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Abstract

Previous works on Textbook Question Answering suffer from limited performance due to
the small-scale neural network based backbone. To alleviate the issue, we propose to utilize
LLMs as the backbone of TQA tasks. To this end, we utilize two methods, the raw-context
based prompting method and the knowledge graph based prompting method. Specifically,
we introduce the Textbook Question Answering-Knowledge Graph (TQA-KG) method,
which first converts textbook content into structural knowledge graphs and then combining
knowledge graph into LLM prompting, thereby enhancing the model’s reasoning capabilities
and answer accuracy. Extensive experiments conducted on the CK12-QA dataset illustrate
the effectiveness of the method, achieving an improvement of 5.67% in accuracy compared
to current state-of-the-art methods on average.

Keywords: Textbook Question Answering, Large language model, knowledge graphs,
Retrieve-and-Generate

1. Introduction

Question Answering (QA) tasks, such as VQA (Yu et al., 2019) and MRC (Nie et al., 2019),
is a research hotspot in Natural Language Processing (NLP), thanks to the alluring tech-
nological and application value. Among various QA tasks, Textbook Question Answering
(TQA) (Kembhavi et al., 2017) is an emerging task, which is designed to provide answers
for questions based on the text or diagrams in given textbooks. As shown in Figure 1, it is
required to answer non-diagram and diagram questions on the right based on learning and
understanding the textbook fragment provided on the left.

Current works can be mainly divided into two categories. First, some works (Gomez-
Perez and Ortega, 2020; Xu et al., 2023) leverage advanced neural network architectures,
particularly focusing on attention mechanisms to parse and integrate information from var-
ious sources. Besides, (Kim et al., 2019; Wang et al., 2022; Ma et al., 2023b,a) employ
graph-based and semantic understanding methods and focus on integrating complex knowl-
edge structures and multimodal data to improve understanding and reasoning in TQA.
However, these works suffer from limited performance due to the small-scale neural net-
work based backbone.
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Lesson name

Introduction to the solar system

The Sun and all the objects that are held by the Suns 

gravity are known as the solar system. These objects all 

revolve around the Sun. In fact, the word planet comes from 

a Greek word meaning wanderer. These objects were 

thought to be important, so they named them after gods 

from their mythology. The names for the planets Mercury, 

Venus, Mars, Jupiter, and Saturn came from the names of 

gods and a goddess. 

Question
Diagram question

Non-Diagram question

1.Which planet follows earth in the solar system?

A.saturn

C.mars

2.Distance from Earth to the sun?

A. astronomical unit

C. Nebula

E. solar system

G. exoplanet

B.Mercury

D.venus

B. Kuiper belt

D. dwarf planet

F. asteroid belt

Multicontext

naming of solar system galaxies

Figure 1: An example of the CK12-QA dataset. The left side illustrates the textbook
content, while the right side illustrates non-diagram and diagram questions for
the given textbook content.

Recently, the revolutionary progress in Large Language Models (LLM) (Achiam et al.,
2023; Team et al., 2023; Anthropic, 2024) has catalyzed substantial technological transfor-
mations in NLP and reshape NLP’s foundation. Inspired by LLMs, we propose to utilize
LLMs as the backbone of TQA tasks. To this end, we utilize two manners, the raw-context
based prompting method and knowledge graph (KG) based prompting method.

Specifically, the method of prompting based on the raw context entails the direct ap-
plication of contexts in natural language as the input for LLMs. However, the raw context
based prompting suffers from long context, which restricts performance and inference speed.
To alleviate the issue, we propose a new approach to utilize KG based prompting method
for TQA, termed TQA-KG, for the non-diagram problem in the TQA task. KGs are struc-
tured, semantic networks that capture entities, their attributes, and relationships, which
are widely used. In TQA-KG, we adopt an iterative step-by-step generation strategy to
extract KG from textbook texts using LLMs, and then we combine the textbook KG with
instructions as the input of LLMs. In addition, the techniques of Retrieval Augmented
Generation (RAG) (Lewis et al., 2020) is employed to better utilize extracted KG, which
enhance the credibility and accuracy of the responses of LLMs, and improve the perfor-
mance of the TQA task. The pipeline of the TQA-KG method is shown in Figure 2. It
is noteworthy that the comparative performance of raw-context and the KG derived from
raw-context for LLM prompting has been insufficiently investigated. This study represents
the inaugural effort to systematically analyze and juxtapose these two approaches.
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Stress in earths crust

