
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CODEQUANT: UNIFIED CLUSTERING AND QUANTIZA-
TION FOR ENHANCED OUTLIER SMOOTHING IN LOW-
PRECISION MIXTURE-OF-EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Outliers have emerged as a fundamental bottleneck in preserving accuracy for low-
precision large models, particularly within Mixture-of-Experts (MoE) architectures
that are increasingly central to large-scale language modeling. Under post-training
quantization (PTQ), these outliers induce substantial quantization errors, leading to
severe accuracy degradation. While recent rotation-based smoothing techniques
alleviate the problem by redistributing outlier magnitudes, residual errors remain
and continue to impede reliable low-precision deployment.

In this work, we tackle this challenge by introducing a unified quantization-and-
clustering scheme that contains smoothing activation outliers via learnable rotation
and absorbing weight outliers into fine-tuned cluster centroids for MoE. This design
reduces the influence of extreme values by fitting them within cluster centroids,
thereby lowering quantization error while maintaining expressive capacity. We
introduce CodeQuant, a unified quantization-and-clustering framework tailored
for MoEs. Coupled with a dedicated kernel design for GPU and CPU, CodeQuant
achieves up to 4.15× speedup while delivering significantly higher accuracy than
state-of-the-art quantization approaches across diverse MoE models. Our results
highlight CodeQuant as a promising direction for efficient and accurate deployment
of MoE-based large language models under low-precision constraints.

1 INTRODUCTION

Mixture-of-Experts (MoE) has emerged as one of the most effective paradigms for scaling large
language models (LLMs). By activating only a subset of experts for each input token, MoE introduces
conditional computation, allowing different experts to specialize in distinct linguistic or multimodal
patterns. This specialization enables MoE-based models to achieve superior performance across
diverse tasks while maintaining training and inference efficiency. Consequently, MoE architectures
have been adopted in many state-of-the-art LLMs (Abdin et al., 2024; Yang et al., 2025; DeepSeek-
AI et al., 2024). Despite these advantages, MoE models still carry substantial computational and
system-level costs. Although only a fraction of experts are active per token, the total parameter size
is extremely large, leading to high memory requirements and increased communication overhead
during distributed training and inference. These factors increase processing latency and pose serious
challenges for real-world deployment.

To address these costs, low-precision quantization has become a widely adopted strategy. By
representing weights and activations with fewer bits, quantization substantially reduces memory
footprint and improves computational throughput. Recent hardware innovations further accelerate
this trend: NVIDIA’s Hopper and Ada GPUs natively support FP8 arithmetic, while the Blackwell
series extends support to FP4. These developments provide a strong foundation for efficient MoE
deployment with low precision. However, quantizing MoE architectures remains challenging due to
the prevalence of outliers. Large-magnitude activations expand the dynamic range, leading to severe
quantization errors and significant accuracy degradation under post-training quantization (PTQ),
particularly in low-bit settings such as 4-bit quantization. While recent outlier-smoothing methods
alleviate the issue, residual errors persist and continue to hinder reliable low-precision deployment.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Feedforward
layer (FFN)

Self-attention
layer (SA)

SiLU

+

Layernorm

Router

Expert 0 Expert 1 Expert n

Weighted sum

Linear

Stage 1:
Activation-oriented Outlier

Smoothing WYY

X
C A

W

Clustering
Wc

Stage 3: Adaptive Weight
Clustering and Centroid Finetuning

A

X
Wv WoXWk

Wv

Wq

S
oftm

ax

Layernorm Wout

Z

X

Stage 2:
Permutation-invariant

outlier grouping

CodeQuant
FrameworkMoE

FFN

SA

…
0000
0001

C1 x 0
C1 x 1

1110
1111

C1 x 14
C1 x 15

…
…

0000
0001

C16 x 0
C16 x 1

1110
1111

C16 x 14
C16 x 15

…

Stage 4: Kernel Design and
LUT-based System

Implementation

Centroid 1

Activation

Centroid 16

Activation

…
…

M
U

X
M

U
X

M
U

X
X’

For blockwise setting

X

Figure 1: Overview of the CodeQuant framework: the left panel illustrates the detailed architecture
of a MoE, while the right panel depicts the flow of CodeQuant procedures.

In parallel, codebook-based approaches such as clustering have emerged as a compelling alternative to
uniform quantization. By mapping weights or activations to a compact set of representative centroids,
clustering mitigates quantization error and effectively handles outliers, as extreme values can be
absorbed into centroids rather than expanding the overall dynamic range. Beyond its algorithmic
robustness, clustering is also hardware-efficient: lookup table (LUT) implementations enable rapid
centroid mapping and streamlined memory access, making it well suited for large-scale deployment.
Notably, several commercial accelerators have already adopted such designs, including Apple’s
Neural Engine (Inc., 2024a) and Arm Ethos-U (Inc., 2020). The sparsity indexing mechanism in the
Cerebras Wafer-Scale Engine (Inc., 2024b) further enables high-performance LUT implementation.
Collectively, these developments underscore clustering as a practical, hardware-aligned solution for
LUT-driven quantization.

In this work, we present CodeQuant, a unified codebook-based clustering and quantization framework
for low precision MoE models that enhances activation outlier smoothing. Our contribution can be
summarized as follows:

• We first introduce Activation-oriented Outlier Smoothing (AOS), which suppresses activation
outliers through rotation matrix adjustment, effectively relocating them into the weight space.

• We then propose Adaptive Weight Clustering with Centroid Finetuning (ACCF) and Permu-
tation Invariant Outlier Grouping (POG), which substantially reduce weight quantization
error even in the presence of significant outliers.

• Finally, we develop optimized LUT kernels to demonstrate improvements in execution
latency. Across Phi-Mini-MoE-Instruct, Qwen3-30B-A3B, and DeepSeek-V2-Lite, Code-
Quant consistently accelerates inference, lowers memory footprint, and preserves accuracy.

2 BACKGROUND AND RELATED WORK

2.1 OUTLIER IN LLMS

Activation outliers have been widely recognized as a major obstacle to effective quantization of
large language models (LLMs). Prior work (Dettmers et al., 2022; Sun et al., 2024; An et al., 2025)
highlights two predominant forms: channel-wise outliers and massive activations, which expand the
dynamic range and induce severe quantization errors. Moreover, residual connections exacerbate the
problem by propagating outliers across layers and amplifying the adverse effects (Guo et al., 2024).

Mixture-of-Experts (MoE) LLMs are likewise affected by the outlier problem. Prior studies on MoE
(Sun et al., 2024; Lo et al., 2025) report that massive activations frequently arise in the hidden states
between decoder layers and are further propagated through residual connections, compounding their
impact across subsequent layers. More recently, the notion of super experts has been introduced (Su
et al., 2025), revealing an additional source of large-magnitude outliers specific to MoE architectures.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 OUTLIER AWARE QUANTIZATION

Prior efforts on LLM quantization have pursued two directions for addressing the outlier problem. The
first explicitly isolates outliers and applies mixed-precision quantization (Dettmers et al., 2022; Kim
et al., 2024; van Baalen et al., 2025; Huang et al., 2025), ensuring that extreme values are preserved
at higher precision. The second seeks to mitigate outliers through invariant matrix transformations.
Within this line, one strategy redistributes outliers between activations and weights (Xiao et al., 2024;
Lin et al., 2024b). SmoothQuant (Xiao et al., 2024) is a representative work, which jointly smooths
activations and weights to mitigate their impact. QuIP (Chee et al., 2024) and QuIP# (Tseng et al.,
2024) initiated a new line of work that leverages rotation invariance for outlier mitigation. Building
on this idea, QuaRot (Ashkboos et al., 2024) applies rotation to activations for outlier-free inference,
DuQuant (Lin et al., 2024a) combines permutations for dual handling of outliers. SpinQuant (Liu
et al., 2025) introduces learnable orthogonal rotation matrices that are optimized during post-training
quantization, and subsequent work such as OSTQuant (Hu et al., 2025b) further incorporates a
KL-based objective to fine-tune these rotations together with smoothing parameters.

In the context of weight quantization, most existing works nonetheless adopt uniform quantization
schemes such as GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024b), even though weight
distributions in practice are far from uniform. To address this mismatch, early studies (Dettmers et al.,
2023; Yoshida, 2023; Blumenberg et al., 2025) introduce quantile-based non-uniform quantization,
leveraging the normal distributions assumption of weights to construct information-optimal codebooks.
Meanwhile, SqueezeLLM (Kim et al., 2024) demonstrates that dynamic non-uniform quantization
better adapts to the empirical weight distribution in LLMs. Building on earlier clustering-based
compression techniques (Han et al., 2016; Xu et al., 2018), SqueezeLLM integrates K-means
clustering into LLM quantization, yielding more robust results. Moreover, efficient algorithms
for low-precision MoE remain largely underexplored. MoEQuant (Hu et al., 2025a) demonstrates
that directly applying conventional quantization methods to MoE models yields suboptimal results,
underscoring the importance of accounting for token–expert affinities.

