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ABSTRACT

Outliers have emerged as a fundamental bottleneck in preserving accuracy for low-
precision large models, particularly within Mixture-of-Experts (MoE) architectures
that are increasingly central to large-scale language modeling. Under post-training
quantization (PTQ), these outliers induce substantial quantization errors, leading to
severe accuracy degradation. While recent rotation-based smoothing techniques
alleviate the problem by redistributing outlier magnitudes, residual errors remain
and continue to impede reliable low-precision deployment.

In this work, we tackle this challenge by introducing a unified quantization-and-
clustering scheme that contains smoothing activation outliers via learnable rotation
and absorbing weight outliers into fine-tuned cluster centroids for MoE. This design
reduces the influence of extreme values by fitting them within cluster centroids,
thereby lowering quantization error while maintaining expressive capacity. We
introduce CodeQuant, a unified quantization-and-clustering framework tailored
for MoEs. Coupled with a dedicated kernel design for GPU and CPU, CodeQuant
achieves up to 4.15x speedup while delivering significantly higher accuracy than
state-of-the-art quantization approaches across diverse MoE models. Our results
highlight CodeQuant as a promising direction for efficient and accurate deployment
of MoE-based large language models under low-precision constraints.

1 INTRODUCTION

Mixture-of-Experts (MoE) has emerged as one of the most effective paradigms for scaling large
language models (LLMs). By activating only a subset of experts for each input token, MoE introduces
conditional computation, allowing different experts to specialize in distinct linguistic or multimodal
patterns. This specialization enables MoE-based models to achieve superior performance across
diverse tasks while maintaining training and inference efficiency. Consequently, MoE architectures
have been adopted in many state-of-the-art LLMs (Abdin et al., 2024} [Yang et al., 2025} [DeepSeek-
Al et al., |2024). Despite these advantages, MoE models still carry substantial computational and
system-level costs. Although only a fraction of experts are active per token, the total parameter size
is extremely large, leading to high memory requirements and increased communication overhead
during distributed training and inference. These factors increase processing latency and pose serious
challenges for real-world deployment.

To address these costs, low-precision quantization has become a widely adopted strategy. By
representing weights and activations with fewer bits, quantization substantially reduces memory
footprint and improves computational throughput. Recent hardware innovations further accelerate
this trend: NVIDIA’s Hopper and Ada GPUs natively support FP8 arithmetic, while the Blackwell
series extends support to FP4. These developments provide a strong foundation for efficient MoE
deployment with low precision. However, quantizing MoE architectures remains challenging due to
the prevalence of outliers. Large-magnitude activations expand the dynamic range, leading to severe
quantization errors and significant accuracy degradation under post-training quantization (PTQ),
particularly in low-bit settings such as 4-bit quantization. While recent outlier-smoothing methods
alleviate the issue, residual errors persist and continue to hinder reliable low-precision deployment.
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Figure 1: Overview of the CodeQuant framework: the left panel illustrates the detailed architecture
of a MoE, while the right panel depicts the flow of CodeQuant procedures.

In parallel, codebook-based approaches such as clustering have emerged as a compelling alternative to
uniform quantization. By mapping weights or activations to a compact set of representative centroids,
clustering mitigates quantization error and effectively handles outliers, as extreme values can be
absorbed into centroids rather than expanding the overall dynamic range. Beyond its algorithmic
robustness, clustering is also hardware-efficient: lookup table (LUT) implementations enable rapid
centroid mapping and streamlined memory access, making it well suited for large-scale deployment.
Notably, several commercial accelerators have already adopted such designs, including Apple’s
Neural Engine (Inc., [2024a) and Arm Ethos-U (Inc.,2020). The sparsity indexing mechanism in the
Cerebras Wafer-Scale Engine (Inc.| [2024b)) further enables high-performance LUT implementation.
Collectively, these developments underscore clustering as a practical, hardware-aligned solution for
LUT-driven quantization.

In this work, we present CodeQuant, a unified codebook-based clustering and quantization framework
for low precision MoE models that enhances activation outlier smoothing. Our contribution can be
summarized as follows:

» We first introduce Activation-oriented Outlier Smoothing (AOS), which suppresses activation
outliers through rotation matrix adjustment, effectively relocating them into the weight space.

* We then propose Adaptive Weight Clustering with Centroid Finetuning (ACCF) and Permu-
tation Invariant Outlier Grouping (POG), which substantially reduce weight quantization
error even in the presence of significant outliers.

* Finally, we develop optimized LUT kernels to demonstrate improvements in execution
latency. Across Phi-Mini-MoE-Instruct, Qwen3-30B-A3B, and DeepSeek-V2-Lite, Code-
Quant consistently accelerates inference, lowers memory footprint, and preserves accuracy.

2 BACKGROUND AND RELATED WORK

2.1 OUTLIER IN LLMS

Activation outliers have been widely recognized as a major obstacle to effective quantization of
large language models (LLMs). Prior work (Dettmers et al., {2022} |Sun et al.| [2024; |An et al., 2025)
highlights two predominant forms: channel-wise outliers and massive activations, which expand the
dynamic range and induce severe quantization errors. Moreover, residual connections exacerbate the
problem by propagating outliers across layers and amplifying the adverse effects (Guo et al.| 2024)).

Mixture-of-Experts (MoE) LLMs are likewise affected by the outlier problem. Prior studies on MoE
(Sun et al., |2024; Lo et al., 2025) report that massive activations frequently arise in the hidden states
between decoder layers and are further propagated through residual connections, compounding their
impact across subsequent layers. More recently, the notion of super experts has been introduced (Su
et al.} 2025), revealing an additional source of large-magnitude outliers specific to MoE architectures.
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2.2 OUTLIER AWARE QUANTIZATION

Prior efforts on LLM quantization have pursued two directions for addressing the outlier problem. The
first explicitly isolates outliers and applies mixed-precision quantization (Dettmers et al.,[2022; |[Kim
et al.,[2024; \van Baalen et al., 2025; Huang et al., 2025), ensuring that extreme values are preserved
at higher precision. The second seeks to mitigate outliers through invariant matrix transformations.
Within this line, one strategy redistributes outliers between activations and weights (Xiao et al.| [2024;
Lin et al.,[2024b). SmoothQuant (Xiao et al.,|2024) is a representative work, which jointly smooths
activations and weights to mitigate their impact. QulP (Chee et al.l2024) and QuIP# (Tseng et al.,
2024) initiated a new line of work that leverages rotation invariance for outlier mitigation. Building
on this idea, QuaRot (Ashkboos et al., [2024)) applies rotation to activations for outlier-free inference,
DuQuant (Lin et al., [2024a) combines permutations for dual handling of outliers. SpinQuant (Liu
et al., [2025)) introduces learnable orthogonal rotation matrices that are optimized during post-training
quantization, and subsequent work such as OSTQuant (Hu et al.| 2025b) further incorporates a
KL-based objective to fine-tune these rotations together with smoothing parameters.