Faults

With enough stress, a rock will fracture, or 

break. The fracture is called a joint if the rock 

breaks but doesnt move. If the rocks on one or 

both sides of a fracture move, the fracture is 

called a fault. Faults can occur alone or in 

clusters, creating a fault zone. Earthquakes 

happen when rocks break and move suddenly. 

The energy released causes an earthquake. 

Slip is the distance rocks move along a fault, 

as one block of rock moves past the other. 

a. fold.

c. joint.

Question

A place where rock breaks but doesnt move 

it is called a

b. fault.

d. confinement.

Knowledge graph construction

Text

Segmentation

Relation 

Extraction

Entity 

Extraction

Question

Query Related Triples 

Searching

Query Related Triples 

Extracting and Fusion

Question Answering with Triples

Answer prediction

Extract Entities Contained in the Question

Entity 

Extraction

Entity from 

Question

KG from 

Content

Question

Entity

KG

Figure 2: Framework of the TQA-KG approach. The left side shows course content and a
question from the CK12-QA dataset, the middle side shows constructing the KG
through the course content and extracting entities from the question, and the far
right side shows combining the KG with the LLMs to enhance the accuracy of
the prediction results ultimately.

Extensive experiments are conducted on the CK12-QA dataset (Kembhavi et al., 2016).
The results of both experiments show the effectiveness and high inference speed of TQA-KG
by outperforming the current state-of-the-art methods.

To summarize, the contributions of this work are as follows:

• We propose the TQA-KG approach that can be applied to LLMs as an additional
component. Combining LLMs with KG improves the performance and inference speed
of LLMs on the TQA task.

• To evaluate the effectiveness of TQA-KG, we conducted extensive experiments on
the CK12-QA dataset and compared our results with other methods. Experimental
results demonstrate the superiority of our method in improving answer accuracy.

• We are the first to explore and analyze the effect of incorporating LLM in TQA tasks.

2. Related Work

2.1. TQA Task

The earliest research on the TQA task was started by (Kembhavi et al., 2017), which
presented the CK12-QA dataset, consisted of 1,076 lessons and 26,260 non-diagram and
diagram problems taken from a secondary school science curriculum. They used the BiDAF
model (Seo et al., 2016) and VQA model, which had better performance at the time, to
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test the non-diagram and diagram problems respectively, and completed the baseline of
the TQA dataset. Since then there has been a lot of work around TQA as well, e.g.,
XTQA focuses on improving the interpretability of the answers of the TQA system, and
DDGNet (Wang et al., 2023) performs question-guided multi-step inference on the dynamic
directed Diagram Graph Network (DGN) and Textual Graph Networks (TGN) to improve
the performance of the TQA task. MoCA (Xu et al., 2023) combines multi-stage domain
pre-training and cross-directed multi-modal attention for the TQA task.

2.2. LLM-augmented KG Construction

LLMs have great potential in the field of KG generation. In recent years, (Yao et al., 2023)
introduced an innovative framework called Knowledge Graph LLM (KG-LLM), through
which triples are modeled. KG-LLM employs entity-relationship triples as prompts, and
predictions are made through responses, which ultimately lead to KG completion. On the
other hand, (Meyer et al., 2023), proposed the first LLM Knowledge Graph Engineering
(KGE) benchmarking framework, LLMKG-Bench, which provides an automated and con-
tinuous evaluation platform for different tasks in KGE scenarios. (Carta et al., 2023) use
generative LLMs (such as GPT-4) to construct KG, and complete the construction of text
to KG under zero-shot conditions through an iterative method. (Ning and Liu, 2024) intro-
duced UrbanKGent, a unified framework using a large language model agent to automate
the construction of urban knowledge graphs, and demonstrates its practical applicability
by providing richer urban knowledge graphs with reduced data requirements.