Building on this insight, CodeQuant integrates learnable rotation, permutation, clustering, and centroid
adjustment into a unified, lightweight, layerwise calibration framework, and further introduces MoE-
aware mechanisms designed to maintain consistent token–expert routing behavior.

2.3 LUT AND HARDWARE IMPLEMENTATION

…

Wo R
Wrouter

Wgate

WupRT

SiLU
Wdown R
Expert N

Expert 0

Expert 1

XR YR

Router
RT

RT

W
eighted sum

Expert N

10 1 20 26 9 7 2 2

Clustering error = 17 (High) POG

Clustering group Subgroup

5.5 5.5 23 23 8 8 2 2 10 1.7 1.7 1.7 8 8 23 23

10 1 2 2 9 7 20 26

Clustering Clustering

Clustering error = 7.5 (Low)

After

10 1 20 26 9 7 2 2

6.3 4.2 0.01.4SD =

10 1 20 26 9 7 2 2

6.3 0.0 4.21.4

permute
Step 1: Step 2:

Before
(a) (b)

(c)

WR

Wc

Clustering group 1 Clustering group 2

WR

Wc

p

subgroup 1 subgroup 2 subgroup 3 subgroup 4

Figure 2: FFN layers within MoE is applied
with rotational matrices for outlier smoothing.

General Matrix Multiply (GEMM) with clustered
multiplicands requires LUT support for efficient de-
ployment. Without hardware-friendly LUTs, cen-
troids must be stored as floating-point values and
reloaded during computation, incurring significant
overhead. Studies on both CPUs and GPUs address
this by exploring LUT-based execution to bridge
non-uniform quantization and practical deployment.
On CPUs, DeepGEMM (Ganji et al., 2023) uses
LUT-driven kernels for ultra-low-precision CNNs,
LUTIN (Lin et al., 2024c) optimizes memory use via
hyperparameter tuning, and T-MAC (Wei et al., 2025)
reformulates mixed-precision GEMM as table lookup
for LLM inference. On GPUs, LUT-GEMM (Park
et al., 2024) and FLUTE (Guo et al., 2025) design optimized kernels to minimize unpacking overhead,
while LUT Tensor Core (Mo et al., 2025) integrates LUT primitives into tensor-core pipelines through
software–hardware co-design.

3 METHODOLOGY

The overview of CodeQuant is shown in Figure 1, which comprises three stages. In the first
stage, we apply Activation-Oriented Outlier Smoothing (AOS) exclusively to the input activations,
effectively mitigating activation outliers (Section 3.1). In the second stage, we optionally employ
Permutation-Invariant Outlier Grouping (POG), which reorders the columns of the weight matrix

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to better support the subsequent clustering process (Section 3.3). Stage three introduces Adaptive
Weight Clustering and Centroid Finetuning (ACCF), which identifies optimal groupings and refines
centroids to minimize output difference (Section 3.2). Finally, the resulting MoE is deployed using a
LUT-based system, achieving superior computational efficiency (Section 3.4).

3.1 ACTIVATION-ORIENTED OUTLIER SMOOTHING

As illustrated in Figure 2, the rotational method introduces an additional matrix R applied to the
activation X in both the SA and FFN. The SA blocks in MoE models share the same structure as
those in standard LLMs, and are therefore invariant as discussed in (Ashkboos et al., 2024). The
incorporation of rotational matrices R within the FFN layers is illustrated in Figure 2. An MoE
block primarily consists of two components: the router and the experts. The router is implemented
as a linear layer that takes the input X and generates the expert routing decisions. The output of
each expert can be expressed as (ϕ(XtWgate) ⊙ XtWup)Wdown, where ϕ(·) denotes a nonlinear
activation function (e.g., SiLU) and Xt denotes the subset of tokens assigned to that expert. To
enable rotation-based quantization, we apply the same orthogonal matrix R to both activations
and weights, i.e., X 7→ XR and W 7→ R⊤W . Since RR⊤ = I , the computation simplifies to
(ϕ(XtRR

⊤Wgate)⊙XtRR
⊤Wup)Wdown = (ϕ(XWgate)⊙XWup)Wdown, which is identical to

the original expert output.

While weight clustering is generally robust to outliers, MoE accuracy is highly sensitive to activation
outliers (Ashkboos et al., 2024; Xiao et al., 2024; Liu et al., 2025). To address this, we refine the
rotation matrix R to smooth activation by applying the Cayley transform (Nishimori & Akaho,
2005; Li et al., 2020). Specifically, for any matrix M ∈ Rh×h, where h denotes the model’s hidden
dimension, we first extract its skew-symmetric component and then derive an orthogonal matrix via
the Cayley transform:

S = 1
2
(M −M⊤) R = (I − S)(I + S)−1 (1)

This construction guarantees that the matrix R ∈ Rh×h remains orthogonal while keeping the
process fully differentiable, thereby allowing R to be updated without violating orthogonality. AOS
employs learnable rotation matrices to minimize the quantization error of rotated activations, defined
as XR = XR. By minimizing the quantization error of rotated activations, the rotation explicitly
reduces the influence of outliers on the activation side, leaving the weights to accommodate more of
the variation. Formally, the optimization objective is defined as:

argmin
R

LQ(R|X) = argmin
R

||XR −Q(XR)||2 (2)

where X ∈ Rt×h denotes the calibration input, R is the learnable rotation matrix, and Q(X)
represents the quantization function (i.e. integer quantization). Using WikiText2 (Merity et al., 2016)
as the calibration dataset, we observe a consistent reduction in quantization error during training.
On the held-out test set, fine-tuned rotations yield lower quantization error than random rotations,
demonstrating that the learned rotations generalize beyond calibration.

3.2 ADAPTIVE WEIGHT CLUSTERING AND CENTROID FINETUNING

Building on the smoothed input activations enabled by AOS, we introduce the ACCF method, which
refines grouping and centroid search to further reduce clustering error in the outputs of matrix
products. Specifically, let WR = R⊤W and Wc = fc(WR, A, s⃗). The clustering function fc(·) is
parameterized by a centroid vector s⃗ ∈ Rk×1 and a binary assignment matrix A ∈ {0, 1}mn×k,
where k is the number of centroids. Each element of Wc can equivalently be expressed as As⃗. To
minimize the changes in the output, we set the target as:

argmin
A,s⃗

||XRWR − X̃RWc||2, Wc ≜ fc(WR, A, s⃗) (3)

where XR ∈ Rt×h denotes the activations collected on the calibration set using the rotated but
unquantized weights, and X̃R ∈ Rt×h denotes the input activations at this layer when the upstream
weights have already been quantized and clustered. Equation 3 specifies the objective function for
enabling matrix computations within the SA layers of the MoE through the hybrid operation of input
quantization and weight clustering.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

However, unlike in SA, applying the same operation to the routing mechanism of the MoE FFN
may cause mismatches in token assignments compared with the original MoE, thereby degrading
performance. To address this, we replace the local loss with a weighted sum for MoE module.
Meanwhile, prior works have shown the importance of token–expert affinity (Dai et al., 2022; Li et al.,
2025; Hu et al., 2025a; Liang et al., 2025). Thus, we add a KL divergence loss on router logits during
fine-tuning to preserve the original token–expert assignment. In general, we modify the objective
function in Equation 3 as follows:

L =


||XRWR − X̃RWc||2, if WR ∈ {WR;Q,WR;K ,WR;V },

||Y −
N∑
i=1

Π̃iX̃RWc||2 + λDKL(Π̃,Π), if WR ∈ {WR;gate,WR;up},
(4)

where N denotes the number of experts, Y is the weighted sum produced by the MoE module on the
calibration set using the rotated but unquantized weights, and Π̃ and Π represent the router outputs
corresponding to X̃R and XR, respectively. DKL(., .) returns the KL divergence between the two
inputs and λ specifies the relative importance of the objective functions.

The optimization problems in Equation 3 and 4 can be addressed in an alternating, iterative manner.
We first fix the assignment matrix A and optimize the centroid vector s⃗. To this end, we employ a
local finetuning procedure to update s⃗, which can be derived via the chain rule as dL

ds⃗ = dL
dWc

A.

To determine the assignment matrix A given the centroids s⃗ while minimizing the output difference, a
straightforward approach is to use the nearest-neighbor rounding method as in the standard K-means
algorithm. However, this does not perfectly align with the objective functions in Equation 3 and
Equation 4. To mitigate this, we first compute the gradient of the loss function with respect toWc. For
ease of interpretation, we adopt the loss function defined in Equation 3, though a similar technique
can also be applied to the loss function in Equation 4.

