder and
segmentation head from the original SAM architecture are also involved in the learning process.
This integration ensures that the model comprehensively understands the fused features from both
modalities, thereby enhancing segmentation performance.

Inference. In the FusionSAM framework, the ViT-driven image encoder is not involved in training,
it is solely used for inference to generate inputs for the mask decoder.

3.2.2 LATENT SPACE TOKEN GENERATION

In our multimodal image fusion and segmentation approach, the LSTG module effectively trans-
forms complex input data from visible and infrared modalities into structured latent space represen-
tations. This transformation is essential for the efficient integration of diverse information sources.
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By drawing inspiration from Vector Quantized Generative Adversarial Networks (VQGAN) (Esser
et al., 2021), we enhance our model’s capability to capture and fuse complementary features from
both modalities, thereby improving the performance of multimodal tasks.

Each image Ii ∈ RH×W×C is transformed into a spatial set of codebook entries Iqi ∈ Rh×w×dc ,
where i ∈ {1, 2}, h = H

s , w = W
s , dc is the latent dimensionality, and s denotes the scaling factor.

This transformation enables the efficient representation of complex multimodal features.

The LSTG module employs an encoder E to compress the input images into latent vectors, capturing
significant features necessary for multimodal integration:

zi = E(Ii) ∈ Rh×w×dc . (2)

These latent vectors preserve the critical multimodal characteristics needed for subsequent fusion
and segmentation, allowing us to efficiently integrate and interpret complementary information from
both the visible and infrared domains.

The quantization process translates the encoder outputs zi into discrete representations using a
learned codebook C, aligning and structuring diverse features from both modalities for effective
fusion:

Iqi = Quant(zi) =
(
argminck∈C ∥zij − ck∥

)
∈ Rh×w×dc . (3)

By mapping each latent vector zij to the closest entry in the codebook, the Quant(·) discretizes the
latent representation, this function, aligns similar features from both modalities. This enhances the
model’s ability to merge complementary information and mitigate modality-specific noise.

The decoder G reconstructs the original images from these quantized representations, ensuring that
the fused representation retains the high fidelity and rich detail necessary for accurate segmentation:

Îi = G(Iqi ) = G(Quant(E(Ii))). (4)

To optimize the LSTG module for multimodal tasks, we incorporate a reconstruction loss Lrec to
maintain the fidelity of each modality’s essential features and a commitment loss Lcommit to ensure
effective codebook utilization:

Lrec =
∑
i

∥Ii − Îi∥2, (5)

Lcommit =
∑
i

∥ sg[zi]− Iqi ∥
2
2 + β∥ sg[Iqi ]− zi∥22, (6)

where sg[·] denotes the stop-gradient operation. These loss functions help preserve crucial informa-
tion while promoting the generalization capabilities of the model, which are vital for handling the
complexities of multimodal data.

To further enhance the representation quality, a perceptual loss Lperc and an adversarial loss Ladv
are incorporated. These components focus on maintaining visual coherence and realism across the
fused modalities:

Lperc =
∑
i

∥Φ(Ii)− Φ(Îi)∥2. (7)

Ladv =
∑
i

(
logD(Ii) + log(1−D(Îi))

)
, (8)

D is the discriminator network used in the adversarial learning framework, distinguishing between
real and generated data. These enhancements ensure that the model captures both low-level detail
and high-level semantic information, which is crucial for effective multimodal segmentation. The
overall optimization objective combines these elements:

min
E,G,C

max
D

∑
i

[Lrec + αLperc + βLadv + γLcommit] , (9)

where α, β, and γ are weighting factors that balance the contributions of each loss component,
enhancing the model’s ability to perform well on multimodal tasks.

The LSTG module’s ability to create a robust and structured representation from complex multi-
modal inputs is key to the successful integration and interpretation of diverse data sources. By
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minimizing redundancy while preserving critical information, these tokens facilitate seamless inte-
gration into our segmentation framework, significantly enhancing the model’s capacity to discern
and process complex scenes in multimodal environments. This ensures a comprehensive under-
standing and efficient handling of the diverse data inherent in visible and infrared images, making
the LSTG module a vital component in our multimodal fusion strategy.

