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Abstract

Recently proposed Fine-Grained Few-Shot Class-Incremental Learning (FG-
FSCIL) offers a practical and efficient solution for enabling models to incrementally
learn new fine-grained categories under limited data conditions. However, existing
methods still settle for the fine-grained feature extraction capabilities learned from
the base classes. Unlike conventional datasets, fine-grained categories exhibit sub-
tle inter-class variations, naturally fostering latent synergy among sub-categories.
Meanwhile, the incremental learning framework offers an opportunity to progres-
sively strengthen this synergy by incorporating new sub-category data over time.
Motivated by this, we theoretically formulate the FSCIL problem and derive a
generalization error bound within a shared fine-grained meta-category environment.
Guided by our theoretical insights, we design a novel Meta-Environment Learner
(MEL) for FG-FSCIL, which evolves fine-grained feature extraction to enhance
meta-environment understanding and simultaneously regularizes hypothesis space
complexity. Extensive experiments demonstrate that our method consistently and
significantly outperforms existing approaches.

1 Introduction

Fine-grained classification [12, 33] focuses on distinguishing instances from subordinate categories
within the same meta-category (e.g., bird species, car models), and has been widely applied in domains
such as ecological protection and security monitoring [28]. Traditionally, research has centered on
improving fine-grained feature extraction using fixed and fully annotated datasets. However, in
practical scenarios, the collection and annotation of fine-grained data are often limited by domain
expertise and time costs, resulting in data scarcity and continuously evolving category sets. To
address these challenges, recent studies have explored fine-grained classification under Few-Shot
Class-Incremental Learning (FSCIL) [1, 24] setting. FSCIL enables models to learn new classes with
limited samples after training on base classes, while retaining the ability to recognize all seen classes.
Fine-Grained FSCIL (FG-FSCIL) [18] thus offers a practical and efficient solution for updating
models with new fine-grained category information under limited data conditions.

Due to the high discriminative difficulty of fine-grained categories, FG-FSCIL research draws on
traditional ideas from fine-grained classification methods and places greater emphasis on extracting
fine-grained discriminative features. However, due to the limited training samples available during
incremental sessions, this idea still settles for the fine-grained feature extraction capabilities learned
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from the base classes. Notably, fine-grained data differs from conventional data in that its sub-
categories exhibit smaller inter-class variations, which naturally facilitates synergy across sub-
categories. Meanwhile, the incremental learning setting provides the opportunity to progressively
enhance this synergy by continuously incorporating new sub-category data over time. Motivated by
data characteristics and the learning scenario, we aim to develop a model that not only refines its
understanding of the meta-category environment using limited incremental data, but also leverages
this evolving understanding to improve classification across all fine-grained sub-categories.

In this paper, we provide a theoretical formulation of the FSCIL problem and derive generalization
error bounds for the expected error incurred when learning sub-category samples within a shared
meta-environment. While traditional efforts to enhance fine-grained feature extraction help reduce
empirical error and thus lower the bound, our analysis reveals that further reducing the bound relies
on minimizing the complexity of both per-session sub-categories and the overall meta-environment.
Crucially, we show that leveraging incremental sub-categories to enhance understanding of the
meta-environment is a breakthrough point. The derived bounds also offer valuable guidance for
achieving this under limited training data. Guided by these theoretical insights, we propose a novel
Meta-Environment Learner (MEL) for FG-FSCIL, comprising two key processes: Evolving and
Regularizing. Specifically, we introduce an incrementally optimized meta-category vector to enable
evolving fine-grained feature extraction, enhancing the feature extractor’s understanding of the
meta-environment while avoiding unnecessary complexity. In parallel, sub-category relationship
regularization guides feature space transformation and further constrains hypothesis space complexity,
thus further regularizing two complexity terms. Our key contributions are summarized as follows:

• We theoretically formulate the FSCIL problem and analyze its generalization bound within
the fine-grained meta-category environment, which is consistent with the core intuitions and
motivations.

• Based on the derived generalization bound, we design a novel Meta-Environment Learner
(MEL) for FG-FSCIL, which simultaneously evolves fine-grained feature extraction and
regularizes hypothesis space complexity.

• Extensive experiments show that our method significantly outperforms both recent FSCIL
methods and FG-FSCIL methods, demonstrating the effectiveness of our theoretically
grounded design.

2 Related Work

Fine-grained classification [36, 23, 4] focuses on distinguishing visually similar sub-categories
within a general meta-category, such as different species of birds, different breeds of dogs, or different
models of airplanes. Compared to generic classification tasks, it demands models to capture subtle and
localized discriminative features, as inter-class differences are often minimal. As a result, fine-grained
classification methods [39, 31, 27] place greater emphasis on learning feature representations than
conventional classification approaches. Given the challenges of collecting and annotating fine-grained
data in real-world scenarios, Few-Shot Fine-Grained Classification (FSFG) [29, 10, 13, 14, 34] has
emerged to address the problem of recognizing novel fine-grained categories using only a few labeled
examples. However, existing works overlook the inherent potential of fine-grained sub-categories to
collaboratively and incrementally enrich shared meta-category representations, which could serve as
a natural foundation for continual learning.

