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ABSTRACT

Outliers have emerged as a fundamental bottleneck in preserving accuracy for low-
precision large models, particularly within Mixture-of-Experts (MoE) architectures
that are increasingly central to large-scale language modeling. Under post-training
quantization (PTQ), these outliers induce substantial quantization errors, leading to
severe accuracy degradation. While recent rotation-based smoothing techniques
alleviate the problem by redistributing outlier magnitudes, residual errors remain
and continue to impede reliable low-precision deployment.

In this work, we tackle this challenge by introducing a unified quantization-and-
clustering scheme that contains smoothing activation outliers via learnable rotation
and absorbing weight outliers into fine-tuned cluster centroids for MoE. This design
reduces the influence of extreme values by fitting them within cluster centroids,
thereby lowering quantization error while maintaining expressive capacity. We
introduce CodeQuant, a unified quantization-and-clustering framework tailored
for MoEs. Coupled with a dedicated kernel design for GPU and CPU, CodeQuant
achieves up to 4.15× speedup while delivering significantly higher accuracy than
state-of-the-art quantization approaches across diverse MoE models. Our results
highlight CodeQuant as a promising direction for efficient and accurate deployment
of MoE-based large language models under low-precision constraints.

1 INTRODUCTION

Mixture-of-Experts (MoE) has emerged as one of the most effective paradigms for scaling large
language models (LLMs). By activating only a subset of experts for each input token, MoE introduces
conditional computation, allowing different experts to specialize in distinct linguistic or multimodal
patterns. This specialization enables MoE-based models to achieve superior performance across
diverse tasks while maintaining training and inference efficiency. Consequently, MoE architectures
have been adopted in many state-of-the-art LLMs (Abdin et al., 2024; Yang et al., 2025; DeepSeek-
AI et al., 2024). Despite these advantages, MoE models still carry substantial computational and
system-level costs. Although only a fraction of experts are active per token, the total parameter size
is extremely large, leading to high memory requirements and increased communication overhead
during distributed training and inference. These factors increase processing latency and pose serious
challenges for real-world deployment.

To address these costs, low-precision quantization has become a widely adopted strategy. By
representing weights and activations with fewer bits, quantization substantially reduces memory
footprint and improves computational throughput. Recent hardware innovations further accelerate
this trend: NVIDIA’s Hopper and Ada GPUs natively support FP8 arithmetic, while the Blackwell
series extends support to FP4. These developments provide a strong foundation for efficient MoE
deployment with low precision. However, quantizing MoE architectures remains challenging due to
the prevalence of outliers. Large-magnitude activations expand the dynamic range, leading to severe
quantization errors and significant accuracy degradation under post-training quantization (PTQ),
particularly in low-bit settings such as 4-bit quantization. While recent outlier-smoothing methods
alleviate the issue, residual errors persist and continue to hinder reliable low-precision deployment.
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Figure 1: Overview of the CodeQuant framework: the left panel illustrates the detailed architecture
of a MoE, while the right panel depicts the flow of CodeQuant procedures.

In parallel, codebook-based approaches such as clustering have emerged as a compelling alternative to
uniform quantization. By mapping weights or activations to a compact set of representative centroids,
clustering mitigates quantization error and effectively handles outliers, as extreme values can be
absorbed into centroids rather than expanding the overall dynamic range. Beyond its algorithmic
robustness, clustering is also hardware-efficient: lookup table (LUT) implementations enable rapid
centroid mapping and streamlined memory access, making it well suited for large-scale deployment.
Notably, several commercial accelerators have already adopted such designs, including Apple’s
Neural Engine (Inc., 2024a) and Arm Ethos-U (Inc., 2020). The sparsity indexing mechanism in the
Cerebras Wafer-Scale Engine (Inc., 2024b) further enables high-performance LUT implementation.
Collectively, these developments underscore clustering as a practical, hardware-aligned solution for
LUT-driven quantization.

In this work, we present CodeQuant, a unified codebook-based clustering and quantization framework
for low precision MoE models that enhances activation outlier smoothing. Our contribution can be
summarized as follows:

• We first introduce Activation-oriented Outlier Smoothing (AOS), which suppresses activation
outliers through rotation matrix adjustment, effectively relocating them into the weight space.

• We then propose Adaptive Weight Clustering with Centroid Finetuning (ACCF) and Permu-
tation Invariant Outlier Grouping (POG), which substantially reduce weight quantization
error even in the presence of significant outliers.

• Finally, we develop optimized LUT kernels to demonstrate improvements in execution
latency. Across Phi-Mini-MoE-Instruct, Qwen3-30B-A3B, and DeepSeek-V2-Lite, Code-
Quant consistently accelerates inference, lowers memory footprint, and preserves accuracy.

2 BACKGROUND AND RELATED WORK

2.1 OUTLIER IN LLMS

Activation outliers have been widely recognized as a major obstacle to effective quantization of
large language models (LLMs). Prior work (Dettmers et al., 2022; Sun et al., 2024; An et al., 2025)
highlights two predominant forms: channel-wise outliers and massive activations, which expand the
dynamic range and induce severe quantization errors. Moreover, residual connections exacerbate the
problem by propagating outliers across layers and amplifying the adverse effects (Guo et al., 2024).

Mixture-of-Experts (MoE) LLMs are likewise affected by the outlier problem. Prior studies on MoE
(Sun et al., 2024; Lo et al., 2025) report that massive activations frequently arise in the hidden states
between decoder layers and are further propagated through residual connections, compounding their
impact across subsequent layers. More recently, the notion of super experts has been introduced (Su
et al., 2025), revealing an additional source of large-magnitude outliers specific to MoE architectures.
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2.2 OUTLIER AWARE QUANTIZATION

Prior efforts on LLM quantization have pursued two directions for addressing the outlier problem. The
first explicitly isolates outliers and applies mixed-precision quantization (Dettmers et al., 2022; Kim
et al., 2024; van Baalen et al., 2025; Huang et al., 2025), ensuring that extreme values are preserved
at higher precision. The second seeks to mitigate outliers through invariant matrix transformations.
Within this line, one strategy redistributes outliers between activations and weights (Xiao et al., 2024;
Lin et al., 2024b). SmoothQuant (Xiao et al., 2024) is a representative work, which jointly smooths
activations and weights to mitigate their impact. QuIP (Chee et al., 2024) and QuIP# (Tseng et al.,
2024) initiated a new line of work that leverages rotation invariance for outlier mitigation. Building
on this idea, QuaRot (Ashkboos et al., 2024) applies rotation to activations for outlier-free inference,
DuQuant (Lin et al., 2024a) combines permutations for dual handling of outliers. SpinQuant (Liu
et al., 2025) introduces learnable orthogonal rotation matrices that are optimized during post-training
quantization, and subsequent work such as OSTQuant (Hu et al., 2025b) further incorporates a
KL-based objective to fine-tune these rotations together with smoothing parameters.