3.2.3 FUSION MASK PROMPTING MODULE

The FMP module is designed to effectively synthesize latent space representations from visible and
infrared modalities, enabling comprehensive scene understanding in autonomous driving scenarios.
This module integrates information from different domains presented by each modality into a unified
fusion mask. By leveraging the rich and comprehensive features present in the fusion representation
as prompts, FMP module provides flexible fine-tuning guidance for the segmentation process, lead-
ing to improved segmentation performance. For instance, if multimodal fusion feature map contains
complete information, using local area features as point prompts during training can further enhance
the model’s segmentation accuracy.

Specifically, the FMP module begins with a cross-domain fusion unit that employs cross-attention
mechanisms to establish long-range dependencies between different modality domains. This facili-
tates the exchange of Queries (Q), Keys (K) , and Values (V) across domains, ensuring the complete
fusion of multimodal features. This process ensures that the fusion mask captures comprehensive
interactions between the latent representations Iq1 and Iq2 , enhancing the segmentation process by
focusing on critical, contextually relevant features that are essential for understanding dense and
complex scenes. The inter-domain mechanism is defined as follows:

{Q1,K1, V1} = {Iq1WQ1, I
q
1WK1, I

q
1WV 1} ,

{Q2,K2, V2} = {Iq2WQ2, I
q
2WK2, I

q
2WV 2} ,

(10)

z′1 = LN
(

softmax
(
Q1K

T
2√

dk

)
V2

)
+Q1,

z′2 = LN
(

softmax
(
Q2K

T
1√

dk

)
V1

)
+Q2,

(11)

LN(·) is the layer normalization, whcih always performed after feed forward network, the outputs
z′1 and z′2 represent the globally fused features, which are then processed through a convolutional
layer, generating a fused representation zc that encapsulates the essential information from both
modalities. This fused representation serves as the initial fusion mask, guiding the segmentation by
highlighting the regions of interest identified through the cross-domain fusion process.

To further enhance the fusion mask, the FMP module integrates a complementary feature fusion
unit, which emphasizes the unique characteristics of each modality while ensuring the complete
integration of global features. This unit introduces a complementary feature fusion mechanism,
where the two modalities are first fused through a cross-attention mechanism to produce z0 , which
encapsulates the distinctive features of each individual modality. This result is then combined with
the initial fusion mask z0, strengthening the segmentation prompt by leveraging the comprehensive
information from both approaches:

{Q0,K0, V0} = {zq0WQ1, z
q
0WK1, z

q
0WV 1} ,

{Qf ,Kf , Vf} =
{
zqfWQ2, z

q
fWK2, z

q
fWV 2

}
,

(12)

zf = LN
(

softmax
(
QfK

T
o√

dk

)
Vo

)
+ zc. (13)

The final representation zf is then processed through a convolutional layer to produce the fusion
mask If , which serves as a precise prompt for guiding pixel-level segmentation.

By leveraging these cross-domain and complementary feature fusion units, the FMP effectively cap-
tures comprehensive fusion features that are critical for accurate segmentation. The integration of
global context and long-range dependencies ensures that the model can differentiate between fore-
ground and background elements, even in densely packed autonomous driving scenes. This compre-
hensive approach allows SAM to achieve robust and high-fidelity segmentation results, effectively
addressing the challenges of multimodal image fusion.
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The final fused representation If , derived from the FMP, is fed into the original SAM framework’s
image encoder. This encoder processes the multimodal fusion results, transforming them into high-
dimensional features that encapsulate the rich information from the visible and infrared modalities.
The encoded features are then input into the mask decoder, which utilizes a modified transformer
architecture to generate mask features through a series of attention operations. Finally, the decoder’s
output, representing the refined segmentation, is further processed by a multilayer perceptron (MLP)
classification head, ensuring that the model accurately identifies and distinguishes between distinct
regions within the input data.

