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ABSTRACT
Text to Motion Retrieval (TMR) is an emerging task to retrieval
relevant motion sequence with the nature language description.
The existing dominant approach is to learn a joint embedding space
to measure global-level similarities. However, simple global embed-
dings are insufficient to represent complicated motion and textual
details, such as the movement of specific body parts and the coor-
dination among these body parts. In addition, most of the motion
variations occur subtly and locally, resulting in semantic vague-
ness among these motions, which further presents considerable
challenges in precisely aligning motion sequences with texts. To
address these challenges, we propose a novel Modal-Enhanced Se-
mantic Modeling (MESM) method, focusing on fine-grained align-
ment through enhanced modal semantics. Specifically, we develop
a prompt-enhanced textual module (PTM) to generate detailed de-
scriptions of specific body part movements, which comprehensively
captures the fine-grained textual semantics for precise matching.
We employ a skeleton-enhanced motion module (SMM) to effec-
tively enhance the model’s capability to represent intricate motions.
This module leverages a graph convolutional network to metic-
ulously model the intricate spatial dependencies among relevant
body parts. To improve the sensitivity to the subtle motions, we
further propose a text-driven semantics interaction module (TSIM).
The TSIM first assigns motion features into a set of aggregated
descriptors, then employs the cross-attention to aggregate discrimi-
nativemotion embeddings guided by text, enabling precise semantic
alignment between subtle motions and corresponding texts. Ex-
tensive experiments conducted on two widely used benchmark
datasets, HumanML3D and KIT-ML, demonstrate the effectiveness
of our proposed method. Our approach outperforms existing state-
of-the-art retrieval methods, achieving significant Rsum improve-
ments of 24.28% on HumanML3D and 25.80% on KIT-ML.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking;Mul-
timedia and multimodal retrieval; Novelty in information
retrieval.

KEYWORDS
3D Human Motion, Text-to-Motion Retrieval, Semantic Modeling,
Semantics Alignment
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Figure 1: Illustration of our motivations. In subfigure (a), a
example retrieval results is showcased, where motion–text
pairs with a coarse-grained text description that matches
multiple motion sequences. In subfigure (b), motion1 and
motion2 in motion sequence occur subtly and locally. These
subtle motions cluster closely in the semantic space by em-
ploying simple regression methods, contributing to semantic
vagueness and posing a significant challenge in achieving
precise alignment.

1 INTRODUCTION
Text-to-Motion Retrieval (TMR) is a significant cross-modal re-
trieval task, aiming at retrieving semantically similar motion se-
quences by the given natural language description. Recently, there
has been a notable increase in research and exploration within the
field of TMR. Mathis 𝑒𝑡 𝑎𝑙 . [28] were the first to introduce the task
of text to 3D human motion retrieval, establishing various evalua-
tion benchmarks. They proposed combining motion synthesis with
text-to-motion retrieval (TMR) to supervise the shared semantic
space between textual descriptions and motion sequences. Nicola
𝑒𝑡 𝑎𝑙 . [25] developed a two-stream pipeline framework for text-to-
motion retrieval. Their framework incorporates a motion trans-
former that captures intricate motion information from skeleton
data, representing motion sequences as embeddings. Additionally,
they employ a pre-trained CLIP [31] text encoder to encode text
as sentence embeddings. Yan 𝑒𝑡 𝑎𝑙 . [39] introduce a method by

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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constructing a concise yet effective model, and design a droptriple
loss to reduce semantic discrepancies in triplet training. However,
these methods may have the following problems that may lead to
sub-optimal matching:
• Limitation of coarse-text description In Fig. 1a, illustrates a
retrieval results using a coarse textual description. Specifically, the
Motion1 is the correct retrieval result with a similarity of 0.87, while
the Motion2 and other motions (Motionk) not semantic similarity
to given text, also have high similarities. These motions fail to
accurately retrieval the intricate motion “thrust a javelin”, simply
considering it as a jump movement. Since these coarse textual
descriptions may correspond to various motion sequences, training
with coarse-grained texts may leads to alignment difficulties, thus
affecting the accuracy of retrieval results.
• Coordination of multiple-body parts within a motion: In
TMR, an motion is typically performed by the simultaneous move-
ment of multiple relevant body parts. For instance, a motion se-
quence “A person jogs and throws an object.” includes the sub-
motion “throws”, which may involve the movement of feet, arms,
and multiple body parts working together to complete this mo-
tion. Previous methods [25, 28, 39], focusing solely on the temporal
dependencies of motion sequences, falling short in capturing the
essence of intricate motions. This limitation poses a challenge in
obtaining a comprehensive understanding of these intricate mo-
tions.
• Semantic vagueness between subtle motions: In the TMR,
there exists semantic vagueness between subtle motions, making
it challenging to capture the semantic variations in continuous
motions. As shown in Fig. 1b, the motions1 and motion2 occur
successively, involving only the variation on the hands without
any changes in other body parts. By aggregating these subtle mo-
tions to the semantic spaces by previous methods, we observe that
these subtle motions cluster closely. Existing work [25, 28, 39] have
achieved promising retrieval performance by leveraging the global
embeddings, overlooking the significance of effectively capturing
discriminative embeddings for a precise matching.