In the context of weight quantization, most existing works nonetheless adopt uniform quantization
schemes such as GPTQ (Frantar et al., |2022) and AWQ (Lin et al.| 2024b), even though weight
distributions in practice are far from uniform. To address this mismatch, early studies (Dettmers et al.|
2023} [Yoshidal 2023} Blumenberg et al., [2025)) introduce quantile-based non-uniform quantization,
leveraging the normal distributions assumption of weights to construct information-optimal codebooks.
Meanwhile, SqueezeLLM (Kim et al.}2024) demonstrates that dynamic non-uniform quantization
better adapts to the empirical weight distribution in LLMs. Building on earlier clustering-based
compression techniques (Han et al., [2016; |Xu et al., [2018), SqueezeLLM integrates K-means
clustering into LLM quantization, yielding more robust results. Moreover, efficient algorithms
for low-precision MoE remain largely underexplored. MoEQuant (Hu et al.,[2025a) demonstrates
that directly applying conventional quantization methods to MoE models yields suboptimal results,
underscoring the importance of accounting for token—expert affinities.

Building on this insight, CodeQuant integrates learnable rotation, permutation, clustering, and centroid
adjustment into a unified, lightweight, layerwise calibration framework, and further introduces MoE-
aware mechanisms designed to maintain consistent token—expert routing behavior.

2.3 LUT AND HARDWARE IMPLEMENTATION

General Matrix Multiply (GEMM) with clustered
multiplicands requires LUT support for efficient de-
ployment. Without hardware-friendly LUTs, cen-
troids must be stored as floating-point values and
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reloaded during computation, incurring significant
overhead. Studies on both CPUs and GPUs address
this by exploring LUT-based execution to bridge : e

non-uniform quantization and practical deployment. - ““““
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LUTIN (Lin et al., 2024c) optimizes memory use via Figure 2: FFN layers within MoE is applied
hyperparameter tuning, and T-MAC (Wei et al|[2025)  with rotational matrices for outlier smoothing.
reformulates mixed-precision GEMM as table lookup

for LLM inference. On GPUs, LUT-GEMM (Park

et al.,|2024) and FLUTE (Guo et al., |2025) design optimized kernels to minimize unpacking overhead,
while LUT Tensor Core (Mo et al.l|2025) integrates LUT primitives into tensor-core pipelines through
software—hardware co-design.

3 METHODOLOGY

The overview of CodeQuant is shown in Figure (I} which comprises three stages. In the first
stage, we apply Activation-Oriented Outlier Smoothing (AOS) exclusively to the input activations,
effectively mitigating activation outliers (Section [3.T). In the second stage, we optionally employ
Permutation-Invariant Outlier Grouping (POG), which reorders the columns of the weight matrix
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to better support the subsequent clustering process (Section[3.3)). Stage three introduces Adaptive
Weight Clustering and Centroid Finetuning (ACCF), which identifies optimal groupings and refines
centroids to minimize output difference (Section[3.2). Finally, the resulting MoE is deployed using a
LUT-based system, achieving superior computational efficiency (Section [3.4).

3.1 ACTIVATION-ORIENTED OUTLIER SMOOTHING

As illustrated in Figure [2] the rotational method introduces an additional matrix R applied to the
activation X in both the SA and FFN. The SA blocks in MoE models share the same structure as
those in standard LLMs, and are therefore invariant as discussed in (Ashkboos et al., [2024). The
incorporation of rotational matrices R within the FFN layers is illustrated in Figure 2] An MoE
block primarily consists of two components: the router and the experts. The router is implemented
as a linear layer that takes the input X and generates the expert routing decisions. The output of
each expert can be expressed as (¢(X:Wyate) © XeWap)Waown, Where ¢(-) denotes a nonlinear
activation function (e.g., SiLU) and X; denotes the subset of tokens assigned to that expert. To
enable rotation-based quantization, we apply the same orthogonal matrix R to both activations
and weights, i.e., X — XRand W — RTW. Since RR" = I, the computation simplifies to
(qS(XtRRTWgate) O Xi RR" Wy ) Waown = (O(XWyate) © XWop) Waown, which is identical to
the original expert output.

While weight clustering is generally robust to outliers, MoE accuracy is highly sensitive to activation
outliers (Ashkboos et al.| [2024} [ Xiao et al., 2024; [Liu et al., [2025)). To address this, we refine the
rotation matrix 2 to smooth activation by applying the Cayley transform (Nishimori & Akaho)
2005; [Li et al., |2020). Specifically, for any matrix M &€ R where h denotes the model’s hidden
dimension, we first extract its skew-symmetric component and then derive an orthogonal matrix via
the Cayley transform:

S=3(M-M") R=(I-S)I+58)7" (1)

This construction guarantees that the matrix R € R"*" remains orthogonal while keeping the
process fully differentiable, thereby allowing R to be updated without violating orthogonality. AOS
employs learnable rotation matrices to minimize the quantization error of rotated activations, defined
as Xr = X R. By minimizing the quantization error of rotated activations, the rotation explicitly
reduces the influence of outliers on the activation side, leaving the weights to accommodate more of
the variation. Formally, the optimization objective is defined as:

argénin Lo(RIX) = argénin | Xr — Q(XR)|? (2)

where X € R'*" denotes the calibration input, R is the learnable rotation matrix, and Q(X)
represents the quantization function (i.e. integer quantization). Using WikiText2 (Merity et al.l 2016)
as the calibration dataset, we observe a consistent reduction in quantization error during training.
On the held-out test set, fine-tuned rotations yield lower quantization error than random rotations,
demonstrating that the learned rotations generalize beyond calibration.