∇LWc =
∂L
∂Wc

= 2X̃⊤
R X̃RWc − 2X̃⊤

RXRWR (5)

Set D̂1 = X̃⊤
R X̃R and D̂2 = X̃⊤

RXR. For computational efficiency, we approximate these matrices
by retaining only their diagonal entries, i.e., D1 = Diag(D̂1), D2 = Diag(D̂2). Under sufficient
coverage, the gradient is expected to approach zero, namely:

D1Wc −D2WR = 0 (6)

To determine the assignment of each element Wc;ij within Wc, suppose Wc;ij is associated with the
k-th centroid sk in the cluster vector s⃗. The corresponding error introduced by this assignment, as
defined in Equation 6, can be computed as:

ψ(wij , sk) = ∥D1;jsk −D2;jwij∥2 (7)

where wij is the (i, j)-th element of WR, and D1;j and D2;j denote the j-th columns of D1 and D2,
respectively. Hence, the optimal assignment for wij is obtained by searching over the cluster vector s⃗
with the following objective:

A∗ = arg min
sk∈s⃗

ψ(wij , sk) (8)

3.3 PERMUTATION-INVARIANT OUTLIER GROUPING

The ACCF algorithm described in Section 3.2 is directly applied to the transformed weight matrices
WR. In practice, achieving strong MoE accuracy under ACCF critically depends on initializing WR

to be cluster-friendly, such that a low-error clustered solution can be readily obtained. Since AOS
minimizes the quantization error of rotated activations only, the remaining variability is left to the
weights, making a cluster-friendly initialization crucial for ACCF to achieve high performance.

However, in practice, we observe that WR is sometimes not amenable to clustering, as shown
in Figure 3 (a). Consider a weight vector WR partitioned into clustering groups of size g = 4,
highlighted by the orange boxes. Each clustering group is allocated a centroid budget of k = 2.
Owing to the high variance within group 1, the optimal clustering solution still incurs a clustering error

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of 17. To reduce the error, we propose the POG method, as illustrated in Figure 3 (c). Specifically, the
weight vector is first divided into smaller sub-groups (shown in green boxes), each of size 2 in this
example. In Step 1, the variance is computed across the elements within each sub-group. In Step 2,
the sub-groups are permuted as indivisible units, ordered by their variance, so as to redistribute high-
and low-variance sub-groups more evenly across the larger groups of size g = 4. This reordering
helps reduce the variance within each clustering group and thereby lowers the overall clustering
error for the resultant W p

R, as shown in Figure 3 (b). The key intuition is that, in the original WR,
group 1 contains weights that would require more than two centroids to achieve low error, while
group 2 is much easier to cluster. By permuting elements at the sub-group level, we obtain a more
cluster-friendly W p

R. It is important to note that this idea differs from prior work designed to facilitate
quantization (Lin et al., 2024a), since the reordered matrix W p

R is not necessarily amenable to
quantization. The resultant W p

R is then used as the initialization for the subsequent ACCF operations,
and leading to improved performance. The detailed POG algorithm is shown in the Appendix.

10 1 20 26 9 7 2 2

Clustering error = 17 (High) POG

Clustering group Subgroup

5.5 5.5 23 23 8 8 2 2 10 1.7 1.7 1.7 8 8 23 23

10 1 2 2 9 7 20 26

Clustering Clustering

Clustering error = 7.5 (Low)

After

10 1 20 26 9 7 2 2

6.3 4.2 0.01.4SD =

10 1 20 26 9 7 2 2

6.3 0.0 4.21.4

permute
Step 1: Step 2:

Before
(a) (b)

(c)

WR

Wc

Clustering group 1 Clustering group 2

WR

Wc

p

subgroup 1 subgroup 2 subgroup 3 subgroup 4

…

Wo R
Wrouter

Wgate

WupRT

SiLU
Wdown R
Expert N

Expert 0

Expert 1

XR YR

Router
RT

RT

W
eighted sum

Expert N

Figure 3: The overview of the POG framework.

In practice, directly using the per-
muted matrix W p

R alters the output
and leads to incorrect results. Prior
work (Lin et al., 2024a) addresses this
by formulating permutation as a ma-
trix multiplication. Specifically, per-
muting WR can be achieved by multi-
plying it with a permutation matrix P ,
which encodes the permutation pat-
tern shown in Figure 3. Since P is
orthogonal, the inverse permutation is
simply P−1 = P⊤. Similar to the
rotation matrices R, P can be folded
into the SA and FFN components of
MoE. In CodeQuant, the permutation matrices P and P⊤ are introduced after WvP and P⊤Wout

in the self-attention block, and after WupP as well as before P⊤Wdown in the feed-forward block,
ensuring output invariance and improving ACCF performance.

3.4 CODEQUANT KERNEL AND SYSTEM IMPLEMENTATION

To evaluate the potential real-world performance of CodeQuant, we design and simulate an efficient
LUT-based GEMM kernel. While a full hardware implementation is beyond the scope of this work,
our simulation, based on the validated Accel-Sim framework (Mo et al., 2025; Guo et al., 2023;
Avalos Baddouh et al., 2021), models realistic architectural modifications. First, the input and weight
matrices are tiled by the weight group size. Each group of weights shares the same set of centroids
and is multiplied with multiple activation channels, as shown in Figure 4 (a). To reduce redundant
multiplications, for each weight group we precompute a LUT using the 16 centroid values and the
16 possible 4-bit integer activation values, as shown in step 1 of Figure 4 (b). The LUT consists of
16 subtables, each computed from one centroid value over 16 activation values when the activations
are quantized to 4-bit. CodeQuant uses a two-level Mux to select the output as shown in step 2 in
Figure 4 (b). By pairing activation and weight for shared-memory access, shared-memory conflicts
are reduced compared with separate activation and weight accesses (Guo et al., 2025). The LUT
resides in SM shared memory, as shown in Figure 4 (c) and occupies only a small fraction of the
shared memory available on modern GPUs (NVIDIA Corporation, a;b).

Although CodeQuant GEMM kernel is promising due to its advantages in eliminating dequantization
and multiplication through simple table lookup, existing GPU implementation still faces challenges.
This is mainly due to limited instruction support for efficient lookup table precomputation (Mo et al.,
2025) and shared memory bank conflict from extensive random indexing operations (Guo et al., 2025).
To make better use of the precomputed lookup tables, the number of activation channels in the input
matrix in Figure 4 (a) should increase. However, modern GPU uses the CUDA tensor core for high
performance matrix multiplication and the tensor core instruction only supports a fixed size of matrix
tiles multiplication (8 × 4 × 16 INT8 matrix multiplication in Nvidia RTX A100 GPU (NVIDIA
Corporation, a)). To achieve better LUT-based GEMM performance and keep a fair comparison
with tensor cores, we simulate the GPU performance with optimized matrix sub-tile shape under the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Centroid 1
16 bit

Activation
4 bit

0000
Index

C1 x 0
C1 x 1

32 bit

C1 x 14
C1 x 1516

 E
nt

rie
s

…

Centroid 16
16 bit

Activation
4 bit

……
…

Lookup Table 1

M
U

X
M

U
X

M
U

X
Input
4 bit

W
eight

4 bit

Input
4 bit

1. Lookup Table Precomputation 2. Lookup

……

…
… Weight

Matrix

Input
Matrix

Weight
Group

Activation
Channel

……

…
… Output

Matrix

DRAM

L2 Cache

SM SM SMSM…

Cuda
Core
Cuda
Core

Cuda
Core

Cuda
Core
Cuda
Core

Cuda
Core

Cuda
Core
Cuda
Core

Cuda
Core

Shared
Memory

Tensor
Core

LUT

(a) (b) (c)

0001

1110
1111

0000
Index

C16 x 0
C16 x 1

32 bit

C16 x 14
C16 x 1516

 E
nt

rie
s

…

Lookup Table 16

0001

1110
1111

Figure 4: (a) One tile of the matrix multiplication. (b) The steps of CodeQuant kernel, including a
one-time lookup table precomputation and table lookup. (c) The precomputed lookup table is stored
in the shared memory in the Streaming Multiprocessors (SM) in GPU.

same floating point operation numbers per cycle using Accel-Sim (Khairy et al., 2020). To mitigate
the bank conflicts, the LUT can be duplicated into more memory banks (Lo et al., 2025) to reduce
the chance of multiple threads accessing the same memory bank. To keep the same total shared
memory size, we can increase the number of banks (32 banks in A100 GPU) and reduce the size of
each memory bank, which requires the shared memory structure improvement. We use Accel-Sim to
simulate the LUT-based GEMM performance with optimized GPU shared memory structure.

4 EXPERIMENTS

We evaluate CodeQuant across MoE models of varying sizes and architectures, including Phi-
mini-MoE-Instruct (Abdin et al., 2024), Qwen3-30B-A3B (Yang et al., 2025), DeepSeek-V2-
Lite (DeepSeek-AI et al., 2024), and Mixtral 8x7B (Jiang et al., 2024). The evaluations cover
both language generation, commonsense QA tasks, and math reasoning tasks. For language mod-
eling, we report perplexity on WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2023). For
zero-shot QA, we measure accuracy on ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
MMLU (Hendrycks et al., 2021), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021).
For mathematical reasoning, we further evaluate CodeQuant using GSM8K (8-shot) (Cobbe et al.,
2021) and MATH500 (4-shot) (Hendrycks et al., 2021).