Few-Shot Class-Incremental Learning (FSCIL) [5, 7, 26, 35] is a learning paradigm where the
model first learns base classes with sufficient labeled data, then incrementally learns novel classes
from only a few labeled samples. To improve performance, most methods [32, 37, 17, 11] lever-
age pretrained parameters to establish a strong initialization for subsequent learning, or employ
data augmentation strategies, including the generation of pseudo-classes to facilitate later sessions.
Although [6] includes experiments on fine-grained datasets, it remains a FSCIL method without
specific discussion or methodological design for the characteristics of fine-grained data. Compared
to traditional datasets, fine-grained datasets exhibit subtler inter-class differences and offer fewer
labeled samples in the base session, making it challenging for conventional FSCIL methods to
perform effectively in such settings. Recent work [18] has started to explore Fine-Grained Few-Shot
Class-Incremental Learning (FG-FSCIL). However, similar to general FSCIL methods, they overlook
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Figure 1: The FSCIL learner with environment T , sample distributions Dt, training set St
train, prior

distribution Pt, posterior distribution Qt, and a hypothesis h.

the inherent synergy among sub-categories in fine-grained data. As a result, the full potential of
incremental learning is not fully exploited.

3 Methodology

In this section, we begin by providing a theoretical formulation of the FSCIL problem. Based on this,
we derive a generalization bound, which forms the foundation for designing our FG-FSCIL method.

3.1 Problem Formulation

In FSCIL, the model is trained on a sequence of training sets {St
train}

T
t=0 from session t. Each St

train

comprises a set of pairs zi = (xi, yi) , i = 1, ...,mt, where xi is a sample from class yi ∈ Ct. For fine-
grained dataset, all classes C0 · · · ∪ CT belong to the same superclass. ∀i, j and i ̸= j, Ci ∩ Cj = ∅.
The training set S0

train in the base session contains sufficient samples, i.e., m0 is much larger than
others. In each subsequent incremental session (t ≥ 1), the training set St

train contains limited
samples and follows an N -way K-shot format. This means there are only K samples for each of the
N classes, i.e., mt = N ×K for t ≥ 1. During the inference stage in session t, the test set St

test is
generated from all sample distributions D0 ∪ D1 · · · ∪ Dt over all seen classes C0 ∪ C1 · · · ∪ Ct.
To model this setup, following [20, 2, 21], all classes from different sessions are assumed to share the
same sample space Z , hypothesis spaceH, and loss function ℓ : H×Z → [0, 1]. As shown in Figure
1, the FSCIL learner can access the dataset St

train that is sampled i.i.d. from an unknown sample
distribution Dt over the class set Ct in session t. All sample distributions Dt are drawn i.i.d from an
unknown environment distribution T [3]. To solve the FSCIL problem, the learner takes as input a
training set St

train and a prior distribution Pt, and output a posterior distribution Qt = Q(St
train, Pt)

over H, that is, a mapping Z ×M →M, whereM denotes the set of distributions over H. The
initial prior P0 can be modeled as a Gaussian distribution over neural network weights [19]. For
subsequent sessions, the prior Pt is set to the posterior from the previous session, i.e. Pt ≜ Qt−1.
Then, the expected error and empirical error for each sample distribution Dt in session t′ are given
by averaging over the posterior distribution Qt′ ∈M, namely er (Qt′ ,Dt) ≜ Eh∼Qt′Ez∼Dt

ℓ(h, z)

and êr (Qt′ , S
t
train) ≜ Eh∼Qt′ (1/mt)

∑mt

i=1ℓ (h, zi) for a single hypothesis h ∈ H.

3.2 Generalization Bounds for FSCIL and Meta-Category Environment

Based on the setting introduced in Section 3.1, we derive generalization bounds for FSCIL in session
t′. Given the openness of the learning scenario, our goal is to enable the FSCIL learner to extract
knowledge from the available categories that can benefit all classes within the same environment.

Therefore, the effectiveness of the posterior distribution Qt′ is evaluated by the expected er-
ror incurred when learning classes drawn from the same environment T , i.e., er (Qt′ , T ) ≜
EDt∼T Eh∼Qt′Ez∼Dtℓ(h, z). Specifically, we analyze the generalization error for both the newly
introduced classes in each session and the overall environment. Formal proofs are provided in Section
A.1 of the supplementary material.
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Theorem 3.1. For any δ ∈ (0, 1], the following bound holds uniformly for posterior distribution Qt′ ,
with probability at least 1− δ over a sequence of training set S0

train, ..., S
t′

train,

er(Qt′ , T ) ≤
t′∑

t=0

αtêr(Qt′ , S
t
train) (1)

+

t′∑
t=0

αt

√
1

2(mt − 1)

(∑t′

i=tDKL(Qi∥Pi) + log
mt

δt

)
(2)

+

√
1

2t′

(
DKL(Qt′∥P0) + log

t′ + 1

δ0

)
, (3)

where DKL(·∥·) denotes the Kullback–Leibler (KL) divergence and αt = |Ct|/
∑t′

i=0|Ci|.

The overall bound comprises the empirical error (Equation 1) and two complexity terms: the session
complexity from each sample distribution Dt (Equation 2) and the environment complexity across
all sessions (Equation 3), which together offer potent insights for tackling the FSCIL challenge.

