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ABSTRACT

Recent research has proposed neural architectures for solving combinatorial prob-
lems in structured output spaces. In many such problems, there may exist multiple
solutions for a given input, e.g. a partially filled Sudoku puzzle may have many
completions satisfying all constraints. Further, we are often interested in finding
any one of the possible solutions, without any preference between them. Existing
approaches completely ignore this solution multiplicity. In this paper, we argue
that being oblivious to the presence of multiple solutions can severely hamper their
training ability. Our contribution is two fold. First, we formally define the task of
learning one-of-many solutions for combinatorial problems in structured output
spaces, which is applicable for solving several problems of interest such as N-
Queens, and Sudoku. Second, we present a generic learning framework that adapts
an existing prediction network for a combinatorial problem to handle solution
multiplicity. Our framework uses a selection module, whose goal is to dynamically
determine, for every input, the solution that is most effective for training the net-
work parameters in any given learning iteration. We propose an RL based approach
to jointly train the selection module with the prediction network. Experiments on
three different domains, and using two different prediction networks, demonstrate
that our framework significantly improves the accuracy in our setting, obtaining up
to 21 pt gain over the baselines.

1 INTRODUCTION

Neural networks have become the de-facto standard for solving perceptual tasks over low level
representations, such as pixels in an image or audio signals. Recent research has also explored their
application for solving symbolic reasoning tasks, requiring higher level inferences, such as neural
theorem proving (Rocktischel et al.| 2015} Evans & Grefenstette, 2018} [Minervini et al.| |2020), and
playing blocks world (Dong et al.,|2019). The advantage of neural models for these tasks is that
it will create a unified, end-to-end trainable representation for integrated Al systems that combine
perceptual and high level reasoning. Our paper focuses on one such high level reasoning task — solving
combinatorial problems in structured output spaces, e.g., solving a Sudoku or N-Queens puzzle.
These can be thought of as Constraint Satisfaction problems (CSPs) where the underlying constraints
are not explicitly available, and need to be learned from training data. We focus on learning such
constraints by a non-autoregressive neural model where variables in the structured output space are
decoded simultaneously (and therefore independently). Notably, most of the current state-of-the-art
neural models for solving combinatorial problems, e.g., SATNET (Wang et al.;|2019), RRN (Palm
et al.,[2018)), NLM (Dong et al., 2019), work with non autoregressive architectures because of their
high efficiency of training and inference, since they do not have to decode the solution sequentially.

One of the key characteristics of such problems is solution multiplicity — there could be many correct
solutions for any given input, even though we may be interested in finding any one of these solutions.
For example, in a game of Sudoku with only 16 digits filled, there are always multiple correct solutions
(McGuire et al.||2012), and obtaining any one of them suffices for solving Sudoku. Unfortunately,
existing literature has completely ignored solution multiplicity, resulting in sub-optimally trained
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networks. Our preliminary analysis of a state-of-the-art neural Sudoku solver (Palm et al.; 2018
which trains and tests on instances with single solutions, showed that it achieves a high accuracy of
96% on instances with single solution, but the accuracy drops to less than 25%, when tested on inputs
that have multiple solutions. Intuitively, the challenge comes from the fact that (a) there could be a
very large number of possible solutions for a given input, and (b) the solutions may be highly varied.
For example, a 16-givens Sudoku puzzle could have as many as 10,000 solutions, with maximum
hamming distance between any two solutions being 61. Hence, we argue that an explicit modeling
effort is required to represent this solution multiplicity.

As the first contribution of our work, we formally define the novel problem of One-of-Many Learning
(1oML). It is given training data of the form {(x;, Yx, )}, where Yy, denotes a subset of all correct
outputs Vy, associated with input x;. The goal of 10ML is to learn a function f such that, for any
input x, f(x) =y for some y € ). We show that a naive strategy that uses separate loss terms for
each (x;, yij) pair where y;; € Yy, can result in a bad likelihood objective. Next, we introduce a
multiplicity aware loss (CC-L0SS) and demonstrate its limitations for non-autoregressive models
on structured output spaces. In response, we present our first-cut approach, MINLOSS, which picks
up the single yj; closest to the prediction y; based on the current parameters of prediction network
(base architecture for function f), and uses it to compute and back-propagate the loss for that training
sample x;. Though significantly better than naive training, through a simple example, we demonstrate
that MINLOSS can be sub-optimal in certain scenarios, due to its inability to pick a y;; based on
global characteristics of solution space.

To alleviate the issues with MINLOSS, we present two exploration based techniques, I-EXPLR
and SELECTR, that select a y;; in a non-greedy fashion, unlike MINLOSS. Both techniques are
generic in the sense that they can work with any prediction network for the given problem. I-EXPLR
relies on the prediction network itself for selecting y;;, whereas SELECTR is an RL based learning
framework which uses a selection module to decide which y;; should be picked for a given input
x;, for back-propagating the loss in the next iteration. The SELECTR’s selection module is trained
jointly along with the prediction network using reinforcement learning, thus allowing us to trade-off
exploration and exploitation in selecting the optimum y;; by learning a probability distribution over
the space of possible y;;’s for any given input x;.

We experiment on three CSPs: N-Queens, Futoshiki, and Sudoku. Our prediction networks for the
first two problems are constructed using Neural Logic Machines (Dong et al.,[2019)), and for Sudoku,
we use a state-of-the-art neural solver based on Recurrent Relational Networks (Palm et al.| 2018]). In
all three problems, our experiments demonstrate that SELECTR vastly outperforms naive baselines
by up to 21 pts, underscoring the value of explicitly modeling solution multiplicity. SELECTR also
consistently improves on other multiplicity aware methods, viz. CC-L0ss, MINLOSS, and I-EXPLR.

2 BACKGROUND AND RELATED WORK

Related ML Models: There are a few learning scenarios within weak supervision which may appear
similar to the setting of 1oML, but are actually different from it. We first discuss them briefly. ‘Partial
Label Learning’ (PLL) (Jin & Ghahramani, [2002; |Cour et al., 2011} Xu et al., [2019; Feng & Anl,
2019; (Cabannes et al., [2020) involves learning from the training data where, for each input, a noisy
set of candidate labels is given amongst which only one label is correct. This is different from 1oML
in which there is no training noise and all the solutions in the solution set Yy for a given x are
correct. Though some of the recent approaches to tackle ambiguity in PLL (Cabannes et al., 2020)
may be similar to our methods, i.e., MINLOSS , by the way of deciding which solution in the target
set should be picked next for training, the motivations are quite different. Similarly, in the older
work by (Jin & Ghahramani, [2002)), the EM model, where the loss for each candidate is weighted
by the probability assigned to that candidate by the model itself, can be seen as a naive exploration
based approach, applied to a very different setting. In PLL, the objective is to select the correct
label out of many incorrect ones to reduce training noise, whereas in 10ML, selecting only one label
for training provably improves the learnability and there is no question of reducing noise as all the
labels are correct. Further, most of the previous work on PLL considers classification over a discrete
output space with, say, L labels, where as in 10ML, we work with structured output spaces, e.g.,
an r dimensional vector space where each dimension represents a discrete space of L labels. This
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exponentially increases the size of the output space, making it intractable to enumerate all possible
solutions as is typically done in existing approaches for PLL (Jin & Ghahramani, [2002]).

Within weak supervision, the work on ‘Multi Instance Learning’ (MIL) approach for Relation
Extraction (RE) employs a selection module to pick a set of sentences to be used for training a
relation classifier, given a set of noisy relation labels (Feng et al., 2018 [Qin et al., [2018). This is
different from us where multiplicity is associated with any given input, not with a class (relation).