To address the above problems, we propose a novel solution
namedmodal-enhanced semantic modeling method (MESM), which
contain three components: the prompt-enhanced textual module
(PTM), the skeleton-enhanced motion module (SMM), and the text-
driven semantics interaction module (TSIM). Specifically, given
a text query, we propose a prompt-enhanced textual module that
utilizes a large language model to generate fine-grained text descrip-
tions. The descriptions maintain strict chronological order while
accurately specifying movements of related body parts, which com-
prehensively captures the fine-grained textual semantics for pre-
cise matching. Moreover, considering the human body as a graph
structure, we implemented a skeleton-enhanced motion module to
effectively enhance the model’s capability to represent intricate mo-
tions. In this module, we employ a multi-layer graph conventional
network to meticulously model the intricate spatial dependencies
among relevant body parts within a motion. Finally, to effectively
solve semantic vagueness between subtle motions, we introduce a
text-driven semantics interaction module to obtain discriminative
motion embeddings to achieve precise matching between subtle
motions and text. The TSIM assigns motion features into a set of

Figure 2: In our prompt-enhanced textual module, the large
language model generates a detailed text description step by
step for the motion sequence. The TMR aligns the coarse-
grained text and the motion sequence globally. However, we
bulid a precise alignment between fine-grained descriptions
and movement of relevant body part.

local aggregated descriptors, then employ a cross-attention mecha-
nisms to aggregate discriminative motion embeddings under the
guidance of textual description, enabling precise semantic align-
ment between subtle motions and corresponding texts. The main
contributions of this work can be summarized as follows:

• We present a novel modal-enhanced semantic modeling
method to achieve fine-grained alignment by modeling the
enhanced semantics information from motion and text level.

• We propose a prompt-enhanced textual module to obtain
fine-grained descriptions by utilizing a large language model,
which comprehensively captures the textual semantics for a
precise matching.

• We design a skeleton-enhanced motion module to capture
spatial dependencies among relevant body parts within a
motion, which effectively enhances the model’s capability
to model intricate motion sequences.

• We introduce a text-driven semantics interaction module to
aggregate discriminative motion embeddings conditioned
by textual descriptions, which enables a precise alignment
between subtle motions with corresponding texts.

2 RELATEDWORK
2.1 Text-motion Retrieval
Recent advancements in research on text to 3D human motion
retrieval [25, 28, 39] (TMR) have been increasingly emphasized.
Compared with image retrieval [4, 30, 42], TMR is a challenging
task that aims to construct a common space between text descrip-
tions and 3D human motions by aligning the sentences and motion
sequences. Mathis 𝑒𝑡 𝑎𝑙 . [28] firstly define text to 3D human mo-
tion retrieval as an independent task. They present a method to
jointly train text-to-motion retrieval and text-to-motion synthe-
sis,by employing the contrastive learning with a special attention
to the definition of negatives samples. Nicola 𝑒𝑡 𝑎𝑙 . [25] propose
a transformer-based motion encoder capture spatio-temporal in-
formations in skeleton data and a CLIP-based [31] text encoder
to obtain text embeddings. Yan 𝑒𝑡 𝑎𝑙 . [39] propose a method by
constructing a concise yet effective model, and introduce droptriple
loss to minimize semantic discrepancies during triplet training.
However, existing methods focus on aligning the global representa-
tions , which is inadequate to achieve precise semantics matching
between intricate motion sequence and their corresponding text.
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2.2 Prompt Learning
Prompt learning is initially introduced in the field of natural lan-
guage processing (NLP) [9, 16, 19, 21, 26, 34]. Using prompt learning
approaches, pretrained language models can be adapted to specific
few-shot tasks by incorporating extra hand-crafted or dynamically
learnable prompt tokens. Kalakonda 𝑒𝑡 𝑎𝑙 . [13] utilize GPT-3 [3] to
enhance coarse-grained descriptions. However, they apply simplis-
tic zero-shot prompts that generate overly detailed, fine-grained
texts filled with excessive, non-essential information. Athanasiou
𝑒𝑡 𝑎𝑙 . [2] employ GPT-3 [3] to extract information about the body
parts involved in various motion descriptions and then integrate
these details into the corresponding motion sequences. However,
these two works focus solely on single motion description and do
not fully explore the extent to which large language models can
comprehend the detailed of time, space, and human bodies from a
coarse-grained motion description.

2.3 Cross-Modal Semantic Alignment
Cross-modal Semantic alignment [5, 6, 18, 23, 36–38, 40, 41, 44, 45]
is a significant task in multi-modality scenarios, which aims to
bring together instances from different modalities that share similar
semantics. Wang 𝑒𝑡 𝑎𝑙 . [37] present a effctive approach for the
local alignment of textual and video inputs, inspired by the success
of NetVLAD encoding [1], Zhu 𝑒𝑡 𝑎𝑙 . [45] introduce the FIMA
framework, which combines dense contrastive learning, foreground
sampling, and amotion decoder to address weak alignment between
modalities at the pixel and frame levels. Dong 𝑒𝑡 𝑎𝑙 . [6] introduce a
region-to-patch framework that contains a coarse-to-fine encoding
branch to extract different granularities for a comprehensive cross-
modal alignment. Wang 𝑒𝑡 𝑎𝑙 . [38] present a hierarchical alignment
framework that addresses cross-modal correspondence at various
levels of granularity, achieving unified multi-grained alignment.
Despite significant advancements, existing methods are typically
designed for the image or video. Due to the semantic vagueness
among subtle actions and complexity of the motions, it may be
difficult to directly incorporate it into 3D motion scenarios.