4 IMPLEMENTATION DETAILS

4.1 DATASETS

Two representative datasets, including MFNet (Ha et al., 2017) and FMB (Liu et al., 2023), contain-
ing 1569 and 1500 pairs of visible and infrared images with resolutions of 480×640 and 600×800,
respectively, to train and evaluate our method. Annotated into 9 and 14 categories relevant to au-
tonomous driving and semantic understanding, these datasets offer varied lighting conditions and
rich scenes that enhance the generalization ability of fusion and segmentation models.

4.2 TRAINING DETAIL

During 100 epochs of training, multimodal images are subjected to 4× downsampled features by
the LSTG module, and the FMP module further captures efficient fusion representations, combined
with 10-point mask prompts and 1-box mask prompt to facilitate effective segmentation of SAM.
Our initial learning rate is set to 1e-4, using the Adam optimizer with a weight decay of 1e-3, the
batch size is set to 4, and vit/h is used as the encoder. All experiments are performed on a NVIDIA
A100 Tensor Core GPU. We use mean intersection over union (mIoU) to quantitatively evaluate
the performance of semantic segmentation. mIoU is the average result of summing the ratio of the
intersection over the sum of the predicted true values for each class.

5 EXPERIMENTAL RESULTS

5.1 COMPARISONS WITH PREVIOUS METHODS

5.1.1 COMPARISON WITH SAM

SAM (Kirillov et al., 2023) is competitive in the segmentation field because of its powerful segmen-
tation performance and adaptability in different fields. Compared with SAM, SAM2 (Ravi et al.,
2024) has significant improvements in applicable fields, segmentation accuracy, and running speed.
To demonstrate the effective design and powerful performance of our FusionSAM and maintain a
fair comparison, we use SAM and SAM2 to directly infer the fused feature maps generated in Fu-
sionSAM, and the results are shown in Table 1. The SAM series cannot handle multimodal image
segmentation, whereas our method introduces SAM into the multimodal field, ensuring its excellent
segmentation performance and expanding its applicability in more complex scenarios.

Method mIoU(%)

MFNet FMB
SAM 32.7 34.6
SAM2 43.0 46.3

FusionSAM 63.0 61.8

Table 1: Accuracy comparison on two datasets.

Method
mIoU(%)

MFNet FMB
(A) 35.6 41.4
(B) 47.3 57.6

(C) FusionSAM 63.0 61.8

Table 2: Ablation study results for FusionSAM.

5.1.2 COMPARISON WITH SOTA

We conduct comparative experiments and evaluations with seven state-of-the-art semantic segmen-
tation methods, including EGFNet (Zhou et al., 2022), SegMiF (Liu et al., 2023), EAEFNet (Liang
et al., 2023), LASNet (Li et al., 2022), SFAF-MA (He et al., 2023), ECFNet (Shen et al., 2024b),
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Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump

FusionSAM GT CAMRGB IR ECFNet EAEFNet MRFS

Figure 3: Qualitative demonstrations of different approaches on the MFNet dataset.

Method Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump mIoU(%)
EGFNet23 97.7 87.6 69.8 58.8 42.8 33.8 7.3 48.3 47.1 54.8
SegMiF23 98.1 87.8 71.4 63.2 47.5 31.1 0.0 48.9 50.3 56.1

EAEFNet23 97.6 87.6 72.6 63.8 48.6 35.0 14.2 52.4 58.3 58.9
LASNet23 97.4 84.2 67.1 56.9 41.1 39.6 18.9 48.8 40.1 54.9

SFAF-MA23 97.0 88.1 73.0 61.3 45.6 29.5 5.5 45.7 53.8 55.5
ECFNet24 98.0 85.7 73.5 59.7 45.7 36.7 4.0 47.4 55.1 56.2
MRFS24 98.6 89.4 75.4 65.0 49.0 37.2 5.4 53.1 58.8 59.1

Ours 98.8 89.8 74.0 75.8 69.6 60.2 0.0 37.8 61.4 63.0

Table 3: Results of quantitative segmentation on the test set of MFNet dataset.

and MRFS (Zhang et al., 2024). We provide quantitative results in Tables 3 and 4. Our FusionSAM
achieves the highest mIoU on both datasets. Compared with the second-highest method, Fusion-
SAM improves mIoU by 3.9% and 0.6% on MFNet and FMB, respectively. More specifically, for
heat-insensitive categories, such as Car Stop, Building, Curve, and Bump, our method achieves sig-
nificant superiority due to the effective visual quality preservation and enhancement. Overall, these
findings confirm that our method achieves SOTA excellence in semantic segmentation.