• Insight 0. Reducing empirical error êr(Qt′ , S
t
train) (Equation 1) can tighten the bound. Since

α0 > αt (t ≥ 1), the error on S0
train plays a dominant role in this reduction. In practice, focusing

on fine-grained feature extraction on St
train can effectively lower êr(Qt′ , S

t
train).

Previous FG-FSCIL methods focus on training the feature extractor during session 0 and then freeze
it, aligning with Insight 0 to achieve a smaller overall empirical error. Other common techniques
in FSCIL, such as initializing with pretrained models and applying data augmentation, essentially
reduce the complexity terms—either by making the initial prior P0 closer to the final posterior Qt′ ,
or by effectively increasing the number of training samples mt.

A deeper understanding of Theorem 3.1 in the context of fine-grained data enables a more systematic
analysis of the inherent synergistic learning potential that is often overlooked by existing FSCIL and
FG-FSCIL methods. Based on widely recognized characteristics of fine-grained datasets, we begin
by providing the following definition,
Definition 3.2 (Meta-Environment). In fine-grained settings, where all sub-categories typically
belong to the same meta-category, the shared environment T—from which all sample distributions
Dt are drawn—is referred to as the Meta-Environment. This structure implies smaller inter-class
variation and facilitates positive transfer across sub-categories.

Consequently, the FG-FSCIL learner is in a favorable position to leverage the information from
seen sub-categories to extract transferable knowledge that benefits all sub-categories within the
same meta-category. This makes the environment complexity term a breakthrough point for further
reducing the overall generalization error in fine-grained settings:

• Insight 1. As t′ increases, the environment complexity (Equation 3) tends to decrease, resulting in
a tighter bound. This suggests that leveraging sub-categories from incremental sessions to train the
feature extractor can enhance its understanding of the overall meta-environment—consistent with
the intuition and motivation discussed above.

• Insight 2. Since m0 ≫ mt(t ≥ 1), controlling DKL(Qt∥Pt)(t ≥ 1) can effectively reduce the
overall session complexity (Equation 2). This indicates that while enhancing the feature extractor’s
understanding of the meta-environment, it is critical to limit significant changes in large parameter
subsets during incremental learning.

• Insight 3. Both complexity terms in Equations 2 and 3 characterize data-dependent hypothesis
space complexity, which is often positively correlated with the number of learnable parameters.
From a generalization perspective of deep neural networks [38], hypothesis space complexity is
primarily governed by classifier parameters, while feature space transformation may potentially
simplify the classification.

3.3 Meta-Environment Learner for FSCIL

Building upon the theoretical insights above, we propose a novel Meta-Environment Learner (MEL)
for FG-FSCIL. The overall architecture is illustrated in Figure 2. Unlike prior FG-FSCIL methods that
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Figure 2: Overall method framework. During the incremental sessions, only Meta-Category Op-
timization and Sub-category Relationship Optimization are performed. Inference relies solely on
high-level features.

freeze the feature extractor during incremental sessions, MEL continuously learns and leverages both
the meta-category and its sub-categories. This allows the meta-environment to evolve progressively
(Section 3.3.1) while remaining properly regularized (Section 3.3.2).

3.3.1 Evolving: Incremental Meta-Category Guided Fine-Grained Feature Extraction

Compared to conventional datasets, FG-FSCIL aims to minimize empirical risk (Equation 1) by
identifying subtle differences among similar sub-categories through an evolving process (cf. Insight
0). To continuously optimize the fine-grained feature extraction process without significantly increas-
ing the complexity terms (Equations 2 and 3), we avoid introducing additional heavy modules and
instead primarily leverage the existing backbone structures (cf. Insight 3). Accordingly, for any
backbone, we denote deeper-layer outputs as high-level semantic features Fhigh ∈ RCh×Hh×Wh , and
shallower-layer outputs as low-level fine-grained features Flow ∈ RCl×Hl×Wl . Their average pooled
representations are denoted as fhigh ∈ RCh and flow ∈ RCl , respectively.

Meta-Category Guided Fine-Grained Feature Extraction. With a lightweight design, our ap-
proach not only utilizes high-level semantic information but also integrates fine-grained details from
low-level features. Specifically, to capture instance-specific cues, the high-level semantic features
Fhigh of each instance can be utilized to spatially localize critical fine-grained features in Flow. To
further refine these cues across samples by leveraging the inherent correlations among fine-grained
categories, we introduce a learnable meta-category vector m ∈ RCh , which encodes meta-category
knowledge in a channel-wise manner with minimal parameter overhead (cf. Insight 2),

F̂ = Fhigh ⊙ σ(m) ∈ RCl×Hl×Wl , (4)

where σ denotes the leaky ReLU activation function and ⊙ indicates element-wise multiplication. To
align with the spatial resolution of the low-level feature map Flow, we upsample the cues F̂, and then
reduce the channel dimension to generate N attention masks:

M = Sigmoid(gϕ(I(F̂))) ∈ RN×Hl×Wl , (5)

where I denotes bilinear interpolation, gϕ is a 1× 1 convolutional block, and Sigmoid denotes the
sigmoid activation function. Then, the generated masks are applied to the low-level feature maps to
highlight the key regions, forming the final refined fine-grained representation,

f̂low = Concat(Pool(Flow,M)) ∈ RN ·Cl , (6)

where Pool denotes masked average pooling under each of the N masks, and Concat represents the
concatenation of resulting vectors.
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Incremental Meta-Category Optimization. In particular, during incremental sessions, it is es-
sential to utilize newly available data to progressively refine the model’s understanding of the
meta-environment (cf. Insight 1). At the same time, it is important to avoid significant parameter
shifts—especially in scenarios with limited training data (cf. Insight 2).