Other than weak supervision, 1o0ML should also not be confused with the problems in the space of
multi-label learning (Tsoumakas & Katakis| 2007). In multi-label learning, given a solution set Y«
for each input x, the goal is to correctly predict each possible solution in the set Yy for x. Typically,
a classifier is learned for each of the possible labels separately. On the other hand, in 1oML, the
objective is to learn any one of the correct solutions for a given input, and a single classifier is learned.
The characteristics of the two problems are quite different, and hence, also the solution approaches.
As we show later, the two settings lead to requirements for different kinds of generalization losses.

Solution Multiplicity in Other Settings: There is some prior work related to our problem of solution
multiplicity, albeit in different settings. An example is the task of video-prediction, where there can
be multiple next frames (y;;) for a given partial video x; (Henaff et al.,2017;|Denton & Fergus, [2018)).
The multiplicity of solutions here arises from the underlying uncertainty rather than as a inherent
characteristic of the domain itself. Current approaches model the final prediction as a combination
of the deterministic part oblivious to uncertainty, and a non-determinstic part caused by uncertainty.
There is no such separation in our case since each solution is inherently different from others.

Another line of work, which comes close to ours is the task of Neural Program Synthesis (Devlin
et al., 2017; Bunel et al., [2018). Given a set of Input-Output (IO) pairs, the goal is to generate a
valid program conforming to the IO specifications. For a given 1O pair, there could be multiple
valid programs, and often, training data may only have one (or a few) of them. Bunel et al.| (2018)
propose a solution where they define an alternate RL based loss using the correctness of the generated
program on a subset of held out 1O pairs as reward. In our setting, in the absence of the constraints
(or rules) of the CSP, there is no such additional signal available for training outside the subset of
targets Yy for an input x.

It would also be worthwhile to mention other tasks such as Neural Machine translation (Bahdanau
et al.| 20155 Sutskever et al.,|2014), Summarization (Nallapati et al.,[2017; [Paulus et al., |2018), Image
Captioning (Vinyals et al., [2017;|You et al.| 2016) efc., where one would expect to have multiple
valid solutions for any given input. E.g., for a given sentence in language A, there could be multiple
valid translations in language B. To the best of our knowledge, existing literature ignores solution
multiplicity in such problems, and simply trains on all possible given labels for any given input.

Models for Symbolic Reasoning: Our work follows the line of recent research, which proposes
neural architectures for implicit symbolic and relational reasoning problems (Santoro et al., 2018}
Palm et al., 2018 |Wang et al., 2019;Dong et al.| 2019). We experiment with two architectures as base
prediction networks: Neural Logic Machines (NLMs) (Dong et al.|2019), and Recurrent Relational
Networks (RRNs) (Palm et al., 2018). NLMs allow learning of first-order logic rules expressed as
Horn Clauses over a set of predicates, making them amenable to transfer over different domain sizes.
The rules are instantiated over a given set of objects, where the groundings are represented as tensors
in the neural space over which logical rules operate. RRNs use a graph neural network to learn
relationships between symbols represented as nodes in the graph, and have been shown to be good at
problems that require multiple steps of symbolic reasoning.

3 THEORY AND ALGORITHM

3.1 PROBLEM DEFINITION

Notation: Each possible solution (target) for an input (query) x is denoted by an r-dimensional vector
y € V", where each element of y takes values from a discrete space denoted by V. Let Y = V",
and let )y denote the set of all solutions associated with input x. We will use the term solution
multiplicity to refer to the fact that there could be multiple possible solutions y for a given input x. In
our setting, the solutions in Vx span a structured combinatorial subspace of V", and can be thought
of as representing solutions to an underlying Constraint Satisfaction Problem (CSP). For example in
N-Queens, x would denote a partially filled board, and y denote a solution for the input board.
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Given a set of inputs x; along with a subset of associated solutions Yy, C Yx,, i.e., given a set of
(xi, Yy, ) pairs, we are interested in learning a mapping from x to any one y among many possible
solutions for x. Formally, we define the One-of-Many-Learning (1o0ML) problem as follows.

Definition 1. Given training data D of the form, {(xi, Yx,) }i",, where Y, denotes a subset of
solutions associated with input x;, and m is the size of training dataset, One-of-Many-Learning
(1oML) is defined as the problem of learning a function f such that, for any input x, f(x) =y for
some'y € Yy, where Yy is the set of all solutions associated with x.

We use parameterized neural networks to represent our mapping function. We use Mg to denote
a non-autoregressive network M with associated set of parameters ©. We use y; (¥) to denote the
network output corresponding to input x; (x), i.e., ¥; (¥) is the arg max of the learnt conditional
distribution over the output space ) given the input x; (x). We are interested in finding a ©* that
solves the 10ML problem as defined above. Next, we consider various formulations for the same.

3.2 OBIECTIVE FUNCTION

Naive Objective: In the absence of solution multiplicity, i.e. when target set Yy, = {yi}, Vi, the
standard method to train such models is to minimize the total loss, L(©) = >:" | lo (¥, yi), where
lo(¥i,yi) is the loss between the prediction y; and the unique target y; for the input x;. We find the
optimal ©* as argming L(©). A Naive extension of this for 1oML would be to sum the loss over all
targets in Yy, i.e., minimize the following loss function:

1 & A
L(®) = ooy Z z lo(¥iyi5) )
i=1yj; EYxi

We observe that loss function in eq. (I)) would unnecessarily penalize the model when dealing with
solution multiplicity. Even when it is correctly predicting one of the targets for an input x;, the loss
with respect to the other targets in Yy, could be rather high, hence misguiding the training process.
Example [T|below demonstrates such a case. For illustration, we will use the cross-entropy loss, i.e.,
lo(¥,y) = =2 > H{ylk] = v} log(P(y[k] = v1)), where v; € V varies over the elements of V,
and k indices over r dimensions in the solution space. y[k] denotes the k'" element of y.

Example 1. Consider a learning problem over a discrete (Boolean) input space X = {0,1} and
Boolean target space in two dimensions, i.e., Y = V" = {0,1}2. Let this be a trivial learning
problem where Vx, the solution set is Yx = {(0, 1), (1,0)}. Then, given a set of examples {xi, Y, },
the Naive objective (with lg as cross entropy) will be minimized, when P(yi[k] = 0) = P(yi[k] =
1) = 0.5, for k € {1, 2}, Vi, which can not recover either of the desired solutions: (0, 1) or (1,0).

The problem arises from the fact that when dealing with 10ML, the training loss defined in eq. (T) is
no longer a consistent predictor of the generalization error as formalized below.

Lemma 1. The training loss L(©) as defined in eq. @) is an inconsistent estimator of generalization
error for LoML, when lg is a zero-one loss, i.e., lo(yi,yi;) = 1{¥yi # yij}- (Proof in .

For the task of PLL, Jin & Ghahramani|(2002) propose a modification of the cross entropy loss to
tackle multiplicity of labels in the training data. Instead of adding the log probabilities, it maximizes

the log of total probability over the given target set. Inspired by [Feng et al.| (2020), we call it CC-

LOsS: L. (©) = =2 31" log (ZYijeri Pr (yi;|xi; @)) However, in the case of structured

m 1
prediction, optimizing L., requires careful implementation due to its numerical instability (see
[Appendix)). Moreover, for non-autoregressive models, CC-LOSS also suffers from the same issues
illustrated in example [I] for naive objective.