5.2 ABLATION STUDY

Ours(A) (B)

Figure 5: Visualization of ablation studies
in FusionSAM.

To explore the contribution of each part of our method
in detail, we designed three scenarios: (A) Omitting
the LSTG module compared to our FusionSAM; (B)
Removing the FMP module from the fusion process
and replacing it with direct concat; (C) Complete Fu-
sionSAM. The results of the ablation experiment are
shown in Figure 5. We can observe that FusionSAM
achieves the best segmentation results on both datasets.
As shown in Table 1, in (A) , by removing the LSTG
module, we notice that the results drop by 27.4% and
20.4%, respectively, while resulting in poor segmenta-
tion results, which shows the effectiveness of the LSTG
module in generating latent space tokens through vec-
tor quantization. Our fusion method is verified in (B).
Without introducing the fusion mask hint, the model
has difficulty distinguishing the foreground and back-
ground, ignoring the unique and complementary fea-
tures of each modality, resulting in a decrease in mIoU
of 15.7% and 4.2%, respectively. Therefore, our proposed LSTG and FMP module can effectively
improve the segmentation performance of multimodal images and produce excellent visual results.
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FusionSAM GT CAMRGB IR ECFNet EAEFNet MRFS

Backbone Motorcycle Sidewalk Building Traffic Light Traffic Sign Vegetation Sky Person Car Truck Bus Road Bicycle Pole

Figure 4: Qualitative demonstrations of different approaches on the FMB dataset.

Method Car Person Truck T-Lamp T-Sign Building Vegetation Pole mIoU(%)
EGFNet23 77.4 63.0 17.1 25.2 66.6 77.2 83.5 41.5 47.3
SegMiF23 78.7 65.5 42.4 35.6 71.7 80.1 85.1 35.7 58.5

EAEFNet23 79.7 61.6 22.5 34.3 74.6 82.3 86.6 46.2 58.0
LASNet23 73.2 58.3 33.1 32.6 68.5 80.8 83.4 41.0 55.7

SFAF-MA23 73.0 55.7 14.3 13.6 54.2 73.0 78.9 38.1 42.7
ECFNet24 80.0 63.1 12.8 40.6 71.9 81.4 84.4 44.6 52.5
MRFS24 76.2 71.3 34.4 50.1 75.8 85.4 87.0 53.6 61.2

Ours 80.1 52.8 45.9 43.7 46.4 85.5 88.4 50.8 61.8

Table 4: Results of quantitative segmentation on the test set of FMB dataset.

5.3 RESULT VISUALIZATION

Figures 3 and 4 show segmentation visualizations and Class Activation Mapping (CAM) of our
method on the MFNet and FMB datasets, and compare with the most competitive methods. These
datasets present segmentation challenges due to their rich categories, complex imaging conditions,
and diverse scene details. Existing fusion methods struggle to highlight dim infrared targets (e.g.,
bicycles in Figure 3, second row) and recognize distant pedestrians (Figure 4, third row). Methods
relying on two-stream networks often introduce conflicts if feature fusion is incomplete, leading
to misclassifications, such as occluded cars (Figure 3, first row) and human shapes (Figure 4, first
row). Additionally, edge blurring in dense target predictions is common (Figure 3, third row). By
embedding latent space representations and achieving cross-modal consistency, our method reduces
redundancy while retaining key information, significantly improving SAM’s segmentation perfor-
mance and enabling accurate object classification across diverse scenes.