In the AOS stage, we apply the Cayley transform to optimize the activation-quantization rotation
matrix R1, using 1,024 WikiText2 samples over 128 iterations. In the ACCF stage, we optimize
centroids over 64 iterations with 512 WikiText2 calibration samples, setting the KL divergence
coefficient to λ = 1.0. We study the impact of λ in Section 4.4. In terms of preprocessing time,
the AOS stage requires approximately 15/20/30/50 minutes for Phi-mini-MoE-Instruct, DeepSeek-
V2-Lite, Qwen3-30B-A3B and Mixtral 8x7B on H100 GPUs, respectively. The subsequent ACCF
stage requires 30/40/110/240 minutes for the same models. At inference time, all transformations are
fused into the weights. As a result, the multiply–accumulate operations can be executed through LUT
lookups, and Section 4.3 shows that this leads to a net inference speedup.

We compare CodeQuant with several PTQ methods, including RTN (Round-to-Nearest),
SmoothQuant (Xiao et al., 2024), QuaRot (Ashkboos et al., 2024), and SqueezeLLM (Kim et al.,
2024). We additionally include recent rotation-based PTQ methods such as DuQuant (Lin et al.,
2024a) and SpinQuant (Liu et al., 2025) as baseline method. For methods that rely on online
Hadamard transforms, we adopt the same setting to ensure methodological consistency. We use
the same activation bitwidth across methods, including SqueezeLLM, where input activations are
quantized with RTN. For weights, we match the total number of discrete representation values. For
instance, when QuaRot uses 4-bit quantization, we configure CodeQuant with 16 centroids for weight
clustering to yield an equivalent representation capacity, using the same centroid-selection strategy
as SqueezeLLM. All algorithms are evaluated under two quantization/clustering configurations. In
the first, referred to as Block-wise, quantization or clustering is applied within groups of g = 1024
weight values along the embedding dimension. In the second, termed Embedding-wise, quantization
is applied across the entire embedding dimension, spanning the full embedding vector.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance in perplexity (PPL) on Wiki2 and C4 dataset, and accuracy on Arc-Challenge
(A-c), Arc-easy (A-e), HellaSwag (HS), MMLU (ML), PIQA (PQ) and WinoGrande (WG). For each
setting, we report the BF16 baseline in the first row. More results are shown in the Appendix.

Models Methods Wiki2 (↓) C4 (↓) A-c (↑) A-e (↑) HS (↑) ML (↑) PQ (↑) WG (↑) Avg (↑)

A
4W

4
E

m
be

dd
in

g-
w

is
e

Phi-mini-
MoE-Instruct

BF16 6.83 13.06 0.581 0.813 0.759 0.681 0.797 0.753 0.731
RTN 9811.22 7431.27 0.287 0.268 0.261 0.232 0.501 0.516 0.344

SqueezeLLM 8383.63 5619.01 0.279 0.281 0.263 0.236 0.515 0.500 0.346
SmoothQuant 24071.25 16320.79 0.263 0.280 0.270 0.240 0.528 0.503 0.347

QuaRot 7.93 14.44 0.545 0.784 0.725 0.633 0.775 0.702 0.694
CodeQuant 7.63 13.94 0.538 0.790 0.728 0.644 0.784 0.716 0.700

DeepSeek-
V2-Lite

BF16 6.69 9.32 0.491 0.759 0.780 0.551 0.804 0.709 0.682
RTN 812.90 660.45 0.226 0.295 0.283 0.237 0.513 0.483 0.339

SqueezeLLM 806.71 614.70 0.257 0.301 0.277 0.238 0.541 0.508 0.354
SmoothQuant 11.57 16.10 0.381 0.645 0.658 0.305 0.747 0.581 0.553

QuaRot 7.75 10.75 0.457 0.720 0.745 0.450 0.787 0.682 0.640
CodeQuant 7.08 9.85 0.479 0.749 0.767 0.515 0.791 0.684 0.664

Qwen3-
30B-A3B

BF16 9.04 14.05 0.566 0.793 0.776 0.778 0.805 0.694 0.735
RTN 181.59 232.49 0.230 0.385 0.367 0.236 0.565 0.445 0.371

SqueezeLLM 100.47 121.55 0.222 0.352 0.367 0.243 0.576 0.504 0.377
SmoothQuant 23.01 33.39 0.383 0.584 0.490 0.413 0.717 0.547 0.522

QuaRot 16.04 24.27 0.386 0.596 0.609 0.585 0.735 0.575 0.581
CodeQuant 10.31 15.75 0.522 0.757 0.688 0.735 0.780 0.685 0.694

Mixtral-
8x7B

BF16 4.01 7.41 0.579 0.851 0.720 0.677 0.856 0.799 0.747
RTN 10502.14 14045.38 0.319 0.261 0.284 0.243 0.492 0.504 0.350

SqueezeLLM 13952.66 19725.12 0.297 0.282 0.279 0.251 0.527 0.519 0.359
SmoothQuant 77.32 96.01 0.222 0.349 0.303 0.236 0.565 0.497 0.362

QuaRot 16.79 24.29 0.348 0.570 0.512 0.286 0.708 0.560 0.497
CodeQuant 4.65 8.06 0.565 0.819 0.715 0.644 0.827 0.780 0.725

A
4W

4
B

lo
ck

-w
is

e Phi-mini-
MoE-Instruct

RTN 20.86 30.75 0.345 0.540 0.475 0.318 0.657 0.529 0.477
SqueezeLLM 12.44 20.21 0.399 0.607 0.590 0.455 0.687 0.572 0.552
SmoothQuant 15.34 24.18 0.356 0.559 0.532 0.464 0.656 0.577 0.524

QuaRot 7.63 13.82 0.534 0.790 0.728 0.633 0.783 0.719 0.698
CodeQuant 7.28 13.54 0.562 0.800 0.733 0.646 0.792 0.729 0.710

DeepSeek-
V2-Lite

RTN 161.08 159.65 0.236 0.368 0.344 0.236 0.581 0.515 0.380
SqueezeLLM 115.66 112.59 0.238 0.379 0.364 0.234 0.590 0.500 0.384
SmoothQuant 9.11 12.72 0.387 0.652 0.687 0.347 0.761 0.613 0.574

QuaRot 7.62 10.59 0.462 0.719 0.745 0.483 0.781 0.668 0.643
CodeQuant 7.03 9.79 0.480 0.741 0.764 0.525 0.794 0.698 0.667

We evaluate CodeQuant GEMM kernel using Accel-Sim (Khairy et al., 2020), a state-of-the-art
GPU simulator, configured to model an A100 80GB GPU with CodeQuant-optimized tensor cores.
Detailed simulation settings are provided in the Appendix. As baselines on real A100 hardware,
we measure the latencies of HuggingFace (Wolf et al., 2020) BF16 models, QuaRot (Ashkboos
et al., 2024) A4W4 quantized models, and SqueezeLLM (Kim et al., 2024) A4W4 quantized models.
SqueezeLLM serves as a baseline for weight clustering and activation quantization without GPU
architectural modification, helping isolate the latency performance gains from CodeQuant hardware
kernel design. Experiments use a prefill length of 512, decoding length of 128, and batch size of
16. Additionally, we measure the real hardware performance of CodeQuant by benchmarking the
A8W4 T-MAC kernel (Wei et al., 2025), a mixed-precision LUT-based CPU GEMM kernel, against
Llama.cpp (Gerganov & ggml-org contributors, 2023) BF16 and A8W4 models on CPU.

4.1 MAIN RESULTS

Table 1 summarizes the evaluation results of CodeQuant under different configurations. For clarity,
we adopt the ‘AxWx’ notation. For instance, in QuaRot, RTN, and SmoothQuant, ‘A4W4’ denotes
4-bit quantization of activations and 4-bit quantization of weights. In contrast, under CodeQuant,
‘A4W4’ corresponds to applying 4-bit linear quantization to activations and clustering weights into
24 = 16 centroids. In the Embedding-wise setting, POG has no effect on the final performance, since
the permutation operates entirely within the embedding vector. Therefore, POG is not applied here.

We first present the Embedding-wise evaluation results. For A4W4, CodeQuant delivers substan-
tial improvements over existing methods. On Qwen3-30B-A3B, it reduces perplexity by 5.73 on
WikiText2 and 8.52 on C4, while increasing average accuracy by 11.3% compared to QuaRot, with
even larger gains over SmoothQuant on both metrics. On DeepSeek-V2-Lite, CodeQuant again
improves performance, lowering perplexity by 0.67 on WikiText2 and 0.9 on C4, alongside a 2.4%
accuracy increase over QuaRot. On Mixtral 8×7B, CodeQuant shows the same trend, reducing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Rotation-based method performance comparison. CodeQuanthad indicates that online
Hadamard transforms are enabled during the quantization process.

