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ABSTRACT

We propose a new method for distributed learning by dividing a deep neural network
into blocks and introducing a feedback network that propagates information from the
targets backward to provide auxiliary local losses. Forward and backward propagation
can operate in parallel and with different sets of weights, addressing the problems of
locking and weight transport. Our approach derives from a statistical interpretation
of training that treats output activations of network blocks as parameters of probability
distributions. The resulting learning framework uses these parameters to evaluate
the agreement between forward and backward information. Error backpropagation
is then performed locally within each block, leading to “block-local” learning. We
present preliminary results on a variety of tasks and architectures, demonstrating
state-of-the-art performance using block-local learning. These results provide a new
principled framework for distributed asynchronous learning.

1 INTRODUCTION

The error backpropagation algorithm, that dominates today’s deep learning methods, requires an alternation
of interdependent forward and backward phases, each requiring sequential computation. This introduces
a locking problem because each phase must wait for the other (Jaderberg et al., 2016). Furthermore, the
two phases rely on the same weight matrices to compute updates, which makes it impossible to separate
memory spaces, known as the weight transport problem (Grossberg, 1987; Lillicrap et al., 2014a). Locking
and weight transport problems, make efficient parallelization of machine learning models extremely
difficult, especially for low resource settings.

We propose a new method to address these problems to distribute a globally defined optimization algorithm
across computing devices using only local updates. Our approach is derived from variational inference
that provides auxiliary local targets through a separate feedback network that back-propagates information
backward from the targets. Messages are communicated forward and backwards in parallel. Updates use
local losses calculated using the targets provided by the feedback messages. In contrast to previous results,
optimizing these local losses does not require a contrastive step where different positive and negative
samples are propagated through the network. Within each block, conventional error backpropagation is
performed locally (“block local”), thus mitigating the locking problem, and solving the weight transport
problem. Our method provides a new principled method for distributing the training of networks across
multiple computing devices.

Several models that used random feedback weights to provide local targets have been proposed previously,
such as feedback alignment (Lee et al., 2015; Jaderberg et al., 2017; Lillicrap et al., 2020), target
propagation (Lee et al., 2015; Meulemans et al., 2020; Frenkel et al., 2021) and related approaches (Akrout
et al., 2019; Nøkland, 2016; Samadi et al., 2017). Some previous methods are also based on probabilistic
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Figure 1: Block-local representations as learning signals. A deep neural network architectureNA is split
into multiple blocks (forward blocks) and trained on an auxiliary local loss. Targets for local losses are
provided by a feedback networkNB.

or energy-based cost functions, e.g. Contrastive learning (Chen et al., 2020; Oord et al., 2019; Xiong et al.,
2020; Illing et al., 2021), equilibrium propagation (Scellier and Bengio, 2017) or forward propagation
(Hinton, 2022; Zhao et al., 2023). Furthermore, (Belilovsky et al., 2019; Löwe et al., 2019; Nøkland
and Eidnes, 2019) have used greedy local, block- or layer-wise optimization, achieved good results by
combining different local losses. In contrast to these methods, we do not rely solely on local greedy
optimization but provide a principled way to combine local losses with trained feedback connecitons
without locking and weight transport across blocks and without contrastive learning.

2 A PROBABILISTIC FORMULATION OF BLOCK-LOCAL DISTRIBUTED LEARNING

We introduce a distributed learning framework that allows us to split a deep neural network into blocks
that are trained locally and in parallel. The architecture is illustrated in Fig. 1. The neural networkNA,
that forward-propagates inputs x in the conventional fashion, is split into N +1 blocks. Intermediate
outputs αk, at each block k are matched against auxiliary targets βk provided through feedback blocks
NB. The feedback blocks only use the target vector y as input and can therefore be computed in parallel
and independently. Error back-propagation is used locally within each forward block, i.e. block local
learning (BLL). Backward blocks can be updated using convex optimization on each training batch, adding
only small compute overhead. In experiments we demonstrate that BLL reaches competitive performance
on smaller-scale training tasks making it an interesting alternative to end-to-end training for distributed
low-energy applications, such as edge computing.

To arrive at this result we use a probabilistic interpretation of deep learning. The problem of minimizing
any loss function L in a deep neural networks can be reformulated in terms of maximum likelihood, by
defining the probability of data samples (x,y) as probability1 p(y|x)∝ e−L. The equivalent learning
problem is to minimize the negative log-likelihood L = − logp (y|x) with respect to the network
parameters θ (Ghahramani, 2015). This probabilistic interpretation of deep learning can be used to define
block-local losses and distribute learning across the network.

Splits of the network into blocks k can be interpreted in the maximum likelihood formalism by introducing
latent variables zk such that p(y|x)=E[p(y|zk)p(zk|x)]. In our framework, at no point does the network
produce samples of the implicit random variables zk, they are introduced here only to conceptualize
the mathematical framework. Instead, at block k, the network outputs the parameters of a probability
distribution αk(zk)=p(zk|x) (e.g., means and variances if αk is Gaussian). The network thus translates
αk−1→αk→ ... by outputting the statistical parameters of the conditional distribution αk(zk) and taking
the αk−1(zk−1) parameters as input.