In the context of weight quantization, most existing works nonetheless adopt uniform quantization
schemes such as GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024b), even though weight
distributions in practice are far from uniform. To address this mismatch, early studies (Dettmers et al.,
2023; Yoshida, 2023; Blumenberg et al., 2025) introduce quantile-based non-uniform quantization,
leveraging the normal distributions assumption of weights to construct information-optimal codebooks.
Meanwhile, SqueezeLLM (Kim et al., 2024) demonstrates that dynamic non-uniform quantization
better adapts to the empirical weight distribution in LLMs. Building on earlier clustering-based
compression techniques (Han et al., 2016; Xu et al., 2018), SqueezeLLM integrates K-means
clustering into LLM quantization, yielding more robust results. Moreover, efficient algorithms
for low-precision MoE remain largely underexplored. MoEQuant (Hu et al., 2025a) demonstrates
that directly applying conventional quantization methods to MoE models yields suboptimal results,
underscoring the importance of accounting for token–expert affinities.

Building on this insight, CodeQuant integrates learnable rotation, permutation, clustering, and centroid
adjustment into a unified, lightweight, layerwise calibration framework, and further introduces MoE-
aware mechanisms designed to maintain consistent token–expert routing behavior.

2.3 LUT AND HARDWARE IMPLEMENTATION
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Figure 2: FFN layers within MoE is applied
with rotational matrices for outlier smoothing.

General Matrix Multiply (GEMM) with clustered
multiplicands requires LUT support for efficient de-
ployment. Without hardware-friendly LUTs, cen-
troids must be stored as floating-point values and
reloaded during computation, incurring significant
overhead. Studies on both CPUs and GPUs address
this by exploring LUT-based execution to bridge
non-uniform quantization and practical deployment.
On CPUs, DeepGEMM (Ganji et al., 2023) uses
LUT-driven kernels for ultra-low-precision CNNs,
LUTIN (Lin et al., 2024c) optimizes memory use via
hyperparameter tuning, and T-MAC (Wei et al., 2025)
reformulates mixed-precision GEMM as table lookup
for LLM inference. On GPUs, LUT-GEMM (Park
et al., 2024) and FLUTE (Guo et al., 2025) design optimized kernels to minimize unpacking overhead,
while LUT Tensor Core (Mo et al., 2025) integrates LUT primitives into tensor-core pipelines through
software–hardware co-design.

3 METHODOLOGY

The overview of CodeQuant is shown in Figure 1, which comprises three stages. In the first
stage, we apply Activation-Oriented Outlier Smoothing (AOS) exclusively to the input activations,
effectively mitigating activation outliers (Section 3.1). In the second stage, we optionally employ
Permutation-Invariant Outlier Grouping (POG), which reorders the columns of the weight matrix

3
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to better support the subsequent clustering process (Section 3.3). Stage three introduces Adaptive
Weight Clustering and Centroid Finetuning (ACCF), which identifies optimal groupings and refines
centroids to minimize output difference (Section 3.2). Finally, the resulting MoE is deployed using a
LUT-based system, achieving superior computational efficiency (Section 3.4).

3.1 ACTIVATION-ORIENTED OUTLIER SMOOTHING

As illustrated in Figure 2, the rotational method introduces an additional matrix R applied to the
activation X in both the SA and FFN. The SA blocks in MoE models share the same structure as
those in standard LLMs, and are therefore invariant as discussed in (Ashkboos et al., 2024). The
incorporation of rotational matrices R within the FFN layers is illustrated in Figure 2. An MoE
block primarily consists of two components: the router and the experts. The router is implemented
as a linear layer that takes the input X and generates the expert routing decisions. The output of
each expert can be expressed as (ϕ(XtWgate) ⊙ XtWup)Wdown, where ϕ(·) denotes a nonlinear
activation function (e.g., SiLU) and Xt denotes the subset of tokens assigned to that expert. To
enable rotation-based quantization, we apply the same orthogonal matrix R to both activations
and weights, i.e., X 7→ XR and W 7→ R⊤W . Since RR⊤ = I , the computation simplifies to
(ϕ(XtRR

⊤Wgate)⊙XtRR
⊤Wup)Wdown = (ϕ(XWgate)⊙XWup)Wdown, which is identical to

the original expert output.

While weight clustering is generally robust to outliers, MoE accuracy is highly sensitive to activation
outliers (Ashkboos et al., 2024; Xiao et al., 2024; Liu et al., 2025). To address this, we refine the
rotation matrix R to smooth activation by applying the Cayley transform (Nishimori & Akaho,
2005; Li et al., 2020). Specifically, for any matrix M ∈ Rh×h, where h denotes the model’s hidden
dimension, we first extract its skew-symmetric component and then derive an orthogonal matrix via
the Cayley transform:

S = 1
2
(M −M⊤) R = (I − S)(I + S)−1 (1)

This construction guarantees that the matrix R ∈ Rh×h remains orthogonal while keeping the
process fully differentiable, thereby allowing R to be updated without violating orthogonality. AOS
employs learnable rotation matrices to minimize the quantization error of rotated activations, defined
as XR = XR. By minimizing the quantization error of rotated activations, the rotation explicitly
reduces the influence of outliers on the activation side, leaving the weights to accommodate more of
the variation. Formally, the optimization objective is defined as:

argmin
R

LQ(R|X) = argmin
R

||XR −Q(XR)||2 (2)

where X ∈ Rt×h denotes the calibration input, R is the learnable rotation matrix, and Q(X)
represents the quantization function (i.e. integer quantization). Using WikiText2 (Merity et al., 2016)
as the calibration dataset, we observe a consistent reduction in quantization error during training.
On the held-out test set, fine-tuned rotations yield lower quantization error than random rotations,
demonstrating that the learned rotations generalize beyond calibration.

3.2 ADAPTIVE WEIGHT CLUSTERING AND CENTROID FINETUNING

Building on the smoothed input activations enabled by AOS, we introduce the ACCF method, which
refines grouping and centroid search to further reduce clustering error in the outputs of matrix
products. Specifically, let WR = R⊤W and Wc = fc(WR, A, s⃗). The clustering function fc(·) is
parameterized by a centroid vector s⃗ ∈ Rk×1 and a binary assignment matrix A ∈ {0, 1}mn×k,
where k is the number of centroids. Each element of Wc can equivalently be expressed as As⃗. To
minimize the changes in the output, we set the target as:

argmin
A,s⃗

||XRWR − X̃RWc||2, Wc ≜ fc(WR, A, s⃗) (3)

where XR ∈ Rt×h denotes the activations collected on the calibration set using the rotated but
unquantized weights, and X̃R ∈ Rt×h denotes the input activations at this layer when the upstream
weights have already been quantized and clustered. Equation 3 specifies the objective function for
enabling matrix computations within the SA layers of the MoE through the hybrid operation of input
quantization and weight clustering.
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However, unlike in SA, applying the same operation to the routing mechanism of the MoE FFN
may cause mismatches in token assignments compared with the original MoE, thereby degrading
performance. To address this, we replace the local loss with a weighted sum for MoE module.
Meanwhile, prior works have shown the importance of token–expert affinity (Dai et al., 2022; Li et al.,
2025; Hu et al., 2025a; Liang et al., 2025). Thus, we add a KL divergence loss on router logits during
fine-tuning to preserve the original token–expert assignment. In general, we modify the objective
function in Equation 3 as follows:

L =


||XRWR − X̃RWc||2, if WR ∈ {WR;Q,WR;K ,WR;V },

||Y −
N∑
i=1

Π̃iX̃RWc||2 + λDKL(Π̃,Π), if WR ∈ {WR;gate,WR;up},
(4)

where N denotes the number of experts, Y is the weighted sum produced by the MoE module on the
calibration set using the rotated but unquantized weights, and Π̃ and Π represent the router outputs
corresponding to X̃R and XR, respectively. DKL(., .) returns the KL divergence between the two
inputs and λ specifies the relative importance of the objective functions.

The optimization problems in Equation 3 and 4 can be addressed in an alternating, iterative manner.
We first fix the assignment matrix A and optimize the centroid vector s⃗. To this end, we employ a
local finetuning procedure to update s⃗, which can be derived via the chain rule as dL

ds⃗ = dL
dWc

A.

To determine the assignment matrix A given the centroids s⃗ while minimizing the output difference, a
straightforward approach is to use the nearest-neighbor rounding method as in the standard K-means
algorithm. However, this does not perfectly align with the objective functions in Equation 3 and
Equation 4. To mitigate this, we first compute the gradient of the loss function with respect toWc. For
ease of interpretation, we adopt the loss function defined in Equation 3, though a similar technique
can also be applied to the loss function in Equation 4.

∇LWc =
∂L
∂Wc

= 2X̃⊤
R X̃RWc − 2X̃⊤

RXRWR (5)

Set D̂1 = X̃⊤
R X̃R and D̂2 = X̃⊤

RXR. For computational efficiency, we approximate these matrices
by retaining only their diagonal entries, i.e., D1 = Diag(D̂1), D2 = Diag(D̂2). Under sufficient
coverage, the gradient is expected to approach zero, namely:

D1Wc −D2WR = 0 (6)

To determine the assignment of each element Wc;ij within Wc, suppose Wc;ij is associated with the
k-th centroid sk in the cluster vector s⃗. The corresponding error introduced by this assignment, as
defined in Equation 6, can be computed as:

ψ(wij , sk) = ∥D1;jsk −D2;jwij∥2 (7)

where wij is the (i, j)-th element of WR, and D1;j and D2;j denote the j-th columns of D1 and D2,
respectively. Hence, the optimal assignment for wij is obtained by searching over the cluster vector s⃗
with the following objective:

A∗ = arg min
sk∈s⃗

ψ(wij , sk) (8)

3.3 PERMUTATION-INVARIANT OUTLIER GROUPING

The ACCF algorithm described in Section 3.2 is directly applied to the transformed weight matrices
WR. In practice, achieving strong MoE accuracy under ACCF critically depends on initializing WR

to be cluster-friendly, such that a low-error clustered solution can be readily obtained. Since AOS
minimizes the quantization error of rotated activations only, the remaining variability is left to the
weights, making a cluster-friendly initialization crucial for ACCF to achieve high performance.

However, in practice, we observe that WR is sometimes not amenable to clustering, as shown
in Figure 3 (a). Consider a weight vector WR partitioned into clustering groups of size g = 4,
highlighted by the orange boxes. Each clustering group is allocated a centroid budget of k = 2.
Owing to the high variance within group 1, the optimal clustering solution still incurs a clustering error
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of 17. To reduce the error, we propose the POG method, as illustrated in Figure 3 (c). Specifically, the
weight vector is first divided into smaller sub-groups (shown in green boxes), each of size 2 in this
example. In Step 1, the variance is computed across the elements within each sub-group. In Step 2,
the sub-groups are permuted as indivisible units, ordered by their variance, so as to redistribute high-
and low-variance sub-groups more evenly across the larger groups of size g = 4. This reordering
helps reduce the variance within each clustering group and thereby lowers the overall clustering
error for the resultant W p

R, as shown in Figure 3 (b). The key intuition is that, in the original WR,
group 1 contains weights that would require more than two centroids to achieve low error, while
group 2 is much easier to cluster. By permuting elements at the sub-group level, we obtain a more
cluster-friendly W p

R. It is important to note that this idea differs from prior work designed to facilitate
quantization (Lin et al., 2024a), since the reordered matrix W p

R is not necessarily amenable to
quantization. The resultant W p

R is then used as the initialization for the subsequent ACCF operations,
and leading to improved performance. The detailed POG algorithm is shown in the Appendix.
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Figure 3: The overview of the POG framework.

In practice, directly using the per-
muted matrix W p

R alters the output
and leads to incorrect results. Prior
work (Lin et al., 2024a) addresses this
by formulating permutation as a ma-
trix multiplication. Specifically, per-
muting WR can be achieved by multi-
plying it with a permutation matrix P ,
which encodes the permutation pat-
tern shown in Figure 3. Since P is
orthogonal, the inverse permutation is
simply P−1 = P⊤. Similar to the
rotation matrices R, P can be folded
into the SA and FFN components of
MoE. In CodeQuant, the permutation matrices P and P⊤ are introduced after WvP and P⊤Wout

in the self-attention block, and after WupP as well as before P⊤Wdown in the feed-forward block,
ensuring output invariance and improving ACCF performance.

3.4 CODEQUANT KERNEL AND SYSTEM IMPLEMENTATION

To evaluate the potential real-world performance of CodeQuant, we design and simulate an efficient
LUT-based GEMM kernel. While a full hardware implementation is beyond the scope of this work,
our simulation, based on the validated Accel-Sim framework (Mo et al., 2025; Guo et al., 2023;
Avalos Baddouh et al., 2021), models realistic architectural modifications. First, the input and weight
matrices are tiled by the weight group size. Each group of weights shares the same set of centroids
and is multiplied with multiple activation channels, as shown in Figure 4 (a). To reduce redundant
multiplications, for each weight group we precompute a LUT using the 16 centroid values and the
16 possible 4-bit integer activation values, as shown in step 1 of Figure 4 (b). The LUT consists of
16 subtables, each computed from one centroid value over 16 activation values when the activations
are quantized to 4-bit. CodeQuant uses a two-level Mux to select the output as shown in step 2 in
Figure 4 (b). By pairing activation and weight for shared-memory access, shared-memory conflicts
are reduced compared with separate activation and weight accesses (Guo et al., 2025). The LUT
resides in SM shared memory, as shown in Figure 4 (c) and occupies only a small fraction of the
shared memory available on modern GPUs (NVIDIA Corporation, a;b).