2.3. KG-enhanced LLM Inference

Although LLMs have powerful natural language understanding capabilities, the “hallucina-
tion” problem has been a great challenge in using LLMs (Ji et al., 2023). In recent years,
many approaches have been proposed to solve the hallucination problem in LLMs, among
which KG-enhanced LLMs have become a promising solution. Based on the semantic sim-
ilarity between a question and its associated facts, KAPING (Baek et al., 2023) retrieves
facts related to the input question from a knowledge graph and adds them to the input
question to generate a more accurate answer. (Wen et al., 2023) built a cueing pipeline to
enable LLMs to understand KG inputs and reason by combining the hidden knowledge with
the retrieved external knowledge. (Sun et al., 2023) proposed a new LLM-KG integration
paradigm “LLM⊗KG”. It treats the LLM as an agent that interactively explores relevant
entities and relationships with the KG and reasons based on the retrieved knowledge.

3. Methodology

3.1. Overall

We describe the TQA-KG method in detail in the following. In Section 3.2, we delineate
the application of LLMs for the extraction and generation of KG from the textual content
of textbooks. Section 3.3 will introduce the direct application of textbook texts as raw-
context to enhance LLM responses. And in Section 3.4, we present the TQA-KG method,
which combines LLMs with the generated KG to achieve high-quality Textbook Question
Answering.
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3.2. KG Extraction and Construction

Inspired by previous work (Trajanoska et al., 2023), we decided to split the big task of KG
extraction and construction into three small tasks, namely, segmenting long text, extracting
entities, and extracting entity relationships, to better utilize the performance of LLMs and
improve the quality of KG construction.

3.2.1. Recursive Segmentation

Long text processing has been a major challenge in the field of large models, so in the first
step of extracting KG, the textbook text is divided by length. Each segmented text is set as
a chunk and takes the chunk as the smallest processing unit of LLMs. At the same time, to
prevent the loss of semantic information of the text due to the segmentation operation, and
also to prevent two related entities from being separated due to the text segmentation, the
chunk is repeatedly sampled by recursive segmentation. Recursive segmentation effectively
diminishes the likelihood of fragmenting two correlated entities by defining text chunks as
partially overlapping sliding windows of the input. This approach illustrates that larger
windows and greater overlaps substantially mitigate the probability of entity separation.

Fig. 3 demonstrates the principle of the recursive segmentation method. On the left
of the image is the original text, highlighted with an underlined example sentence. In the
normal segmentation approach shown in the middle, the underlined example sentence is split
across different chunks, resulting in a loss of semantic integrity. On the right, the recursive
segmentation method repeatedly samples the last n characters in the sliding window of
the chunk (indicated by text in the same color), ensuring that the example sentence is
wholly contained within one chunk, thus preserving its semantic integrity. In this way,
the excessively long textbook text can be transformed into a series of chunks without losing
semantic information. For our study, we adopted a resampling ratio commonly used in most
RAG work, which is 20% of the original chunk length. For instance, if the text length is
500, the resampled text length before and after the chunk would be 100.

3.2.2. Extract Entities and Relationships

Some previous work, such as BEAR (Yu et al., 2023) attempted to directly extract KG
triples in text end-to-end using LLMs, allowing LLMs to output the extracted pairs of
entities and the relationships between the entities at once. In contrast, the traditional
manual method of constructing KG involves extracting the entities first and only then
looking for the relationships between the entities (Lehmann et al., 2015). Inspired by
this, we decided to separate the extraction of entities and the extraction of inter-entity
relationships and designed a set of prompts for extracting entities, and entity relationships.
A chunk is the smallest unit of knowledge graph construction so the same chunk is operated
twice in an iterative manner.