1Learning the prior p(x)=
∑

yp(x,y) over input samples x is often of lower relevance and is ignored here for
brevity. Therefore, we focus on directly finding optimal parameters for p(y|x).
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More specifically, the network implicitly calculates the following expectation

αk(zk) = p(zk|x) =E[pk(zk|zk−1)αk−1(zk−1)] = fk(αk−1,θk) , (1)

with state transition probability pk. Eq. (1) is an instance of the belief propagation algorithm for the
chain of latent variables zk,zk+1,... Consequently, the whole network realizes a conditional probability
distribution p(y|x) as in the maximum-likelihood formulation above, where x and y are network inputs
and outputs, respectively. If all blocks have rich enough expressive power (e.g. sufficient number of hidden
layers) an accurate representation of the mappings between distributions αk can be represented in the
block-local network parameters θk.

2.1 DISTRIBUTED VARIATIONAL LEARNING

We construct and use an upper bound F on the log-likelihood loss L for training the model. F uses
the backward networkNB to introduce a variational distribution q. If constructed in a suitable way the
variational upper bound can replace L with local losses. The variational posterior ρk(zk) can be computed
up to normalization by propagating forward messages αk(zk) and feedback messages βk(zk) forward
and backward through the network. Importantly, αk(zk) and βk(zk) can have separated parameter spaces,
which we denote by θk and ϕk, respectively. We used a single linear layers to back-propagate β-messages.
The variational posterior is then given by

ρk(zk) = qk(zk|x,y) ∝ p(zk|x)q(y|zk) = αk(zk)βk(zk) . (2)

However, the true posterior distribution pk(zk|x,y) for any latent variable zk is not tractable in general
because it would require us to invert the neural network. Instead we consider a tractable variational upper
bound F to the log-likelihood loss L

F =−logp(y|x)+ 1

N

N∑
k=1

DKL(qk|pk) ≥L , (3)

where pk and qk are true and variational posterior distributions, and the Kullback-Leibler divergence
DKL(p|q)=Ep[logp−logq] measures their mismatch. Conveniently, using the Markov property of the
network blocks outlined above we can rewrite this form and identify an upper bound on L, that only
consists of block-local losses ℓk at all network blocks k, and that can be constructed using the forward
and feedback networksNA andNB. The local loss ℓk can be written as

ℓk(pk,βk|αk−1) =DKL(qk|αk)+H(pk|αk−1) , (4)

where the first term measures the mismatch between the variational posterior ρk and
the forward message αk. The second term is the entropy loss of the forward network
H(pk|αk−1) =−E[αk−1(zk−1)logpk(zk|zk−1)].

The loss in Eq. (4) is local in the sense that it is completely determined by the information available at
block k, i.e., the forward message from the previous block αk−1, and the feedback βk. Furthermore, the
loss is local with respect to learning, i.e. it doesn’t require global signals to be communicated to each
block. In this sense, our approach differs from previous contrastive methods that need to distinguish
between positive and negative samples. In our approach, any sample that passes through a block can be
used directly for weight updating and is treated in the same way. Hence, an upper bound on the global
loss L can be minimized by local greedy optimization of the losses (4). For linear backward networks,
the loss (4) is convex such that optimal ϕk can be directly computed over a mini-batch, adding little extra
compute for feedback messages. Forward network parameters θk are optimized by conventional error
back-propagation locally and in parallel within each block.

2.2 VARIATIONAL GREEDY BLOCK-LOCAL LEARNING

To derive concrete losses and update rules for the forward and backward networks, we assume that
αk’s and βk’s are channel-wise independent univariate Gaussian distributions with known variance for
simplicity. However, the framework outlined above can easily be generalized to more complex probability
distribution, such as the exponential family, if the variational posterior (2) can be expressed in closed form.
A feed-forward DNNNA :x→y, can be split into N+1 blocks by introducing implicit latent variables
zk : x→ zk→ y, and generating the respective parameters of the probability distribution. Blocks can
be separated after any arbitrary layer, but some splits may turn out more natural for a particular network
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for x,y in the training data set do
α0← x
for 1≤k≤N do

βk← gk(y,ϕk) ▷ Feedback
αk← fk(αk−1,θk) ▷ Forward

ϕk← argminϕk
ℓk(pk,βk|αk−1)

θk←ϕk+η∇θk
ℓk(pk,βk|αk−1)

Figure 2: Left: Pseudo code of the BLL training algorithm. fk and gk are the transfer functions of forward
and feedback blocks, respectively. The for-loops can be interleaved and run in parallel. Right: Timeline
of execution for BLL.

Fashion-MNIST Fashion-MNIST CIFAR-10
ResNet-18 ResNet-50 ResNet-50

BP 92.7 93.4 94.0

FA 87.9 83.1 70.3
Pred-Sim 93.9 94.3 92.4
BLL 94.2 94.3 92.6

Table 1: Classification accuracy (% correct) on vision tasks. BP: end-to-end backprop, FA: Feedback
Alignment, Sim Loss: Local learning with similarity matching loss (Nøkland and Eidnes, 2019), BLL:
block local learning. Best out of 5 test accuracies are reported.

architecture. If channel-wise forward and backward messages αkj and βkj are means of the univariate
Gaussian distributions, where j is the channel index, then ρkj’s are simply 1

2(αkj+βkj).