Although CodeQuant GEMM kernel is promising due to its advantages in eliminating dequantization
and multiplication through simple table lookup, existing GPU implementation still faces challenges.
This is mainly due to limited instruction support for efficient lookup table precomputation (Mo et al.,
2025) and shared memory bank conflict from extensive random indexing operations (Guo et al., 2025).
To make better use of the precomputed lookup tables, the number of activation channels in the input
matrix in Figure 4 (a) should increase. However, modern GPU uses the CUDA tensor core for high
performance matrix multiplication and the tensor core instruction only supports a fixed size of matrix
tiles multiplication (8 × 4 × 16 INT8 matrix multiplication in Nvidia RTX A100 GPU (NVIDIA
Corporation, a)). To achieve better LUT-based GEMM performance and keep a fair comparison
with tensor cores, we simulate the GPU performance with optimized matrix sub-tile shape under the
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Figure 4: (a) One tile of the matrix multiplication. (b) The steps of CodeQuant kernel, including a
one-time lookup table precomputation and table lookup. (c) The precomputed lookup table is stored
in the shared memory in the Streaming Multiprocessors (SM) in GPU.

same floating point operation numbers per cycle using Accel-Sim (Khairy et al., 2020). To mitigate
the bank conflicts, the LUT can be duplicated into more memory banks (Lo et al., 2025) to reduce
the chance of multiple threads accessing the same memory bank. To keep the same total shared
memory size, we can increase the number of banks (32 banks in A100 GPU) and reduce the size of
each memory bank, which requires the shared memory structure improvement. We use Accel-Sim to
simulate the LUT-based GEMM performance with optimized GPU shared memory structure.

4 EXPERIMENTS

We evaluate CodeQuant across MoE models of varying sizes and architectures, including Phi-
mini-MoE-Instruct (Abdin et al., 2024), Qwen3-30B-A3B (Yang et al., 2025), DeepSeek-V2-
Lite (DeepSeek-AI et al., 2024), and Mixtral 8x7B (Jiang et al., 2024). The evaluations cover
both language generation, commonsense QA tasks, and math reasoning tasks. For language mod-
eling, we report perplexity on WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2023). For
zero-shot QA, we measure accuracy on ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
MMLU (Hendrycks et al., 2021), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021).
For mathematical reasoning, we further evaluate CodeQuant using GSM8K (8-shot) (Cobbe et al.,
2021) and MATH500 (4-shot) (Hendrycks et al., 2021).

In the AOS stage, we apply the Cayley transform to optimize the activation-quantization rotation
matrix R1, using 1,024 WikiText2 samples over 128 iterations. In the ACCF stage, we optimize
centroids over 64 iterations with 512 WikiText2 calibration samples, setting the KL divergence
coefficient to λ = 1.0. We study the impact of λ in Section 4.4. In terms of preprocessing time,
the AOS stage requires approximately 15/20/30/50 minutes for Phi-mini-MoE-Instruct, DeepSeek-
V2-Lite, Qwen3-30B-A3B and Mixtral 8x7B on H100 GPUs, respectively. The subsequent ACCF
stage requires 30/40/110/240 minutes for the same models. At inference time, all transformations are
fused into the weights. As a result, the multiply–accumulate operations can be executed through LUT
lookups, and Section 4.3 shows that this leads to a net inference speedup.

We compare CodeQuant with several PTQ methods, including RTN (Round-to-Nearest),
SmoothQuant (Xiao et al., 2024), QuaRot (Ashkboos et al., 2024), and SqueezeLLM (Kim et al.,
2024). We additionally include recent rotation-based PTQ methods such as DuQuant (Lin et al.,
2024a) and SpinQuant (Liu et al., 2025) as baseline method. For methods that rely on online
Hadamard transforms, we adopt the same setting to ensure methodological consistency. We use
the same activation bitwidth across methods, including SqueezeLLM, where input activations are
quantized with RTN. For weights, we match the total number of discrete representation values. For
instance, when QuaRot uses 4-bit quantization, we configure CodeQuant with 16 centroids for weight
clustering to yield an equivalent representation capacity, using the same centroid-selection strategy
as SqueezeLLM. All algorithms are evaluated under two quantization/clustering configurations. In
the first, referred to as Block-wise, quantization or clustering is applied within groups of g = 1024
weight values along the embedding dimension. In the second, termed Embedding-wise, quantization
is applied across the entire embedding dimension, spanning the full embedding vector.
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Table 1: Performance in perplexity (PPL) on Wiki2 and C4 dataset, and accuracy on Arc-Challenge
(A-c), Arc-easy (A-e), HellaSwag (HS), MMLU (ML), PIQA (PQ) and WinoGrande (WG). For each
setting, we report the BF16 baseline in the first row. More results are shown in the Appendix.

Models Methods Wiki2 (↓) C4 (↓) A-c (↑) A-e (↑) HS (↑) ML (↑) PQ (↑) WG (↑) Avg (↑)

A
4W

4
E

m
be

dd
in

g-
w

is
e

Phi-mini-
MoE-Instruct

BF16 6.83 13.06 0.581 0.813 0.759 0.681 0.797 0.753 0.731
RTN 9811.22 7431.27 0.287 0.268 0.261 0.232 0.501 0.516 0.344

SqueezeLLM 8383.63 5619.01 0.279 0.281 0.263 0.236 0.515 0.500 0.346
SmoothQuant 24071.25 16320.79 0.263 0.280 0.270 0.240 0.528 0.503 0.347

QuaRot 7.93 14.44 0.545 0.784 0.725 0.633 0.775 0.702 0.694
CodeQuant 7.63 13.94 0.538 0.790 0.728 0.644 0.784 0.716 0.700

DeepSeek-
V2-Lite

BF16 6.69 9.32 0.491 0.759 0.780 0.551 0.804 0.709 0.682
RTN 812.90 660.45 0.226 0.295 0.283 0.237 0.513 0.483 0.339

SqueezeLLM 806.71 614.70 0.257 0.301 0.277 0.238 0.541 0.508 0.354
SmoothQuant 11.57 16.10 0.381 0.645 0.658 0.305 0.747 0.581 0.553

QuaRot 7.75 10.75 0.457 0.720 0.745 0.450 0.787 0.682 0.640
CodeQuant 7.08 9.85 0.479 0.749 0.767 0.515 0.791 0.684 0.664

Qwen3-
30B-A3B

BF16 9.04 14.05 0.566 0.793 0.776 0.778 0.805 0.694 0.735
RTN 181.59 232.49 0.230 0.385 0.367 0.236 0.565 0.445 0.371

SqueezeLLM 100.47 121.55 0.222 0.352 0.367 0.243 0.576 0.504 0.377
SmoothQuant 23.01 33.39 0.383 0.584 0.490 0.413 0.717 0.547 0.522