Models Methods Wiki2 (↓) C4 (↓) A-c (↑) A-e (↑) HS (↑) ML (↑) PQ (↑) WG (↑) Avg (↑)
A

4W
4

E
m

be
dd

in
g-

w
is

e
DeepSeek-

V2-Lite

DuQuant 8.43 11.94 0.455 0.708 0.623 0.400 0.775 0.693 0.658
SpinQuanthad 9.24 12.71 0.427 0.692 0.706 0.425 0.774 0.638 0.647

CodeQuanthad 8.16 11.38 0.445 0.723 0.727 0.454 0.782 0.644 0.666

Qwen3-
30B-A3B

DuQuant 13.52 20.10 0.472 0.662 0.687 0.654 0.739 0.606 0.637
SpinQuanthad 14.61 22.07 0.415 0.600 0.628 0.584 0.692 0.622 0.590

CodeQuanthad 12.69 19.89 0.477 0.697 0.691 0.679 0.739 0.635 0.653

perplexity by 12.14 on WikiText2 and 16.23 on C4 compared to QuaRot, and increasing average
accuracy by 22.8%. These results highlight CodeQuant’s consistent advantages across architectures
and demonstrate that its effectiveness remains stable across both model structure and model scales.
The A8W4 Embedding-wise results are detailed listed in Appendix A.4.

With POG enabled, we evaluate Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under the Block-wise
setting. Under A4W4, both models show clear improvements over the Embedding-wise baseline.
However, when moving to A8W4, Phi-mini-MoE-Instruct benefits only marginally, and DeepSeek-
V2-Lite even drops by 0.3% relative to the baseline. We attribute this to DeepSeek’s already strong
accuracy without POG, with less than a 1% gap compared to BF16. These results suggest that
permutation is effective under extreme compression, as detailed in Appendix A.4.

In addition, we evaluate CodeQuant against two strong rotation-based PTQ baselines, SpinQuant
and DuQuant, both of which suppress outliers through trainable or structured transformations. For
fairness, we adopt online Hadamard transforms and denote this variant as CodeQuanthad, matching
the SpinQuanthad setup. As shown in Table 2, CodeQuanthad consistently outperforms both baselines.
On Qwen3-30B-A3B, it reaches an average accuracy of 0.653 compared to 0.637 for DuQuant and
0.590 for SpinQuant. On DeepSeek-V2-Lite, it achieves 0.666, again exceeding DuQuant at 0.658 and
SpinQuanthad at 0.647, demonstrating robust advantages across language modeling and downstream
tasks.

4.2 MATHEMATICALLY REASONING PERFORMANCE

Table 3: A4W4 Embedding-wise CodeQuant results on
GSM8K (8-shot) and MATH500 (4-shot).

Models Methods GSM8K (↑) MATH500 (↑)

DeepSeek-V2-Lite
BF16 0.364 0.121

QuaRot 0.231 0.093
CodeQuant 0.330 0.108

Qwen3-30B-A3B
BF16 0.924 0.322

QuaRot 0.508 0.128
CodeQuant 0.867 0.241

We further assess whether CodeQuant
preserves reasoning-heavy capabilities,
which are typically more sensitive to
quantization. We evaluate DeepSeek-
V2-Lite and Qwen3-30B-A3B under the
A4W4 Embedding-wise configuration on
GSM8K (8-shot) and MATH500 (4-shot)
(DeepSeek-AI et al., 2024), where each
k-shot prompt includes k worked exam-
ples before the test question. As shown
in Table 3, CodeQuant substantially out-
performs QuaRot and remains close to the
BF16 baseline. On DeepSeek-V2-Lite, the degradation is minimal, only 3.4% on GSM8K and 1.3%
on MATH500. For Qwen3-30B-A3B, the advantage becomes even more pronounced: CodeQuant
improves over QuaRot by 35.9% on GSM8K, and 11.3% on MATH500, highlighting its strength on
reasoning-heavy tasks.

4.3 LATENCY EVALUATION

Figure 5 presents the normalized speedups of all baselines, with BF16 latency normalized to 1.
Compared with the BF16 models, CodeQuant achieves an average 2.63× speedup, which underscores
the effectiveness of low-bit activation and weight quantization together with the LUT-based GEMM
design. The speedup of CodeQuant over QuaRot highlights the advantage of replacing repetitive
multiply-accumulate operations with direct LUT indexing, thereby reducing redundant multiplications.
The improvement over SqueezeLLM reflects the benefit of deploying a GPU implementation that uses
optimized LUT operations. Considering the strong accuracy results of CodeQuant shown in Table 1,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: AOS Impact

Method DeepSeek-
V2-Lite

Random
Wiki2 ↓ 7.29

C4 ↓ 10.16
Acc ↑ 0.652

AOS
Wiki2 ↓ 7.06

C4 ↓ 9.85
Acc ↑ 0.667

Table 5: KL Loss Impact

Method Task Phi- Deepseek-
mini V2-Lite

W/O KL
Wiki2 ↓ 7.29 7.10

C4 ↓ 13.95 9.87
Acc ↑ 0.694 0.658

W/ KL
Wiki2 ↓ 7.06 7.03

C4 ↓ 13.80 9.79
Acc ↑ 0.700 0.667

Table 6: Centroid Budgets Impact

Model DeepSeek-V2-Lite
Wiki2 ↓ C4 ↓ Acc ↑

SqueezeLLMA4W2 24.36 32.98 0.496
SqueezeLLMA4W3 8.40 11.69 0.619
SqueezeLLMA4W4 7.17 10.01 0.652
CodeQuantA4W2 10.68 14.59 0.568
CodeQuantA4W3 7.59 10.58 0.639
CodeQuantA4W4 7.06 9.85 0.667

CodeQuant achieves the optimal performance among the baselines. Furthermore, we validate these
performance trends on real hardware by benchmarking a CPU kernel, where CodeQuant achieves up
to 4.15× speedup over a BF16 baseline (see Appendix A.7 for details).

It is important to note that the clustering step is performed offline. After the centroids are obtained by
minimizing ACCF, each weight is assigned to its nearest centroid using the distance metric defined in
Equation 7. During runtime, the weight matrices remain fixed, and inference proceeds in the same
way as a conventional MoE. As a result, this approach does not introduce any additional computation
or memory traffic during inference.

4.4 ABLATION STUDIES

Speedup Phi-mini-MoE-InstructDeepSeek-V2-LiteQwen3-30B-A3B Memory SavingPhi-mini-MoE-InstructDeepSeek-V2-LiteQwen3-30B-A3B
BF16 1 1 1 BF16 1 1 1
Quarot 2.11 2.35 2.58 Quarot 3.72 3.68 3.76
SqueezeLLM 2 2.14 2.28 SqueezeLLM 3.67 3.61 3.72
CodeQuant 2.29 2.58 2.97 CodeQuant 3.67 3.61 3.72

1 1 1

2.1 2.4 2.6
2.0 2.1 2.32.3 2.6

3.0

0
1
2
3

Phi-mini-MoE-Instruct DeepSeek-V2-Lite Qwen3-30B-A3B

S
p

ee
du

p

BF16 Quarot SqueezeLLM CodeQuant

1 1 1

3.7 3.7 3.83.7 3.6 3.73.7 3.6 3.7

0

2

4

Phi-mini-MoE-Instruct DeepSeek-V2-Lite Qwen3-30B-A3B

M
e

m
o

ry

S
a

vi
n

g

BF16 Quarot SqueezeLLM CodeQuant

(a) (b)
Figure 5: Normalized speedup on one A100 GPU.

Impact of Activation Smoothing We evalu-
ate whether fine-tuning the rotation matrix im-
proves accuracy on DeepSeek-V2-Lite under the
A4W4 Embedding-wise configuration, keeping
all other settings fixed. Specifically, we com-
pare a random rotation with the fine-tuned ro-
tation produced by AOS. As shown in Table 4,
rotational matrix finetuning yields consistent im-
provements, boosting accuracy by 1.4% and re-
ducing perplexity by 0.23 on WikiText2 and by 0.31 on C4.

Impact of KL Penalty We evaluate the effectiveness of the KL divergence term defined in Equa-
tion 4. The ablation is conducted on Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under the A4W4
Block-wise configuration, comparing two settings: (i) centroids fine-tuned without the KL divergence
term (λ = 0.0), and (ii) centroids optimized with the full ACCF loss (λ = 1.0). As shown in Table 5,
ACCF with the KL penalty outperforms the version without it. Additional analysis in Appendix A.6
further shows that the KL penalty also stabilizes the router behavior, indicating that KL regularization
helps preserve the original expert-routing pattern after quantization.