First, the chunk is fed into the LLMs, and based on the prompt engineering, the LLMs
return a list of entities extracted from the chunk, and the length of each chunk is limited
due to the text segmentation operation that has been performed.

Then the chunk and the extracted list of entities are re-fed together to LLMs, which
is prompted to find the semantic relationship between each two entities in the text of the
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……Windchill is what the temperature feels like 

when the wind is taken into account. It depends 

on air temperature and wind speed. Higher win-

dchill will cause a person to suffer frostbite and 

other harmful effects of cold sooner than if the 

wind isn't blowing. Some places receive very 

heavy snowfall just about every winter. If they 

are near a lake, they may be getting lake-effect 

snow. Winter winds pick up moisture as they 

pass over the relatively warm waters of a large 

lake When the winds reach the cold land on the 

other side, the air cools. Since there was so much 

moisture in the air it can drop a lot of. ……

Original Text Recursive SegmentationNormal Segmentation

Chunk 1

Chunk 2

Chunk 3

snowfall just about every winter. If they are near a 

lake, they may be getting lake-effect snow. Winter 

winds pick up moisture as they pass over 

will cause a person to suffer frostbite and other 

harmful effects of cold sooner than if the wind isn't 

blowing. Some places receive very heavy

Windchill is what the temperature feels like when 

the wind is taken into account. It depends on air 

temperature and wind speed. Higher windchill

Chunk 1

Chunk 2

Chunk 3

the wind isn't blowing. Some places receive very 

heavy snowfall just about every winter. If they are 

near a lake, they may be getting

and wind speed. Higher windchill will cause a 

person to suffer frostbite and other harmful effects 

of cold sooner than if the wind isn't blowing. Some

Windchill is what the temperature feels like when 

the wind is taken into account. It depends on air 

temperature and wind speed. Higher windchill

Figure 3: The original text is in the left block, with an example sentence marked by an
underline. The middle block depicts a conventional segmentation approach, while
the right block shows the recursive segmentation method, where text in the same
color represents parts that have been resampled.

chunk and output it in the form of a triple. This completes the construction of a KG triple
for a chunk. The resultant KG is systematically structured and stored in the form of triples.

3.3. Raw-context-enhanced LLM Inference

The TQA dataset comprises two main components: textbook content enriched with mul-
timodal information and the questions designed based on this content. For the current
experiment employing the CK12-QA dataset, each data entry includes an indeterminate
number of textbook passages ranging from 1 to 21, alongside 1 to 34 variably numbered
questions. The raw-context based prompting method involves concatenating all textual
content from the textbook within each data entry to form a raw-context. This raw-context
is then utilized as supplementary material in conjunction with the questions when input
into the LLMs for the prediction of answers.

3.4. KG-enhanced LLM Inference

Retrieval-augmented generation models (e.g., RAG and RALM (Liu et al., 2019)) provide
context-awareness of documents when dealing with knowledge-intensive tasks. By extend-
ing the knowledge scope of the model and providing context-aware documents, the KG-
augmented retrieval technique helps to mitigate the illusion problem in LLMs. With the
help of KG, LLMs are able to consider contextual information and external knowledge more
comprehensively, which reduces the possibility of error generation and improves the quality
and accuracy of the generated text (Agrawal et al., 2023).

This paper employs the RAG methods to develop the TQA-KG method, as illustrated
in Fig. 2. Initially, the textbook question is input into the LLM, which employs the pre-
viously delineated “Entity Extraction” method to identify a list of entities associated with
the question. Subsequently, each entity on this list is matched with nodes from the con-
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structed KG. Upon successful matching, all triples containing the corresponding node are
extracted. The RAG method was initially utilized, whereby all extracted triples, along
with the question, were input into the LLM for further processing. However, due to the
large number of extracted triples and not all of them are complementary knowledge re-
lated to the problem. Consequently, requiring the LLMs to process a substantial volume of
triples while simultaneously addressing a question could not only compromise the quality
of the LLM’s responses but also hinder its problem-solving capabilities. This interference
stems from the incorporation of superfluous knowledge from triples that are irrelevant to
the posed question, thereby detracting from the efficiency of its computational processes.
So we decompose the complex task into:

• Initially, the KG is queried based on entities extracted from the question, resulting in
the derivation of a subset referred to as sub-KG1.