To this end, based on Equation 4, the fine-grained feature learning process can be continuously
optimized by updating the meta-category vector m using a limited number of training samples.
During the incremental session t′, we compute the relation coefficients between the sample semantic
representations f ihigh and the existing meta-category vector m,

ai = m⊤f ihigh/
√
Ch ∈ R, i = 1, ...,mt, (7)

The final attention weights corresponding to the meta-category vector are obtained via a softmax
function,

âi =
exp(ai)∑mt

j=1 exp(aj)
. (8)

Then, the meta-category vector can absorb semantic information from all training samples based on
the attention weights and update itself accordingly,

m← (1− α)m+ α
∑mt

i=1(âif
i
high) ∈ RCh , α = |Ct

′
|/
∑t′

t=0|C
t|. (9)

where α is a class proportion-based weight. This attention-based aggregation over new training
samples further constrains the update magnitude of the meta-category vector, thereby preventing a
substantial increase in the KL divergence.

3.3.2 Regularizing: Incremental Sub-categories Guided Feature Space Transformation

Considering the hypothesis space complexity of deep neural networks, the two complexity terms
(Equations 2 and 3) can be further regularized before the final classification step (cf. Insight 3).
On the one hand, with proper guidance, feature space transformation enables the simplification of
fine-grained classification boundaries, making them easier to model with simpler classifier parameters.
On the other hand, consistency regularization between fine-grained and semantic representations
provides directional guidance for the transformation, encouraging a reduction in mutual information
between input and representation. This helps eliminate redundant information and constrains the
hypothesis space to focus on task-relevant variations.

Sub-categories Guided Feature Space Transformation. To retain complementary information
from both the original and transformed spaces, the two type representations f̂low and fhigh obtained in
Section 3.3.1 are first individually mapped into a new feature space, and then fused with their original
counterparts,

f̃low = (f̂low + hϕ(f̂low))/2, f̃high = (fhigh + hϕ(fhigh))/2, (10)

where hϕ denotes a fully connected block. During the base training phase, the overall loss function
guided by sub-categories for feature extraction and feature space transformation is defined as,

L = (1− β)Lhigh + βLlow + γLmutual, (11)

where β and γ are hyperparameters that control the weights of each term, and Lmutual denotes the
consistency regularization term. Both Lhigh and Llow are cross-entropy losses,

L∗ =
1

m0

m0∑
i=1

− log Φ(τS∗i,1:|C(0)|), ∗ ∈ {high, low}, (12)

where S∗i,j denotes cosine similarity between f̃ i∗ and classifier wj
∗, τ is the temperature parameter,

and Φ is defined as the softmax operation,

Φ(τS∗i,1:|C(0)|) =
exp

(
τS∗i,yi

)
∑|C(0)|

j=1 exp
(
τS∗i,j

) . (13)
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Table 1: Performance on four fine-grained benchmark datasets. Due to space limitations, only the
accuracy of the final session (AccT ) and average accuracy across all sessions (AccAvg) are presented.

Method
CUB200 Stanford Dogs Stanford Cars FGVCAircraft

AccT AccAvg AccT AccAvg AccT AccAvg AccT AccAvg

CEC [32] 34.50 43.71 32.65 40.56 37.09 48.24 29.57 36.94
C-FSCIL [7] 13.86 17.62 16.68 22.78 18.90 27.76 28.28 38.60
FACT [37] 32.71 42.50 33.26 42.96 43.98 56.17 31.60 40.46
TEEN [26] 30.08 39.33 39.14 47.86 45.32 57.37 30.98 43.42
CLOSER [17] 31.74 43.95 34.37 44.69 34.49 53.78 36.56 48.08
PFR [18] 33.99 43.70 36.01 44.25 44.56 58.12 34.42 43.05
ADBS [11] 27.85 38.71 29.15 41.54 29.79 46.50 35.42 45.23

Ours 36.00 45.44 44.06 52.38 57.58 68.43 40.72 54.17

CEC C-FSCIL FACT TEEN CLOSER PFR ADBS Ours

(a) CUB200 (b) Stanford Dogs (c) Stanford Cars (d) FGVCAircraft
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Figure 3: Classification accuracy for each session on four fine-grained benchmark datasets.

