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Abstract

Memory layers use a trainable key-value lookup
mechanism to add extra parameters to a model
without increasing FLOPs. Conceptually,
sparsely activated memory layers complement
compute-heavy dense feed-forward layers, pro-
viding dedicated capacity to store and retrieve
information cheaply. This work takes memory
layers beyond proof-of-concept, proving their
utility at contemporary scale. On downstream
tasks, language models augmented with our im-
proved memory layer outperform dense models
with more than twice the computation budget, as
well as mixture-of-expert models when matched
for both compute and parameters. We find gains
are especially pronounced for factual tasks. We
provide a fully parallelizable memory layer im-
plementation, demonstrating scaling laws with
up to 128B memory parameters, pretrained to 1
trillion tokens, comparing to base models with up
to 8B parameters.

1. Introduction

Pretrained language models encode vast amounts of infor-
mation in their parameters (Roberts et al., [2020), and they
can recall and use this information more accurately with in-
creasing scale (Brown et al., [2020). For dense deep neural
networks, which encode information primarily as weights
of linear matrix transforms, this scaling of parameter size is
directly coupled to an increase in computational and energy
requirements. It is unclear if this is the most efficient so-
lution to all information storage needs of language models.
An important subset of information that language models
need to learn are simple associations. For example, LLMs
learn birthdays of celebrities, capital cities of countries,
or how one concept might relate to another. While feed-
forward networks can in principle (given sufficient scale)
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Figure 1. Scaling the size of the memory for a 1.3 billion param-
eter base model (zero memory parameters corresponds to a dense
model), trained to 1 trillion tokens. On the left, factual QA ac-
curacy (exact match on NaturalQuestions and F1 score on Trivi-
aQA), on the right task NLL (lower is better). Dashed lines show
the performance of a 7B model trained on 2 trillion tokens with
10x more FLOPs.

learn any function (Hornik et al., [1989)), including lookup
tables of associations, using an associative memory for this
purpose would be both more efficient and more natural.

Such memory layers can be implemented with a simple and
cheap key-value lookup mechanism where both keys and
values are encoded as embeddings (Weston et al., [2015).
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Earlier works introduced end-to-end trainable memory lay-
ers (Sukhbaatar et al.,[2015) and incorporated them as part
of neural computational systems (Graves et al.| 2014)). De-
spite early enthusiasm however, memory layers have not
been studied and scaled sufficiently to be useful in modern
Al architectures. There are distinctive challenges one en-
counters when attempting to scale memory layers, which
we touch upon in Section [3] In contrast to dense lay-
ers which are predominantly FLOP-bound, memory lay-
ers with their sparse activation pattern are almost entirely
memory bandwidth bound. Such components are rarely
used in modern architectures and have not been optimised
for hardware accelerators. In addition to, and partly as a
result of this, little research was done to improve their per-
formance. Instead, the field focused on alternatives such
as mixture-of-experts (Shazeer et al., 2017), which more
closely resemble dense networks and are thus easier to
scale, but are challenging to optimize for inference.

In this work, we show that memory layers, when im-
proved and scaled sufficiently, can be used to augment
dense neural networks to great benefit. We do so by replac-
ing the feed-forward network (FFN) of one or more trans-
former layers with memory layers (we leave other layers
unchanged). These benefits are consistent across a range
of base model sizes (ranging from 134 million to 8 bil-
lion parameters), and memory capacities (up to 128 bil-
lion parameters). This represents a two orders of magni-
tude leap in memory capacity compared to previous mem-
ory layers reported in the literature. Our results (Section 4]
indicate that memory layers improve the factual accuracy
of language models by over 100% as measured by fac-
tual QA benchmarks, while also improving significantly
on coding (HumanEval, MBPP) and general knowledge
(Hellaswag, MMLU). In many cases, memory augmented
models can match the performance of dense models that
have been trained on 4x more compute. They also outper-
form mixture-of-experts architectures with matching com-
pute and parameter size, especially on factual tasks. Given
these findings, we strongly advocate that memory layers be
integrated into all next generation Al architectures. E]

2. Related work

Language model scaling laws (Kaplan et al., |2020) study
the empirical performance of language models as they are
scaled in compute, data, and parameter size. Scaling laws
are typically formulated in terms of training/test log like-
lihood, which is generally believed to correlate well with
downstream performance. Scaling plots on downstream
tasks are also not without precedent (Brown et al.| [2020),
but have sometimes been shown to exhibit non-linear be-

'Our implementation is available at https://github.
com/facebookresearch/memory

haviour and phase transitions (Wei et al., 2022; |Ganguli
et al., [2022). Nevertheless, given a well behaved metric
(such as task likelihood loss), most tasks exhibit smooth
improvements with scaling (Schaeffer et al., 2023).