3 METHODOLOGY
In this section, we provide a comprehensive overview of each
component of our proposed MESM, depicted in Fig. 3. We first
introduce the overall network architecture. Then, we elaborate on
our proposed Prompt-Enhanced Textual Module (PTM), Skeleton-
Enhanced Motion Module (SMM) and Text-Driven Semantics Inter-
action Module (TSIM). Finally, we detail the similarity calculation
and objective function for text to 3D motion retrieval.

3.1 Model Overview
Unlike the previous text-motion retrieval methods [25, 28], which
solely aligning the global embeddings, we introduce a novel frame-
work capturing the enhanced fine-grained semantics to achieve a
precise fine-granied alignment. Specifically, our modal consists of
there modules. (1) The PTM utilizes a large language model pro-
vided appropriate prompts to generate detailed descriptions that
maintain strict chronological order while specifying movements
of related body parts with appropriate granularity. (2) The SMM

utilizes a graph convolutional network to learn the spatial rela-
tionships between skeleton joints as complement to piror motion
fetures [10] and then employs a transformer encoder to capture
the temporal dependencies within motion sequence . (3) The TSIM
adopts multi-head attention to encode discriminative features con-
ditioned by language description for precise alignment. Next, we
will describe the above modules in details.

3.2 Prompt-Enhanced Textual Module
In real scenarios, there exists numerous coarse textual descriptions,
such as "Aman squats," making it difficult to effectively retrieval mo-
tions using these text description. Additionally, motion sequences
consists of specific motions at relevant body parts, posing chal-
lenges in precisely aligning these intricate motion sequences with
coarse-grained text. To address this issue, we utilizes a large lan-
guage model, provided appropriate prompts, to generate detailed
descriptions that maintain a strict chronological order while speci-
fying movements of related body parts.
Prompt-guided Text Learning.We expect GPT-4.0 to properly
expand text descriptions from coarse-grained to fine-grained ones,
specifying movements of relevant body parts. To be more specific,
an optimal fine-grained description should be in time order and
specify spatial changes of relevant body parts, omit unnecessary
details. After multiple empirical trials, we determine the following
𝑃𝑟𝑜𝑚𝑝𝑡 : “Provide a fine-grained textual description based on our
provided coarse-textual decription, the new description should be in
chronological order, step by step, and specify the movement of rele-
vant body parts.[example1],[example2]”. The example is a coarse
textual description and its fine-grained version. By feeding prompt
into LLM, we can obtain fine-grained step description 𝑆𝑇𝐸𝑃𝑘 cor-
responding to the original coarse-grained ones, which describe the
movement of relevant body parts step by step. As illustrated in
Fig. 2, the coarse-text is expanded into a fine-grained description by
the large langnage model with our designed prompt, that precisely
aligns specific body parts with description, thus ensuring a precise
matching between the text and the motion sequence.
Step-aware Self-Attention. Initially, we utilize pre-trained Distill-
BERT to extract step features for each motion step in fine-grained
description. Subsequently, we aggregate the tokens of each step
using an average pooling layer to generate step embeddings.

step[𝑘 ] = AvgPools (DistillBERT (𝑆𝑇𝐸𝑃𝑘 )) (1)

where step[𝑘 ]𝜖R𝑑
𝑠
𝑡 , 𝑑𝑠𝑡 is the dimension of step embeddings. After

obtaining the step embeddings, our step-aware self-attention mech-
anism incorporates hard positional embeddings (pos) through sine
and cosine functions, and feeds these position-encoded step embed-
dings into a multi-head self-attention. we obtain the fine-grained
textual features t𝑖 by

t𝑠 = MH-Attn (step + pos) (2)
t𝑖 = 𝑁𝑜𝑟𝑚 (𝐹𝐹𝑁 (t𝑠 ) + t𝑠 ) (3)

where 𝐹𝐹𝑁 (·) is a feed-forward network that consists of two lin-
ear projection layers with ReLU activations. This step-aware self-
attention improves the capture of temporal relationships among
steps and enhances the quality of fine-grained features through
interactions among step embeddings.
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Figure 3: The framework of our proposed MESM for text to motion retrieval. MESM consists of several key components. Firstly,
we employ a large language model to expand the coarse-textual description to fine-grained ones, specifing the movement of
relevant body part. And in skeleton-enhanced motion module, a human-aware GCN network is designed to enhance motion
embeddings by capturing spatial dependencies among relevant body parts. Then, we build a text-driven semantics interaction
module to learn discriminate motion embedding guided by text description for a precise matching. Lastly, we employ a
bidirectional token-wise similarity calculation between each motion embedding and all text embeddings.