3.2 ADAPTIVE WEIGHT CLUSTERING AND CENTROID FINETUNING

Building on the smoothed input activations enabled by AOS, we introduce the ACCF method, which
refines grouping and centroid search to further reduce clustering error in the outputs of matrix
products. Specifically, let Wr = RTW and W, = f.(Wg, A, 5). The clustering function f.(-) is
parameterized by a centroid vector 5 € R¥*! and a binary assignment matrix A € {0, 1}mn*k,
where k is the number of centroids. Each element of W, can equivalently be expressed as AS. To
minimize the changes in the output, we set the target as:

argmin || XpWg — XpWe|[2, W, 2 f.(Wg, A,3) 3)
A,F

where Xz € R**” denotes the activations collected on the calibration set using the rotated but
unquantized weights, and Xr € RP¥" denotes the input activations at this layer when the upstream
weights have already been quantized and clustered. Equation [3]specifies the objective function for
enabling matrix computations within the SA layers of the MoE through the hybrid operation of input
quantization and weight clustering.
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However, unlike in SA, applying the same operation to the routing mechanism of the MoE FFN
may cause mismatches in token assignments compared with the original MoE, thereby degrading
performance. To address this, we replace the local loss with a weighted sum for MoE module.
Meanwhile, prior works have shown the importance of token—expert affinity (Dai et al.|[2022} [Li et al.
2025 |Hu et al., 20254} |Liang et al., 2025). Thus, we add a KL divergence loss on router logits during
fine-tuning to preserve the original token—expert assignment. In general, we modify the objective
function in Equation 3| as follows:

[ XrWr — XeWe|?, if Wr € {Wr,q, Wrix, Wrv },

L= v “)
1Y = TLXaWe|[* + ADxw(ILTD), if Wi € {Whigate, Wrsup },
i=1
where N denotes the number of experts, Y’ is the weighted sum produced by the MoE module on the
calibration set using the rotated but unquantized weights, and II and II represent the router outputs
corresponding to X r and Xg, respectively. D (., .) returns the KL divergence between the two
inputs and X specifies the relative importance of the objective functions.

The optimization problems in Equation [3]and 4 can be addressed in an alternating, iterative manner.

We first fix the assignment matrix A and optimize the centroid vector §. To this end, we employ a

local finetuning procedure to update 5, which can be derived via the chain rule as 4% = d‘{f, A.

ds

To determine the assignment matrix A given the centroids 5 while minimizing the output difference, a
straightforward approach is to use the nearest-neighbor rounding method as in the standard K-means
algorithm. However, this does not perfectly align with the objective functions in Equation [3[ and
Equation[d] To mitigate this, we first compute the gradient of the loss function with respect to W.. For
ease of interpretation, we adopt the loss function defined in Equation [3] though a similar technique
can also be applied to the loss function in Equation 4]

oL

ViWe = oo = 2X L XpW, — 22X XpWhr 5)

Set D; = X r Xpand Dy = X % X r. For computational efficiency, we approximate these matrices
by retaining only their diagonal entries, i.e., D; = Diag(D;), Dy = Diag(D). Under sufficient
coverage, the gradient is expected to approach zero, namely:

DiW.,—=DyWgr =0 (6)

To determine the assignment of each element W.;; within W, suppose W.;; is associated with the
k-th centroid sy, in the cluster vector §. The corresponding error introduced by this assignment, as
defined in Equation|[6] can be computed as:

(wij, s) = [|Duigs — Dayjwis | Q)
where w;; is the (7, j)-th element of Wg, and D;,; and Ds.; denote the j-th columns of D; and Do,
respectively. Hence, the optimal assignment for w;; is obtained by searching over the cluster vector 5
with the following objective:

A* = arg min ¢ (w;j, si) 8)

SLES

3.3 PERMUTATION-INVARIANT OUTLIER GROUPING

The ACCF algorithm described in Section [3.2]is directly applied to the transformed weight matrices
Wg. In practice, achieving strong MoE accuracy under ACCF critically depends on initializing Wg
to be cluster-friendly, such that a low-error clustered solution can be readily obtained. Since AOS
minimizes the quantization error of rotated activations only, the remaining variability is left to the
weights, making a cluster-friendly initialization crucial for ACCF to achieve high performance.

However, in practice, we observe that W is sometimes not amenable to clustering, as shown
in Figure [3] (a). Consider a weight vector W partitioned into clustering groups of size g = 4,
highlighted by the orange boxes. Each clustering group is allocated a centroid budget of k = 2.
Owing to the high variance within group 1, the optimal clustering solution still incurs a clustering error
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of 17. To reduce the error, we propose the POG method, as illustrated in Figure[3|(c). Specifically, the
weight vector is first divided into smaller sub-groups (shown in green boxes), each of size 2 in this
example. In Step 1, the variance is computed across the elements within each sub-group. In Step 2,
the sub-groups are permuted as indivisible units, ordered by their variance, so as to redistribute high-
and low-variance sub-groups more evenly across the larger groups of size g = 4. This reordering
helps reduce the variance within each clustering group and thereby lowers the overall clustering
error for the resultant Wﬁ, as shown in Figure |3[(b). The key intuition is that, in the original W,
group 1 contains weights that would require more than two centroids to achieve low error, while
group 2 is much easier to cluster. By permuting elements at the sub-group level, we obtain a more
cluster-friendly W%. It is important to note that this idea differs from prior work designed to facilitate
quantization (Lin et al., |2024a), since the reordered matrix Wﬁ is not necessarily amenable to
quantization. The resultant W, is then used as the initialization for the subsequent ACCF operations,
and leading to improved performance. The detailed POG algorithm is shown in the Appendix.

In practice, directly using the per- (@)  [CiCuustering grovp [ISubgroup] — (by)
muted matrix W7}, alters the output Before After

d 1 d t . t lt P . Clustering group 1 Clustering group 2
and leads to incorrect results. Prior Jio 1 202610 7 2 2 W7o 19 7
work (Lin et al.} 2024a) addresses this [} Cuustering T Clustoing
by fonnu'lat.mg'permutatl.on as a ma- /5555 23 2318 8 2 2 ||[C——>Wel10 171717 8 8 23 23
trix multlphcatlon. SPeC1ﬁcaHy, Per' @ Clustering error = 17 (High) _,_POG.__ @ Clustering error = 7.5 (Low)
muting Wg, can be achieved by multi- — - () — T »
plying it with a permutation matrix P Step 1: Step 2:

. . ’ subgroup 1 subgroup 2 subgroup 3 subgroup 4 / permu[e ~\
which encodes the permutation pat- [10 1]20 26l 7]2 2] |10 1[0 26]0 7[2 2]

tern shown in Figure [3] Since P is
orthogonal, the inverse permutation is
simply P~* = PT. Similar to the Figure 3: The overview of the POG framework.
rotation matrices R, P can be folded

into the SA and FFN components of

MOoE. In CodeQuant, the permutation matrices PP and PT are introduced after W, P and PT Wy,
in the self-attention block, and after W, P as well as before PTWown in the feed-forward block,
ensuring output invariance and improving ACCF performance.