QuaRot 16.04 24.27 0.386 0.596 0.609 0.585 0.735 0.575 0.581
CodeQuant 10.31 15.75 0.522 0.757 0.688 0.735 0.780 0.685 0.694

Mixtral-
8x7B

BF16 4.01 7.41 0.579 0.851 0.720 0.677 0.856 0.799 0.747
RTN 10502.14 14045.38 0.319 0.261 0.284 0.243 0.492 0.504 0.350

SqueezeLLM 13952.66 19725.12 0.297 0.282 0.279 0.251 0.527 0.519 0.359
SmoothQuant 77.32 96.01 0.222 0.349 0.303 0.236 0.565 0.497 0.362

QuaRot 16.79 24.29 0.348 0.570 0.512 0.286 0.708 0.560 0.497
CodeQuant 4.65 8.06 0.565 0.819 0.715 0.644 0.827 0.780 0.725

A
4W

4
B

lo
ck

-w
is

e Phi-mini-
MoE-Instruct

RTN 20.86 30.75 0.345 0.540 0.475 0.318 0.657 0.529 0.477
SqueezeLLM 12.44 20.21 0.399 0.607 0.590 0.455 0.687 0.572 0.552
SmoothQuant 15.34 24.18 0.356 0.559 0.532 0.464 0.656 0.577 0.524

QuaRot 7.63 13.82 0.534 0.790 0.728 0.633 0.783 0.719 0.698
CodeQuant 7.28 13.54 0.562 0.800 0.733 0.646 0.792 0.729 0.710

DeepSeek-
V2-Lite

RTN 161.08 159.65 0.236 0.368 0.344 0.236 0.581 0.515 0.380
SqueezeLLM 115.66 112.59 0.238 0.379 0.364 0.234 0.590 0.500 0.384
SmoothQuant 9.11 12.72 0.387 0.652 0.687 0.347 0.761 0.613 0.574

QuaRot 7.62 10.59 0.462 0.719 0.745 0.483 0.781 0.668 0.643
CodeQuant 7.03 9.79 0.480 0.741 0.764 0.525 0.794 0.698 0.667

We evaluate CodeQuant GEMM kernel using Accel-Sim (Khairy et al., 2020), a state-of-the-art
GPU simulator, configured to model an A100 80GB GPU with CodeQuant-optimized tensor cores.
Detailed simulation settings are provided in the Appendix. As baselines on real A100 hardware,
we measure the latencies of HuggingFace (Wolf et al., 2020) BF16 models, QuaRot (Ashkboos
et al., 2024) A4W4 quantized models, and SqueezeLLM (Kim et al., 2024) A4W4 quantized models.
SqueezeLLM serves as a baseline for weight clustering and activation quantization without GPU
architectural modification, helping isolate the latency performance gains from CodeQuant hardware
kernel design. Experiments use a prefill length of 512, decoding length of 128, and batch size of
16. Additionally, we measure the real hardware performance of CodeQuant by benchmarking the
A8W4 T-MAC kernel (Wei et al., 2025), a mixed-precision LUT-based CPU GEMM kernel, against
Llama.cpp (Gerganov & ggml-org contributors, 2023) BF16 and A8W4 models on CPU.

4.1 MAIN RESULTS

Table 1 summarizes the evaluation results of CodeQuant under different configurations. For clarity,
we adopt the ‘AxWx’ notation. For instance, in QuaRot, RTN, and SmoothQuant, ‘A4W4’ denotes
4-bit quantization of activations and 4-bit quantization of weights. In contrast, under CodeQuant,
‘A4W4’ corresponds to applying 4-bit linear quantization to activations and clustering weights into
24 = 16 centroids. In the Embedding-wise setting, POG has no effect on the final performance, since
the permutation operates entirely within the embedding vector. Therefore, POG is not applied here.

We first present the Embedding-wise evaluation results. For A4W4, CodeQuant delivers substan-
tial improvements over existing methods. On Qwen3-30B-A3B, it reduces perplexity by 5.73 on
WikiText2 and 8.52 on C4, while increasing average accuracy by 11.3% compared to QuaRot, with
even larger gains over SmoothQuant on both metrics. On DeepSeek-V2-Lite, CodeQuant again
improves performance, lowering perplexity by 0.67 on WikiText2 and 0.9 on C4, alongside a 2.4%
accuracy increase over QuaRot. On Mixtral 8×7B, CodeQuant shows the same trend, reducing
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Table 2: Rotation-based method performance comparison. CodeQuanthad indicates that online
Hadamard transforms are enabled during the quantization process.

Models Methods Wiki2 (↓) C4 (↓) A-c (↑) A-e (↑) HS (↑) ML (↑) PQ (↑) WG (↑) Avg (↑)
A

4W
4

E
m

be
dd

in
g-

w
is

e
DeepSeek-

V2-Lite

DuQuant 8.43 11.94 0.455 0.708 0.623 0.400 0.775 0.693 0.658
SpinQuanthad 9.24 12.71 0.427 0.692 0.706 0.425 0.774 0.638 0.647

CodeQuanthad 8.16 11.38 0.445 0.723 0.727 0.454 0.782 0.644 0.666

Qwen3-
30B-A3B

DuQuant 13.52 20.10 0.472 0.662 0.687 0.654 0.739 0.606 0.637
SpinQuanthad 14.61 22.07 0.415 0.600 0.628 0.584 0.692 0.622 0.590

CodeQuanthad 12.69 19.89 0.477 0.697 0.691 0.679 0.739 0.635 0.653

perplexity by 12.14 on WikiText2 and 16.23 on C4 compared to QuaRot, and increasing average
accuracy by 22.8%. These results highlight CodeQuant’s consistent advantages across architectures
and demonstrate that its effectiveness remains stable across both model structure and model scales.
The A8W4 Embedding-wise results are detailed listed in Appendix A.4.

With POG enabled, we evaluate Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under the Block-wise
setting. Under A4W4, both models show clear improvements over the Embedding-wise baseline.
However, when moving to A8W4, Phi-mini-MoE-Instruct benefits only marginally, and DeepSeek-
V2-Lite even drops by 0.3% relative to the baseline. We attribute this to DeepSeek’s already strong
accuracy without POG, with less than a 1% gap compared to BF16. These results suggest that
permutation is effective under extreme compression, as detailed in Appendix A.4.

In addition, we evaluate CodeQuant against two strong rotation-based PTQ baselines, SpinQuant
and DuQuant, both of which suppress outliers through trainable or structured transformations. For
fairness, we adopt online Hadamard transforms and denote this variant as CodeQuanthad, matching
the SpinQuanthad setup. As shown in Table 2, CodeQuanthad consistently outperforms both baselines.
On Qwen3-30B-A3B, it reaches an average accuracy of 0.653 compared to 0.637 for DuQuant and
0.590 for SpinQuant. On DeepSeek-V2-Lite, it achieves 0.666, again exceeding DuQuant at 0.658 and
SpinQuanthad at 0.647, demonstrating robust advantages across language modeling and downstream
tasks.