(Kaplan et al., 2020) showed that performance scales log-
linearly with compute and parameter size across a wide
range of architecture hyper-parameters, such as model
depth and width. It has been difficult to find architectures
which substantially deviate from these laws. Mixture-of-
experts (MOE) (Shazeer et al.,|2017; Lepikhin et al.| [2020)
is a notable exception. MOE adds extra parameters to the
model without increasing the computation budget. While
scaling laws for MOE also mostly focus on training per-
plexity, gains transfer well to downstream applications, as
evidenced by the popularity of MOE architectures in recent
state-of-the-art model families (Jiang et al., 2024; [OpenAl
et al. 2024} Team et al., [2024). Nevertheless, scaling laws
for specific task families and capabilities like factuality re-
main understudied.

Like MOE, memory augmented models also aim to aug-
ment the parameter space of the model without adding sig-
nificant computational cost. Memory networks were pro-
posed initially in (Weston et al.|[2015)), and with end-to-end
training in (Sukhbaatar et al., |2015). Neural Turing Ma-
chines (Graves et al., 2014; 2016)) combine external train-
able memory with other components to build a neural train-
able computer. Product-key networks (Lample et al.,2019)
were introduced to make the memory lookup more effi-
cient and scalable. The recent PEER (Hel 2024} builds on
this work, replacing vector values with rank-one matrices,
forming a bridge between memory architectures and MOE.
Memory networks make use of a form of sparse attention
using a top-k lookup mechanism similar to Top-k Atten-
tion (Gupta et al., 2021). Moreover, the idea of replacing
MLPs with attention mechanisms is similar to what was
done in ”Augmenting Self-attention with Persistent Mem-
ory” (Sukhbaatar et al., 2019).

Factual text generation has long been considered a funda-
mental capability for generative models, typically bench-
marked through factual open domain question answer-
ing (Chen et al.l 2017; |Chen & Yih, [2020) and other
knowledge-intensive tasks (Petroni et al., 2021). Being
able to memorize the facts in the training corpus enables the
model to answer fact-seeking, knowledge intensive tasks
more factually and accurately. Indeed larger models have
been shown to be more factual (Roberts et al.,2020; Brown
et al.;,2020), but even modern LLMs are known to struggle
with hallucination (J1 et al.| 2023). A tested way of ensur-
ing more factuality is through retrieval augmented genera-
tion (Lewis et al., [2021}; [Karpukhin et al., 2020; [Lee et al.
2019; |Guu et al., |2020; Khandelwal et al.l 2020). We use
short-form QA tasks in this work to demonstrate the effec-
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tiveness of memory layers and leave the long-form gener-
ation tasks for future work. Recently, a wide literature has
emerged in mitigating LLM hallucinations through data re-
lated methods, architecture variants, pre-training and infer-
ence time improvements. We refer to (J1 et al.l [2023)) sec-
tion 5 for a comprehensive survey.

3. Memory Augmented Architectures

Trainable memory layers work similarly to the ubiqui-
tous attention mechanism (Bahdanau et al., |2016). Given
a query ¢ € R”, a set of keys K € RY*" and val-

ues V € RNX" the output is a soft combination of val-
ues, weighted according to the similarity between g and
the corresponding keys. Two major differences separate
memory layers from attention layers as they are typically
used (Vaswani et all |2023). First, the keys and values in
memory layers are trainable parameters, as opposed to acti-
vations. Second, memory layers typically have larger scale
in terms of the number of keys and values, making sparse
lookup and updates a necessity. For example, in this work,
we scale the number of key-value pairs to several millions.
In this case, only the top-k most similar keys and corre-
sponding values take part in the output. A simple memory
layer can be described by the following equations:

I = TopklIndices(K¢q), s = Softmax(Krq), y=sVr (1)
Here I is a set of indices, s € R¥, K7, Vi € R¥*"_and the
output y € R™. Each token embedding (for us, the output
of the previous attention layer) goes through this memory
lookup independently, similar to the FFN operation that we

replace.