Y Y Y Y Y Y Y Y
SD =63 42 1.4 0.0 6.3 0.0 1.4 4.2

3.4 CODEQUANT KERNEL AND SYSTEM IMPLEMENTATION

To evaluate the potential real-world performance of CodeQuant, we design and simulate an efficient
LUT-based GEMM kernel. While a full hardware implementation is beyond the scope of this work,
our simulation, based on the validated Accel-Sim framework (Mo et al., [2025} |Guo et al.| [2023;
Avalos Baddouh et al.| [2021)), models realistic architectural modifications. First, the input and weight
matrices are tiled by the weight group size. Each group of weights shares the same set of centroids
and is multiplied with multiple activation channels, as shown in Figure [ (a). To reduce redundant
multiplications, for each weight group we precompute a LUT using the 16 centroid values and the
16 possible 4-bit integer activation values, as shown in step 1 of Figured(b). The LUT consists of
16 subtables, each computed from one centroid value over 16 activation values when the activations
are quantized to 4-bit. CodeQuant uses a two-level Mux to select the output as shown in step 2 in
Figure [ (b). By pairing activation and weight for shared-memory access, shared-memory conflicts
are reduced compared with separate activation and weight accesses (Guo et al., 2025). The LUT
resides in SM shared memory, as shown in Figure ] (c) and occupies only a small fraction of the
shared memory available on modern GPUs (NVIDIA Corporation, [ajb).

Although CodeQuant GEMM kernel is promising due to its advantages in eliminating dequantization
and multiplication through simple table lookup, existing GPU implementation still faces challenges.
This is mainly due to limited instruction support for efficient lookup table precomputation (Mo et al.|
2025)) and shared memory bank conflict from extensive random indexing operations (Guo et al., [2025)).
To make better use of the precomputed lookup tables, the number of activation channels in the input
matrix in Figure ] (a) should increase. However, modern GPU uses the CUDA tensor core for high
performance matrix multiplication and the tensor core instruction only supports a fixed size of matrix
tiles multiplication (8 x 4 x 16 INT8 matrix multiplication in Nvidia RTX A100 GPU (NVIDIA
Corporation, [a))). To achieve better LUT-based GEMM performance and keep a fair comparison
with tensor cores, we simulate the GPU performance with optimized matrix sub-tile shape under the
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Figure 4: (a) One tile of the matrix multiplication. (b) The steps of CodeQuant kernel, including a
one-time lookup table precomputation and table lookup. (c) The precomputed lookup table is stored
in the shared memory in the Streaming Multiprocessors (SM) in GPU.

same floating point operation numbers per cycle using Accel-Sim (Khairy et al.||2020). To mitigate
the bank conflicts, the LUT can be duplicated into more memory banks (Lo et al., | 2025)) to reduce
the chance of multiple threads accessing the same memory bank. To keep the same total shared
memory size, we can increase the number of banks (32 banks in A100 GPU) and reduce the size of
each memory bank, which requires the shared memory structure improvement. We use Accel-Sim to
simulate the LUT-based GEMM performance with optimized GPU shared memory structure.

4 EXPERIMENTS

We evaluate CodeQuant across MoE models of varying sizes and architectures, including Phi-
mini-MoE-Instruct (Abdin et al., [2024), Qwen3-30B-A3B (Yang et al.| 2025), DeepSeek-V2-
Lite (DeepSeek-Al et al.l 2024), and Mixtral 8x7B (Jiang et al., [2024). The evaluations cover
both language generation, commonsense QA tasks, and math reasoning tasks. For language mod-
eling, we report perplexity on WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2023). For
zero-shot QA, we measure accuracy on ARC (Clark et al.,2018)), HellaSwag (Zellers et al.| | 2019)),
MMLU (Hendrycks et al.l[2021)), PIQA (Bisk et al.,[2020), and WinoGrande (Sakaguchi et al., [2021)).
For mathematical reasoning, we further evaluate CodeQuant using GSMS8K (8-shot) (Cobbe et al.,
2021)) and MATHS500 (4-shot) (Hendrycks et al., 2021).

In the AOS stage, we apply the Cayley transform to optimize the activation-quantization rotation
matrix R;, using 1,024 WikiText2 samples over 128 iterations. In the ACCF stage, we optimize
centroids over 64 iterations with 512 WikiText2 calibration samples, setting the KL divergence
coefficient to A = 1.0. We study the impact of A in Section [#.4] In terms of preprocessing time,
the AOS stage requires approximately 15/20/30/50 minutes for Phi-mini-MoE-Instruct, DeepSeek-
V2-Lite, Qwen3-30B-A3B and Mixtral 8x7B on H100 GPUs, respectively. The subsequent ACCF
stage requires 30/40/110/240 minutes for the same models. At inference time, all transformations are
fused into the weights. As a result, the multiply—accumulate operations can be executed through LUT
lookups, and Section[d.3] shows that this leads to a net inference speedup.

We compare CodeQuant with several PTQ methods, including RTN (Round-to-Nearest),
SmoothQuant (Xiao et al., 2024), QuaRot (Ashkboos et al.l|2024), and SqueezeLLM (Kim et al.;
2024). We additionally include recent rotation-based PTQ methods such as DuQuant (Lin et al.|
2024a) and SpinQuant (Liu et al., [2025) as baseline method. For methods that rely on online
Hadamard transforms, we adopt the same setting to ensure methodological consistency. We use
the same activation bitwidth across methods, including SqueezeLLLM, where input activations are
quantized with RTN. For weights, we match the total number of discrete representation values. For
instance, when QuaRot uses 4-bit quantization, we configure CodeQuant with 16 centroids for weight
clustering to yield an equivalent representation capacity, using the same centroid-selection strategy
as SqueezeLLM. All algorithms are evaluated under two quantization/clustering configurations. In
the first, referred to as Block-wise, quantization or clustering is applied within groups of g = 1024
weight values along the embedding dimension. In the second, termed Embedding-wise, quantization
is applied across the entire embedding dimension, spanning the full embedding vector.



Under review as a conference paper at ICLR 2026

Table 1: Performance in perplexity (PPL) on Wiki2 and C4 dataset, and accuracy on Arc-Challenge
(A-c), Arc-easy (A-e), HellaSwag (HS), MMLU (ML), PIQA (PQ) and WinoGrande (WG). For each
setting, we report the BF16 baseline in the first row. More results are shown in the Appendix.

| Models | Methods | Wiki2(]) C4(]}) | A-c() A-e(t) HS(1) ML(1) PQ() WG(1) | Avg (1)
BF16 6.83 13.06 0581 0813 0759 0681 0797 0753 | 0.731

RTN 981122 743127 | 0287 0268 0261 0232 0501 0516 | 0344

Phi-mini- SqueezeLLM 8383.63 5619.01 0.279 0.281 0.263 0.236 0.515 0.500 0.346
MoE-Instruct | SmoothQuant | 24071.25 1632079 | 0263 0280 0270 0240 0528 0503 | 0.347
QuaRot 7.93 14.44 0545 0784 0725 0633 0775 0702 | 0.694