• Subsequently, this subset (sub-KG1) is further refined using a LLM. The sub-KG1,
along with the original question, is then input into the LLM, which is tasked with
generating a more focused subset, sub-KG2, exclusively pertinent to the question.

• The final step involves inputting sub-KG2, along with the question, back into the LLM,
which is then responsible for predicting the answer based on the refined knowledge
graph information.

Ultimately, this methodology enables the LLM to sequentially complete the task and accu-
rately predict the answer to the question.

4. Experiment

4.1. Experimental Setting

4.1.1. Dataset and Evaluations

Currently, there are two mainstream datasets for the TQA task, namely CK12-QA and
AI2D (Kembhavi et al., 2016). Since all the data in the AI2D dataset are diagram questions
and this paper only discusses non-diagram questions, the non-diagram questions in the
CK12-QA dataset are finally used. The CK12-QA dataset is drawn from middle school
science curricula. It consists of 1,076 lessons from Life Science, Earth Science, and Physical
Science textbooks. This includes 26,260 questions, of which 12,567 have an accompanying
diagram. In addition to the diagram questions, there are 13,693 non-diagram questions,
which are divided into two categories: multiple-choice questions with 4-7 choices, and true-
false questions with only two choices. To assess the effectiveness of the TQA-KG method,
we have prepared four sets of tests using the original LLM, the LLM fine-tuned with the
CK12-QA dataset, and the LLM employing the TQA-KG method and raw-context method.
The evaluation will be based on the accuracy of matching the predicted results with the
ground truth.

4.1.2. Implementation Details

To ensure fairness, the task of constructing the knowledge graph was carried out by a non-
test model, ChatGPT-3.5 (Ouyang et al., 2024). All our test models are implemented in
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the Ollama framework1 for inference and use llamafactory (Zheng et al., 2024) for instruc-
tion fine-tuning. We use the LoRA fine-tuning method (Hu et al., 2021) with the specific
parameters Learning rate of 5e-5, training epochs of 3, Maximum gradient norm of 1.0,
Max samples of 100000, Batch size of 2, and LR scheduler of cosine. After fine-tuning, the
model was reloaded into Ollama for test use. As for the main hardware information of the
experimental server, the CPU model is Intel(R) Xeon(R) Silver 4410Y, the RAM is 124G,
and the graphics card model is one NVIDIA RTX A6000.

4.1.3. Baseline Model

In order to demonstrate the effectiveness of our TQA-KG method, we used several LLMs
for baseline testing, while due to hardware performance limitations, we selected most of the
models with 7-8B parameters and a 13B Llama 2 as an additional reference, respectively,
as shown below:

Llama 2(7/13B): Llama 2 is released by Meta Platforms, Inc. This model is trained on
2 trillion tokens, and by default supports a context length of 4096. Llama 2 Chat models
are fine-tuned on over 1 million human annotations and are made for chat.

Llama 3(8B): Llama 3 instruction-tuned models are fine-tuned and optimized for di-
alogue/chat use cases and outperform many of the available open-source chat models on
common benchmarks.

Mistral(7B): Mistral is a 7.3B parameter model, distributed with the Apache license. It
is available in both instruct (instruction following) and text completion.

Zephyr(7B): Zephyr is a series of fine-tuned versions of the Mistral and Mixtral models
that are trained to act as helpful assistants.

Gemma(7B): Gemma is a new open model developed by Google and its DeepMind team.
It’s inspired by Gemini models at Google.