3.1. Scaling memory layers

Being light on compute, and heavy on memory, memory
layers have distinct scaling challenges. We detail some of
these challenges and how we address them in this section.

3.1.1. PRODUCT-KEY LOOKUP

One bottleneck which arises when scaling memory layers
is the query-key retrieval mechanism. A naive nearest-
neighbour search requires comparing each query-key pair,
which quickly becomes prohibitive for large memories.
While fast approximate vector similarity techniques (John-
son et al [2019) could be used here, it’s a challenge to in-
corporate them when the keys are being continually trained
and need to be re-indexed. Instead, we adopt trainable
product-quantized keys from (Lample et al.,|2019). Prod-
uct keys work by having two sets of keys instead of one,
where K1, K, € RYN*%. The full set of keys of size
N x n, which is never instantiated, consists of the prod-
uct of these two sets. The top-k lookup on the full set of
keys can be efficiently done by searching the much smaller
set of half-keys first, saving compute and memory. To per-
form the lookup, we first split the query as ¢1,¢q2 € RZ.

Let I, 15 and s1, s2 be the top-k indices and scores ob-
tained from the respective key sets K1, K. Since there
are only v/N keys in each set, this operation is efficient.
The overall indices and scores can be found by taking
argmax; ¢y, . er,51[i1] + safiz].

3.1.2. PARALLEL MEMORY

Memory layers are naturally memory-intensive, mostly due
to the large number of trainable parameters and associated
optimizer states. To implement them at the scale of several
millions of keys, we parallelize the embedding lookup and
aggregation across multiple GPUs. The memory values are
sharded across the embedding dimension. At each step, the
indices are gathered from the process group, each worker
does a lookup and then aggregates the portion of embed-
dings in its own shard. After this, each worker gathers the
partial embeddings corresponding to its own portion of the
indices. We take care to keep activation memory manage-
able at this stage, by making sure each GPU only gets its
own portion, and does not need to instantiate the entire em-
bedding output. The process is illustrated in Figure 2] The
implementation is independent of other model parallelism
schemes such as tensor, context or pipeline parallelism, and
operates on its own process group.

3.1.3. SHARED MEMORY

Deep networks encode information at different levels of ab-
straction across different layers. Adding memory to mul-
tiple layers may help the model use its memory in more
versatile ways. In contrast to previous work (Lample et al.,
2019), we use a shared pool of memory parameters across
all memory layers, thus keeping parameter count the same
and maximizing parameter sharing. We find that multi-
ple memory layers increase performance significantly over
having a single layer with the same total parameter count,
up to a certain number of layers (in our case, 3). Beyond
this point, replacing further FEN layers degrades perfor-
mance, showing sparse and dense layers are both needed
and likely complementary (see Section [5.4).

3.1.4. PERFORMANCE AND STABILITY IMPROVEMENTS

The main operation in the memory layer is to compute the
weighted sum of the top-k embeddings: it is implemented
in PyTorch’s EmbeddingBag operation. As the number
of floating-point operations is negligible, we expect this
operation to be solely limited by the GPU memory band-
width but find multiple inefficiencies in PyTorch’s imple-
mentation in practice. We implemented new and more ef-
ficient CUDA kernels for this operation. Our forward pass
optimizes memory accesses and achieves 3TB/s of mem-
ory bandwidth, which is close to our H100 specification of
3.35TB/s (compared to less than 400GB/s with PyTorch’s
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Figure 2. Illustration of the parallel EmbeddingBag implementation for a “Memory Group” of two GPUs. Each GPU performs the
EmbeddingBag operation on all of the indices of the group, but on half-dimension embeddings it has access to.

implementation). The backward pass is more complicated
as multiple output gradients have to be propagated to the
same weight gradient. We benchmarked multiple strate-
gies: using in-memory atomic additions, using locks, or
computing the inverse mapping from embedding_id to to-
ken_ids to make the backward pass embarrassingly parallel.
We exclusively used the atomic strategy in our trainings
because it was the best performing, but the other ones were
competitive, and could be used when the hardware does not
support atomics in the given data type.