CodeQuant 7.63 13.94 0538 0790 0.728 0.644 0784 0716  0.700

BF16 6.69 932 0491 0759 0780 0551  0.804  0.709 | 0.682

RTN 812.90 66045 | 0226 0295 0283 0237 0513 0483 | 0.339

9 | DeepSeek- | SqueezeLLM | 806.71 61470 | 0257 0301 0277 0238 0541 0508 | 0.354
Z V2-Lite SmoothQuant | 11.57 16.10 0381 0645 0658 0305 0747  0.581 0.553
) QuaRot 7.75 10.75 0457 0720 0745 0450 0787  0.682 | 0.640
z 5 CodeQuant 7.08 9.85 0479 0749 0767 0515 0791  0.684  0.664
<3 BF16 9.04 14.05 0566 0793 0776  0.778  0.805  0.694 | 0.735
| RTN 181.59 23249 | 0230 0385 0367 0236 0565 0445 | 0371
Qwen3- SqueezeLLM | 100.47 12155 | 0222 0352 0367 0243 0576 0504 | 0377

30B-A3B | SmoothQuant | 23.01 33.39 0383 0584 0490 0413 0717 0547 | 0.522

QuaRot 16.04 24.27 0386 059  0.609 0585 0735 0575 | 0.581

CodeQuant 10.31 15.75 0522 0757 0.688 0735 0780  0.685  0.694

BF16 4.01 7.41 0579 0851 0720 0677 0856 0799 | 0.747

RTN 10502.14 1404538 | 0319 0261 0284 0243 0492 0504 | 0350

Mixtral- SqueezeLLM | 13952.66 19725.12 | 0297 0282 0279 0251 0527 0519 | 0.359

8x7B SmoothQuant | 77.32 96.01 0222 0349 0303 0236 0565 0497 | 0.362

QuaRot 16.79 24.29 0348 0570 0512 0286 0708 0560 | 0.497

CodeQuant 4.65 8.06 0565 0819 0715 0.644 0.827 0.780  0.725

RTN 20.86 30.75 0345 0540 0475 0318  0.657 0529 | 0477

SqueezeLLM 12.44 20.21 0399 0607 0590 0455 0.687 0572 | 0.552

. Phi-mini- | SmoothQuant | 15.34 24.18 0356 0559 0532 0464 0656 0577 | 0.524
<2 | MoE-Instruct QuaRot 7.63 13.82 0534 0790 0728  0.633 0783 0719 | 0.698
z E CodeQuant 7.28 13.54 0562  0.800 0.733  0.646 0792 0729  0.710
<3 RTN 161.08 159.65 | 0236 0368 0344 0236 0581 0515 | 0.380
A SqueezeLLM | 115.66 11259 | 0238 0379 0364 0234 0590 0500 | 0.384
DeepSeek- SmoothQuant 9.11 12.72 0.387 0.652 0.687 0.347 0.761 0.613 0.574

V2-Lite QuaRot 7.62 10.59 0462 0719 0745 0483 0781  0.668 | 0.643
CodeQuant 7.03 9.79 0480 0741  0.764 0.525 0794  0.698  0.667

We evaluate CodeQuant GEMM kernel using Accel-Sim (Khairy et al., [2020), a state-of-the-art
GPU simulator, configured to model an A100 80GB GPU with CodeQuant-optimized tensor cores.
Detailed simulation settings are provided in the Appendix. As baselines on real A100 hardware,
we measure the latencies of HuggingFace (Wolf et al., [2020) BF16 models, QuaRot (Ashkboos
et al.}2024) A4W4 quantized models, and SqueezeLLM (Kim et al.,|2024)) A4W4 quantized models.
SqueezeLLLM serves as a baseline for weight clustering and activation quantization without GPU
architectural modification, helping isolate the latency performance gains from CodeQuant hardware
kernel design. Experiments use a prefill length of 512, decoding length of 128, and batch size of
16. Additionally, we measure the real hardware performance of CodeQuant by benchmarking the
A8W4 T-MAC kernel (Wei et al., 2025])), a mixed-precision LUT-based CPU GEMM kernel, against
Llama.cpp (Gerganov & ggml-org contributors} 2023) BF16 and A8W4 models on CPU.

4.1 MAIN RESULTS

Table[I] summarizes the evaluation results of CodeQuant under different configurations. For clarity,
we adopt the ‘AxWx’ notation. For instance, in QuaRot, RTN, and SmoothQuant, ‘A4W4’ denotes
4-bit quantization of activations and 4-bit quantization of weights. In contrast, under CodeQuant,
‘A4W4’ corresponds to applying 4-bit linear quantization to activations and clustering weights into
24 = 16 centroids. In the Embedding-wise setting, POG has no effect on the final performance, since
the permutation operates entirely within the embedding vector. Therefore, POG is not applied here.

We first present the Embedding-wise evaluation results. For A4W4, CodeQuant delivers substan-
tial improvements over existing methods. On Qwen3-30B-A3B, it reduces perplexity by 5.73 on
WikiText2 and 8.52 on C4, while increasing average accuracy by 11.3% compared to QuaRot, with
even larger gains over SmoothQuant on both metrics. On DeepSeek-V2-Lite, CodeQuant again
improves performance, lowering perplexity by 0.67 on WikiText2 and 0.9 on C4, alongside a 2.4%
accuracy increase over QuaRot. On Mixtral 8x7B, CodeQuant shows the same trend, reducing
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Table 2: Rotation-based method performance comparison. CodeQuant,,,; indicates that online
Hadamard transforms are enabled during the quantization process.

| Models | Methods | Wiki2(}) C4(l) | A-c(t) A-e(t) HS(1) ML) PQ() WG () | Avg (1)

2 | Deenseck. | DuQuant 843 1194 | 0455 0708 0623 0400 0775  0.693 | 0.658

2| Ve | SpinQuant,,, 924 1271 | 0427 0692 0706 0425 0774  0.638 | 0.647
2 CodeQuanty,,; | 816 1138 | 0445 0723 0727 0454 0782 0644  0.666
I3 Qwend- DuQuant 1352 2010 | 0472 0662 0687 0654 0739 0606 | 0.637
£ | JopAsp | SpinQuant,,, | 1461 2207 | 0415 0600 0628 0584 0692 062 | 059

is CodeQuant,,,, | 1269 1989 | 0477 0.697 0.691 0679 0739 0635  0.653

perplexity by 12.14 on WikiText2 and 16.23 on C4 compared to QuaRot, and increasing average
accuracy by 22.8%. These results highlight CodeQuant’s consistent advantages across architectures
and demonstrate that its effectiveness remains stable across both model structure and model scales.
The A8W4 Embedding-wise results are detailed listed in Appendix [A.4]

With POG enabled, we evaluate Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under the Block-wise
setting. Under A4W4, both models show clear improvements over the Embedding-wise baseline.
However, when moving to A8W4, Phi-mini-MoE-Instruct benefits only marginally, and DeepSeek-
V2-Lite even drops by 0.3% relative to the baseline. We attribute this to DeepSeek’s already strong
accuracy without POG, with less than a 1% gap compared to BF16. These results suggest that
permutation is effective under extreme compression, as detailed in Appendix [A4]

In addition, we evaluate CodeQuant against two strong rotation-based PTQ baselines, SpinQuant
and DuQuant, both of which suppress outliers through trainable or structured transformations. For
fairness, we adopt online Hadamard transforms and denote this variant as CodeQuant;,, ;, matching
the SpinQuant,, , ; setup. As shown in Table[2} CodeQuanty, ,; consistently outperforms both baselines.
On Qwen3-30B-A3B, it reaches an average accuracy of 0.653 compared to 0.637 for DuQuant and
0.590 for SpinQuant. On DeepSeek-V2-Lite, it achieves 0.666, again exceeding DuQuant at 0.658 and
SpinQuant,,,; at 0.647, demonstrating robust advantages across language modeling and downstream
tasks.