4.2. Constructing Datasets for LLM Instruction Fine-tuning

Instruction tuning LLMs for specific tasks or domains is an effective strategy to enhance
the model’s capabilities and augment its knowledge repository within that particular ver-
tical (Gupta et al., 2023). Since the ultimate goal is a QA task, we decided to build a QA
dialog dataset based on the textbook text of the CK12-QA. This dataset is used to teach the
knowledge of the textbook text, as well as the Q&A approach in an instruction fine-tuned
manner to the LLMs. First, utilize the strong reading comprehension and role-playing abil-
ity of the LLMs by following the “play-as-playwrights” instruction technique (Zhang et al.,
2024), which allows the LLMs to act as a scriptwriter, fictionalizing two conversation users,
the two users have a knowledge quiz based on the textual content of the textbook, and the
quizzed dialog content, i.e., the final QA dialog dataset. Then fine-tune the LLMs with
instructions on the alpaca gpt4 en dataset (Peng et al., 2023) and generated QA dialog
dataset from train and validation set to get our TQA task LLMs. Table 1. shows the
number of QA dialogue datasets finally obtained.

1. https://ollama.com/

https://ollama.com/
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CK12-QA QA dialog

train set 22992
val set 6847
test set 7330

Table 1: The number of dialogue datasets extracted from CK12-QA.

4.3. Results on KG Construction

As illustrated in Table 2, a total of 30,499 entities and 58,933 relationships were extracted
from the three parts of the CK12-QA dataset. On average, each chunk yielded 2.17 entities
and 4.18 edges, with the average lengths of entities and relationships being 11.3 and 70
characters, respectively. With the least possible information loss, we transformed the min-
imal information units from original chunks of 500 characters into knowledge graph triples
with an average length of 92.6 characters. This reduction to 18.52% of the original chunk
volume decreased irrelevant noise within the minimal information units and focused more
sharply on the information pertaining to individual knowledge points, rather than including
two to three knowledge points typically found in a chunk.

CK12-QA chunks nodes edges

train set 8757 16774 35925
val set 2509 6163 10812
test set 2816 7562 12196

Table 2: The number of triplets extracted from CK12-QA.

4.4. Results on CK12-QA

We conducted evaluations on six different models using the CK12-QA dataset, From Fig-
ure 4, we can observe that both the TQA-KG and the raw-context methods substantially
surpass the baseline results, demonstrating that with the aid of additional pertinent infor-
mation, the LLMs is capable of more accurately responding to relevant questions. Further-
more, the accuracy of the TQA-KG method is on average 0.89% higher than that of the
raw-context method. This suggests that the TQA-KG method not only condenses infor-
mation but also achieves an average performance comparable to the raw-context method.
TQA-KG extracts knowledge from textbook texts in the form of triples, eliminating in-
effective and redundant noise. This approach maintains the essential knowledge needed
to answer questions while streamlining the information. Moreover, compared to the raw-
context method, which has an average character length of 4647.9, the average length of
triples retrieved for each question is only 1032.7, constituting 22.2% of the former. This
reduction in information simplifies the prompt’s token length, thereby allowing for stable
performance even on large models with smaller contextual windows, without the issues of
model inefficiency due to exceeding the contextual window with the raw-context length.
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baseline raw-context TQA-KG

Figure 4: The results of six models on three settings, baseline, raw-context and TQA-KG
on the validation set. These three methods are training-free. The results are
presented in percentage (%)

Table 3, demonstrates that the LLMs incorporating the TQA-KG method outperform
both the baseline and fine-tuned models. Specifically, the TQA-KG method exhibited a
minimum increase in accuracy of 1.21% on the Non-Diagram True/False (ND T/F) question
type and a similar increase of 5.31% on the Non-DiagramMultiple Choice (NDMC) question
type. It is evident that the baseline model, lacking any supplementary information, relies
solely on the knowledge retained during its pre-training phase. Consequently, when faced
with questions in a new domain, this model often lacks sufficient reference information,
leading to the generation of incorrect answers. In contrast, the TQA-KG method enhances
the large model’s comprehension of the questions by integrating relevant knowledge graph
triples, thereby enabling the model to respond to questions more accurately and effectively.