New Objective: We now motivate a better objective function based on an unbiased estimator. In
general, we would like Mg to learn a conditional probability distribution Pr(y|x;; ©) over the output
space ) such that the entire probability mass is concentrated on the desired solution set Yy, i.e.,
Zy;jeYXi Pr(y;lxi; ©) = 1, Vi. If such a conditional distribution is learnt, then we can easily
sample a y;; € Y, from it. CC-LOSS is indeed trying to achieve this. However, ours being a

structured output space, it is intractable to represent all possible joint distributions over the possible
solutions in Yy,, especially for non-autoregressive model

2 Autoregressive models may have the capacity to represent certain class of non-trivial joint distributions,
e.g., Pr(y[l], y[2]|x) could be modeled as Pr(y[1]|x)Pr(y[2]|y[1]; ), but requires sequential decoding during
inference. Studying the impact of solution multiplicity on autoregressive models is beyond the current scope.
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Hence, we instead design a loss function which forces the model to learn a distribution in which the
probability mass is concentrated on any one of the targets yi; € Yy,. We call such distributions as
one-hot. To do this, we introduce | Yy, | number of new learnable Boolean parameters, w;, for each
query x; in the training data, and correspondingly define the following loss function:

1 « )
Lw(©,w) = — > wile(¥iyy) 2
i=1 Yij EYXi
Here, wi; € {0, 1} and } ; wy; = 1, Vi, where j indices over solutions yj; € Y. The last constraint
over Boolean variables wj; enforces that exactly one of the weights in wj is 1 and all others are zero.
Lemma 2. Under the assumption Yx, = Vx,, Vi, the loss L'(©) = miny Ly (0, w), defined as
the minimum value of Ly (©, w) (defined in eq. (2)) with respect to w, is a consistent estimator of
generalization error for LoML, when lg is a zero-one loss, i.e., lo(¥i,yi5) = 1{¥i # ¥ij}-
We refer to for details. Next, we define our new objective as:
Y|
min Ly, (0, w) s.t. w;; € {0,1} Vi, Vj and Z wijy=1VvVi=1...m 3)
o,w —y
j=

3.3 GREEDY FORMULATION: MINLOSS

In this section, we present one possible way to optimize our desired objective ming w Lw (O, W).
It alternates between optimizing over the © parameters, and optimizing over w parameters. While
© parameters are optimized using SGD, the weights w are selected greedily for a given © = O at
each iteration, i.e., it assigns a non-zero weight to the solution corresponding to the minimum loss
amongst all the possible yj; € Y, foreachi=1...m:

(t) . A (t) .
Wy~ = 1 {yij = af%}g{lii [ 0) (yi ,y)} ,Vi=1...m 4)

This can be done by computing the loss with respect to each target, and picking the one which
has the minimum loss. We refer to this approach as MINLOSS. Intuitively, for a given set of ©(*)
parameters, MINLOSS greedily picks the weight vector w;(*), and uses them to get the next set of
O+1 parameters using SGD update.

@(t—H) “— @(t) — a@V@Lw (97 W) |®:®(t)7w:w(t) (5)

One significant challenge with MINLOSS is .
the fact that it chooses the current set of w P(y=1)<0.5 : P(y=1)>0.5

parameters independently for each example X ; : o

based on current © values. While this way of X ! : o

picking the w parameters is optimal if © has ° *x= 085 I ° ‘

reached the optima, i.e. © = ©%, it can lead 2 A : H ] 5

to sub-optimal choices when both © and w 1 =

are being simultaneously trained. Following Figure 1: Decision Boundary learnt by logistic regression

example illustrates this. guided by MINLOSS. Green line at x = 0 is the initial
decision boundary and black vertical line at x = —0.55 is

Example 2. Consider a simple task with the decision boundary at convergence.

a one-dimensional continuous input space

X C R, and target space ) = {0, 1}. Consider learning with 10 examples, given as (x =1, Yy =
{1}) (5 examples), (x = —1,Yx = {0,1}) (4 examples), (x = —2,Yx = {1}) (I example). The
optimal decision hypothesis is given as: y = 1{x > a}, fora < =2, ory = 1{x < 8}, for § > 1.
Assume learning this with logistic regression using MINLOSS as the training algorithm optimizing
the objective in eq. (3). If we initialize the parameters of logistic such that the starting hypothesis
is given by 'y = 1{x > 0} (logistic parameters: 6; = 0.1, 6y = 0), MINLOSS will greedily pick
the target y = 0 for samples with x = —1, repeatedly. This will result in the learning algorithm
converging to the decision hypothesis' y = 1{x > —0.55}, which is sub-optimal since the input with

x = —2 is incorrectly classified (fig. [} see for a detailed discussion).

MINLOSS is not able to achieve the optimum since it greedily picks the target for each query x; based
on current set of parameters and gets stuck in local mimima. This is addressed in the next section.
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3.4 REINFORCEMENT LEARNING FORMULATION: SELECTR

In this section, we will design a training algorithm that fixes some of the issues observed with
MINLoOSsS. Considering the Example 2] above, the main problem with MINLOSS is its inability to
consider alternate targets which may not be greedily optimal at the current set of parameters. A better
strategy will try to explore alternative solutions as a way of reaching better optima, e.g., in example
we could pick, for the input x = —1, the target y = 1 with some non-zero probability, to come out of
the local optima. In the above case, this also happens to be the globally optimal strategy. This is the
key motivation for our RL-based strategy proposed below.

A natural questions arises: how should we
assign the probability of picking a particu- Expected
lar target? A naive approach would use the Reward
probability assigned by the underlying Mg
network as a way of deciding the amount vy €Y.
of exploration on each target y. We call it %Yx
I[-EXPLR. We argue below why this may

not always be an optimal choice.

Selection Module Sy

We note that the amount of exploration re-

quired may depend in complex ways on the Figure 2: Flow-diagram for our RL Framework
global solution landscape, as well as the

current set of parameters. Therefore, we propose a strategy, which makes use of a separate selection
module (a neural network), which takes as input, the current example (x;, Yy, ), and outputs the
probability of picking each target for training © in the next iteration. Our strategy is RL-based since,
we can think of choosing each target (for a given input) as an action that our selection module needs
to take. Our selection module is trained using a reward that captures the quality of selecting the
corresponding target for training the prediction network. We next describe its details.

Selection Module (S3): This is an RL agent or a policy network where the action is to select
a target, yi; € Yy,, for each x;. Given a training sample, (x;, Yx,), it first internally predicts
Vi_ = Mo (x;), using a past copy of the parameters ©_. This prediction is then fed as an input
along with the target set, Yy,, to a latent model, G4, which outputs a probability distribution
Pry(yij), Vys; € Yxg, sty o Pro(yy) = 1. Sy then picks a target §; € Yy, based on the

distribution Prg(yi;) and returns a w; such that Vi, Wy; = 1if y;; = ¥;, and Wi; = 0 otherwise.

Update of ¢ Parameters: The job of the selection module is to pick one target, ¥; € Y, for each
input x;, for training the prediction network Mg. If we were given an oracle to tell us which y; is
most suited for training Me, we would have trained the selection module Sy to match the oracle. In
the absence of such an oracle, we train S, using a reward scheme. Intuitively, y; would be a good
choice for training Mg, if it is “easier” for the model to learn to predict ¥;. In our reward design,
we measure this degree of ease using hamming distance between ¥; and Mg’s prediction ¥, i.e.,
R(¥i,¥i) = >_p—y 1{yi[k] = ¥i[k]}. We note that there are other choices as well for the reward,
e.g., a binary reward, which gives a positive reward of 1 only if the prediction model Mg has learnt
to predict the selected target y;. Our reward scheme is a granular proxy of this binary reward and
makes it easier to get a partial reward even when the binary reward would be 0.