4.2 MATHEMATICALLY REASONING PERFORMANCE

Table 3: A4W4 Embedding-wise CodeQuant results on
GSM8K (8-shot) and MATH500 (4-shot).

Models Methods GSM8K (↑) MATH500 (↑)

DeepSeek-V2-Lite
BF16 0.364 0.121

QuaRot 0.231 0.093
CodeQuant 0.330 0.108

Qwen3-30B-A3B
BF16 0.924 0.322

QuaRot 0.508 0.128
CodeQuant 0.867 0.241

We further assess whether CodeQuant
preserves reasoning-heavy capabilities,
which are typically more sensitive to
quantization. We evaluate DeepSeek-
V2-Lite and Qwen3-30B-A3B under the
A4W4 Embedding-wise configuration on
GSM8K (8-shot) and MATH500 (4-shot)
(DeepSeek-AI et al., 2024), where each
k-shot prompt includes k worked exam-
ples before the test question. As shown
in Table 3, CodeQuant substantially out-
performs QuaRot and remains close to the
BF16 baseline. On DeepSeek-V2-Lite, the degradation is minimal, only 3.4% on GSM8K and 1.3%
on MATH500. For Qwen3-30B-A3B, the advantage becomes even more pronounced: CodeQuant
improves over QuaRot by 35.9% on GSM8K, and 11.3% on MATH500, highlighting its strength on
reasoning-heavy tasks.

4.3 LATENCY EVALUATION

Figure 5 presents the normalized speedups of all baselines, with BF16 latency normalized to 1.
Compared with the BF16 models, CodeQuant achieves an average 2.63× speedup, which underscores
the effectiveness of low-bit activation and weight quantization together with the LUT-based GEMM
design. The speedup of CodeQuant over QuaRot highlights the advantage of replacing repetitive
multiply-accumulate operations with direct LUT indexing, thereby reducing redundant multiplications.
The improvement over SqueezeLLM reflects the benefit of deploying a GPU implementation that uses
optimized LUT operations. Considering the strong accuracy results of CodeQuant shown in Table 1,
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Table 4: AOS Impact

Method DeepSeek-
V2-Lite

Random
Wiki2 ↓ 7.29

C4 ↓ 10.16
Acc ↑ 0.652

AOS
Wiki2 ↓ 7.06

C4 ↓ 9.85
Acc ↑ 0.667

Table 5: KL Loss Impact

Method Task Phi- Deepseek-
mini V2-Lite

W/O KL
Wiki2 ↓ 7.29 7.10

C4 ↓ 13.95 9.87
Acc ↑ 0.694 0.658

W/ KL
Wiki2 ↓ 7.06 7.03

C4 ↓ 13.80 9.79
Acc ↑ 0.700 0.667

Table 6: Centroid Budgets Impact

Model DeepSeek-V2-Lite
Wiki2 ↓ C4 ↓ Acc ↑

SqueezeLLMA4W2 24.36 32.98 0.496
SqueezeLLMA4W3 8.40 11.69 0.619
SqueezeLLMA4W4 7.17 10.01 0.652
CodeQuantA4W2 10.68 14.59 0.568
CodeQuantA4W3 7.59 10.58 0.639
CodeQuantA4W4 7.06 9.85 0.667

CodeQuant achieves the optimal performance among the baselines. Furthermore, we validate these
performance trends on real hardware by benchmarking a CPU kernel, where CodeQuant achieves up
to 4.15× speedup over a BF16 baseline (see Appendix A.7 for details).

It is important to note that the clustering step is performed offline. After the centroids are obtained by
minimizing ACCF, each weight is assigned to its nearest centroid using the distance metric defined in
Equation 7. During runtime, the weight matrices remain fixed, and inference proceeds in the same
way as a conventional MoE. As a result, this approach does not introduce any additional computation
or memory traffic during inference.

4.4 ABLATION STUDIES

Speedup Phi-mini-MoE-InstructDeepSeek-V2-LiteQwen3-30B-A3B Memory SavingPhi-mini-MoE-InstructDeepSeek-V2-LiteQwen3-30B-A3B
BF16 1 1 1 BF16 1 1 1
Quarot 2.11 2.35 2.58 Quarot 3.72 3.68 3.76
SqueezeLLM 2 2.14 2.28 SqueezeLLM 3.67 3.61 3.72
CodeQuant 2.29 2.58 2.97 CodeQuant 3.67 3.61 3.72

1 1 1
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Figure 5: Normalized speedup on one A100 GPU.

Impact of Activation Smoothing We evalu-
ate whether fine-tuning the rotation matrix im-
proves accuracy on DeepSeek-V2-Lite under the
A4W4 Embedding-wise configuration, keeping
all other settings fixed. Specifically, we com-
pare a random rotation with the fine-tuned ro-
tation produced by AOS. As shown in Table 4,
rotational matrix finetuning yields consistent im-
provements, boosting accuracy by 1.4% and re-
ducing perplexity by 0.23 on WikiText2 and by 0.31 on C4.

Impact of KL Penalty We evaluate the effectiveness of the KL divergence term defined in Equa-
tion 4. The ablation is conducted on Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under the A4W4
Block-wise configuration, comparing two settings: (i) centroids fine-tuned without the KL divergence
term (λ = 0.0), and (ii) centroids optimized with the full ACCF loss (λ = 1.0). As shown in Table 5,
ACCF with the KL penalty outperforms the version without it. Additional analysis in Appendix A.6
further shows that the KL penalty also stabilizes the router behavior, indicating that KL regularization
helps preserve the original expert-routing pattern after quantization.

CodeQuant Performance under Extreme Compression We examine CodeQuant performance
under different centroid budgets on DeepSeek-V2-Lite with Embedding-wise quantization. We apply
the same rotation matrix to quantize activations for both CodeQuant and SqueezeLLM, and evaluate
over three settings: A4W2, A4W3, and A4W4. As shown in Table 6, CodeQuant consistently
outperforms SqueezeLLM across all budgets. Under the most aggressive case (A4W2), CodeQuant’s
average accuracy decreases by 9.9% relative to the A4W4 case, whereas SqueezeLLM drops by
15.6%. Moreover, CodeQuant’s advantage widens as the budget shrinks from 1.5% at A4W4 to 7.2%
at A4W2, indicating robustness under extreme compression.

5 CONCLUSION

We present CodeQuant, a unified quantization-and-clustering framework for low-precision MoE.
CodeQuant reduces quantization error while preserving accuracy, achieves up to 4.15× latency
reduction. Experiments confirm that CodeQuant delivers superior accuracy–efficiency trade-offs
compared to other baseline algorithms, enabling more reliable low-precision deployment of MoE.
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ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. CodeQuant is a post-training quantization frame-
work evaluated on pretrained models and public datasets, without the use of private or user-specific
data. Our research does not involve human subjects, private or sensitive data, or personally identifiable
information. The method modifies only internal representations through weight quantization and
routing, introducing no new risks in fairness, privacy, or security beyond those inherent to the base
models. We are not aware of any direct ethical concerns specific to this work.