CodeQuant Performance under Extreme Compression We examine CodeQuant performance
under different centroid budgets on DeepSeek-V2-Lite with Embedding-wise quantization. We apply
the same rotation matrix to quantize activations for both CodeQuant and SqueezeLLM, and evaluate
over three settings: A4W2, A4W3, and A4W4. As shown in Table 6, CodeQuant consistently
outperforms SqueezeLLM across all budgets. Under the most aggressive case (A4W2), CodeQuant’s
average accuracy decreases by 9.9% relative to the A4W4 case, whereas SqueezeLLM drops by
15.6%. Moreover, CodeQuant’s advantage widens as the budget shrinks from 1.5% at A4W4 to 7.2%
at A4W2, indicating robustness under extreme compression.

5 CONCLUSION

We present CodeQuant, a unified quantization-and-clustering framework for low-precision MoE.
CodeQuant reduces quantization error while preserving accuracy, achieves up to 4.15× latency
reduction. Experiments confirm that CodeQuant delivers superior accuracy–efficiency trade-offs
compared to other baseline algorithms, enabling more reliable low-precision deployment of MoE.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. CodeQuant is a post-training quantization frame-
work evaluated on pretrained models and public datasets, without the use of private or user-specific
data. Our research does not involve human subjects, private or sensitive data, or personally identifiable
information. The method modifies only internal representations through weight quantization and
routing, introducing no new risks in fairness, privacy, or security beyond those inherent to the base
models. We are not aware of any direct ethical concerns specific to this work.

REPRODUCIBILITY STATEMENT

Code and models: All experiments in this paper are conducted on publicly available datasets with
specified preprocessing steps. Detailed configurations, including hyperparameter, training procedures,
and hardware specifications, are reported in the experiment section. Baselines are re-implemented
following their original papers, with reference to the authors’ released code when available. While
the source code for CodeQuant is not released at submission time, we will make it publicly available
upon acceptance to facilitate reproducibility.

Datasets: All datasets used in this work are publicly available.

Randomness: All experiments are run with fixed random seeds in the scripts, to ensure consistent
results.

Compute resources: Our experiments are conducted on NVIDIA RTX H100, RTX A100, Accel-Sim
GPU simulator, and Intel CPU as described in Section 4.

USE OF LARGE LANGUAGE MODELS

Large language models (LLMs), such as ChatGPT, were used only for polishing language and
improving readability. All technical ideas, analyses, experiments, and conclusions were conceived,
implemented, and validated by the authors. The final manuscript was carefully reviewed to ensure
accuracy and correctness.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, et al. Phi-3 technical report: A highly capable language
model locally on your phone, 2024. URL https://arxiv.org/abs/2404.14219.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Systematic outliers in large language
models, 2025. URL https://arxiv.org/abs/2502.06415.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms, 2024. URL https://arxiv.org/abs/2404.00456.

Cesar Avalos Baddouh, Mahmoud Khairy, Roland N. Green, Mathias Payer, and Timothy G. Rogers.
Principal kernel analysis: A tractable methodology to simulate scaled gpu workloads. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, pp. 724–737,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450385572. doi:
10.1145/3466752.3480100. URL https://doi.org/10.1145/3466752.3480100.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Patrick Blumenberg, Thomas Graave, and Tim Fingscheidt. Improving block-wise llm quantization
by 4-bit block-wise optimal float (bof4): Analysis and variations, 2025. URL https://arxiv.
org/abs/2505.06653.

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2502.06415
https://arxiv.org/abs/2404.00456
https://doi.org/10.1145/3466752.3480100
https://arxiv.org/abs/2505.06653
https://arxiv.org/abs/2505.06653

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization
of large language models with guarantees, 2024. URL https://arxiv.org/abs/2307.
13304.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. Stablemoe:
Stable routing strategy for mixture of experts, 2022. URL https://arxiv.org/abs/2204.
08396.

DeepSeek-AI, Aixin Liu, Bei Feng, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model, 2024. URL https://arxiv.org/abs/2405.04434.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale, 2022. URL https://arxiv.org/abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Darshan C. Ganji, Saad Ashfaq, Ehsan Saboori, Sudhakar Sah, Saptarshi Mitra, MohammadHossein
AskariHemmat, Alexander Hoffman, Ahmed Hassanien, and Mathieu Léonardon. Deepgemm:
Accelerated ultra low-precision inference on cpu architectures using lookup tables, 2023. URL
https://arxiv.org/abs/2304.09049.

Georgi Gerganov and ggml-org contributors. llama.cpp. https://github.com/ggml-org/
llama.cpp, 2023. Accessed: 2025-09-23.

Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang, Yunxin Liu, Minyi
Guo, and Yuhao Zhu. Olive: Accelerating large language models via hardware-friendly outlier-
victim pair quantization. In Proceedings of the 50th Annual International Symposium on Computer
Architecture, ISCA ’23, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400700958. doi: 10.1145/3579371.3589038. URL https://doi.org/10.1145/
3579371.3589038.

Han Guo, William Brandon, Radostin Cholakov, Jonathan Ragan-Kelley, Eric P. Xing, and Yoon
Kim. Fast matrix multiplications for lookup table-quantized llms, 2025. URL https://arxiv.
org/abs/2407.10960.

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I. Jordan, and Song Mei. Active-dormant
attention heads: Mechanistically demystifying extreme-token phenomena in llms. CoRR,
abs/2410.13835, 2024. doi: 10.48550/arXiv.2410.13835. URL https://arxiv.org/abs/
2410.13835.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016. URL https://arxiv.org/
abs/1510.00149.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Xing Hu, Zhixuan Chen, Dawei Yang, Zukang Xu, Chen Xu, Zhihang Yuan, Sifan Zhou, and
Jiangyong Yu. Moequant: Enhancing quantization for mixture-of-experts large language models
via expert-balanced sampling and affinity guidance. arXiv preprint arXiv:2505.03804, 2025a.

12

https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2204.08396
https://arxiv.org/abs/2204.08396
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2304.09049
https://github.com/ggml-org/llama.cpp
https://github.com/ggml-org/llama.cpp
https://doi.org/10.1145/3579371.3589038
https://doi.org/10.1145/3579371.3589038
https://arxiv.org/abs/2407.10960
https://arxiv.org/abs/2407.10960
https://arxiv.org/abs/2410.13835
https://arxiv.org/abs/2410.13835
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang,
and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal and scaling
transformations for better distribution fitting, 2025b. URL https://arxiv.org/abs/2501.
13987.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini,
Michele Magno, Shiming Zhang, and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision
quantization for large language models, 2025. URL https://arxiv.org/abs/2405.
14917.

Apple Inc. Apple palettization, 2024a. URL https://apple.github.io/coremltools/
docs-guides/source/opt-palettization-overview.html.

Arm Inc. Arm ethos-u npus, 2020. URL https://documentation-service.arm.com/
static/60cb2a5b0320e92fa40b3787.

Cerebras Systems Inc. Cerebras cs-3, 2024b. URL https://www.cerebras.ai/blog/
cerebras-cs3.

Intel Corporation. Intel® xeon® w7-3445 processor (52.5m cache, 2.60 ghz) — specifica-
tions. https://www.intel.com/content/www/us/en/products/sku/233478/
intel-xeon-w73445-processor-52-5m-cache-2-60-ghz/specifications.
html, 2025. Accessed: 2025-09-24.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. Accel-sim: an extensible
simulation framework for validated gpu modeling. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, ISCA ’20, pp. 473–486. IEEE Press, 2020.
ISBN 9781728146614. doi: 10.1109/ISCA45697.2020.00047. URL https://doi.org/10.
1109/ISCA45697.2020.00047.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization, 2024. URL https:
//arxiv.org/abs/2306.07629.

Jing Li, Zhijie Sun, Dachao Lin, Xuan He, Binfan Zheng, Yi Lin, Rongqian Zhao, and Xin Chen.
Expert-token resonance moe: Bidirectional routing with efficiency affinity-driven active selection,
2025. URL https://arxiv.org/abs/2406.00023.

Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via
the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

Jingcong Liang, Siyuan Wang, Miren Tian, Yitong Li, Duyu Tang, and Zhongyu Wei. Not all models
suit expert offloading: On local routing consistency of mixture-of-expert models, 2025. URL
https://arxiv.org/abs/2505.16056.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger
quantized llms, 2024a. URL https://arxiv.org/abs/2406.01721.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of machine learning and systems, 6:
87–100, 2024b.

Shi-Zhe Lin, Yun-Chih Chen, Yuan-Hao Chang, Tei-Wei Kuo, and Hsiang-Pang Li. Lutin: Efficient
neural network inference with table lookup. In Proceedings of the 29th ACM/IEEE International
Symposium on Low Power Electronics and Design, pp. 1–6, 2024c.