The expected reward for RL can then be written as:
m

R(@) =D > Pry(yy) RFuyi) (6)
i=1 y;;€Yx,;
We make use of policy gradient to compute the derivative of the expected reward with respect to the
¢ parameters. Accordingly, update equation for ¢ can be written as:

oY = 01 + g VyR (9) lp=pir @

Update of © Parameters: Next step is to use the output of the selection module, w; corresponding

to the sampled target y;, Vi, to train the Mg network. The update equation for updating the ©
parameters during next learning iteration can be written as:

0t 0 — agVe Ly (0, W) [o—o® wew® (8)

Instead of backpropagating the loss gradient at a sampled target y;, one could also backpropagate the

gradient of the expected loss given the distribution Prg(y;;). In our experiments, we backpropagate
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through the expected loss since our action space for the selection module Sy is tractable. Figure 2]
represents the overall framework. In the diagram, gradients for updating © flow back through the red
line and gradients for updating ¢ flow back through the green line.

3.5 TRAINING ALGORITHM

We put all the update equations together and describe the key components of our training algorithm
below. Algorithm [I|presents a detailed pseudocode.

Pre-training: It is a common strategy in many

Algorithm 1 Joint Training of Prediction Network RL based approaches to first pre-train the net-

Me & Selection Module S, work weights using a simple strategy. Accord-
ingly, we pre-train both the Mg and Sy net-

o Pre-train © using eq. @) and eq. works before going into joint training. First,

In Selection Module (SM): ©_ < Og . .
¢o < Pre-train ¢ using rewards from Me in eq. we pre-train Me. In our experiments, we ob-
Initialize: £ « 0 serve that in some cases, pre-training Mg us-
while not converged do ing only those samples from training data D
B < Randomly fetch a mini-batch for which there is only a unique solution, i.e.,
foric Bdo {(xi,Yy,) € Dst. Y| = 1} gives bet-
Get weights: w; < S5 ((xi, Yx,),©_) ter performance than pre-training with MIN-
Get model predictions: y; < Mg« (x;) LosS. Therefore, we pre-train using both the
Get rewards: ri < [R(¥i,¥ij), V¥ij € Yxi]  approaches and select the better one based on
end their performance on a held out dev set. Once
Update ¢: Use eq. (7) to get ¢! the prediction network is pre-trained, a copy of
Update ©: Use eq. (8) to get 9 +Y) it is given to the selection module to initialize
Update ©_ « 0"V if t%copyitr = 0 (inSM)  Me_. Keeping © and ©_ fixed and identical to
Increment ¢ «+ t + 1 each other, the latent model, G4, in the selection
end module is pre-trained using the rewards given by
the pre-trained Mg and the internal predictions

given by Mg_.

Joint Training: After pre-training, both prediction network Mg and selection module S, are trained
jointly. In each iteration ¢, selection module first computes the weights, Wi, for each sample in the
mini-batch. The prediction network computes the prediction y} and rewards R(y!, yi;), Vyij € Yx,-
The parameters ¢ and © are updated simultaneously using eq. and eq. (8)), respectively. The
copy of the prediction network within selection module, i.e., Mg_ in Sy, is updated with the latest
parameters O after every copyitr updates where copyitr is a hyper-parameter.

4 EXPERIMENTS

The main goal of our experiments is to evaluate the four multiplicity aware methods: CC-LOSS,
MINLoOSS, informed exploration (I-EXPLR) and RL based exploration (SELECTR), when compared
to baseline approaches that completely disregard the problem of solution multiplicity. We also
wish to assess the performance gap, if any, between queries with a unique solution and those with
many possible solutions. To answer these questions, we conduct experiments on three different tasks
(N-Queens, Futoshiki & Sudoku), trained over two different prediction networks, as described belowE]

4.1 DATASETS AND PREDICTION NETWORKS

N-Queens: Given a query, i.e., a chess-board of size N x N and a placement of £ < N non-attacking
queens on it, the task of N Queens is to place the remaining N — k queens, such that no two queens
are attacking each other. We train a Neural Logic Machine (NLM) model (Dong et al.,[2019) as
the prediction network Mg for solving queries for this task. To model N-Queens within NLM, we
represent a query x and the target y as N2 dimensional Boolean vectors with 1 at locations where a
Queen is placed. We use another smaller NLM architecture as the latent model G .

We train our model on 10—Queens puzzles and test on 11-Queens puzzles, both with 5 placed queens.
This size-invariance in training and test is a key strength of NLM architecture, which we exploit
in our experiments. To generate the train data, we start with all possible valid 10-Queens board
configurations and randomly mask any 5 queens, and then check for all possible valid completions to

3Further details of software environments, hyperparameters and dataset generation are in the appendix.
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generate potentially multiple solutions for an input. Test data is also generated similarly. Training
and testing on different board sizes ensures that no direct information leaks from test to train. Queries
with multiple solutions have 2-6 solutions, so we choose Yy, = JVx,, VX;.

Futoshiki: This is a logic puzzle in which we are given a grid of size N x N, and the goal is to
fill the grid with digits from {1 ... N} such that no digit is repeated in a row or a column. k out of
N2 positions are already filled in the input query x and the remaining N2 — k positions need to be
filled. Further, inequality constraints are specified between some pairs of adjacent grid positions,
which need to be honored in the solution. Our prediction network, and latent model use NLM, and
the details (described in[Appendix) are very similar to that of N-Queens.

Similar to N-Queens, we do size-invariant training — we train our models on 5 x 5 puzzles with 14
missing digits and test on 6 x 6 puzzles with 20 missing digits. Similar to N-Queens, we generate all
possible valid grids and randomly mask out the requisite number of digits to generate train and test
data. For both train and test queries we keep up to five inequality constraints of each type: > and <.

Sudoku: We also experiment on Sudoku, which has been used as the task of choice for many recent
neural reasoning works (Palm et al.| 2018} Wang et al., 2019). We use Relational Recurrent Networks
(RRN) (Palm et al., 2018]) as the prediction network since it has recently shown state-of-the-art
performance on the task. We use a 5 layer CNN as our latent model G . Existing Sudoku datasets
(Royle, 2014; [Park| [2018]), do not expose the issues with solution multiplicity. In response, we
generate our own dataset by starting with a collection of Sudoku puzzles with unique solutions that
have 17 digits filled. We remove one of the digits, thus generating a puzzle, which is guaranteed to
have solution multiplicity. We then randomly add 1 to 18 of the digits back from the solution of the
original puzzle, while ensuring that the query continues to have more than 1 solution. This generates
our set of multi-solution queries with a uniform distribution of filled digits from 17 to 34. We mix an
equal number of unique solution queries (with same filled distribution). Because some x;s may have
hundreds of solutions, we randomly sample 5 of them from Yy, i.e., |Yx,| < 5 in the train set. For
each dataset, we generate a devset in a manner similar to the test set.

Table 1: Statistics of datasets. ‘“Train’, ‘Test’ and task names are abbreviated. Devset similar to test.

| N-Qn (Tr) N-Qn (Tst) | Futo. (Tr) Futo. (Tst) | Sud. (Tr) Sud. (Tst)

# of queries 165,744 10,000 10,000 10,000 20,000 10,000
%age of MS queries 7.04% 16.67% 17.05% 24.95% 50% 50%
Avg solns per MS query 2.1 22 22 24 13.8 13.7

4.2 BASELINES AND EVALUATION METRIC

Our comparison baselines include: (1) Naive: backpropagating L(©) through each solution indepen-
dently using Equation , (2) Unique: computing L(©) only over the subset of training examples
that have a unique solution, and (3) Random: backpropagating L(©) through one arbitrarily picked
solution y; € Yy, for every x; in the train data, and keeping this choice fixed throughout the training.

We separately report performance on two mutually exclusive subsets of test data: OS: queries
with a unique solution, and MS: those with multiple solutions. For all methods, we tune various
hyperparameters (and do early stopping) based on the devset performance. Additional parameters for
the four multiplicity aware methods include the ratio of OS and MS examples in trainingﬂ I-ExPLR
and SELECTR also select the pre-training strategy as described in Section [3.5] For all tasks, we
consider the output of a prediction network as correct only if it is a valid solution for the underlying
CSP. No partial credit is given for guessing parts of the output correctly.