4.2 MATHEMATICALLY REASONING PERFORMANCE

We further assess whether CodeQuant

preserves reasoning-heavy capabilities, Table 3: A4W4 Embedding-wise CodeQuant results on

which are typically more sensitive to  GSMSK (8-shot) and MATH500 (4-shot).
quantization. We evaluate DeepSeek-

V2-Lite and Qwen3-30B-A3B under the Models | Methods | GSMSK (1) | MATHS00 (1)
A4W4 Embedding-wise configuration on

BF16 0.364 0.121

GSMB8K (8-shot) and MATHS500 (4-shot)  DeepSeek-V2-Lite | QuaRot 0.231 ‘ 0.093
(DeepSeek-Al et al. 2024), where each CodeQuant 0.330 0.108
k-shot prompt includes k& worked exam- BF16 0.924 ‘ 0.322
; Qwen3-30B-A3B QuaRot 0.508 0.128

ples before the test question. As shown CodeQuant e o4t

in Table [3] CodeQuant substantially out-
performs QuaRot and remains close to the
BF16 baseline. On DeepSeek-V2-Lite, the degradation is minimal, only 3.4% on GSM8K and 1.3%
on MATHS500. For Qwen3-30B-A3B, the advantage becomes even more pronounced: CodeQuant
improves over QuaRot by 35.9% on GSMS8K, and 11.3% on MATHS500, highlighting its strength on
reasoning-heavy tasks.

4.3 LATENCY EVALUATION

Figure [3] presents the normalized speedups of all baselines, with BF16 latency normalized to 1.
Compared with the BF16 models, CodeQuant achieves an average 2.63x speedup, which underscores
the effectiveness of low-bit activation and weight quantization together with the LUT-based GEMM
design. The speedup of CodeQuant over QuaRot highlights the advantage of replacing repetitive
multiply-accumulate operations with direct LUT indexing, thereby reducing redundant multiplications.
The improvement over SqueezeLLM reflects the benefit of deploying a GPU implementation that uses
optimized LUT operations. Considering the strong accuracy results of CodeQuant shown in Table I}
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Table 4: AOS Impact Table 5: KL Loss Impact Table 6: Centroid Budgets Impact
DeepSeek- e Phi-  Deepseek- DeepSeek-V2-Lite

Method V2-Lite Method ) Task | i v2-Lite Model Wiki2|  C4)  Acct
Wiki2 | 7.29 Wiki2 | | 7.29 7.10 SqueezelLLM .y, | 2436 3298 0496

Random C4] 10.16 W/O KL C4] 13.95 9.87 SqueezeLLM 115 8.40 11.69  0.619
AccT 0652 Acct | 0694  0.658 SqueezeLLM 4y, | 7.17 1001 0.652

Wiki2 | 706 Wiki2 | | 7.06 7.03 CodeQuant 1 -, 10.68 1459  0.568

AOS C4l 985 W/KL  C4| | 13.80 9.79 CodeQuant 4 ;5 759 1058  0.639
Acct 0667 Acct | 0700  0.667 CodeQuant ;4 706 9.85  0.667

CodeQuant achieves the optimal performance among the baselines. Furthermore, we validate these
performance trends on real hardware by benchmarking a CPU kernel, where CodeQuant achieves up
to 4.15x speedup over a BF16 baseline (see Appendix [A.7]for details).

It is important to note that the clustering step is performed offline. After the centroids are obtained by
minimizing ACCF, each weight is assigned to its nearest centroid using the distance metric defined in
Equation[7} During runtime, the weight matrices remain fixed, and inference proceeds in the same
way as a conventional MoE. As a result, this approach does not introduce any additional computation
or memory traffic during inference.

4.4 ABLATION STUDIES

Impact of Activation Smoothing We evalu-
ate whether fine-tuning the rotation matrix im- uBF16 mQuarot =SqueezeLLM = CodeQuant

proves accuracy on DeepSeek-V2-Lite under the o , bt oo 28 24 5, 26 26 5, 30
A4W4 Embedding-wise configuration, keeping 82 4@ >0 . : )
all other settings fixed. Specifically, we com- & 1

0

pare a random rotation with the fine-tuned ro- Phi-mini-MoE-Instruct _ DeepSeek-V2-Lite  Qwen3-30B-A3B
tation produced by AOS. As shown in Table 4]

rotational matrix finetuning yields consistent im- Figure 5: Normalized speedup on one A100 GPU.
provements, boosting accuracy by 1.4% and re-

ducing perplexity by 0.23 on WikiText2 and by 0.31 on C4.

Impact of KL Penalty We evaluate the effectiveness of the KL divergence term defined in Equa-
tion[4] The ablation is conducted on Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under the A4W4
Block-wise configuration, comparing two settings: (i) centroids fine-tuned without the KL divergence
term (A = 0.0), and (ii) centroids optimized with the full ACCF loss (A = 1.0). As shown in Table
ACCEF with the KL penalty outperforms the version without it. Additional analysis in Appendix &
further shows that the KL penalty also stabilizes the router behavior, indicating that KL regularization
helps preserve the original expert-routing pattern after quantization.

CodeQuant Performance under Extreme Compression We examine CodeQuant performance
under different centroid budgets on DeepSeek-V2-Lite with Embedding-wise quantization. We apply
the same rotation matrix to quantize activations for both CodeQuant and SqueezeLLM, and evaluate
over three settings: A4W2, AAW3, and A4W4. As shown in Table @ CodeQuant consistently
outperforms SqueezeLLM across all budgets. Under the most aggressive case (A4W2), CodeQuant’s
average accuracy decreases by 9.9% relative to the A4W4 case, whereas SqueezeLLM drops by
15.6%. Moreover, CodeQuant’s advantage widens as the budget shrinks from 1.5% at A4W4 to 7.2%
at A4W2, indicating robustness under extreme compression.