6 CONCLUSION

A key challenge in multimodal semantic segmentation for autonomous driving is developing a
framework that can effectively fuse and utilize multimodal data as prompts during training, guiding
the model to achieve high-performance segmentation in dense distribution scenes— an issue that
previous multimodal segmentation approaches have not fully addressed. We have innovatively pro-
posed FusionSAM, a latent space driven SAM framework for multimodal semantic segmentation,
which endows the SAM architecture with robust capabilities in multimodal fusion, understanding,
and segmentation. Our approach performs comprehensive cross-domain fusion of the latent space
representations from two modalities, using this fused information as prompts to guide segmentation.
This is the first study to leverage SAM in multimodal semantic segmentation of natural scenes, uti-
lizing fusion as a guiding prompt. Extensive experiments demonstrate that FusionSAM significantly
outperforms existing state-of-the-art methods in multimodal autonomous driving scenarios, offering
a novel approach for future multimodal semantic segmentation tasks.

Ethics Statement. This research focuses on multimodal image fusion and segmentation, specifically
enhancing performance in autonomous driving scenarios through the FusionSAM framework. The
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datasets used, including MFNet and FMB, are publicly available and have been ethically sourced,
with proper permissions obtained for their usage. The models developed do not involve human
subjects, personal data, or sensitive information, thus avoiding concerns related to privacy, security,
or consent. We ensured that no discriminatory or biased data processing practices were employed,
as demographic attributes such as race, gender, or other social factors are irrelevant to the model’s
training and evaluation.

Furthermore, the potential applications of this work are focused on improving the safety and perfor-
mance of autonomous systems, with no foreseeable risk of harm to individuals or communities. We
acknowledge that any technological innovation in autonomous driving carries ethical implications,
particularly in terms of safety and responsibility. However, we have ensured that the methods and
models developed are aligned with the highest ethical standards in both design and application. Any
potential conflicts of interest have been disclosed, and our work adheres to legal and ethical research
guidelines.

Reproducibility Statement. We have made significant efforts to ensure the reproducibility of all
results in this work. Detailed descriptions of the model architecture, including the proposed La-
tent Space Token Generation (LSTG) and Fusion Mask Prompting (FMP) modules, are presented in
Section 3.2.1. The training procedure, including the learning rate, optimizer details, and data used
for training, can be found in Section 4.2. Our experimental setup is comprehensively detailed in
Section 5, including ablation studies that demonstrate the contributions of each module (LSTG and
FMP) to the model’s performance. Extensive results on public datasets such as MFNet and FMB are
provided in Section 5.2, with quantitative metrics reported for ease of comparison with other meth-
ods. Moreover, the exact hyperparameters, dataset details, and the hardware used for training are
included in the implementation details (Section 4). Finally, the source code will be made available
as anonymous supplementary material, ensuring full reproducibility of the experiments.
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7 APPENDIX

7.1 ABLATION VISUALIZATION

As shown in Figure 6, the visualization results from the ablation experiments on the MFNet dataset
reveal that the segmentation masks generated without the LSTG and FMP modules exhibit signifi-
cant jagged edges for objects such as cars and bicycles. This clearly demonstrates the effectiveness
of the proposed modules in improving segmentation quality. In contrast, FusionSAM produces
smoother and more accurate segmentation masks, highlighting its capability to handle complex sce-
narios in multimodal image segmentation.

Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump

w/o FMP modules

w/o LSTG

FusionSAM

Figure 6: Visualization of FusionSAM ablation research based on MFNet dataset.

Table 5: Ablation results of the MFNet dataset.

MFNet dataset

w/o LSTG w/o FMP Ours

IoU Recall Precision IoU Recall Precision IoU Recall Precision

97.3 99.2 98.1 97.8 99.4 98.5 98.8 99.3 99.5
73.5 81.1 88.7 80 86.7 91.3 89.8 95.7 93.5
48.5 63.6 67.1 60.7 75.8 75.2 75.8 85.5 84.6
39.1 57.4 55.2 48.8 60.4 71.7 74 92.1 81.1
28.7 32.1 72.9 40.9 46.6 76.9 69.6 81.4 82.7
13.1 15 51.5 29 32.8 71.5 60.2 76.4 73.9

0 0 0 0 0 0 0 0 0
4.3 4.7 34.7 27.1 29 80.3 37.8 53.5 56.3
16 18.6 54 41.7 46.3 80.9 61.4 62.9 96.2

As shown in Figure 7, the visualization results from the ablation experiments on the FMB dataset
show that the segmentation outputs without the LSTG and FMP modules suffer from discontinu-
ities in structures like streetlight poles. In contrast, FusionSAM generates continuous and accurate
segmentations, underscoring the effectiveness of the proposed modules. These results further high-
light FusionSAM’s ability to maintain structural coherence and precision in challenging multimodal
segmentation tasks.