Incremental Sub-category Relationship Optimization. Meanwhile, Lmutual is used to continu-
ously constrain the sub-category relationship distributions between the fine-grained and semantic
representations,

Lmutual =
1

m0

m0∑
i=1

[
DKL

(
Φ(τS low

i,1:|C(0)|) ∥ Φ(τS
high
i,1:|C(0)|)

)
+DKL

(
Φ(τShigh

i,1:|C(0)|) ∥ Φ(τS
low
i,1:|C(0)|)

) ]
(14)

where DKL(p ∥ q) =
∑

jpj log pj/qj . After the base training phase, as in most FSCIL methods, the
classifier is replaced with prototype-based classifiers and can be extended during the incremental
session to accommodate novel classes, wc

∗ = 1
Numc

∑
yi=c f̃

i
∗, where Numc denotes the number of

training samples for class c. Therefore, during the incremental training phase, the mutual learning
regularization term Lmutual can be computed on the new training data to maintain and refine the novel
sub-category relationship distributions, enabling ongoing interaction and refinement between the
two types of sub-category prototype representations. This regularization not only constrains the
feature space used for classification but also encourages mutual complementarity between the two
types of representations, thereby implicitly integrating fine-grained knowledge into the semantic
representations.

Thus, the classification inference in session t′ can be performed using only f̃high,

y⋆i = argmax

c∈∪t′t=0Ct

Shigh
i,1:

∑t′
t=0 |C(t)|

. (15)

4 Experiments

4.1 Experimental Setup

Datasets. Following the benchmark setting in [18], we evaluate our method on four fine-grained
datasets: CUB200 [25], Stanford Dogs [8], Stanford Cars [30], and FGVCAircraft [15]. The data
split details are provided in Appendix A.3.
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Table 2: Ablation studies of our proposed method on the Stanford Dogs dataset.

Model Infer
Accuracy in each session (%)

0 1 2 3 4 5 6 7 8

M0 Shigh 62.78 55.10 51.55 48.68 45.25 42.15 40.12 38.23 36.68
M1 ShighS low 65.58 57.32 53.82 51.08 48.07 45.93 43.45 41.45 39.82
M2 ShighS low 66.51 58.37 54.70 52.05 49.08 46.79 44.44 42.28 40.63
M3 ShighS low 66.51 58.40 55.12 52.59 49.73 47.70 45.37 43.22 41.50

M4 ShighS low 66.16 58.27 54.63 52.06 49.67 47.40 45.05 43.28 41.60
M5 ShighS low 65.78 58.44 56.03 53.48 50.87 48.95 46.97 44.68 43.36
M5 S low 65.03 57.68 55.40 52.72 49.97 48.03 45.98 43.67 42.30
M5 Shigh 65.57 58.44 56.03 53.84 51.34 49.45 47.42 45.29 44.06

Experimental details. Following [18], we employ ResNet-12 as the backbone. In our experiments,
Fhigh is the output of the final layer of the backbone, while Flow is the output of the penultimate layer.
Following previous works [18], the temperature hyperparameter τ is set to 16. N is set as an integer
4 to ensure diversity in fine-grained features and kept small for efficiency. β and γ are set to 0.5 to
balance the optimization strength among different components. For comparative methods whose
results are not reported in [18], we reproduce their performance under the same experimental settings
using the publicly available source code. Please see Appendix A.3 for details.

4.2 Comparison Results

In this section, we compare our method with recent FSCIL methods and FG-FSCIL method in Table 1
and Figure 3. It can be observed that our method achieves the best overall performance. Specifically,
our method achieves a 1.21% higher average accuracy (AccAvg) than CLOSER on the CUB200
dataset, and notably outperforms it by 4.26% in the final session (AccT ). This suggests that our
method, by progressively evolving fine-grained feature extraction while constraining hypothesis space
complexity, effectively improves performance on incremental classes with limited samples, often
leading to a more pronounced gain in the final session. Although ADBS considers model adaptation
during the incremental sessions, it lacks mechanisms for inter-class synergy modeling and hypothesis
space complexity regularization, resulting in limited performance. Detailed experimental results can
be found in Appendix A.4.

4.3 Ablation Study

To demonstrate the effectiveness of each component in our method, we conduct ablation experiments
in Table 2. Shigh denotes using only high-level features during inference, as described in Equation 15,
while S low denotes using only low-level features. ShighS low represents using the sum of their similarity
scores. M0 represents the baseline.

(1) Firstly, M1 applies fine-grained feature extraction without the meta-category vector (i.e., under
Equations 5-6, F̂ is directly set to Fhigh), together with the basic cross-entropy loss (Equation 12),
yields an initial performance improvement. (2) M2 builds on M1 by introducing the meta-category
vector (Equation 4), (3) and M3 further performs incremental optimization of this meta-category
vector (Equations 7-9), leading to additional performance gains. Further analysis in Section 4.4.1
demonstrates the effectiveness of our optimization strategy. The improved fine-grained feature
extraction benefits all sub-categories within the meta-category environment, yielding relatively
consistent performance improvements across sessions. (4) M4 adds feature space transformation
(Equation 10) to M3 does not lead to significant performance gains. (5) However, M5, which further
includes sub-category relationship regularization (Equation 14), shows clear improvement. This
indicates that regularizing the alignment between the two relationship distributions enables the
feature space transformation process to eliminate redundancy while preserving classification-relevant
information, effectively reducing hypothesis space complexity and, consequently, the two complexity
terms. This reduction is especially beneficial for classes with fewer training samples, leading to more
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Figure 4: Analysis of meta-
category optimization strategies.
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Figure 5: The influence of hyperparameters γ and β.
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Figure 7: The influence of hyperparameters N and τ .

noticeable performance improvements in the later incremental sessions. (6) Besides, regularization
allows inference using only high-level features (Shigh) to achieve performance comparable to or better
than using both (ShighS low). Further analysis in Section 4.4.2 demonstrates the impact of fine-grained
feature extraction and regularization on class representations.