13

https://arxiv.org/abs/2501.13987
https://arxiv.org/abs/2501.13987
https://arxiv.org/abs/2405.14917
https://arxiv.org/abs/2405.14917
https://apple.github.io/coremltools/docs-guides/source/opt-palettization-overview.html
https://apple.github.io/coremltools/docs-guides/source/opt-palettization-overview.html
https://documentation-service.arm.com/static/60cb2a5b0320e92fa40b3787
https://documentation-service.arm.com/static/60cb2a5b0320e92fa40b3787
https://www.cerebras.ai/blog/cerebras-cs3
https://www.cerebras.ai/blog/cerebras-cs3
https://www.intel.com/content/www/us/en/products/sku/233478/intel-xeon-w73445-processor-52-5m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/233478/intel-xeon-w73445-processor-52-5m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/233478/intel-xeon-w73445-processor-52-5m-cache-2-60-ghz/specifications.html
https://arxiv.org/abs/2401.04088
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/ISCA45697.2020.00047
https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2406.00023
https://arxiv.org/abs/2505.16056
https://arxiv.org/abs/2406.01721

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations, 2025. URL https://arxiv.org/abs/2405.16406.

Ka Man Lo, Zeyu Huang, Zihan Qiu, Zili Wang, and Jie Fu. A closer look into mixture-of-experts in
large language models, 2025. URL https://arxiv.org/abs/2406.18219.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Zhiwen Mo, Lei Wang, Jianyu Wei, Zhichen Zeng, Shijie Cao, Lingxiao Ma, Naifeng Jing, Ting Cao,
Jilong Xue, Fan Yang, and Mao Yang. Lut tensor core: A software-hardware co-design for lut-based
low-bit llm inference. In Proceedings of the 52nd Annual International Symposium on Computer
Architecture, SIGARCH ’25, pp. 514–528. ACM, June 2025. doi: 10.1145/3695053.3731057.
URL http://dx.doi.org/10.1145/3695053.3731057.

Yasunori Nishimori and Shotaro Akaho. Learning algorithms utilizing quasi-geodesic flows on the
stiefel manifold. Neurocomputing, 67:106–135, 2005.

NVIDIA Corporation. Nvidia a100 tensor core gpu. https://www.nvidia.com/en-us/
data-center/a100/, a. Accessed: 2025-09-18.

NVIDIA Corporation. Nvidia h100 tensor core gpu. https://www.nvidia.com/en-us/
data-center/h100/, b. Accessed: 2025-09-18.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung
Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized matrix
multiplication based on luts for efficient inference in large-scale generative language models, 2024.
URL https://arxiv.org/abs/2206.09557.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Zunhai Su, Qingyuan Li, Hao Zhang, YuLei Qian, Yuchen Xie, and Kehong Yuan. Unveiling super
experts in mixture-of-experts large language models, 2025. URL https://arxiv.org/abs/
2507.23279.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
models, 2024. URL https://arxiv.org/abs/2402.17762.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip:
Even better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL
https://arxiv.org/abs/2402.04396.

Mart van Baalen, Andrey Kuzmin, Ivan Koryakovskiy, Markus Nagel, Peter Couperus, Cedric Bastoul,
Eric Mahurin, Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality
for llm quantization, 2025. URL https://arxiv.org/abs/2402.15319.

Jianyu Wei, Shijie Cao, Ting Cao, Lingxiao Ma, Lei Wang, Yanyong Zhang, and Mao Yang. T-mac:
Cpu renaissance via table lookup for low-bit llm deployment on edge. In Proceedings of the
Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 278–292. ACM, March
2025. doi: 10.1145/3689031.3696099. URL http://dx.doi.org/10.1145/3689031.
3696099.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

14

https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2406.18219
https://arxiv.org/abs/1609.07843
http://dx.doi.org/10.1145/3695053.3731057
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2507.23279
https://arxiv.org/abs/2507.23279
https://arxiv.org/abs/2402.17762
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2402.15319
http://dx.doi.org/10.1145/3689031.3696099
http://dx.doi.org/10.1145/3689031.3696099
https://arxiv.org/abs/1910.03771

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024. URL https:
//arxiv.org/abs/2211.10438.

Yuhui Xu, Yongzhuang Wang, Aojun Zhou, Weiyao Lin, and Hongkai Xiong. Deep neural network
compression with single and multiple level quantization, 2018. URL https://arxiv.org/
abs/1803.03289.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Davis Yoshida. Nf4 isn’t information theoretically optimal (and that’s good), 2023. URL https:
//arxiv.org/abs/2306.06965.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

A APPENDIX

A.1 ROTATION MATRIX IN DEEPSEEK-V2-LITE

In Section 3.1, we integrate the rotation matrix into the weight parameters. Due to the architectural
differences between the DeepSeek-V2-Lite model and Qwen3-30B-A3B, in DeepSeek-V2-Lite SA
block, the rotation matrices are applied to Wq and Wkv_a. In the MoE FFN block, DeepSeek-V2-Lite
includes a shared expert; therefore, the rotation matrices are also applied to the shared expert’s Wup
and Wgate.

A.2 POG ALGORITHM

In Section3.3 we propose a permutation method. In this section, we would introduce how to construct
a permutation matrix P that makes the weights more amenable to clustering in detail.

First, we need to obtain a permutation sequence using Algorithm1. Given a weight matrix WR ∈
Rdin×dout , we compute a permutation sequence π ∈ Rdout , defined as a bijective sequence in
which each element πi specifies the original column relocated to the i-th position in the permuted
arrangement. Concretely, we first sort the columns by their mean absolute value and partition them
along the column dimension into small subgroups. Then the subgroup with the largest average
variance is paired with subgroups of the smallest variance to form the first group, and this process is
repeated until all subgroups are assigned.

Second, after obtaining the permutation order π, we construct the corresponding permutation matrix
P , defined as:

Pij =

{
1, if i = π(j),

0, otherwise.
, where P ∈ {0, 1}n×n (9)

Lastly, we fuse the permutation matrix into the weight parameters to eliminate additional online
computation. For the Phi-mini-MoE-Instruct and Qwen3-30B-A3B models, the permutation is
applied in both the self-attention and MoE-FFN blocks. In the self-attention block, we multiply
the permutation matrix with WR;V and apply its transpose to WR;out. In the MoE-FFN block, the
permutation matrix is multiplied with WR;up, while its transpose is applied to WR;down for each expert.

For DeepSeek-V2-Lite, the permutation is applied to all experts, including the shared expert, in
the MoE-FFN block. Specifically, WR;up is multiplied by the permutation matrix, and WR;down is
multiplied by its transpose for every expert. In the self-attention block, due to the unique structure
of the DeepSeek family, additional steps are required to preserve output invariance. First, the layer
normalization is absorbed into the weight matrix. Then, we decompose

WR;kv_a =
[
WR;compressed_kv, WR;k_pe

]
into WR;compressed_kv and WR;k_pe. The permutation matrix is multiplied with WR;compressed_kv, while
the transpose of the permutation matrix is applied to WR;kv_b to preserve output invariance.

15

https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/1803.03289
https://arxiv.org/abs/1803.03289
https://arxiv.org/abs/2306.06965
https://arxiv.org/abs/2306.06965
https://arxiv.org/abs/1905.07830

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1: POG Algorithm
Input: WR ∈ Rdin×dout is the weight matrix after rotation; g ∈ N is the quantization group size; gs ∈ N is

the small subgroup size, which is the unit to swap, and it satisfies gs < g.
Output: A column permutation order π of {1, . . . , dout}.

1 Procedure
2 Ng ← dout/g, Ns ← dout/gs, n← g/gs;

3 Compute the mean absolute value of each column: S ∈ Rdout where sj = 1
din

din∑
r=1

|WR;rj |;

4 Iidx ← argsort(S, desc);
5 Partition Iidx into Ns groups of size gs, such that each group

Gi = Iidx[(i− 1)gs + 1 : igs] ∈ Rgs , i = 1, . . . , Ns;
6 for i = 1 to Ns do
7 WGi = WR[:, Gi];
8 vi ← Mean(StdDev(WGi , dim = 1), dim = 0);
9 V = {v1, ..., vNs};

10 ǏV ← argsort(V, desc), ÎV ← argsort(V, asc);
11 π ← [];
12 for i = 1 to N do
13 append ǏV [i] to π;
14 append ÎV [(i− 1)(n− 1) + 1 : i(n− 1)] to π;
15 return π;

A.3 HARDWARE EVALUATION SETTINGS

We use Accel-Sim (Khairy et al., 2020), a state-of-the-art open-source GPU simulator, and modify its
configuration and trace files to model both the original RTX A100 80GB GPU and an A100 with
CodeQuant-optimized tensor cores, as shown in Section 3.4. The simulator is calibrated against real
A100 measurements, achieving less than 1% latency error, consistent with prior GPU module design
studies (Mo et al., 2025; Guo et al., 2023; Avalos Baddouh et al., 2021). We configure tensor cores
with a matrix multiplication size of 16× 4× 8 and 64 shared memory banks to improve lookup table
reuse and reduce bank conflicts.