The ablation experiment results from the MFNet and FMB datasets, as presented in Tables 5 and 6,
demonstrate the superior performance of our proposed method, FusionSAM. For the MFNet dataset,
our method significantly outperforms the configurations without the Latent Space Token Generation
(LSTG) and Fusion Mask Prompting (FMP) modules. Specifically, the segmentation IoU metrics
reveal that while the models without LSTG or FMP struggle with various object classes, our ap-
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Table 6: Ablation results of the FMB dataset.

FMB dataset

w/o LSTG w/o FMP Ours

IoU Recall Precision IoU Recall Precision IoU Recall Precision

52.5 54 94.9 79.3 84.5 92.9 80.1 96.1 82.7
25.6 32.1 56 50.4 75.1 60.5 52.8 90.2 56
27.4 34 58.7 48.3 68.8 61.9 45.9 66.3 59.9
0.5 1.2 0.8 1 2 2 43.7 45 37.5
23 78.9 24.6 35.5 80.4 38.8 46.4 89.8 49
76 87.7 85.1 83.6 88.6 93.8 85.5 87.3 97.6

78.5 88.6 87.3 85.6 94.3 90.3 88.4 92.9 94.8
21.5 22.4 85.6 41.9 47.7 77.4 50.8 73.5 62.2

Backbone Motorcycle Sidewalk Building Traffic Light Traffic Sign Vegetation Sky Person Car Truck Bus Road Bicycle Pole

w/o FMP modules

w/o LSTG

FusionSAM

Figure 7: Visualization of FusionSAM ablation research based on FMB dataset.

proach achieves higher precision and recall across the board, with a notable increase in mIoU of at
least 3.9%. This indicates that the integration of these modules effectively enhances feature extrac-
tion and segmentation accuracy. Similarly, the results on the FMB dataset illustrate the robustness
of FusionSAM. The significant improvements in IoU, recall, and precision, particularly in the pres-
ence of challenging segmentation tasks, further validate our method’s capability to manage dense
scenes. For instance, our method consistently produces higher IoU scores compared to the models
without the proposed modules, confirming the effectiveness of the LSTG and FMP in enhancing
segmentation quality.

Overall, the ablation studies across both datasets highlight FusionSAM’s ability to achieve superior
segmentation performance, reinforcing its applicability in complex multimodal environments. This
robustness positions FusionSAM as a leading method in the realm of multimodal image segmenta-
tion for autonomous driving scenarios.

7.2 FEATURE VISUALIZATION

In the Feature Visualization section of the appendix, Figures 8 and 9 present the visualization of
FusionSAM ablation studies based on the MFNet and FMB datasets. These figures include inputs
from both modalities, the ground truth, the fusion results from our FMP Module, feature maps from
the segmentation head, and Grad-CAM visualizations of the segmentation outcomes. By examin-
ing these visualizations, it is evident that our method effectively integrates the multimodal inputs,
leading to improved feature extraction and segmentation accuracy. The FMP Module not only en-
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FusionSAMGT Grad-CAMRGB IR

Backbone Motorcycle Sidewalk Building Traffic Light Traffic Sign Vegetation Sky Person Car Truck Bus Road Bicycle Pole

Fusion Map Result Feature

Figure 8: Visualization of FusionSAM ablation research based on FMB dataset.

Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump

FusionSAMGTRGB IR Fusion Map Result Feature Grad-CAM

Figure 9: Visualization of FusionSAM ablation research based on MFNet dataset.

hances the fusion of information but also ensures that the segmentation head produces coherent and
precise results. Overall, the visual evidence supports the superior performance of our approach in
handling complex multimodal segmentation tasks, demonstrating its robustness and applicability in
real-world scenarios.
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