REPRODUCIBILITY STATEMENT

Code and models: All experiments in this paper are conducted on publicly available datasets with
specified preprocessing steps. Detailed configurations, including hyperparameter, training procedures,
and hardware specifications, are reported in the experiment section. Baselines are re-implemented
following their original papers, with reference to the authors’ released code when available. While
the source code for CodeQuant is not released at submission time, we will make it publicly available
upon acceptance to facilitate reproducibility.

Datasets: All datasets used in this work are publicly available.

Randomness: All experiments are run with fixed random seeds in the scripts, to ensure consistent
results.

Compute resources: Our experiments are conducted on NVIDIA RTX H100, RTX A100, Accel-Sim
GPU simulator, and Intel CPU as described in Section 4.

USE OF LARGE LANGUAGE MODELS

Large language models (LLMs), such as ChatGPT, were used only for polishing language and
improving readability. All technical ideas, analyses, experiments, and conclusions were conceived,
implemented, and validated by the authors. The final manuscript was carefully reviewed to ensure
accuracy and correctness.
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A APPENDIX

A.1 ROTATION MATRIX IN DEEPSEEK-V2-LITE

In Section 3.1, we integrate the rotation matrix into the weight parameters. Due to the architectural
differences between the DeepSeek-V2-Lite model and Qwen3-30B-A3B, in DeepSeek-V2-Lite SA
block, the rotation matrices are applied to Wq and Wkv_a. In the MoE FFN block, DeepSeek-V2-Lite
includes a shared expert; therefore, the rotation matrices are also applied to the shared expert’s Wup
and Wgate.

A.2 POG ALGORITHM

In Section3.3 we propose a permutation method. In this section, we would introduce how to construct
a permutation matrix P that makes the weights more amenable to clustering in detail.

First, we need to obtain a permutation sequence using Algorithm1. Given a weight matrix WR ∈
Rdin×dout , we compute a permutation sequence π ∈ Rdout , defined as a bijective sequence in
which each element πi specifies the original column relocated to the i-th position in the permuted
arrangement. Concretely, we first sort the columns by their mean absolute value and partition them
along the column dimension into small subgroups. Then the subgroup with the largest average
variance is paired with subgroups of the smallest variance to form the first group, and this process is
repeated until all subgroups are assigned.

Second, after obtaining the permutation order π, we construct the corresponding permutation matrix
P , defined as:

Pij =

{
1, if i = π(j),

0, otherwise.
, where P ∈ {0, 1}n×n (9)

Lastly, we fuse the permutation matrix into the weight parameters to eliminate additional online
computation. For the Phi-mini-MoE-Instruct and Qwen3-30B-A3B models, the permutation is
applied in both the self-attention and MoE-FFN blocks. In the self-attention block, we multiply
the permutation matrix with WR;V and apply its transpose to WR;out. In the MoE-FFN block, the
permutation matrix is multiplied with WR;up, while its transpose is applied to WR;down for each expert.

For DeepSeek-V2-Lite, the permutation is applied to all experts, including the shared expert, in
the MoE-FFN block. Specifically, WR;up is multiplied by the permutation matrix, and WR;down is
multiplied by its transpose for every expert. In the self-attention block, due to the unique structure
of the DeepSeek family, additional steps are required to preserve output invariance. First, the layer
normalization is absorbed into the weight matrix. Then, we decompose

WR;kv_a =
[
WR;compressed_kv, WR;k_pe

]
into WR;compressed_kv and WR;k_pe. The permutation matrix is multiplied with WR;compressed_kv, while
the transpose of the permutation matrix is applied to WR;kv_b to preserve output invariance.
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Algorithm 1: POG Algorithm
Input: WR ∈ Rdin×dout is the weight matrix after rotation; g ∈ N is the quantization group size; gs ∈ N is

the small subgroup size, which is the unit to swap, and it satisfies gs < g.
Output: A column permutation order π of {1, . . . , dout}.

1 Procedure
2 Ng ← dout/g, Ns ← dout/gs, n← g/gs;

3 Compute the mean absolute value of each column: S ∈ Rdout where sj = 1
din

din∑
r=1

|WR;rj |;

4 Iidx ← argsort(S, desc);
5 Partition Iidx into Ns groups of size gs, such that each group

Gi = Iidx[(i− 1)gs + 1 : igs] ∈ Rgs , i = 1, . . . , Ns;
6 for i = 1 to Ns do
7 WGi = WR[:, Gi];
8 vi ← Mean(StdDev(WGi , dim = 1), dim = 0);
9 V = {v1, ..., vNs};

10 ǏV ← argsort(V, desc), ÎV ← argsort(V, asc);
11 π ← [ ];
12 for i = 1 to N do
13 append ǏV [i] to π;
14 append ÎV [(i− 1)(n− 1) + 1 : i(n− 1)] to π;
15 return π;

A.3 HARDWARE EVALUATION SETTINGS

We use Accel-Sim (Khairy et al., 2020), a state-of-the-art open-source GPU simulator, and modify its
configuration and trace files to model both the original RTX A100 80GB GPU and an A100 with
CodeQuant-optimized tensor cores, as shown in Section 3.4. The simulator is calibrated against real
A100 measurements, achieving less than 1% latency error, consistent with prior GPU module design
studies (Mo et al., 2025; Guo et al., 2023; Avalos Baddouh et al., 2021). We configure tensor cores
with a matrix multiplication size of 16× 4× 8 and 64 shared memory banks to improve lookup table
reuse and reduce bank conflicts.

A.4 CODEQUANT A8W4 EMBEDDING-WISE ACCURACY PERFORMANCE

Table 7 summarizes the evaluation results of CodeQuant under the A8W4 Embedding-wise setting.
The accuracy of CodeQuant further improves compared to A4W4 configuration, showing only a
~1–2% drop on Phi-mini-MoE-Instruct and Qwen3-30B-A3B, and nearly lossless performance on
DeepSeek-V2-Lite. CodeQuant consistently outperforms the other baselines across models and
datasets.

A.5 IMPACT OF POG

We evaluate the impact of POG operation on Phi-mini-MoE-Instruct and DeepSeek-V2-Lite under
the A4W4 Block-wise configuration with a fixed group size of g = 1024. As shown in Table 8,
removing permutation consistently degrades performance. On Phi-mini-MoE-Instruct, with POG
applied, perplexity increases by 0.03 on WikiText2 and 0.12 on C4, while accuracy drops by 0.4%. A
similar pattern is observed on DeepSeek-V2-Lite, confirming the generality of this effect.