3.3 Skeleton-Enhanced Motion Module.
In TMR, most motions are completed through the coordinated
movement of various relevant body parts. To effectively capture
the spatial relationship between these specify body parts, we in-
troduce the Skeleton-Enhanced Motion Module(SMM) to utilizes
a multi-layer Graph Convolutional Network for spatial modeling
among body parts, by capturing intricate dependencies between
body joints. We first employ the model from previous work [10]
as the feature extractor. This feature extractor is utilized to extract
frame features m𝑡 =

[
m1
𝑡 ,m

2
𝑡 , . . . ,m

𝐿
𝑡

]
∈ RL×d𝑟𝑚 . However, due

to the coordination of multiple body parts involved in intricate
motions, the motion sequences extracted by using the SMPL pa-
rameter model may potentially lose some spatial information about
the relationships between relevant body parts.
Human-Aware GCN Network. Considering the human body can
be interpreted as a nature graph structure. Inspired by previous
work action-recognition [14, 22, 32, 33] and pose-estimation [8, 35,
43], we can represent the human body’s joints and bones as a graph
𝐺 = {𝑁 ;𝐸}. Nodes are represented by 𝐽 = { 𝑗1, 𝑗2, ..., 𝑗𝑛}, with 𝑛
indicating the number of joints. The adjacency matrix 𝐴 = (𝑎𝑖𝑘 ) ∈
R𝐽 × 𝐽 denotes the correlation between joint 𝑗𝑖 and 𝑗𝑘 , where 𝑎𝑖𝑘 is
defined as:

𝑎𝑖𝑘 =

{1, if 𝑗𝑖 and 𝑗𝑘 are connected.
0, others (4)

Specially, we employ a multi-layer Graph Convolutional Network
inside each frame to extract spatial feature embedding and compute

correlations between each pair of joints in single frame indepen-
dently. Hence,the output of l-layer GCN is computed by :

𝐻 (𝑙 ) = 𝜎
(
�̃�− 1

2 �̃��̃�− 1
2𝐻 (𝑙−1)𝑊 (𝑙 ) + 𝑏 (𝑙 )

)
. (5)

Here, �̃� is the adjacency matrix of the undirected graph G with
added self-connections. �̃� =

∑
𝑗 �̃�𝑖 𝑗 and𝑊 (𝑙 ) is a trainable weight

matrix. 𝜎 (·) is an activation function. 𝐻 (𝑙 ) ∈ R𝐽 ×𝐷 is the matrix of
activations in the 𝑙𝑡ℎ layer. 𝑏 (𝑙 ) is a bias term. After obtaining inter-
joint dependencies through our multi-layer Graph Convolutional
network, we obtain motion representationm𝑠 ∈ RF×d

𝑝
𝑚 by a flatten

operation.
Lastly, based on the features extracted by feature extractor and

the spatial motion featuresm𝑠 , we employ a transformer encoder
to obtain the final motion representation:

m𝑙 = 𝑇𝑟𝑎𝑛𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑀𝐿𝑃 (m𝑡 + 𝐹𝐶 (m𝑠 ))) (6)

Here, 𝐹𝐶 (·) is a linear layer, mappingm𝑠 from dimension d𝑝𝑚 to d𝑠𝑚 .
A transformer encoder applied to the sum of m𝑡 and m𝑠 enhances
the motion embeddings, providing more comprehensive semantic
for intricate motion.

3.4 Text-Driven Semantics Interaction Module
In real-world scenarios, most motion variations occur locally and
subtly. There exists semantic vagueness between these local and
subtle motions, making it challenging to achieve precise align-
ment between these motions and text. To effectively capture the
discriminative motion embeddings, we introduce a Text-Driven
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Semantics Interaction Module (TSIM) to aggregate motion repre-
satations under the guidance of textual embeddings, enabling a
precise semantics alignment.
Motion Descriptor Aggregation. We utilize a motion-wise de-
scriptors aggregation method to capture local motion features. We
first build a descriptors set with 𝑘 motion-wise cluster descriptors
{𝑝1, . . . , 𝑝𝐾 } ∈ R𝑑𝑝 . Then, the motion frame features m𝑙 could
be assigned to the motion-wise descriptors , the 𝑗-th motion-wise
descriptors is obtained as followed:

𝒎 𝑗
𝑝 =


𝐵∑︁
𝑖=1

exp
(
𝒎 𝑗

𝑙
𝒑⊤
𝑗
+ 𝑏 𝑗

)
∑𝐾
𝑘=1 exp

(
𝒎 𝑗

𝑙
𝒑⊤
𝑘
+ 𝑏𝑘

) (
𝒎 𝑗

𝑙
− 𝒑′

𝑘

)
2

(7)

where 𝒑′
𝑘
has same size with 𝒑𝑘 as a trainable weight, 𝑏 𝑗 is a

learnable bias, and ∥ · ∥2 indicates the L2 normalization. The motion
information within the motion sequence is described using the
motion-wise descriptors. After assigning each frame feature to the
descriptors, we could obtain the descriptors-based motion local
featuresm𝑝 =

{
m1
𝑝 ,m2

𝑝 , . . . ,m𝑘
𝑝

}
, where m𝑝 ∈ R𝑘×𝑑𝑐 .

Text-Guided Cross-Modal Interaction. As shown in Fig. 3, to
enable the interaction between two modalities, we first apply a
cross-modal attention to obtain the linguistic representations t𝑝
corresponding to the motion local representationsm𝑝 .