Overall, our custom kernels make the embedding bag
operation end-to-end 6x faster compared to PyTorch’s
EmbeddingBag for our use cases.

3.2. Architectural improvements to memory layers

We improve training performance of the memory layer
by introducing input-dependent gating with a silu non-
linearity (Hendrycks & Gimpel, [2023). The output
in Equation (T)) then becomes

output = (y ® silu(z? W1))T Wy 2)

where silu(z) = x sigmoid(z) and © is the element-wise
multiplication(see also Figure [3). We find that for large
memory layers, training can become unstable, especially
for small base models. We use gk-normalization (Team,
2024) when needed to alleviate this issue.

3.3. Decoding inference efficiency

Memory layers have important advantages over alternatives
like Mixture-of-Experts (MoE) when it comes to inference
efficiency. Inference involves two phases: prefilling and
decoding. Prefilling typically processes many tokens, and
is in the same compute-bound regime as training, where
memory layers only incur a small overhead. However, dur-
ing decoding, a GPU typically processes only a few tokens
at a time, due to either latency requirements, or memory
limitations. This process is memory bandwidth bound: the
decoding time for a single token depends on the size of

the activated parameters. Even with a small batch size,
MOoE models can activate a large portion of their param-
eters, making the decoding time many times slower than
that of a dense model. Models with memory layers, on the
contrary, only activate a small subset of the entire embed-
ding table for every token in the batch, hence the number of
parameters activated remains roughly constant in the small
batch decoding regime. This makes decoding of memory
transformers up to 5x faster than MoE models in the small
batch size regime (see Figure ).

4. Experimental setup

For our base model architecture, we follow closely the
Llama series of dense transformers (Touvron et al., 2023}
Dubey et al.| 2024), which also serve as our dense base-
lines. We augment the base models by replacing one or
more of the feed-forward layers with a shared memory
layer. For scaling law experiments, we pick base model
sizes of 134m, 373m, 720m, and 1.3b parameters. For these
models, we use the Llama2 tokenizer with 32k tokens, and
train to 1T tokens with a pretraining data mix that is similar
to that of Llama?2 (Touvron et al., 2023)). For experiments at
the 8B base model scale, we use the Llama3 (Dubey et al.,
2024) configuration and tokenizer (128k tokens), and a bet-
ter optimized data mix similar to Llama3.

4.1. Baselines

In addition to the dense baselines, we also compare
to other parameter augmentations including mixture-of-
experts (MOE) (Shazeer et al.| [2017) and the more recent
PEER (He} 2024) model. In MOE, each FFN layer is com-
posed of multiple “experts”, only a subset of which partici-
pate in the computation for each input. The PEER model is
conceptually similar to a memory layer, but instead of re-
trieving a single value embedding, it retrieves a pair of em-
beddings, which combine into a rank-1 matrix. Several of
these are assembled together into a dynamic feed-forward
layer. PEER works similarly to memory layers in prac-
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Figure 4. Roofline analysis of the decoding time for a dense model, an MoE model, and a Memory transformer. All models have the
same number of activated parameters per token. The MoE and Memory models have the same number of total parameters.

tice, but requires twice the number of parameters for the
same number of keys. Like memory layers, these methods

increase the number of parameters in the model without
significantly increasing FLOPs. We pick the number of ex-
perts in MOE and the number of keys in PEER to match
the number of parameters of our memory-augmented mod-
els as closely as possible. MOE models are trained with
expert choice (Zhou et al.| [2022)), and evaluated with top-
1 routing. PEER layers share the same configuration and

hyper-parameters as our memory layer implementation.

4.2. Evaluation benchmarks

Our evaluations cover factual question answering (Natu-
ralQuestions (Kwiatkowski et al.| 2019)), TriviaQA (Joshi
et all [2017)), multi-hop question answering (Hot-
potQA (Yang et al.| 2018)), scientific and common sense
world knowledge (MMLU (Hendrycks et al.l 2021), Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov et al.,
2018), PIQA (Bisk et al,, [2019)) and coding (Hu-
manEval (Chen et al.| 2021), MBPP (Austin et al.| [2021)).
We try to report the most commonly used accuracy met-
rics (exact match or F1 score for QA benchmarks, pass-
at-1 for coding). For some bencmarks, the performance
of small models can be very low, and accuracy numbers
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noisy. Therefore we use negative log-likelihood (nll) of the
correct answer for model ablations.