A.6 IMPACT OF KL PENALTY ON ROUTER LOGITS

We measure the effect of KL divergence on router stability for DeepSeek-V2-Lite and Qwen3-30B-
A3B under the A4W4 Embedding-Wise setting. The change rate is defined as the layer-wise average
change in Top-K expert indices (with K = 6 for DeepSeek-V2-Lite and K = 8 for Qwen3-30B-
A3B) computed by comparing the router outputs before and after quantization. Results are averaged
over 50 samples from the WikiText-2 test set.
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Table 7: Performance in perplexity (PPL) on Wiki2 and C4 dataset, and accuracy on Arc-Challenage
(A-c), Arc-easy (A-e), HellaSwag (HS), MMLU (ML), PIQA (PQ) and WinoGrande (WG). Code-
Quant is set as A8W4 Embedding-wise. We report the BF16 baseline in the first row, and mark the
methods as BF16.

Models Methods Wiki2 (↓) C4 (↓) A-c (↑) A-e (↑) HS (↑) ML (↑) PQ (↑) WG (↑) Avg (↑)

A
8W

4
E

m
be

dd
in

g-
w

is
e

Phi-mini-
MoE-Instruct

BF16 6.83 13.06 0.581 0.813 0.759 0.681 0.797 0.753 0.731
RTN 12.13 20.46 0.460 0.730 0.618 0.497 0.741 0.632 0.613

SqueezeLLM 7.41 13.65 0.565 0.795 0.736 0.658 0.791 0.746 0.715
SmoothQuant 9.50 16.23 0.481 0.741 0.653 0.569 0.756 0.638 0.634

QuaRot 7.69 14.15 0.549 0.787 0.735 0.652 0.786 0.737 0.708
CodeQuant 7.36 13.73 0.579 0.796 0.741 0.668 0.796 0.732 0.719

Qwen3-
30B-A3B

BF16 9.04 14.05 0.566 0.793 0.776 0.778 0.805 0.694 0.735
RTN 14.09 21.65 0.284 0.446 0.692 0.643 0.656 0.626 0.558

SqueezeLLM 9.37 14.56 0.529 0.768 0.743 0.764 0.770 0.671 0.707
SmoothQuant 11.77 17.82 0.463 0.703 0.721 0.695 0.773 0.667 0.670

QuaRot 11.18 16.58 0.471 0.671 0.696 0.708 0.766 0.654 0.661
CodeQuant 9.81 15.11 0.535 0.779 0.754 0.757 0.797 0.679 0.717

DeepSeek-
V2-Lite

BF16 6.69 9.32 0.491 0.759 0.780 0.551 0.804 0.709 0.682
RTN 7.72 10.89 0.469 0.719 0.732 0.457 0.790 0.671 0.640

SqueezeLLM 6.93 9.60 0.485 0.755 0.760 0.525 0.803 0.701 0.658
SmoothQuant 7.61 10.70 0.457 0.729 0.754 0.480 0.794 0.674 0.648

QuaRot 7.29 10.08 0.466 0.737 0.757 0.493 0.792 0.705 0.658
CodeQuant 6.84 9.50 0.487 0.764 0.773 0.533 0.798 0.709 0.678

A
8W

4
B

lo
ck

-w
is

e Phi-mini-
MoE-Instruct

RTN 8.68 14.93 0.530 0.777 0.683 0.578 0.770 0.671 0.668
SqueezeLLM 7.18 13.46 0.576 0.801 0.744 0.670 0.797 0.759 0.724
SmoothQuant 8.40 14.67 0.516 0.768 0.697 0.602 0.769 0.688 0.673

QuaRot 7.48 13.65 0.550 0.794 0.737 0.645 0.786 0.737 0.708
CodeQuant 7.11 13.33 0.575 0.817 0.744 0.661 0.792 0.751 0.723

DeepSeek-
V2-Lite

RTN 7.47 10.40 0.455 0.743 0.764 0.488 0.788 0.687 0.654
SqueezeLLM 6.86 9.53 0.469 0.754 0.773 0.535 0.796 0.706 0.672
SmoothQuant 7.42 10.39 0.459 0.724 0.748 0.476 0.792 0.665 0.644

QuaRot 7.22 10.03 0.466 0.746 0.760 0.508 0.795 0.688 0.661
CodeQuant 6.83 9.49 0.472 0.756 0.775 0.535 0.804 0.708 0.675

Table 8: Impact of POG

Method Phi-mini-MoE-Instruct DeepSeek-V2-Lite
Wiki2 ↓ C4 ↓ Acc ↑ Wiki2 ↓ C4 ↓ Acc ↑

W/O POG 7.31 13.66 0.710 7.08 9.88 0.663
W/ POG 7.28 13.54 0.714 7.03 9.79 0.668

Table 9: KL Penalty Impact on Router

Model Method Change Rate (%) ↓
DeepSeek-

V2-Lite

QuaRot 41.47
CodeQuant w/o KL 24.33
CodeQuant w/ KL 22.82

Qwen3-
30B-A3B

QuaRot 72.15
CodeQuant w/o KL 60.21
CodeQuant w/ KL 59.58

As shown in Table 9, adding the KL penalty consistently reduces routing perturbation. On DeepSeek-
V2-Lite, the change rate drops from 24.33% to 22.82%. A similar trend is observed on Qwen3-30B-
A3B, where KL regularization yields a reduction from 60.21% to 59.58%, despite its larger 128-expert
MoE blocks. These results indicate that KL regularization helps preserve the expert-routing pattern
during quantization and mitigates performance degradation.

A.7 LUT KERNEL PERFORMANCE ON CPU

Table 10: Latency and Memory Evaluation on CPU

Bit Width Method Phi-mini-MoE-Instruct DeepSeek-V2-Lite Qwen3-30B-A3B
Mem. (GB) ↓ Lat. (s) ↓ Mem. (GB) ↓ Lat. (s) ↓ Mem. (GB) ↓ Lat. (s) ↓

BF16 Llama.cpp (CPU) 14.3 40.1 29.3 50.0 56.9 66.1

A8W4 Llama.cpp (CPU) 4.1 15.0 8.8 17.1 16.2 20.1
CodeQuant (CPU) 4.1 13.3 8.9 14.2 16.5 15.9

T-MAC (Wei et al., 2025) implements mixed-precision GEMM via a lookup table–based kernel
within the Llama.cpp framework (Gerganov & ggml-org contributors, 2023), enabling efficient CPU
execution. We evaluate CodeQuant by benchmarking the A8W4 T-MAC kernel against BF16 and
A8W4 models in Llama.cpp. The experiments are conducted on an Intel(R) Xeon(R) w7-3445
CPU (Intel Corporation, 2025) using 20 threads. On CPU, CodeQuant achieves up to 4.15× speedup
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over BF16 baselines and consistently outperforms the quantization baselines. The gains are larger on
CPU than on GPU primarily because CPU inference exposes less parallelism and is more memory-
bound (Wei et al., 2025), making the improvements over the baseline more pronounced. In addition,
efficient LUT instructions on CPUs further amplify CodeQuant’s advantage over quantized baselines.
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