Cross-Attn (𝑄𝑚, 𝐾𝑡 ,𝑉𝑡 ) = softmax

(
𝑄𝑚𝐾

𝑇
𝑡√

𝑑𝑐

)
𝑉𝑡 (8)

t𝑝 = 𝑁𝑜𝑟𝑚 (Cross-Attn (𝑄𝑚, 𝐾𝑡 ,𝑉𝑡 )𝑊𝑂 ) (9)

where 𝑄𝑚, 𝐾𝑡 ,𝑉𝑡 represent the query, key, and value obtained by
projecting the motion and textual features. Norm denotes L2 nor-
malization. The parameter matrix𝑊𝑂 is a projection weight matrix.

Based on 𝑡𝑝 , we employ another multi-head attention module to
perform language-conditioned self-attention for the discriminative
motion features. Specifically, we take the sum of 𝑡𝑝 and 𝑚𝑝 as
the query and key inputs for the multi-head attention module,
facilitating the computation of feature correlations in both the
motion and linguistic representations. The attention weight value
from position i to position j is formulated as follows:

𝑄 ′ =𝑊 ⊤
𝑄 (m𝑝 + t𝑝 )

𝐾 ′ =𝑊 ⊤
𝐾 (m𝑝 + t𝑝 )

attn𝑖, 𝑗 = Softmax

(
𝑄 ′ (𝑖)⊤ (𝐾 ′ ( 𝑗) +𝑊 ⊤

𝐾
𝑅(𝑖 − 𝑗))√︁

𝑑𝑘

) (10)

where𝑊𝑄 and𝑊𝐾 are the linear projection weights for the query
and key, and 𝑅(·) represents the positional encodings of relative
positions. This text-guided cross-modal interaction enables the
model to capture discriminative features for subtle motions based
on the given textual descriptions. The multi-head attention outputs
final motion representations as m𝑖 =

{
m1
𝑖
,m2

𝑖
, . . . ,m𝐿

𝑖

}
∈ RL×d𝑐 ,

𝐿 is the number of final motion embeddings.

3.5 Similarity Calculation and Loss Function
Similarity Calculation. The similarity score 𝑆 (𝑚𝑖 , 𝑡 𝑗 ) measures
the semantic similarity between the text 𝑡 𝑗 and motion sequence𝑚𝑖 .

It is computed as the mean of the maximum similarities between
each motion embedding and all text embeddings in bi-directions.

𝑆 (𝑚𝑖 , 𝑡𝑖 ) =
1
2

(
𝑁∑︁
𝑛=1

𝑀max
𝑚=1

〈
m𝑛𝑖 , t

𝑚
𝑖

〉
+

𝑀∑︁
𝑚=1

𝑁max
𝑛=1

〈
m𝑛𝑖 , t

𝑚
𝑖

〉)
, (11)

where𝑀, 𝑁 denote visual embedding and text embedding number
in the 𝑖 th sample pair.
Loss Function. Many studies [7, 17, 20] have proved that not
only do positive samples learn joint semantics from visual-textual
alignment, but a sufficient number of negative samples better fill up
the semantic inequality. In our study, we adopt contrastive learning
along with a hinge-based triplet loss [12], deliberately establishing
distinct threshold based on relative similarity instead of absolute
similarity. This formulation is expressed as follows:

Lneg =
1
𝑁

∑︁
(𝑚,𝑡 ) ∈𝐵

[𝑆 (𝑚, 𝑡) − 𝑆 (𝑚, 𝑡) +𝑤]+ (12)

+ [𝑆 (�̂�, 𝑡) − 𝑆 (𝑚, 𝑡) +𝑤]+, (13)

Here, [·]+ = max(𝑥, 0). 𝑆 (𝑚, 𝑡) represents the similarity between
positive samples and 𝑤 is a boundary factor. 𝐵 is the mini-batch.
𝑆 (𝑚, 𝑡) represents the similarity between𝑚 and the hardest textual
negative sample corresponding to𝑚 (same as 𝑆 (�̂�, 𝑡) ).

Additionally, we employ a logistic loss function to strengthen the
correlations among positives samples, which is denoted as follows:

Lpos =
1
𝑁

∑︁
(𝑚,𝑡 ) ∈𝑁

log
[
1 + 𝑒−𝜏𝑆 (𝑚,𝑡 )

]
(14)

Finally, our total loss function is designed with the linear combina-
tion of Lpos and Lneg :

L = Lpos + 𝛼 · Lneg (15)

4 EXPERIMENTS
4.1 Datasets
To validate the proposed methods, we employ two recently widely
used 3D human motion datasets, HumanML3D [10] and KIT Mo-
tion Language [29] .
HumanML3D [10]is currently the largest 3D humanmotion dataset
accompanied by textual descriptions. The motion sequences are
sourced from two well-established and widely-used motion-capture
datasets: AMASS [24] and HumanAct12 [11]. Following the setup in
the benchmark [28], the dataset is divided into training, validation,
and test sets, containing 23,384, 1,460, and 4,380 motion sequences,
respectively. Each motion sequence is paired with around three
text descriptions of varying lengths.
KITMotion-Language [29] contains 3,911 recordings of full-body
motion paired with 6,278 text descriptions. Each motion sequence
is described in one to four texts, with an average description length
of approximately 8 words. Consistent with the benchmark (TMR)
setup, we utilize 4,888, 300, and 800 motion sequences for the train-
ing, validation, and test sets, respectively.