4.3 RESULTS AND DISCUSSION

We report the accuracies across all tasks and models in Table[2] For each setting, we report the mean
over three random runs (with different seeds), and also the accuracy on the best of these runs selected
via the devset (in the parentheses). We first observe that Naive and Random perform significantly
worse than Unigue in all the tasks, not only on MS, but on OS as well. This suggests that, loML
models that explicitly handle solution multiplicity, even if by simply discarding multiple solutions,
are much better than those that do not recognize it at all.

*Futoshiki and N-Queens training datasets have significant OS-MS imbalance (see Table , necessitating
managing this ratio by undersampling OS. This is similar to standard approach in class imbalance problems.
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Table 2: Mean (Max) test accuracy over three runs for multiplicity aware methods compared with
baselines. OS: test queries with only one solution, MS: queries with more than one solution.

Naive Random Unique CC-Loss MiINLoOSs I-EXPLR SELECTR
§ [N 70.59 (70.56)  72.91 (73.86)  75.09 (75.76)  75.31(76.19) 77.29 (78.00) 77.35(79.01)  79.73 (80.12)
2 MS 55.34(60.97) 61.13(61.81) 66.85(69.48) 75.76 (75.36) 77.22(77.82) 79.46 (81.95) 79.68 (82.37)
g Overall 68.04 (68.96) 70.94 (71.85) 73.72 (74.71) 7539 (76.05) 77.28 (77.97)  77.7(79.50)  79.72 (80.50)
2z oS 65.59 (66.8) 6549 (65.22) 67.63(69.49) 77.68 (78.36) 76.78 (78.24) 78.15 (77.96) 78.01 (78.36)
@ MS 14.99 (18.04) 14.22(18.84) 19.13(23.33)  69.3(68.62)  70.35(69.06) 70.88 (73.71) 71.57 (72.42)
E Overall 5296 (54.63) 52.7(53.65) 55.53(57.97) 75.59(75.93) 75.18(75.95) 76.33(76.90) 76.4 (76.88)
2 os 87.85(89.08) 87.53(86.24) 89.19 (90.24) 88.26 (86.78) 88.25(88.22) 88.73(89.62) 88.69 (87.94)
§ MS 09.13 (10.59)  13.65 (16.07) 66.39 (70.20) 76.58 (78.38)  76.93 (78.94) 80.19 (81.45) 81.73 (85.45)
@ Overall 4849 (49.84) 50.59 (51.15) 77.79 (80.22) 82.42(82.58) 82.59 (83.58) 84.46(85.54) 85.21 (86.70)

Predictably, all multiplicity aware methods vastly improve upon the performance of naive baselines,
with a dramatic 13-52 pt gains between Unique and SELECTR on queries with multiple solutions.

Comparing MINLOSS and SELECTR, we find Figure 3: Accuracy vs size of query’s solution set
that our RL-based approach outperforms MIN- (with 95% confidence interval)
Loss consistently, with p-values (computed

using McNemar’s test for the best models se- 5 100

lected based on validation set) of 1.00e—16, o

0.03, and 1.69e—18 for NQueens, Futoshiki and § 80

Sudoku respectively (see for seed- 3

wise comparisons of gains across tasks). On =

the other hand, informed exploration technique, ¢ 601

I[-EXPLR, though improves over MINLOSS on oy —— SelectR

two out of three tasks, it performs worse than S 40{ — MinLoss

SELECTR in all the domains. This highlights = — Unique

the value of RL based exploration on top of the 10 20 30 40 50
greedy target selection of MINLOSS as well as # solutions of a test query

over the simple exploration of I-EXPLR. We
note that this is due to more exploratory power of SELECTR over I-EXPLR. See for more
discussion and experiments comparing the two exploration techniques.

Recall that Sudoku training set has no more than 5 solutions for a query, irrespective of the actual
number of solutions — i.e, for many x;, Yx, C )x,. Despite incomplete solution set, significant
improvement over baselines is obtained, indicating that our formulation handles solution multiplicity
even with incomplete information. Furthermore, the large variation in the size of solution set (| Vx|)
in Sudoku allows us to assess its effect on the overall performance. We find that all models get worse
as | Vx| increases (fig. , even though SELECTR remains the most robust (seefor details).

5 CONCLUSION AND FUTURE WORK

In this paper, we have defined 1o0ML: the task of learning one of many solutions for combinatorial
problems in structured output spaces. We have identified solution multiplicity as an important aspect
of the problem, which if not handled properly, may result in sub-optimal models. As a first cut
solution, we proposed a greedy approach: MINLOSS formulation. We identified certain shortcomings
with the greedy approach and proposed two exploration based formulations: I-EXPLR and an RL
formulation, SELECTR, which overcomes some of the issues in MINLOSS by exploring the locally
sub-optimal choices for better global optimization.

Experiments on three different tasks using two different prediction networks demonstrate the effec-
tiveness of our approach in training robust models under solution multiplicity E}

It is interesting to note that for traditional CSP solvers, e.g.(Selman et al.l {1993} Mahajan et al.| 2004),
a problem with many solutions will be considered an easy problem, whereas for neural models, such
problems appear much harder (Figure3)). As a future work, it will be interesting to combine symbolic
CSP solvers with SELECTR to design a much stronger neuro-symbolic reasoning model.

3 All the code and datasets are available at: https.//sites. google.com/view/yatinnandwani/loml
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APPENDIX

3 THEORY AND ALGORITHM

3.2 OBJECTIVE FUNCTION

Lemma 1. The training loss L(©) as defined in eq. (1) is an inconsistent estimator of generalization
error for 1oML, when lg is a zero-one loss, i.e., lo(yi,yi;) = 1{yi # yij}. (Proof in .

Proof. Let D represent the distribution using which samples (x, ) ) are generated. In our setting, gen-
eralization error £(Me ) for a prediction network Mg can be written as: £(Meg) = Ex,y )~ (1{y ¢
Vi }), where y = Mg (x), i.e. the prediction of the network on unseen example sampled from the
underlying data distribution. Assume a scenario when Y, = YVx,, Vi, i.e., for each input x; all the cor-
responding solutions are present in the training data. Then, an unbiased estimator £p(Mg) of the gen-
eralization error, computed using the training data is written as: ép(Me) = = >°7" | 1{y; ¢ Y, }.
Clearly, the estimator obtained using L(©) (Naive Objective), when the loss function lg (¥;,y;;) is
replaced by a zero-one loss 1{y; # yij}, is not a consistent estimator for the generalization error.
This can be easily seen by considering a case when §; € Yy, and |Yy,| > 1. O

OPTIMIZATION ISSUES WITH CC-Lo0SS

For the task of PLL, Jin & Ghahramani|(2002)) propose a modification of the cross entropy loss to
tackle multiplicity of labels in the training data. Instead of adding the log probabilities, it maximizes
the log of total probability over the given target set. Inspired by [Feng et al.| (2020), we call it
CC-Loss:

1 m
L..(©) = - Zlog Z Pr (yij|xi; ©) 9)
i=1

Yi; €Y x,

However, in the case of structured prediction, optimizing L. suffers from numerical instability.

We illustrate this with an example. Consider solving 9 x 9 sudoku puzzle, x;. The probabilty of a
particular target board, y;;, is a product of 7 = 9% = 81 individual probabilities over the discrete
space V = {1---9} of size 9, i.e., Pr(y;;|xi; ©) = [, Pr(yijlk]|xi; ©). In the beginning of the
training process, the network outputs nearly uniform probability over ) for each of the r dimensions,
making Pr(y;;|xi; ©) very small (= 975 ~ 5.09¢—78). The derivative of log of such a small
quantity becomes numerically unstable.