4.4 Further Analysis

4.4.1 Different Meta-Category Optimization Strategies

To demonstrate the effectiveness of our meta-category optimization strategy (Equations 7-9 in Section
3.3.1), we compare the average accuracy across incremental sessions on the Stanford Dogs dataset
under different optimization schemes, as shown in Figure 4.

It can be observed that directly updating the meta-category vector m by averaging it with the feature
vectors f ihigh of all training samples (Avg) leads to poor performance. Introducing cosine similarity as a
soft weight between m and the mean of f ihigh (Avg+Sim) slightly limits the update magnitude but still
performs poorly. This suggests that even with few parameters, optimization under limited samples can
easily cause posterior drift — a key reason why existing FG-FSCIL methods do not incorporate new
class knowledge into the feature extractor. Replacing cosine similarity with a class proportion-based
weight α (Avg+Weight) helps reduce the update magnitude in later sessions, leading to moderate
improvements. Our proposed method (Ours, Equation 9) first computes a cosine-weighted sum
of all f ihigh to mitigate the influence of outliers, then applies α to further constrain the impact of
new classes—yielding the best performance. While backpropagation-based optimization (BP) also
perform well, they require careful tuning of learning rate and training epochs. In contrast, our strategy
achieves effective updates with no additional hyperparameters.

4.4.2 Effect of Terms Lmutual and Llow

To analyze the effects of the regularization term Lmutual and the fine-grained feature extraction term
Llow (Section 3.3.2), we evaluate the influence of their corresponding hyperparameters γ and β
(Equation 11) on the Stanford Dogs dataset, as shown in Figure 5.

Figure 5(a) shows that in session 0, the value of γ (i.e., whether the regularization term is applied)
has little effect on performance. This suggests that for base classes with ample training samples
(large m0), high-level semantic features already generalize well, and regularization has limited
impact on the complexity term (Equation 2). However, as subsequent sessions introduce more new
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Figure 8: Classification accuracy on conven-
tional FSCIL benchmarks.
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Figure 9: Accuracy after the last session on
CUB200 with different backbones.

classes with limited training samples, the advantage of regularization gradually emerges, consistently
outperforming the no-regularization setting across different values. Figure 5(b) shows that applying
fine-grained feature extraction (β > 0) consistently improves performance across all sessions.
This is particularly evident in later sessions with more incremental classes, where limited training
samples lead to less reliable semantic representations, making fine-grained features more critical for
recognition—i.e., a larger β is needed. Optimal performance is generally achieved when γ and β are
set around 0.5. Furthermore, we analyze the difference between using bidirectional KL divergence
(i.e., Lmutual) and unidirectional KL divergence (i.e., only high → low or only low → high). As
shown in Figure 6, bidirectional KL divergence leads to better performance. Our approach adopts
bidirectional KL divergence to enable mutual regularization and refinement between the two branches,
thereby achieving better alignment of their sub-category relationship distributions.

4.4.3 Effect of Hyperparameters N and τ

In this section, we analyze the effect of other hyperparameters, the number of attention masks N and
the temperature τ . The experimental results are shown in Figure 7.

It can be observed that MEL’s performance remains relatively stable across a range of values for these
hyperparameters. When N ≥ 4, increasing N yields no additional performance gain, with N = 4
achieving the best overall performance, particularly in the later sessions. Additionally, consistent
with other FSCIL methods, our MEL demonstrates sustained performance advantages when τ = 16.
These results are consistent with the principles behind our chosen hyperparameter settings.

4.4.4 Performance on Other FSCIL Benchmarks and Backbones

Although the analysis primarily focuses on fine-grained datasets and the proposed method is tailored
for FG-FSCIL, it still outperforms recent methods on conventional FSCIL benchmarks [22, 9], as
shown in Figure 8. This is because the generalization error bound analysis for FSCIL remains
valid. While fine-grained feature extraction is not crucial for conventional datasets, constraining
hypothesis space complexity during empirical error minimization is still essential. Moreover, our
method still achieves better performance than other approaches (e.g., PFR [18], ADBS [11], and
C-FeCAM/C-RanPAC [6]) across different backbones, as shown in Figure 9.

5 Conclusion

In conclusion, we revisit the Fine-Grained Few-Shot Class-Incremental Learning (FG-FSCIL) prob-
lem from a theoretical perspective and formulate it within a shared meta-environment. By deriving
a generalization error bound, we demonstrate the importance of further minimizing the complexity
of both per-session sub-categories and the overall meta-environment. Building upon these insights,
we propose the Meta-Environment Learner (MEL), which progressively evolves fine-grained feature
representations while regularizing hypothesis space complexity. Extensive experiments on benchmark
datasets validate the effectiveness of our approach, showing consistent and significant improvements
over state-of-the-art methods.
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to have some path to reproducing or verifying the results.
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• The method for calculating the error bars should be explained (closed form formula,
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the guidelines and ensured that our paper conforms to them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our method is an academic research for Few-Shot Class-Incremental Learning
(FSCIL) and does not pertain to any potential societal impacts on privacy, public health,
fairness, or other societal issues.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited [18, 25, 8, 30, 15, 22, 9]. See Section 4.1 and Appendix A.3 for
details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Proof of the Generalization Bound for FSCIL

In this section, we prove Theorem 3.1 utilizing classical PAC-Bayes bound.