4.2 Implementation Details
All experiments are conducted on a workstation with NVIDIA A100
GPUs , by using the PyTorch-1.10 library. We set the mini-batch size
as 64 and employ the Adam optimizer [15] to optimize our model
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Table 1: Performance comparison with the state-of-the-art methods on HumanML3D [10]. The best results are shown in bold.

Settings Methods
Text-to-Motion Motion-to-Text

Rsum ↑
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

(a) Normal

TSA [10] 1.80 3.42 4.79 7.12 12.47 81.00 2.92 3.74 6.00 8.36 12.95 81.50 63.57
TEMOS [27] 2.12 4.09 5.87 8.26 13.52 173.00 3.86 4.54 6.94 9.38 14.00 183.25 72.58
DTL [39] 2.30 4.63 6.66 10.06 16.40 76.00 2.64 4.91 7.34 10.95 17.21 76.00 83.10
MoT [25] 2.61 4.72 6.90 10.66 17.79 60.00 4.03 5.07 7.43 11.23 17.68 64.25 88.12
TMR [28] 5.68 10.59 14.04 20.34 30.94 28.00 9.95 12.44 17.95 23.56 32.69 28.50 178.18

MESM (Ours) 7.16 12.52 16.70 24.22 35.38 23.00 11.19 13.81 19.59 25.96 35.93 23.25 202.46

(b) Threshold

TSA [10] 5.30 7.83 10.75 14.59 22.51 54.00 4.95 5.68 8.93 11.64 16.94 69.50 109.12
TEMOS [27] 5.21 8.22 11.14 15.09 22.12 79.00 5.48 6.19 9.00 12.01 17.10 129.00 111.56
DTL [39] 5.32 8.11 12.27 17.63 26.85 41.00 6.01 7.23 10.55 14.08 20.98 71.50 129.03
MoT [25] 5.11 8.65 12.45 18.07 28.51 35.00 6.57 8.01 11.47 15.62 22.70 51.25 137.16
TMR [28] 11.60 15.39 20.50 27.72 38.52 19.00 13.20 15.73 22.03 27.65 37.63 21.50 229.97

MESM (Ours) 14.28 18.86 24.48 30.84 42.97 15.00 14.17 16.99 23.91 30.22 40.17 17.50 256.89

Table 2: Performance comparison with the state-of-the-art methods on KIT-ML [29].The best results are shown in bold.

Settings Methods
Text-to-Motion Motion-to-Text

Rsum ↑
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

(a) Normal

TSA [10] 3.37 6.99 10.84 16.87 27.71 28.00 4.94 6.51 10.72 16.14 25.30 28.50 129.39
TEMOS [27] 7.11 13.25 17.59 24.10 35.66 24.00 11.69 15.30 20.12 26.63 36.39 26.50 207.84
DTL [39] 6.77 13.28 16.67 23.18 37.24 18.00 9.11 14.32 20.31 25.26 38.02 18.00 204.16
MoT [25] 6.23 11.07 16.54 23.92 37.15 20.00 10.56 13.49 20.61 27.61 38.04 19.50 205.22
TMR [28] 7.23 13.98 20.36 28.31 40.12 17.00 11.20 13.86 20.12 28.07 38.55 18.00 221.80

MESM (Ours) 9.29 17.05 22.31 29.13 41.02 16.00 12.75 16.41 24.17 32.59 42.88 15.50 247.60

(b) Threshold

TSA [10] 13.25 22.65 29.76 39.04 49.52 11.00 10.48 13.98 20.48 27.95 38.55 17.25 265.66
TEMOS [27] 18.55 24.34 30.84 42.29 56.39 7.00 17.71 22.41 28.80 35.42 47.11 13.25 323.86
DTL [39] 21.72 31.25 38.12 46.19 61.85 7.00 18.17 22.15 30.56 40.78 50.12 10.00 360.91
MoT [25] 20.87 30.92 38.17 47.58 60.05 6.00 18.45 23.41 31.17 41.22 50.89 10.25 362.73
TMR [28] 24.58 30.24 41.93 50.48 60.36 5.00 19.64 23.73 32.53 41.20 53.01 9.50 377.70

MESM (Ours) 26.38 32.96 42.87 51.64 61.36 3.00 22.01 25.57 32.26 42.49 55.73 7.25 393.27

. To prevent overfitting, we utilize a learning rate of 0.0002 and
initiate decay of 15% every 10 epochs after epoch 30. For the both
HumanML3D and KIT-ML datasets, we set the maximum motion
sequence length and training epochs to 200 and 300, respectively.
In addtion, the hyper-parameters𝑤 in Eq. 12 is set to 0.2, 𝜏 in Eq. 14
is 10, and the trade-off weight 𝛼 in the overall loss function is set
to 1.0. The representation dimension d𝑐 of common space is set to
256. To ensure a consistent comparison with the baseline, we follow
the experimental settings presented in previous work [28], where
a text is randomly selected as the matching text for training, and
the first text in the test set is used to report the evaluation perfor-
mance under both the "Normal" and "Threshold" setups. Under the
"Normal" setup, all test sets were evaluated without modification.
Under the "Threshold" setup, we searched all test sets, consider-
ing a motion correct if its text label closely matched the query
text above a threshold (set to 0.95, following prior work [28]). We
adopt the common metrics to report retrieval performance, includ-
ing Recall at K (R@K), Median Rank (MedR), and Rsum, following
the benchmark [28]. The best evaluation results are highlighted in
“bold”.