5. Scaling results

We compare Memory models to baselines in a compute-
controlled setting.

5.1. With fixed memory size

First, we fix the size of the memory, and therefore the
number of extra parameters, and compare with the dense
baseline, as well as roughly parameter matched MOE and
PEER models. Models with the same base model configu-
ration have negligible differences in FLOPs. For Memory
models, we fix the number of half keys to 210 " and thus
the number of memory values to 22° (roughly 1 million).
For the PEER baseline, we pick the number of half-keys
to be 768, resulting in slightly more total parameters than
Memory. For MOE models, we pick the lowest number
of experts such that the parameter count exceeds that of
Memory. This corresponds to 16, 8, 6, and 4 experts for
the 134m, 373m, 720m and 1.3b sizes respectively.

The vanilla Memory model has a single memory layer,
which we pick to replace the middle FFN layer of the trans-
former. Our improved Memory+ model has 3 memory lay-
ers, placed centered with a stride of 4 for the 134m mod-
els and 8 for the others. Additionally it includes a custom
swilu non-linearity, and optimized key dimension (set to
equal half of the value dim). As noted earlier, memory lay-
ers share parameters, thus have identical memory footprint
to a single memory layer.

We can see from Table [T] that Memory models improve
drastically over the dense baselines, and generally match
the performance of models with twice the number of dense
parameters on QA tasks. Memory+ improves further
over Memory, with performance falling generally between
dense models with 2x-4x higher compute. The PEER archi-
tecture performs similarly to Memory for the same num-
ber of parameters, while lagging behind Memory+. MOE
models underperform the memory variants by large mar-
gins. Figure [5|shows the scaling performance of Memory,
MOE and dense models on QA tasks across various base
model sizes.

5.2. Scaling memory size with a fixed base model

Next, we investigate scaling behaviour with respect to the
memory size for a fixed base model. In Figure[I] we see
that factual QA performance for a Memory+ model keeps
increasing predictably with increasing memory size. At
64 million keys (128 billion memory parameters), a 1.3b
Memory model approaches the performance of the Llama2
7B model, that has been trained on 2x more tokens using

NaturalQuestions
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Figure 5. Accuracy vs. Base Parameters for NaturalQuestions and
TriviaQA (Memory+ models use 1 million memory embeddings.)

10x more FLOPs. (see also Table [2).

5.3. Results at 8B scale

Finally, we scale our Memory+ model with an 8B base
model and 40962 memory values (64B memory parame-
ters). We use the Llama3 8B (Dubey et al., [2024) archi-
tecture and tokenizer, and train on a data mix similar to
Llama3 (Dubey et al.l [2024)). We report results at 200 bil-
lion and 1 trillion tokens of training in Table[2] On an ex-
panded set of benchmarks, including general scientific and
world knowledge and coding, we see that memory aug-
mented models significantly outperform dense baselines.
The gains are more pronounced earlier in training (200B
tokens), suggesting that memory helps models learn facts
faster. At only 1 trillion tokens of training, our Memory+
model approaches the performance of Llama3.1 8B, which
was trained on 15 trillion tokens.



Memory Layers at Scale

Table 1. Comparing memory augmented architectures with baseline models on QA tasks. Memory models have 1 million value embed-
dings unless otherwise specified in the model configuration column. Metrics are accuracy for NQ, PIQA, OBQA and F1 score for TQA,

HotpotQA.
Base Model Total

Params Tokens FLOPS Configuration Params NQ TQA PIQA OBQA HotPot
Dense 134m 0.91 7.7 62.13 16.40 5.18

MOE 984m 249 13.08 65.78 18.80 7.80

134m 1T 7.9¢20 PEER 1.037b 246 1634 67.25 17.40 8.82
Memory 937m 2.1 16.31 66.65 17.80 9.28

Memory+ 937m 316 18.77 6594 17.60 9.35

Dense 373m 2.58 17.68 6747 18.80 10.06

MOE 1.827b 399 1994 68.88  22.20 12.50

373m 1T 2.6e21 PEER 1.575b 5.1 26.39 70.19  21.60 12.96
Memory 1.441b 495 2424 69.37 2040 12.53