A.4 CODEQUANT A8W4 EMBEDDING-WISE ACCURACY PERFORMANCE

Table 7 summarizes the evaluation results of CodeQuant under the A8W4 Embedding-wise setting.
The accuracy of CodeQuant further improves compared to A4W4 configuration, showing only a
~1–2% drop on Phi-mini-MoE-Instruct and Qwen3-30B-A3B, and nearly lossless performance on
DeepSeek-V2-Lite. CodeQuant consistently outperforms the other baselines across models and
datasets.

A.5 IMPACT OF POG

We evaluate the impact of POG operation on Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under
the A4W4 Block-wise configuration with a fixed group size of g = 1024. As shown in Table 8,
removing permutation consistently degrades performance. On Phi-mini-MoE-Instruct, with POG
applied, perplexity increases by 0.03 on WikiText2 and 0.12 on C4, while accuracy drops by 0.4%. A
similar pattern is observed on DeepSeek-V2-Lite, confirming the generality of this effect.

A.6 IMPACT OF KL PENALTY ON ROUTER LOGITS

We measure the effect of KL divergence on router stability for DeepSeek-V2-Lite and Qwen3-30B-
A3B under the A4W4 Embedding-Wise setting. The change rate is defined as the layer-wise average
change in Top-K expert indices (with K = 6 for DeepSeek-V2-Lite and K = 8 for Qwen3-30B-
A3B) computed by comparing the router outputs before and after quantization. Results are averaged
over 50 samples from the WikiText-2 test set.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Performance in perplexity (PPL) on Wiki2 and C4 dataset, and accuracy on Arc-Challenage
(A-c), Arc-easy (A-e), HellaSwag (HS), MMLU (ML), PIQA (PQ) and WinoGrande (WG). Code-
Quant is set as A8W4 Embedding-wise. We report the BF16 baseline in the first row, and mark the
methods as BF16.

Models Methods Wiki2 (↓) C4 (↓) A-c (↑) A-e (↑) HS (↑) ML (↑) PQ (↑) WG (↑) Avg (↑)

A
8W

4
E

m
be

dd
in

g-
w

is
e

Phi-mini-
MoE-Instruct

BF16 6.83 13.06 0.581 0.813 0.759 0.681 0.797 0.753 0.731
RTN 12.13 20.46 0.460 0.730 0.618 0.497 0.741 0.632 0.613

SqueezeLLM 7.41 13.65 0.565 0.795 0.736 0.658 0.791 0.746 0.715
SmoothQuant 9.50 16.23 0.481 0.741 0.653 0.569 0.756 0.638 0.634

QuaRot 7.69 14.15 0.549 0.787 0.735 0.652 0.786 0.737 0.708
CodeQuant 7.36 13.73 0.579 0.796 0.741 0.668 0.796 0.732 0.719

Qwen3-
30B-A3B

BF16 9.04 14.05 0.566 0.793 0.776 0.778 0.805 0.694 0.735
RTN 14.09 21.65 0.284 0.446 0.692 0.643 0.656 0.626 0.558

SqueezeLLM 9.37 14.56 0.529 0.768 0.743 0.764 0.770 0.671 0.707
SmoothQuant 11.77 17.82 0.463 0.703 0.721 0.695 0.773 0.667 0.670

QuaRot 11.18 16.58 0.471 0.671 0.696 0.708 0.766 0.654 0.661
CodeQuant 9.81 15.11 0.535 0.779 0.754 0.757 0.797 0.679 0.717

DeepSeek-
V2-Lite

BF16 6.69 9.32 0.491 0.759 0.780 0.551 0.804 0.709 0.682
RTN 7.72 10.89 0.469 0.719 0.732 0.457 0.790 0.671 0.640

SqueezeLLM 6.93 9.60 0.485 0.755 0.760 0.525 0.803 0.701 0.658
SmoothQuant 7.61 10.70 0.457 0.729 0.754 0.480 0.794 0.674 0.648

QuaRot 7.29 10.08 0.466 0.737 0.757 0.493 0.792 0.705 0.658
CodeQuant 6.84 9.50 0.487 0.764 0.773 0.533 0.798 0.709 0.678

A
8W

4
B

lo
ck

-w
is

e Phi-mini-
MoE-Instruct

RTN 8.68 14.93 0.530 0.777 0.683 0.578 0.770 0.671 0.668
SqueezeLLM 7.18 13.46 0.576 0.801 0.744 0.670 0.797 0.759 0.724
SmoothQuant 8.40 14.67 0.516 0.768 0.697 0.602 0.769 0.688 0.673

QuaRot 7.48 13.65 0.550 0.794 0.737 0.645 0.786 0.737 0.708
CodeQuant 7.11 13.33 0.575 0.817 0.744 0.661 0.792 0.751 0.723

DeepSeek-
V2-Lite

RTN 7.47 10.40 0.455 0.743 0.764 0.488 0.788 0.687 0.654
SqueezeLLM 6.86 9.53 0.469 0.754 0.773 0.535 0.796 0.706 0.672
SmoothQuant 7.42 10.39 0.459 0.724 0.748 0.476 0.792 0.665 0.644

QuaRot 7.22 10.03 0.466 0.746 0.760 0.508 0.795 0.688 0.661
CodeQuant 6.83 9.49 0.472 0.756 0.775 0.535 0.804 0.708 0.675

Table 8: Impact of POG

Method Phi-mini-MoE-Instruct DeepSeek-V2-Lite
Wiki2 ↓ C4 ↓ Acc ↑ Wiki2 ↓ C4 ↓ Acc ↑

W/O POG 7.31 13.66 0.710 7.08 9.88 0.663
W/ POG 7.28 13.54 0.714 7.03 9.79 0.668

Table 9: KL Penalty Impact on Router

Model Method Change Rate (%) ↓
DeepSeek-

V2-Lite

QuaRot 41.47
CodeQuant w/o KL 24.33
CodeQuant w/ KL 22.82

Qwen3-
30B-A3B

QuaRot 72.15
CodeQuant w/o KL 60.21
CodeQuant w/ KL 59.58

As shown in Table 9, adding the KL penalty consistently reduces routing perturbation. On DeepSeek-
V2-Lite, the change rate drops from 24.33% to 22.82%. A similar trend is observed on Qwen3-30B-
A3B, where KL regularization yields a reduction from 60.21% to 59.58%, despite its larger 128-expert
MoE blocks. These results indicate that KL regularization helps preserve the expert-routing pattern
during quantization and mitigates performance degradation.

A.7 LUT KERNEL PERFORMANCE ON CPU

Table 10: Latency and Memory Evaluation on CPU

Bit Width Method Phi-mini-MoE-Instruct DeepSeek-V2-Lite Qwen3-30B-A3B
Mem. (GB) ↓ Lat. (s) ↓ Mem. (GB) ↓ Lat. (s) ↓ Mem. (GB) ↓ Lat. (s) ↓

BF16 Llama.cpp (CPU) 14.3 40.1 29.3 50.0 56.9 66.1

A8W4 Llama.cpp (CPU) 4.1 15.0 8.8 17.1 16.2 20.1
CodeQuant (CPU) 4.1 13.3 8.9 14.2 16.5 15.9

T-MAC (Wei et al., 2025) implements mixed-precision GEMM via a lookup table–based kernel
within the Llama.cpp framework (Gerganov & ggml-org contributors, 2023), enabling efficient CPU
execution. We evaluate CodeQuant by benchmarking the A8W4 T-MAC kernel against BF16 and
A8W4 models in Llama.cpp. The experiments are conducted on an Intel(R) Xeon(R) w7-3445
CPU (Intel Corporation, 2025) using 20 threads. On CPU, CodeQuant achieves up to 4.15× speedup

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

over BF16 baselines and consistently outperforms the quantization baselines. The gains are larger on
CPU than on GPU primarily because CPU inference exposes less parallelism and is more memory-
bound (Wei et al., 2025), making the improvements over the baseline more pronounced. In addition,
efficient LUT instructions on CPUs further amplify CodeQuant’s advantage over quantized baselines.

18

	Introduction
	Background and Related Work
	Outlier in LLMs
	Outlier Aware Quantization
	LUT and Hardware Implementation

	Methodology
	Activation-Oriented Outlier Smoothing
	Adaptive Weight Clustering and Centroid Finetuning
	Permutation-Invariant Outlier Grouping
	CodeQuant Kernel and System Implementation

	Experiments
	Main Results
	Mathematically Reasoning Performance
	Latency Evaluation
	Ablation Studies

	Conclusion
	Appendix
	Rotation Matrix in Deepseek-V2-Lite
	POG Algorithm
	Hardware Evaluation Settings
	CodeQuant A8W4 Embedding-wise Accuracy Performance
	Impact of POG
	Impact of KL Penalty on Router Logits
	LUT Kernel Performance on CPU