4.3 Performance Comparison
In this section, we compare our proposed method with the other
state-of-the-arts methods on various text-to-motion retrieval, in-
cluding TEMOS [27], TSA [10], TMR [28], DTL [39] and MoT [25].
Considering that MoT [25] and DTL [39] differ from our experimen-
tal settings, we re-implement them on our settings and report the
results based on official codes. Tab. 1 and Tab. 2 provide a compara-
tive overview of our model against state-of-the-art methods on the
HumanML3D and KIT datasets, respectively. We observe that our
modal achieves better performance than existing methods on most
of the metrics on both text-to-motion and motion-to-text retrieval
settings. Specifically, under "Normal" setups, it outperforms the
current state-of-the-art TMR [28], achieving relative improvement
of 1.48% and 2.06% on the R@1 metric for text-to-motion retrieval
on both HumanML3D and KIT datasets . Furthermore, the overall
retrieval quality, as indicated by the Rsum metric, experiences a
significant boost (+24.28%, +25.80%) across both datasets.

Under the "Threshold" setups, our proposed MESM continues to
outperform all baselines, particularly the TMR [28], which incorpo-
rates specific designs for negative filtering. The effectiveness of our
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methods demonstrates that enhanced visual and textual features
provide richer semantic information for the retrieval process.

4.4 Ablation Study
The effectiveness of each component. In Tab. 3, we conduct
a thorough ablation study to verify the effectiveness of proposed
components in our methods. In the first group, only the single
component is used for enhancing the retrieval process. We observe
that 1) the first row of the first group shows our baseline that per-
forms achieves R@1 of 5.48 slightly below TMR [28]. 2) These three
components show a better retrieval performance than baseline. It
indicates that PTM and SMM can enhance our obtained features to
achieve fine-grained alignment between text and motion sequences.
3) Only TSIM used in our methods achieves the best performance
in comparison with other components. It proves that TSIM can
learn discriminative motion embeddings for precise text-motion
alignment to improve retrieval performance. For the second group
of ablation studies, we pair different components to investigate
their interrelated effects. We observe that 1) compared to using a
single component , combining components leads to a notable im-
provement in retrieval performance. It indicates that the proposed
PTM, SMM and TSIM can provide varying fine-grained semantics
and are complementary to each other. 2) The most significant im-
provement is achieved in the integration of PTM and SMM . It may
be attributed that the SMM and PTM could provide more richer
semantics to enhance representations. 3) The integration of PTM,
SMM, and TSIM results in a further boost to retrieval performance
and achieves the state-of-the-art. This reveals that the proposed
MESM framework captures the comprehensive semantics to achieve
precise retrieval performance.
Generalization Analysis of PTM and SMM. In this subsec-
tion, we aim to verify the generalization of our proposed prompt-
enhanced textual module (PTM) and skeleton-enhanced motion
module (SMM). We plug the proposed PTM and SMM into the dif-
ferent backbones TEMOS, MoT, and TMR (denoted as "+ PSM∗")
on the HumanML3D dataset. The improvement performance by
our PSM∗ are marked in green. The results in shown in Tab. 4.
Specifically, R@1 of text-motion matching on MoT [25] obtains a
significant boost of 3.26% . It may be attributed to the backbone
of MoT [25] only focusing on the coarse-grained matching while
our PSM∗ enhances the semantic information both on text and
motion. However, the improvement in results for TMR is limited,
with R@1 increasing by only 1.13%. This may be attributed to the
complex distribution alignment and motion synthesis within TMR,
both of which could offer supplementary information for auxiliary
alignment between text and motion. All baselines show a satisfy-
ing improvement by equipping with our PTM and SMM, which
demonstrate the generalization of our proposed components.
The ablation study of descriptor number. We conduct ablation
study on the number of motion descriptors as proposed in our
text-driven semantics interaction module. Based on the average
movement number within the sequence, we set the descriptor num-
bers from 3 to 6 to explore the optimal setting on HumanML3D
and KIT-ML. We report the Rsum to measure the overall perfor-
mance. As shown in Tab. 5, it demonstrates that a larger setup of
descriptor numbers brings much retrieval performance. However,
an increase beyond four descriptors tends to degrade performance.

Table 3: The ablation studies of the proposed components
in our method. We report the experimental results on the
text-to-motion retrieval on both HumanML3D and KIT-ML
datasets.