This issue is circumvented in the case of naive loss by directly working with log probabilities and
log-sum-exp trick m However, in the case of CC-L0OSS, we need to sum the probabilities over
the target set Yy, before taking log, and computing Pr(y;;|xi; ©) makes it numerically unstable.
Motivated by log-sum-exp trick, we use the following modifications which involves computing only
log probabilities. For simplicity of notation, we will use Pr(y;;) to denote Pr(y;j|xi; ©) and L, to
denote the CC Loss for the i*” training sample.

Licc = —log Z Pr(ys;)
YijEYxi

Multiply and divide by mazp; = maxy,ev,, Pr(yi):
Pr(y;;)

i
L., = —log [ maxp; g —_—
maxp;
Yij€Yx;

"https://blog.feedly.com/tricks-of-the-trade-logsumexp/

13



Published as a conference paper at ICLR 2021

Use the identity: o = exp(log(a)):

Pr(y;;
— log(maxp;) — log Z eXP <log (M))

Yii€Yx;

i
Lcc

—log(maxp;) — log Z exp (log (Pr(yij)) — log (maxpi))
yijEYxi

In the above equations, we first separate out the max probability target (similar to log-sum-exp trick),
and then exploit the observation that the ratio of (small) probabilities is more numerically stable than
the individual (small) probabilities. Further, we compute this ratio using the difference of individual
log probabilities.

Lemma 2. Under the assumption Yx, = YVx,, Vi, the loss L'(©) = miny Ly (0, w), defined as
the minimum value of Ly (©,w) (defined in eq. (2)) with respect to w, is a consistent estimator of
generalization error for LoML, when lg is a zero-one loss, i.e., lo(¥i,¥i) = 1{¥i # ¥ij }-

Proof. Let D represent the distribution using which samples (x, Jx) are generated. In our setting,
generalization error (Mg ) for a prediction network Mg is:

e(Me) = Ex,y,)~p(1{y ¢ Vx})

where y = Mg (x), i.e. the prediction of the network on unseen example sampled from the underlying
data distribution. Assume a scenario when Yy, = Vx,, Vi, i.e., for each input x; all the corresponding
solutions are present in the training data. Then, an unbiased estimator £ (Mg ) of the generalization
error, computed using the training data is written as:

m

SolMo) = = 3131 ¢ Yo}

i=1

Now, consider the objective function

1 m
L'(©) = min Ly, = min — i 1{yi # yij
(©) = min Ly (6, w) = min — > Y wyl{9s # i}

i=1y; €Y%,

1 < . .
=—> min Y wyl{y # yy}
i=1 yijY'xi
Yy, |
st €{0,1}Vi,¥jand Y wy=1Vi=1...m
j=1

For any x;, if the prediction y; is correct, i.e., Jyi;* € Y, s.t. ¥i = yij*, then 1{y; # yi;*} =0
and 1{y; # yi3} = 1,Vyij € Yx,,¥ij # Yij* Now minimizing over w; ensures wij* = 1 and
wij = 0Vys; € Yx,,¥ij # yij*. Thus, the contribution to the overall loss from this example x;
is zero. On the other hand if the prediction is incorrect then 1{y; # yi;;} = 1, Vyj; € Yy, thus
making the loss from this example to be 1 irrespective of the choice of w;. As a result, L'(©) is
exactly equal to £p(Me) and hence it is a consistent estimator for generalization error. O

3.3 GREEDY FORMULATION: MINLOSS

Example 2. Consider a simple task with a one-dimensional continuous input space X C R, and
target space Y = {0,1}. Consider learning with 10 examples, given as (x = 1,Yx = {1}) (5
examples), (x = —1,Yx = {0,1}) (4 examples), (x = —2,Yx = {1}) (I example). The optimal
decision hypothesis is given as: y = 1{x > a}, fora < =2, ory = 1{x < g8}, for § > 1.
Assume learning this with logistic regression using MINLOSS as the training algorithm optimizing
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the objective in eq. (3). If we initialize the parameters of logistic such that the starting hypothesis
is given by 'y = 1{x > 0} (logistic parameters: 6; = 0.1, 8y = 0), MINLOSS will greedily pick
the target y = 0 for samples with x = —1, repeatedly. This will result in the learning algorithm
converging to the decision hypothesis' y = 1{x > —0.55}, which is sub-optimal since the input with

x = —2 is incorrectly classified (fig.[l] see for a detailed discussion).

=

P(y=1)<0.5} P(y=1)>0.5

I : o

X : : o}

X 1 1 (0]

X ' ' o]

0 X x=-055 ! 0
< | | 1 | | 5
< T T 1 T T >

-2 -1 0 1 2

Figure 4: Decision Boundary learnt by logistic regression guided by MINLOSS. Green vertical line at
x = 0 is the initial decision boundary and black vertical line at x = —0.55 is the decision boundary
at convergence.

For logistic regression, when input x is one dimensional, probability of the prediction being 1 for any
given point x = [z] is given as:
1

P(y = 1) = 0'(91JU+90) where O'(Z) = HT,

ze€R
The decision boundary is the hyperplane on which the probability of the two classes, 0 and 1, is same,
i.e. the hyperplane corresponding to P(y = 0) = P(y = 1) = 0.5 or 612 + 6y = 0.

Initially, 6; = 0.1 and 6y = 0 implies that decision boundary lies at x = 0 (shown in green). All
the points on the left of decision boundary are predicted to have 0 label while all the points on the
right have 1 label. For all the dual label points (x = 1), P(y = 1) < 0.5, thus MINLOSS greedily
picks the label O for all these points. This choice by MINLOSS doesn’t change unless the decision
boundary goes beyond -1.

However, we observe that with gradient descent using a sufficiently small learning rate, logistic
regression converges at x = —0.55 with MINLOSS never flipping its choice. Clearly, this decision
boundary is sub-optimal since we can define a linear decision boundary (y = 1{x > a}, fora < —2,
ory = 1{x < g}, for 8 > 1) that classifies all the points with label 1 and achieves 100% accuracy.

4 EXPERIMENTS

All the experiments are repeated thrice using different seeds. Hyperparameters are selected based on
the held out validation set performance.

Hardware Architecture: Each experiment is run on a 12GB NVIDIA K40 GPU with 2880 CUDA
cores and 4 cores of Intel E5-2680 V3 2.5GHz CPUs.

Optimizer: We use Adam as our optimizer in all our experiments. Initial learning rate is set to
0.005 for NLM (Dong et al.| [2019) experiments while it is kept at 0.001 for RRN (Palm et al., 2018)
experiments. Learning rate for RL phase is kept at 0.1 times the initial learning rate. We reduce
learning rate by a factor of 0.2 whenever the performance on the dev set plateaus.

4.1 DETAILS FOR N-QUEENS EXPERIMENT

Data Generation: To generate the train data, we start with all possible valid 10—Queens board
configurations. We then generate queries by randomly masking any 5 queens. We check for all
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possible valid completions to generate potentially multiple solutions for any given query. Test data
is also generated similarly. Training and testing on different board sizes ensures that no direct
information leaks from the test dataset to the train dataset. Queries with multiple solutions have a
small number of total solutions (2-6), hence we choose Y, = Vx,, VX;.

Figure 5: 8-Queens query along with its two possible solutionﬂ

Architecture Details for Prediction Network ) o: We use Neural Logic Machines (NLMﬂ (Dong
et al., 2019) as the base prediction network for this task. NLM consists of a series of basic blocks,
called ‘Logic Modules’, stacked on top of each other with residual connections. Number of blocks in
an NLM architecture is referred to as its depth. Each block takes grounded predicates as input and
learns to represent M intermediate predicates as its output. See (Dong et al.,[2019) for further details.
We chose an architecture with M = 8 and depth = 30. We keep the maximum arity of intermediate
predicates learnt by the network to be 2.