Theorem A.1 (PAC-Bayes Bound [16]). Let X be a sample space and X a distribution over X , and
let F be a hypothesis class of functions on X . Let g : F × X → [0, 1] be a loss function. Suppose
X1, . . . , XK are i.i.d. samples from X and let π be a prior distribution over F (independent of the
samples). Then for any δ ∈ (0, 1], the following holds uniformly for all posterior distributions ρ over
F (even sample dependent) with probability at least 1− δ:

Ef∼ρEX∼X[g(f,X)] ≤ 1

K

K∑
k=1

Ef∼ρ[g(f,Xk)] +

√
1

2(K − 1)

(
DKL(ρ∥π) + log

K

δ

)
. (16)

where DKL(ρ∥π) denotes the Kullback–Leibler (KL) divergence between the posterior distribution
ρ and the prior distribution π, DKL(Q∥P ) ≜ E

h∼Q
log Q(h)

P (h) .

Proof. According to Theorem A.1, we analyze the generalization error for the classes introduced
in each session. The samples are XK ≜ zt,i,K ≜ mt, and their distribution is X ≜ Dt. Formally,
we set ρ = Qt′ and π = Pt. We get that for any δt > 0, with probability at least 1 − δt over
St
train ∼ D

mt
t ,

er(Qt′ ,Dt) ≤ êr(Qt′ , S
t
train) +

√
1

2(mt − 1)

(
DKL(Qt′∥Pt) + log

mt

δt

)
, (17)

where Pt ≜ Qt−1 and Qt′ represents the posterior distribution in session t′, i.e., Qt′ ≜ Q(St′ , Pt′).

Then, we consider the generalization across Dmt
t from different sessions, thereby providing a bound

on the environment-level generalization. Let (Dt,mt, S
t
train) for t = 0, 1, . . . , t′ be drawn i.i.d.

from the environment T and St
train ∼ D

mt
t . Using Theorem A.1 again, let the prior be π = P0 and

posterior ρ = Qt′ . Then, for any δ0 > 0, with probability at least 1− δ0,

er(Qt′ , T ) ≤
t′∑

t=0

αter(Qt′ ,Dt) +

√
1

2t′

(
DKL(Qt′∥P0) + log

t′ + 1

δ0

)
, (18)

where αt =
|Ct|∑t′

i=0|C
i|

, reflecting the relationship among the class sets introduced in different sessions.

Finally, to bound the probability of the intersection of the events defined in Equations 17 and 18,
we make use of the union bound. Let δ > 0, set δ0 ≜ δ

2 and δt ≜ δ
2(t′+1)αt

for t = 0, 1, ..., t′. By
applying the union bound argument (Lemma A.2), with probability at least 1− δ,

er(Qt′ , T ) ≤
t′∑

t=0

αtêr(Qt′ , S
t
train) (19)

+

t′∑
t=0

αt

√
1

2(mt − 1)

(
DKL(Qt′∥Pt) + log

mt

δt

)
(20)

+

√
1

2t′

(
DKL(Qt′∥P0) + log

t′ + 1

δ0

)
, (21)

where DKL(Qt′∥Pt) =
∑t′

i=tDKL(Qi∥Pi). The probability is taken over sampling of (Dt,mt) ∼ T
and St

train ∼ D
mt
t , t = 0, 1, ..., t′.

In the following, we present the statement of Lemma A.2 along with its proof.

20



Lemma A.2. Let {Ei}ni=1 be a set of events such that P(Ei) ≥ 1− δi, for some δi ≥ 0, i = 1, . . . , n.
Then,

P

(
n⋂

i=1

Ei

)
≥ 1−

n∑
i=1

δi.

Proof. We begin by observing that

P

(
n⋂

i=1

Ei

)
= 1− P

(
n⋃

i=1

Ec
i

)
, (22)

where Ec
i denotes the complement of event Ei.

By applying the union bound, we obtain

P

(
n⋃

i=1

Ec
i

)
≤

n∑
i=1

P(Ec
i ) =

n∑
i=1

(1− P(Ei)) . (23)

Using the assumption P(Ei) ≥ 1− δi, we have
n∑

i=1

(1− P(Ei)) ≤
n∑

i=1

δi. (24)

Combining the above results gives

P

(
n⋂

i=1

Ei

)
≥ 1−

n∑
i=1

δi. (25)

A.2 Limitations and Future Work

Following the conventional FG-FSCIL setting, our method assumes base and novel classes are
sampled from the same domain. This is a standard and practical choice in prior studies, ensuring
consistency in semantic granularity. Nevertheless, real-world scenarios may involve more diverse
data sources, such as photographs and sketches. Extending the framework to cross-domain FG-FSCIL
is a natural and worthwhile extension, which we plan to explore in future work.