5 CONCLUSION

We present CodeQuant, a unified quantization-and-clustering framework for low-precision MoE.
CodeQuant reduces quantization error while preserving accuracy, achieves up to 4.15x latency
reduction. Experiments confirm that CodeQuant delivers superior accuracy—efficiency trade-offs
compared to other baseline algorithms, enabling more reliable low-precision deployment of MoE.
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ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. CodeQuant is a post-training quantization frame-
work evaluated on pretrained models and public datasets, without the use of private or user-specific
data. Our research does not involve human subjects, private or sensitive data, or personally identifiable
information. The method modifies only internal representations through weight quantization and
routing, introducing no new risks in fairness, privacy, or security beyond those inherent to the base
models. We are not aware of any direct ethical concerns specific to this work.

REPRODUCIBILITY STATEMENT

Code and models: All experiments in this paper are conducted on publicly available datasets with
specified preprocessing steps. Detailed configurations, including hyperparameter, training procedures,
and hardware specifications, are reported in the experiment section. Baselines are re-implemented
following their original papers, with reference to the authors’ released code when available. While
the source code for CodeQuant is not released at submission time, we will make it publicly available
upon acceptance to facilitate reproducibility.

Datasets: All datasets used in this work are publicly available.

Randomness: All experiments are run with fixed random seeds in the scripts, to ensure consistent
results.

Compute resources: Our experiments are conducted on NVIDIA RTX H100, RTX A100, Accel-Sim
GPU simulator, and Intel CPU as described in Section 4.

USE OF LARGE LANGUAGE MODELS

Large language models (LLMs), such as ChatGPT, were used only for polishing language and
improving readability. All technical ideas, analyses, experiments, and conclusions were conceived,
implemented, and validated by the authors. The final manuscript was carefully reviewed to ensure
accuracy and correctness.
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A APPENDIX

A.1 ROTATION MATRIX IN DEEPSEEK-V2-LITE

In Section[3.1] we integrate the rotation matrix into the weight parameters. Due to the architectural
differences between the DeepSeek-V2-Lite model and Qwen3-30B-A3B, in DeepSeek-V2-Lite SA
block, the rotation matrices are applied to Wy and Wi, _,. In the MoE FFN block, DeepSeek-V2-Lite
includes a shared expert; therefore, the rotation matrices are also applied to the shared expert’s Wy,
and Wge.

A.2 POG ALGORITHM

In Sectior3.3| we propose a permutation method. In this section, we would introduce how to construct
a permutation matrix P that makes the weights more amenable to clustering in detail.

First, we need to obtain a permutation sequence using Algorithm{I] Given a weight matrix Wr €
Rén*dout e compute a permutation sequence m € R%ut, defined as a bijective sequence in
which each element 7; specifies the original column relocated to the i-th position in the permuted
arrangement. Concretely, we first sort the columns by their mean absolute value and partition them
along the column dimension into small subgroups. Then the subgroup with the largest average
variance is paired with subgroups of the smallest variance to form the first group, and this process is
repeated until all subgroups are assigned.

Second, after obtaining the permutation order 7, we construct the corresponding permutation matrix
P, defined as:

L ifi=m(j), nxn
P = {07 otherwise. where P € {0,1} 9
Lastly, we fuse the permutation matrix into the weight parameters to eliminate additional online
computation. For the Phi-mini-MoE-Instruct and Qwen3-30B-A3B models, the permutation is
applied in both the self-attention and MoE-FFN blocks. In the self-attention block, we multiply
the permutation matrix with Wg.y and apply its transpose to Wg.oy. In the MoE-FFN block, the
permutation matrix is multiplied with Wy, while its transpose is applied to Wg.qown for each expert.

For DeepSeek-V2-Lite, the permutation is applied to all experts, including the shared expert, in
the MoE-FFN block. Specifically, Wr,, is multiplied by the permutation matrix, and Wg.gown 1S
multiplied by its transpose for every expert. In the self-attention block, due to the unique structure
of the DeepSeek family, additional steps are required to preserve output invariance. First, the layer
normalization is absorbed into the weight matrix. Then, we decompose

WR;kv_a = [WR;compressed_kw WR;k_pe]

into Wr.compressed_kv and Wr_pe. The permutation matrix is multiplied with Wg.compressed_kv» While
the transpose of the permutation matrix is applied to Wr.ky p to preserve output invariance.
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Algorithm 1: POG Algorithm

Input: Wx € R%n*%u s the weight matrix after rotation; g € N is the quantization group size; gs € N is
the small subgroup size, which is the unit to swap, and it satisfies gs < g.

Output: A column permutation order 7 of {1,. .., dou }-

Procedure

Ng <*dout/g’ Ns Eduul/gs’ n%g/gs,

din
Compute the mean absolute value of each column: S € R%" where s; = di Z |Wr.rj:
n
r=1

L4, < argsort(S, desc);

Partition I;4, into N groups of size gs, such that each group
Gi = Lae[(i—1)gs + 1 :igs] € R, i=1,..., N

for i = 1to N do

Wea, = Wr|:, Gi;

v; < Mean(StdDev(Wg,,dim = 1), dim = 0);

V= {’U17 ...,’UNS};

I'v « argsort(V, desc), Iy < argsort(V,asc);

< [];

fori =1to N do

append Iy [i] to ;

append Iy [(i —1)(n —1) +1:i(n—1)] tom;

return T;

A.3 HARDWARE EVALUATION SETTINGS

We use Accel-Sim (Khairy et al.| |2020), a state-of-the-art open-source GPU simulator, and modify its
configuration and trace files to model both the original RTX A100 80GB GPU and an A100 with
CodeQuant-optimized tensor cores, as shown in Section[3.4] The simulator is calibrated against real
A100 measurements, achieving less than 1% latency error, consistent with prior GPU module design
studies (Mo et al.| 2025} |Guo et al., [2023} |Avalos Baddouh et al.| 2021). We configure tensor cores
with a matrix multiplication size of 16 x 4 x 8 and 64 shared memory banks to improve lookup table
reuse and reduce bank conflicts.

A.4 CODEQUANT A8W4 EMBEDDING-WISE ACCURACY PERFORMANCE

Table[7]summarizes the evaluation results of CodeQuant under the ASW4 Embedding-wise setting.
The accuracy of CodeQuant further improves compared to A4W4 configuration, showing only a
~1-2% drop on Phi-mini-MoE-Instruct and Qwen3-30B-A3B, and nearly lossless performance on
DeepSeek-V2-Lite. CodeQuant consistently outperforms the other baselines across models and
datasets.

A.5 IMPACT OF POG

We evaluate the impact of POG operation on Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under
the A4W4 Block-wise configuration with a fixed group size of g = 1024. As shown in Table [8]
removing permutation consistently degrades performance. On Phi-mini-MoE-Instruct, with POG
applied, perplexity increases by 0.03 on WikiText2 and 0.12 on C4, while accuracy drops by 0.4%. A
similar pattern is observed on DeepSeek-V2-Lite, confirming the generality of this effect.