Input Output for Prediction Network: Input to NLM is provided in terms of grounded unary and
binary predicates and the architecture learns to represent an unknown predicate in terms of the input
predicates. Each cell on the board acts as an atomic variable over which predicates are defined.

Unary Predicates: To indicate the presence of a Queen on a cell in the input, we use a unary
predicate, ‘HasQueenPrior’. It is represented as a Boolean tensor x of size N2 with 1 on k out of
N2 cells indicating the presence of a Queen. The output y of the network is also a unary predicate
‘HasQueen’ which indicates the final position of the queens on board.

Binary Predicates: We use 4 binary predicates to indicate if two cells are in same row, same
column, same diagonal or same off-diagonal. The binary predicates are a constant for all board
configurations for a given size [NV and hence can also be thought of as part of network architecture
instead of input.

Architecture Details for Selection Module S;: We use another NLM as our latent model G4 within
the selection module S4. We fix depth = 4 and M = 10 for the latent model.

Input Output for G4: Input to G4 is provided in terms of grounded unary and binary predictates
represented as tensors just like the prediction network. Gy takes 1 unary predicate as input, repre-
sented as an N2 sized vector, yij — ¥i_, where y;_ is the prediction from its internal copy of the
prediction network (Me_) given the query x;. For each yj; € Yy, G4 returns a score which is
converted into a probability distribution Pr(y;;) over Yy, using a softmax layer.

Hyperparameters:

The list below enumerates the various hyper-parameters with a brief description (whenever required)
and the set of its values that we experiment with. Best value of a hyper-parameter is selected based
on performance on a held out validation set.

1. Data Sampling: Since number of queries with multiple solutions is underrepresented in
the training data, we up-sample them and experiment with different ratios of multi-solution

8Image Source: Game play on http://www.brainmetrix.com/8-queens/
°Code taken from: https://github.com/google/neural-logic-machines
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queries in the training data. Specifically, we experiment with the ratios of 0.5 and 0.25 in
addition to the two extremes of selecting queries with only unique or only multiple solutions.
Different data sampling may be used during pre-training and RL fine tuning phases.

2. Batch Size: We use a batch size of 4. We selected the maximum batch size that can be
accommodated in 12GB GPU memory.

3. copyitr: We experiment with two extremes of copying the prediction network after every
update and copying after every 2500 updates.

4. Weight Decay in Optimizer: We experiment with different weight decay factors of 1E-4,
1E-5 and 0.

5. Pretraining ¢: We pretrain G4 for 250 updates.

Training Time: Pre-training takes 10 — 12 hours while RL fine-tuning take roughly 6 — 8 hours
using the hardware mentioned in the beginning of the section.

4.1 DETAILS FOR FUTOSHIKI EXPERIMENT

Data Generation: We start with generating all the possible ways in which we can filla NV x N grid
such that no number appears twice in a row or column. For generating a query we sample any solution
and randomly mask out k& positions on it. Also we enumerate all the GreaterT han and LessT han
relations between adjacent pair of cells in the chosen solution and randomly add q of these relations
to the query. We check for all possible valid completions to generate potentially multiple solutions
for any given query. Test data is also generated similarly. Training and testing on different board
sizes ensures that no direct information leaks from the test dataset to the training data. Queries with
multiple solutions have a small number of total solutions (2-6), so we choose Yy, = Vx,, VX .

Architecture Details for Prediction Network M g: Same as N-Queens experiment.

Input Output for Prediction Network: Just like N-Queens experiment, the input to the network is
a set of grounded unary and binary predicates. We define a grid cell along with the digit to be filled
in it as an atomic variable. There are N2 cells in the grid and each cell can take N values, thus we
have N3 atomic variables over which the predicates are defined.

Unary Predicates: To indicate the presence of a value in a cell in the input, we use a unary
predicate, ‘IsPresentPrior’. It is represented as a Boolean tensor x of size N2 with 1 on k positions
indicating the presence of a digit in a cell. The output y of the network is also a unary predicate
‘IsPresent’ which indicates the final prediction of grid. Additionally, there are two more unary
predicates which represent the inequality relations that need to be honoured. Since inequality relations
are defined only between pair of adjacent cells we can represent them using unary predicates.

Binary Predicates: We use 3 binary predicates to indicate if two vairables are in same row,
same column, or same grid cell. The binary predicates are a constant for all board configurations for
a given size V.

Architecture Details for Selection Module S4: Same as N-Queens experiment.

Input Output for G4: Same as N-Queens experiment except for the addition of two more unary
predicates corresponding to the inequality relations. First unary predicate is yj; — ¥i_ which is
augmented with the inequality predicates.

Hyperparameters: Same as N-Queens experiment.

Training Time: Pre-training takes roughly 12 — 14 hours while RL fine-tuning takes 7 — 8 hours.
4.1 DETAILS FOR SUDOKU EXPERIMENT

DATA GENERATION FOR SUDOKU

We start with the dataset proposed by [Palm et al.| (2018)). It has 180k queries with only unique
solution and the number of givens are uniformly distributed in the range from 17 to 34.|""| For the

10 Available at ht tps://data.dgl.ai/dataset/sudoku-hard.zip
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queries with unique solution, we randomly sample 10000 queries from their dataset, keeping their
train, val and test splits. Using the queries with 17-givens from the entire dataset of size 180k, we
use the following procedure to create queries with multiple solutions:

We know that for a Sudoku puzzle to have a unique solution it must have 17 or more givens (McGuire
et al.l2012). So we begin with the set of 17-givens puzzles having a unique solution and randomly
remove 1 of the givens, giving us a 16-givens puzzle which necessarily has more than 1 correct
solution. We then randomly add 1 to 18 of the digits back from the solution of the original puzzle,
while ensuring that the query continues to have more than 1 solution. [1;1‘] This procedure gives us
multi-solution queries with givens in the range of 17 to 34, just as the original dataset of puzzles
with only unique solution. We also observed that often there are queries which have a very large
number of solutions (> 100). We found that such Sudoku queries are often too poorly defined to be
of any interest. So we filter out all queries having more than 50 solutions. To have the same uniform
distribution of number of givens as in the original dataset of puzzles with unique solution, we sample
queries from this set of puzzles with multiple solutions such that we have a uniform distribution of
number of givens in our dataset.

We repeat this procedure to generate our validation and test data by starting from validation and test
datasets from |[Palm et al.| (2018]).

Architecture Details for Prediction Network M g: We use Recurrent Relational Network (RRN)
(Palm et al.,|2018) EI as the prediction network for this task. RRN uses a message passing based
inference algorithm on graph objects. We use the same architecture as used by [Palm et al.{(2018) for
their Sudoku experiments. Each cell in grid is represented as a node in the graph. All the cells in the
same row, column and box are connected in the graph. Each inference involves 32 steps of message
passing between the nodes in the graph and the model outputs a prediction at each step.

Input Output for Prediction Network: Input to the prediction network is represented as a 81 x 10
matrix with each of the 81 cell represented as a one-hot vector representing the digits (0-9, 0 if not
given). Output of the prediction network is a 81 x 10 x 32 tensor formed by concatenating the
prediction of network at each of the 32 steps of message passing. The prediction at the last step is
used for computing accuracy.

Architecture Details for Selection Module S;: We use a CNN as the latent model G . The network
consists of four convolutional layers followed by a fully connected layer. The four layers have 100,
64, 32 and 32 filters respectively. Each filter has a size of 3 x 3 with stride of length 1.