A.3 Detailed Experimental Setups

Datasets. For CUB200, 100 classes are used for base training, and the remaining 100 classes are
split into 10 incremental sessions. For Stanford Dogs, 80 classes are used in the base session, and the
remaining 40 classes are evenly divided into 8 incremental sessions. Each incremental class contains
5 samples, forming a 5-way 5-shot FSCIL setting. For Stanford Cars, 106 classes are used for base
training, and the remaining 90 classes are split across 9 sessions, following a 10-way 5-shot setting.
For FGVCAircraft, 60 classes are used for base training and 40 for incremental learning. A 5-way
5-shot setting is applied, resulting in 9 sessions in total.

Experimental details. Our implementation is based on the code released by PFR [18] under the
MIT license. Our method is conducted with PyTorch library on a single NVIDIA 3090, and SGD
with momentum is used for optimization. All method-agnostic hyperparameter settings are kept
consistent with those of PFR.

A.4 Detailed Experimental Results and Analysis
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Table 3: Classification accuracy on the CUB200 dataset.

Method
Accuracy in each session (%)

0 1 2 3 4 5 6 7 8 9 10

CEC 59.94 54.31 49.88 45.81 44.44 41.72 39.95 37.74 36.79 35.74 34.50
C-FSCIL 23.53 21.73 19.83 18.62 18.45 17.34 16.36 15.27 14.48 14.34 13.86
FACT 58.45 53.14 48.77 45.05 43.97 40.57 38.77 36.62 35.60 33.86 32.71
TEEN 53.98 49.86 45.69 42.19 40.32 37.84 35.65 33.92 32.10 31.02 30.08
CLOSER 67.35 55.90 51.37 47.37 44.22 41.22 38.86 36.94 35.04 33.46 31.74
PFR 59.32 55.19 50.03 46.26 45.24 41.59 39.64 37.72 36.75 35.01 33.99
ADBS 56.21 50.47 46.14 42.50 39.39 36.71 34.36 32.30 30.47 29.36 27.85

Ours 60.40 56.43 52.00 47.88 46.69 43.34 41.65 39.96 38.07 37.37 36.00

Table 4: Classification accuracy on the Stanford Dog dataset.

Method
Accuracy in each session (%)

0 1 2 3 4 5 6 7 8

CEC 55.01 46.05 43.83 41.57 39.28 37.26 35.53 33.87 32.65
C-FSCIL 32.22 28.34 25.68 23.57 21.81 20.00 19.00 17.74 16.68
FACT 58.43 50.92 47.48 44.39 41.48 39.04 36.78 34.87 33.26
TEEN 61.09 54.70 51.71 49.56 47.28 44.41 42.30 40.56 39.14
CLOSER 60.22 53.22 49.40 46.64 43.24 40.65 38.33 36.10 34.37
PFR 59.78 51.65 48.14 45.91 41.13 40.13 38.20 37.28 36.01
ADBS 61.63 53.15 47.55 43.02 39.28 35.78 33.16 31.16 29.15

Ours 65.57 58.44 56.03 53.84 51.34 49.45 47.42 45.29 44.06

Table 5: Classification accuracy on the Stanford Cars dataset.

Method
Accuracy in each session (%)

0 1 2 3 4 5 6 7 8 9

CEC 65.23 59.22 54.43 50.75 47.57 45.38 42.41 41.16 39.17 37.09
C-FSCIL 42.80 37.50 32.83 29.63 26.76 24.64 22.82 21.57 20.18 18.90
FACT 76.76 68.57 63.29 57.93 54.59 52.69 49.77 48.02 46.12 43.98
TEEN 75.42 69.39 64.30 60.24 56.44 54.32 50.96 49.78 47.56 45.32
CLOSER 88.56 73.75 64.85 57.85 51.58 47.01 42.98 39.78 36.92 34.49
PFR 82.02 72.22 66.19 60.73 56.19 53.04 50.00 49.22 47.02 44.56
ADBS 75.91 64.64 56.16 49.65 44.49 40.79 37.24 34.26 32.02 29.79

Ours 85.63 79.62 74.46 70.24 67.17 65.65 63.15 61.41 59.36 57.58

Table 6: Classification accuracy on the FGVCAircraft dataset.

Method
Accuracy in each session (%)

0 1 2 3 4 5 6 7 8

CEC 50.61 43.50 40.32 37.26 34.93 33.95 32.15 30.17 29.57
C-FSCIL 56.45 48.84 43.40 39.71 36.52 33.62 31.33 29.28 28.28
FACT 55.95 49.19 45.25 41.53 38.06 35.58 34.31 32.64 31.60
TEEN 59.17 55.08 50.06 46.05 42.10 38.73 35.60 33.01 30.98
CLOSER 68.07 57.45 52.86 49.28 46.05 43.20 40.73 38.51 36.56
PFR 59.94 52.80 47.66 43.32 39.61 38.16 36.36 35.22 34.42
ADBS 59.03 53.67 50.60 46.61 44.28 41.19 39.36 36.90 35.42

Ours 71.43 66.30 61.66 56.34 52.85 49.09 46.18 42.96 40.72
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