Additionally, we also employed the instruction tuning dataset, extracted as mentioned
previously, to fine-tune the baseline model. This approach was intended to evaluate the gap
between the TQA-KG method and traditional fine-tuning techniques. As shown in Table 3,
the TQA-KG method consistently outperformed the instruction tuning method, showing a
minimum increase in accuracy of 2.63%/1.06% for the ND T/F and ND MC question types,
respectively. This indicates that the domain knowledge infused into the model through
instruction tuning is often limited, and the results suggest that our proposed TQA-KG
method utilizes knowledge more effectively than instruction tuning.

Overall, as shown in Fig. 5, the TQA-KG method leverages structured information
from KG to enhance LLMs, achieving an average accuracy improvement of 5.67% over
the baseline model. The Llama 2(13b) model, in particular, demonstrated an increase in
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ND T/F Gemma Llama 2(7B) Llama 2(13B) Llama 3 Mistral Zephyr average

baseline 62.61 63.05 65.35 73.36 71.16 73.68 68.20
fine-tine 67.76 55.26 57.89 65.57 69.52 64.04 63.34

TQA-KG(ours) 70.39 70.07 74.67 74.56 79.82 78.40 74.65

ND MC Gemma Llama 2(7B) Llama 2(13B) Llama 3 Mistral Zephyr average

baseline 53.19 40.00 49.19 65.31 57.88 57.81 53.90
fine-tine 57.50 31.50 42.88 64.56 64.88 57.25 53.09

TQA-KG(ours) 58.56 45.31 58.69 71.00 66.63 67.88 61.34

Table 3: Results of three methods on the CK12-QA test dataset. The prediction accu-
racy (%) of the three methods under the two question types of ND T/F and ND
MC are reported.

Gemma Llama 2(7B) Llama 2(13B) Llama 3 Mistral Zephyr average
Model

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

56.61

48.37

55.06

68.23
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59.09
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66.56

59.71
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54.30

64.49
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66.18

baseline fine-tine TQA-KG

Figure 5: The results on the CK12-QA test data of three methods are reported. The TQA-
KG method consistently yields the best results across all six models.

accuracy by 9.43%, significantly enhancing the quality of task completion for the TQA tasks.
In Table 4, compared to previous works that utilized small-scale neural networks, the TQA-
KG method achieved the best performance, demonstrating both the superior applicability
of large models in this task domain and the effectiveness of the TQA-KG approach.
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Work Years Validation Test

MemN (Kembhavi et al., 2017) 2017 38.83 -
F-GCN (Kim et al., 2019) 2018 54.75 -

ISAAQ (Gomez-Perez and Ortega, 2020) 2020 71.76 72.13
XTQA (Ma et al., 2023a) 2020 41.32 41.67
RAFR (Ma et al., 2023b) 2021 43.35 41.03

DDGNet (Wang et al., 2023) 2023 41.62 41.96

TQA-KG(ours) 2024 74.56 72.29

Table 4: The results of the prediction accuracy (%) on the CK12-QA dataset of our method
and other works.

5. Conclusion and Future Work

This article presents a novel methodology termed TQA-KG, which effectively integrates
Large Language Models with Knowledge Graphs. This synergistic approach leverages the
computational power of LLMs to facilitate the construction of KGs and subsequently em-
ploys these knowledge graphs to refine and enhance the outputs of the LLMs. This dual-
faceted strategy addresses the critical need for heightened accuracy in TQA tasks and broad-
ens the scope of applying integrated frameworks of large models and knowledge graphs in
complex problem-solving scenarios. Looking ahead, our future research endeavors will focus
on further exploring the potential of knowledge graphs to augment the capabilities of large
models, enhancing their utility across a broader spectrum of applications.
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