Input Output for G,: Similar to the other two experiments, the input to G, is the output y;_ from
the selection module’s internal copy Meg_ along with y;;. Since the prediction network gives an
output at each step of message passing, we modify the G4 and the rewards for Sy accordingly to be
computed from prediction at each step instead of relying only on the final prediction.

Hyperparameters:
1. Data Sampling: Since number of queries with multiple solutions and queries with unique
solution are in equal proportion, we no longer need to upsample multi-solution queries.

2. Batch Size: We use a batch size of 32 for training the baselines, while for RL based training
we use a batch size of 16.

3. copyitr: We experiment with copyitr = 1 i.e. copying Mg to Mg_ after every update.

4. Weight Decay in Optimizer: We experiment with weight decay factor of 1E-4 (same as
Palm et al.[(2018))).

5. Pretraining ¢: We pretrain G4 for 1250 updates, equivalent to one pass over the train data.
Comparison with pretrained SOTA Model: We also evaluate the performance of a pretrained

state-of-the-art neural Sudoku solver (Palm et al., 2018 on our dataset. This model trains and
tests on instances with single solution. The training set used by this model is a super-set of the

""We identify all solutions to a puzzle using|http: //www.enjoysudoku.com/JSolvel2.zip

2Code taken from: https://github.com/dmlc/dgl/tree/master/examples/pytorch/
rrn

"’ Available at: https://data.dgl.ai/models/rrn-sudoku.pkl
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Table 3: Mean test accuracy (%standard error) over three runs for multiplicity aware methods
compared with baselines. OS: test queries with only one solution, MS: queries with more than one

solution.
Naive Random Unique CC-Loss MINLoOSS I-EXPLR SELECTR
g oS 70.59 +£0.09 75.09+0.33 7291+0.65 7531+045 7729+038 77.35+1.07 79.73+0.34
g MS 5534+2.82 6685+246 61.13+1.13 7576+1.60 77.22+1.28 79.46+3.31 79.68 +1.35
g Overall 68.04 +046 73.72+0.59 70.94+0.71 7539+047 77.28+048 77.70+£1.40 79.72 + 0.46
:é oS 6559 £0.62 67.63+£0.96 6549+ 028 77.68+034 7678 £0.81 78.15+0.65 78.01 +0.70
@ MS 1499 +2.17 19.13+3.14 1422+2.77 6930+1.76 70.35+1.16 70.88+1.48 71.57 +1.02
E Overall 5296+0.96 5553+144 5270+0.74 7559+046 75.18+0.64 7633 +£0.65 764+ 0.36
g2 os 87.85+0.84 89.19+1.12 87.53+0.82 88.26+0.88 88.25+0.35 88.73+£0.68 88.69+0.55
§ MS 09.13+£0.89 66.39+282 1365+1.79 7658+1.63 7693+150 80.19+1.51 81.73 +2.00
@ Overall 4849+0.86 77.79+1.96 50.59+049 8242+045 82594+0.62 8446+0.69 85.21+0.76

unique solution queries in our training data and contains 180,000 queries. This model achieves a
high accuracy of 94.32% on queries having unique solution (OS) in our test data which is a random
sample from their test data only, but the accuracy drop to 24.48% when tested on subset of our test
data having only queries that have multiple solutions (MS). We notice that the performance on MS is
worse than Unique baseline, even though both are trained using queries with only unique solution.
This is because the pretrained model overfits on the the queries with unique solution whereas the
Unique baseline early stops based on performance on a dev set having queries with multiple solutions
as well, hence avoiding overfitting on unique solution queries.

Training Time: Pre-training the RRN takes around 20 — 22 hours whereas RL fine-tuning starting
with the pretrained model takes around 10 — 12 hours.

4.3 RESULTS AND DISCUSSIONS

Table 3| reports the mean test accuracy along with the standard error over three runs for different
baselines and our three approaches. Note that the standard errors reported here are over variations in
the choice of different random seeds and it is difficult to do a large number of such experiments (with
varying seeds) due to high computational complexity. Below, we compare the performance gains for
each of the seed separately.

Seed-wise Comparison for Gains of SELECTR over MINLOSS

In Table ] we see that SELECTR performs better than MINLOSS for each of the three random seeds
independently in all the experiments. We note that starting with the same seed in our implementation
leads to identical initialization of the prediction network parameters.

Table 4: Seed wise gains of SELECTR over MINLOSS across different random seeds and experiments

Seed Sudoku NQueens Futoshiki

42 3.12% 3.40% 0.69%
1729 2.75% 2.53% 1.21%
3120 1.98% 1.39% 1.77%

Avg. Gain  2.61% 2.44% 1.22%

Details of the Analysis Depicted in Figure[3]

The large variation in the size of solution set (]x|) in Sudoku allows us to assess its effect on the
overall performance. To do so, we divide the test data into different bins based on the number of
possible solutions for each test input (x;) and compare the performance of the best model obtained in
the three settings: Unique, MINLOSS and SELECTR.

19



Published as a conference paper at ICLR 2021

By construction, the number of test points with Figure 6: #givens ’and #datapoints vs size of
a unique solution is equal to the total number query’s solution set

of test points with more than one solution. Fur-
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sulting in harder problems. This is also demonstrated by the corresponding decrease in performance
of all the models in Figure[3] SELECTR is most robust to this decrease in performance.

Discussion on Why SELECTR is better than I-EXPLR?

In this section, we argue why SELECTR is more powerful than [-EXPLR, even though the reward
structure for training the RL agent is such that eventually the G4 in the RL agent will learn to pick
the target closest to the current prediction (to maximize reward), and hence S, will be reduced to
I-EXPLR.

We see two reasons why SELECTR is better than I-EXPLR.

First, recall that the I-EXPLR strategy gives the model an exploration probability based on its current
prediction. But note that this is “only one” of the possible exploration strategies. For example,
another strategy could be to explore based on a fixed epsilon probability. There could be several other
such possible exploration strategies that could be equally justified. Instead of hard coding them, as
done for I-EXPLR, our G network gives the ability to learn the best exploration strategy, which may
depend in complex ways on the global reward landscape (i.e., simultaneously optimizing reward over
all the training examples). Hence we use a neural module for this.

Second, note that I-EXPLR is parameter-free and fully dependent on Mg, thus, has limited represen-
tational power of its own to explore targets. This is not the case with G . Its output ¥ and and the
target (y.) closest to Mg prediction y may differ i.e. ¥y # y. (see next paragraph for an experiment
on this). When this happens, the gradients will encourage change in © so that ¥ moves towards ¥y,
and simultaneously encourage change in ¢ so that y moves towards y.. That is, a stable alignment
between the two models could be either of the two, y. or y. This, we believe, increases the overall
exploration of the model. Which of y. or y get chosen depends on how strongly the global landscape
(other data points) encourage one versus the other. Such flexibility is not available to I-EXPLR
where only © parameters are updated. We believe that this flexibility to explore more could enable
SELECTR to jump off early local optima, thus achieving better performance compared to I-EXPLR.

We provide preliminary experimental evidence that supports that SELECTR explores more. For every
training data point ¢, we check if the arg max of G, probability distribution (i.e., highest probability
y) and y.. differ from each other. We name such data points “exploratory”. We analyze the fraction
of exploratory data points as a function of training batches. See fig.[/] We observe that in the initial
several batches, SELECTR has 3 — 10% of training data exploratory. This number is, by definition,
0% for I-EXPLR since it chooses y based on model probabilities. This experiment suggests that
SELECTR may indeed explore more early on.
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Figure 7: Fraction of training samples for which arg max of G, probability distribution is different
from the target closest to model prediction. For I-EXPLR, this fraction is 0%
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