PTM SMM TSIM
HumanML3D KIT-ML

R@1 ↑ R@2 ↑ R@3 ↑ R@1 ↑ R@2 ↑ R@3 ↑

× × × 5.48 10.46 14.02 6.88 13.58 19.76
✓ × × 6.12 10.97 14.34 7.87 14.97 20.76
× ✓ × 5.92 11.54 15.07 7.59 15.01 20.98
× × ✓ 6.09 11.67 15.24 8.02 15.65 21.08

✓ ✓ × 6.72 12.13 16.21 8.48 16.43 21.67
× ✓ ✓ 6.24 11.38 15.82 8.19 15.98 21.52
✓ × ✓ 6.49 11.87 15.76 8.17 16.02 21.25

✓ ✓ ✓ 7.16 12.52 16.70 9.29 17.05 22.31

Table 4: Generalization study of the proposed PTM and
SMM on the HumanML3D dataset. The PSM∗ indicates only
incorporating the prompt-enhanced textual module and
skeleton-enhanced motion module into the methods. The
performance improvement compared with base backbones
achieved by PSM∗ is marked in green.

Methods
Text-to-Motion

R@1 ↑ R@2 ↑ R@3 ↑
TEMOS [27] 2.12 4.09 5.87

+ PSM∗ 5.32↑3.20 8.89↑4.80 13.01↑7.14
MoT [25] 2.61 4.72 6.90

+ PSM∗ 5.87↑3.26 10.63↑5.91 15.06↑8.16
TMR [28] 5.68 10.59 14.04

+ PSM∗ 6.811.13↑ 12.071.48↑ 16.31↑2.27

It may be attributed that excessively numerous descriptors can
introduce redundant semantics and lead to dispersed semantics at
the descriptors to damage the fine-grained alignment.
The Impact of hyper parameters.We conduct a group of experi-
ments with different values of the boundary factor𝑤 in Eq. 12 and
weights 𝛼 in total loss function. As shown in Fig. 5, we set the 𝑤
from 0.1 to 0.5, and 𝛼 from 1e-2 to 1e+2. In Fig. 5a, we get the best
retrieval performance when𝑤 = 0.2. We note that as𝑤 increases to
0.5, there is a substantial decrease in retrieval performance across all
metrics. This could be because that the model might overly penalize
negative sample pairs that are closely similar to positive ones,if
the margin value is too large. Furthermore, in Fig. 5b, the overall
retrieval performance initially increased before reaching saturation
at 𝛼 = 1.0 and then slightly declined. These results suggest that a
larger value of 𝛼 may lead the model to assign excessive weight to
hard negative pairs, while a smaller value of 𝛼 may underestimate
the impact of hard negative pairs.

4.5 Visualization Results
In Fig.4, we present the visualization of the retrieval results obtained
by our proposed MESM (Ours), as well as the baseline approaches
TMR [28] and MoT [25] on the HumanML3D dataset. Successful
retrieval results are highlighted with a green border. For the first
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Figure 4: Visualization of the retrieval results. We present the top-2 motion sequences retrieved by our proposed method MESM
, as well as by TMR [28] and MoT [25]. The text below each motion sequence represents the ground truth. The successful
retrieval results are highlighted by the green border.

Figure 5: Hyperparameters analysis of the𝑤 and 𝛼 . The re-
sults are reported on HumanML3D at the text-to-motion
retrieval in subfigure (a) and subfigure (b), respectively.
Table 5: Parameter analysis for the number of descriptors.
We report the overall performance measured by Rsum on
the HumanML3D and KIT-ML, respectively.

𝐾
Datasets

HumanML3D KIT-ML

3 198.49 241.47
4 202.46 247.60
5 199.17 240.18
6 197.91 235.62

example, our proposed method successfully retrieves the motion se-
quence. The second retrieved motion sequence also includes the key
motions mentioned in the query text, such as "walks" and "knocked".
Notably, the "knocked" motion sequence contains multiple coor-
dinated movements of relevant body parts, such as "arms" and
"hand", demonstrating that our method can achieve fine-grained se-
mantics alignment by capturing intricate details within the motion
sequences. In contrast, the baselines TMR [28] and MoT [25] are
able to capture simple motions like "walks". However, they strug-
gle to effectively retrieve more complex motions like "knocked",

which require coordinated movements of multiple body parts. This
limitation can be attributed to their coarse-level modeling of text
and motion representations, which makes it challenging to align
intricate motions with textual descriptions.

For the second example, our proposed method achieves success-
ful retrieval of ground truth, despite the motions being subtle and
indiscriminative. This demonstrates our method could effectively
align these subtle motions with the text descriptions and achieves a
accurate retrieval. However, both TMR and MoT fail to retrieve the
ground truth motion sequences, particularly the second retrieved
results. These results primarily contain minor motions that lack
relevant semantics. This limitation arises from the the coarse global
representation alignment that aligns the average semantics of the
query with the motion sequence, which can not provide substantial
meaningful semantic information.

5 CONCLUSION
In this paper, we propose a modal-enhanced semantic modeling
method to model and align the precise semantics for text to 3D hu-
man motion retrieval. We employ prompt-enhanced textual module
and skeleton-enhanced motion module to enhance the semantic
information of both the text and motion modalities. In addition,
we introduce a Text-Driven Semantic Interaction Module to learn
more discriminative motion embeddings for precise fine-grained
semantic alignment between subtle motions and the corresponding
texts. In the future, we aim to design a framework that progressively
models semantic information at different levels to achieve hierar-
chical alignment. We believe that the the findings and solutions
proposed in this paper have the potential to offer valuable insights
to related domains, contributing to a deeper understanding of the
field.
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