Memory+ 1.434b 576 28.10 71.22 22.00 13.34

Dense 720m 3.77 2485 71.33 22.60 12.90

MOE 2.768b 7.04 28.08 70.08 20.80 14.10

720m 1T 4.9¢21 PEER 2.517b 792 3326 7198  25.00 14.03
Memory 2.316b 7.2 348 71.82 2440 14.94

Memory+ 2.316b 9.39 36.67 7242 24.00 14.92

Dense 1.3b 776 32.64 7274  23.40 13.92

MOE 3.545b 8.14 3146 7372 2520 15.15

PEER 3.646b 1233 4246 7334  26.60 15.39

Memory 3.377b 9.83 3947 7229  25.80 15.46
PO T BBl venoryt 33770 1368 4289 7535 2680 1672
Memory+4m 9.823b 1443 51.18 75.03 27.80 18.59

Memory+ 16m 35.618b  20.14 58.67 76.39  26.80 20.65

Memory+ 64m  138.748b 20.78 62.14 77.31  30.00 20.47

llama2 7B 2T 9.1e22 Dense 7b 25.10 64.00 78.40 33.20 25.00

Table 2. Results with an 8B base model. Memory+ models have 16 million memory values (64 billion extra parameters). Metrics are
accuracy for NQ, PIQA, OBQA, HellaSwag, MMLU; F1 score for TQA, HotPotQA; pass@1 for HumanEval, MBPP. The number of

training tokens for each model is denoted in parenthesis.

Model (8B) Tokens FLOPS HellaS. Hotpot HumanE. MBPP MMLU NQ OBQA PIQA TQA
llama3.1 15T 6.8e23 60.05 27.85 37.81 48.20 66.00 2945 3460 79.16 70.36
dense 200B 9.1e21 53.99 20.41 21.34 30.80 41.35 18.61 3140 78.02 51.74
Memory+ 200B 9.1e21 54.33 21.75 23.17 29.40 50.14 1936 30.80 79.11 57.64
“dense IT  46e22 5890 2526  29.88 4420 59.68 2524 3420 80.52 63.62
Memory+ 1T 4.6e22 60.29 26.06 31.71 42.20 63.04 27.06 3440 7982 68.15

5.4. Model ablations

In this section, we present results which motivate our mod-
elling choices for the Memory+ architecture.

Memory layer placement Since the memory pool is
shared, we can replace more FFN layers with memory lay-
ers without increasing either the memory or the compute
budget. We see that as we add more memory layers, per-

formance initially increases. However, as we’re effectively
removing dense parameters from the model for each added
memory layer, eventually the model performance degrades,
revealing a sweet spot at around 3 memory layers (Table[3]
top). Moreover, we experiment with the placement of these
layers, modifying the centring and spacing. We find that
centred placements with larger strides are better, and we
adopt this for our Memory+ architecture.
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Memory layer variants We experiment with minor
modifications to the memory mechanism (Table[3] bottom).
We try 1. gating the memory with the input using a linear
projection, 2. adding a custom swilu non-linearity (Fig-
ure[3), 3. adding random key-value pairs in addition to the
top-k during pre-training to unbias key selection, 4. adding
a single fixed key-value pair (softmax sink) to the top-k se-
lected values during pre-training to serve as “anchor”. We
find that the swilu non-linearity consistently improves re-
sults, and we adopt this improvement into our model. Sim-
ple gating improves performance only in some cases, and
swilu already covers this behaviour to some extent, so we
decide not to do additional gating. For key sampling im-
provements, including the random keys and the fixed (sink)
key, we see minor improvements, however these have some
negative impact on training speed in our implementation,
and the gains were not consistent for larger model sizes,
therefore we excluded them from our experiments, leaving
this direction open for future exploration.

nll NQnll TQA nll
layer #

12 2.11 12.13 8.34
12,16,20 2.08 11.60 7.54
8,12,16 2.07 11.79 7.64
4,12,20 206 11.32 7.20

5,8,11,14,17,21 2.11 11.79 7.73
nll NQnll TQA nll

Model
PK base 2.11 12.13 8.34
+gated 2.11 12.24 8.17
+swilu 2.11 12.05 8.09
+random values 2.11 12.36 8.09
+softmax sink  2.11 12.19 8.04

Table 3. Ablation studies: on the top, number of memory layers
with shared memory, on the bottom different memory architecture
variations. Metrics are all log likelihood, on the training set, NQ
answers and TQA answers.