A.6 IMPACT OF KL PENALTY ON ROUTER LOGITS

We measure the effect of KL divergence on router stability for DeepSeek-V2-Lite and Qwen3-30B-
A3B under the A4W4 Embedding-Wise setting. The change rate is defined as the layer-wise average
change in Top-K expert indices (with K = 6 for DeepSeek-V2-Lite and K = 8 for Qwen3-30B-
A3B) computed by comparing the router outputs before and after quantization. Results are averaged
over 50 samples from the WikiText-2 test set.
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Table 7: Performance in perplexity (PPL) on Wiki2 and C4 dataset, and accuracy on Arc-Challenage
(A-c), Arc-easy (A-e), HellaSwag (HS), MMLU (ML), PIQA (PQ) and WinoGrande (WG). Code-
Quant is set as ASW4 Embedding-wise. We report the BF16 baseline in the first row, and mark the
methods as BF16.

| Models | Methods | Wiki2(l) C4(l) | A-c(1) A-e(t) HS(1) ML) PQ(1) WG (1) | Avg(1)
BF16 6.83 1306 | 0581 0813 0759 0681 0797 0753 | 0731
RTN 1213 2046 | 0460 0730 0618 0497 0741 0632 | 0613
Phi-mini- | SqueezeLLM |  7.41 13.65 | 0565 0795 0736 0658 0791  0.746 | 0715
MoE-Instruct | SmoothQuant |  9.50 1623 | 0481 0741 0653 0569 0756 0638 | 0.634
QuaRot 7.69 1415 | 0549 0787 0735 0652 0786 0737 | 0.708
. CodeQuant 736 1373 | 0579 079 0.741 0668 0796 0732 | 0.719
£ BF16 9.04 1405 | 0566 0793 0776 0778 0805  0.694 | 0.735
T RTN 1409 2165 | 0284 0446 0692 0643 0656 0626 | 0558
2< Qwen3- | SqueezeLLM |  9.37 1456 | 0529 0768 0743 0764 0770 0671 | 0.707
<7F | 30B-A3B | SmoothQuant | 1177 1782 | 0463 0703 0721 0695 0773 0667 | 0.670
g QuaRot 11.18 1658 | 0471 0671 0696 0708 0766  0.654 | 0.661
= CodeQuant 9.81 1511 | 0535 0779 0754 0757 0797  0.679 | 0.717
BF16 6.69 932 | 0491 0759 0780 0551 0804 0709 | 0.682
RTN 772 1089 | 0469 0719 0732 0457 0790  0.671 | 0.640
DeepSeek- | SqueezeLLM |  6.93 9.60 | 0485 0755 0760 0525 0803 0701 | 0.658
V2-Lite | SmoothQuant |  7.61 1070 | 0457 0729 0754 0480 079  0.674 | 0.648
QuaRot 7.29 1008 | 0466 0737 0757 0493 0792 0705 | 0.658
CodeQuant 6.84 950 | 0.487 0764 0.773 0533 0798 0709 | 0.678
RTN 8.68 1493 | 0530 0777 0683 0578 0770  0.671 | 0.668
SqueezeLLM | 7.18 1346 | 0576 0801 0.744 0670 0797 0759 | 0.724
. | Phimini- | SmoothQuant |  8.40 1467 | 0516 0768 0.697 0602 0769  0.688 | 0.673
-8 | MoE-nstruct | QuaRot 7.48 1365 | 0550 0794 0737 0645 078 0737 | 0.708
= z CodeQuant 7.11 1333 | 0575 0817 0744 0661 0792 0751 | 0723
<2 RTN 747 1040 | 0455 0743 0764 0488 0788  0.687 | 0.654
= SqueezeLLM | 6.86 953 | 0469 0754 0773 0535 079 0706 | 0.672
DeepSeek- | SmoothQuant | 7.42 1039 | 0459 0724 0748 0476 0792  0.665 | 0.644
V2-Lite QuaRot 7.22 1003 | 0466 0746 0760 0508 0795  0.688 | 0.661
CodeQuant 6.83 949 | 0472 0756 0.775 0535 0804 0708 | 0.675
Table 8: Impact of POG Table 9: KL Penalty Impact on Router
Method Phi-mini-MoE-Instruct DeepSeek-V2-Lite Model Method Change Rate (%) |
Wiki2] C4] AccT | Wiki2] C4] Acct DeepSeek- | QuaRO‘/ - ‘2*1‘3‘;
W/OPOG | 731 1366 0710 | 7.08  9.88 0.663 VILite | oot KL P
W/ POG 728 1354 0714 | 7.03 979  0.668 QuaRot 7515
3(3]\;6:;3 CodeQuant w/o KL 60.21
CodeQuant w/ KL 59.58

As shown in Table[9] adding the KL penalty consistently reduces routing perturbation. On DeepSeek-
V2-Lite, the change rate drops from 24.33% to 22.82%. A similar trend is observed on Qwen3-30B-
A3B, where KL regularization yields a reduction from 60.21% to 59.58%, despite its larger 128-expert
MoE blocks. These results indicate that KL regularization helps preserve the expert-routing pattern
during quantization and mitigates performance degradation.

A.7 LUT KERNEL PERFORMANCE ON CPU

Table 10: Latency and Memory Evaluation on CPU

R Phi-mini-MoE-Instruct DeepSeek-V2-Lite Qwen3-30B-A3B
Bit Width ‘ Method Mem. (GB) | Lat. (s)| | Mem. (GB) | Lat.(s)| | Mem. (GB) | Lat. (s) |
BFI6 | Llamacpp (CPU) | 143 01 | 293 500 | 569 66.1
ASW4 Llama.cpp (CPU) | 4.1 15.0 8.8 17.1 16.2 20.1

CodeQuant (CPU) 41 133 8.9 142 16.5 159

T-MAC (Wei et al, [2025) implements mixed-precision GEMM via a lookup table—based kernel
within the Llama.cpp framework (Gerganov & ggml-org contributors}, |2023), enabling efficient CPU
execution. We evaluate CodeQuant by benchmarking the ASW4 T-MAC kernel against BF16 and
A8W4 models in Llama.cpp. The experiments are conducted on an Intel(R) Xeon(R) w7-3445
CPU (Intel Corporation, [2025) using 20 threads. On CPU, CodeQuant achieves up to 4.15x speedup
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over BF16 baselines and consistently outperforms the quantization baselines. The gains are larger on
CPU than on GPU primarily because CPU inference exposes less parallelism and is more memory-
bound (Wei et al.} 2025), making the improvements over the baseline more pronounced. In addition,
efficient LUT instructions on CPUs further amplify CodeQuant’s advantage over quantized baselines.
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