Key and value dimension By default, the memory value
dimension is chosen to be the same as the base model di-
mension. However, we can potentially trade-off the value
dimension with the number of values in the memory with-
out changing the total parameter size of the memory using
an extra projection after Memory. We present this ablation
in Table [} top, and find that the default configuration is
optimal. We can also independently increase the key em-
bedding dimension, which we do in Table Eﬂ, bottom. We
find unsurprisingly that increasing the key dim is beneficial.
However, increasing the key dim adds more dense parame-

ters to the model, and thus we cannot increase it indefinitely
without breaking fair comparisons. We pick a key dimen-
sion of half the base model dim for our experiments.

nll NQnll TQA nll

v.dim #values

64 16m 2.15
256 4m 2.14
1024 Im 2.11
2048 512k 2.14

12.86 8.75
12.63 8.49
12.13 8.34
12.49 8.53

nll NQnll TQA nll

key_dim

256 2.11
512 2.12
1024 2.11
2048 2.09

12.13 8.34
12.32 8.15
12.37 8.25
11.98 7.83

Table 4. Ablation studies: on the top, varying the value embed-
ding dim while keeping total parameter count the same, on the
bottom varying key dim. Metrics are all log likelihood, on the
training set, NQ answers and TQA answers. These were ran on
the 373m model size, which uses a latent dimension of 1024.
key_dim is the sum of the dimension of the sub-keys.

6. Implications and shortcomings of the work

Scaling of dense transformer models has dominated
progress in the Al field in the last 6 years. As this scal-
ing is nearing its physical and resource limits, it’s useful to
consider alternatives which might be equally scalable with-
out being as compute and energy intensive. Memory layers
with their sparse activations nicely complement dense net-
works, providing increased capacity for knowledge acqui-
sition while being light on compute. They can be efficiently
scaled, and provide practitioners with an attractive new di-
rection to trade-off memory with compute.

While the memory layer implementation presented here is
orders of magnitude more scalable than previous works,
there still remains a substantial engineering task to make
them efficient enough for large scale production uses.
Dense architectures have been optimized for and co-
evolved with modern GPU architectures for decades.
While we believe it’s in principle possible to make mem-
ory layers as fast, or even faster than regular FFN layers,
we acknowledge that this needs non-trivial effort.

We have so far presented only high level empirical evi-
dence that memory layers improve factuality of models.
However, we believe the sparse updates made possible by
memory layers might have deep implications to how mod-
els learn and store information. In particular, we hope that
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new learning methods can be developed to push the effec-
tiveness of these layers even further, enabling less forget-
ting, fewer hallucinations, and continual learning.

Impact Statement

This goal of this work is to advance the field of ML. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A. Training hyperparameters

Here are the hyperparameters used to train our transformer models.

Table 5. Model Configurations
Model Size Embedding Dim. Number of Layers Attention Heads Learning Rate

134m 768 12 12 3x 1074
373m 1024 24 16 3 x 1074
720m 1536 22 12 3x 1074
1.3b 2048 22 16 3x 10~
8b 4096 32 32 1x 1074

For all model sizes, Memory and Memory+ experiments use 4 heads and 32 top-k values for the memory embedding
lookups. We did ablations on these values, but largely came to the same conclusions as the original product-keys pa-
per (Lample et al., 2019). Overall, varying the number of heads or top-k while keeping their product (128) the same
affects results minimally. Increasing the total keys improves little beyond 128, but has substantial memory lookup and gpu
memory costs. On the other hand, decreasing to 64 has non-negligible accuracy degradation.

B. Distribution of keys during training

We monitored the distribution of selected keys during training and noticed that the distribution tends to become more
uniform as training progresses. The distributions starts heavily skewed and progressively improves as training continues.

10-3 —— Train step: 0
Train step: 1000
_4 —— Train step: 2000
107 5 —— Train step: 4000
—— Train step: 8000
1075 4 —— Train step: 13000
10—6 -
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1078 _
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Figure 6. Evolution of the distribution of Memory+ selected keys during training. Keys on the x-axis or sorted by decreasing occurrence.
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