In summary, the BLL algorithm is shown in Figure 2. The two for-loops can be interleaved and parallelized
by pipelining the propagation of data samples through the network. Updates can be computed as soon as
propagation through a given block is complete. There is no locking, since only the data labels are needed
to compute the output of the backward network. Furthermore, there is no weight transport problem since
parameter spaces are separated and updates computed only locally.

BLL shares many similarities with earlier methods. In particular, feedback alignment or target propagation
that propagate feedback through random weights to create local learning objectives and can therefore be
seen as a special case of BLL where feedback weights are kept fixed and the number of blocks equals
the number of layers in the model. The loss term that emerges in BLL also shows some similarity with
the predictive loss proposed in Nøkland and Eidnes (2019), but losses are derived here from a probabilistic
variational framework and used to simultaneously learn the forward and feedback networks.

3 RESULTS

3.1 BLOCK-LOCAL LEARNING OF VISION BENCHMARK TASKS

We evaluated the BLL algorithm on two vision tasks: Fashion-Mnist and CIFAR-10. Its performance
is compared on ResNet18 and ResNet50 architectures with that of Backpropagation (BP), Feedback
Alignment (Lillicrap et al., 2014b) (FA) and Local learning using similarity matching loss, Pred-Sim
(Nøkland and Eidnes, 2019). The ResNet architectures were divided into four blocks for BLL and
Pred-Sim. The splits were introduced after residual layers by grouping subsequent layers into blocks. We
included the predictive loss as suggested in (Nøkland and Eidnes, 2019) as additional target in our BLL
method. Gradient flow was stopped at block boundaries for all losses.

Group sizes in the blocks were (4,5,4,5) for ResNet-18 and (12,13,12,13) for ResNet-50. Backward
networks for BLL were constructed as linear layers with label size as input and the output size equal to the
number of channels in the corresponding ResNet block output. The kernels of ResNet-18/ResNet-50 used
by FA architectures during backpropagation were fixed and uniformly initialised following the Kaiming
He et al. (2015) initialisation method.
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The results are summarized in Table 1, best test accuracies over 5 runs are shown for all methods.
BLL performs on par or slightly better than Pred-Sim overall for all tasks and architectures. FA was
outperformed by BLL, where the gap was becoming wider as the task and model complexity increased
(Bartunov et al., 2018). BLL performs comparably to end-to-end backpropagation for Fashion-MNIST,
but performance is somewhat degraded for CIFAR-10 using ResNet50, hinting at insufficient information
being sent to the blocks through the linear feedback network. This becomes more evident as the number
of local blocks is further increased (Fig. 3A).

3.2 BLOCK-LOCAL TRANSFORMER ARCHITECTURE FOR SEQUENCE-TO-SEQUENCE LEARNING

Figure 3: Scaling behavior of BLL. A: Test accuracy for different number of blocks for CIFAR-10 on
ResNet-50. Dashed line shows BP baseline. B: Learning curves for S2S task. C: Test accuracy vs. number
of blocks for S2S task. Error bars show standard deviations over independent runs.

Next, we demonstrate a proof-of-concept result for a sequence-to-sequence (S2S) task. We used a
transformer model with 20 layers with a single attention head each. Block local losses were added after
each layer and trained locally. The transformer was trained for 5 epochs on a simple S2S task, where
a random permutation of numbers 0..9 was presented and had to be re-generated in reverse order. BLL
achieves close-to perfect performance and a convergence speed that is comparable to that of end-to-end
BP on this task. Fig. 3 B shows learning curves of BLL and BP. Both algorithms converge after around
3 epochs to nearly 100% accuracy. BLL also achieved good performance for a wide range of network
depths. Fig. 3 C shows the performance after 5 epochs for different transformer architectures. Using only
5 transformer blocks yields performance of around 99.9% (average over five independent runs). The test
accuracy on this task for the 20 block transformer was 99.6%. These first results suggest that BLL is in
principle applicable to transformer architectures and S2S tasks.

4 DISCUSSION

This work addresses an important open problem of modern ML: How can ML models be efficiently
distributed and horizontally scaled over many compute nodes for training models too large to fit on one
node. Doing so allows us to train ML models more efficiently and to distribute computation over many
smaller, energy-efficient devices rather than a single large compute node. This makes our method especially
well suited for new energy efficient hardware for ML, such as edge devices. We have demonstrated a
probabilistic framework for rigorously defining block-local losses for deep architectures.

Our initial results suggest that this new method performs on par or slightly better than previous related
block-local learning approaches for small-scale tasks. Depending on the task, performance begins to
degrade when many splits are introduced into the deep network, suggesting that local losses may not
provide sufficient feedback information in these cases. However, the theoretical framework presented
here is flexible and allows the introduction of complex, multi-layer feedback networks if the convexity
of the model is abandoned. Preliminary results for sequence-to-sequence tasks show the potential to apply
the method to a wider range of architectures and tasks, but further experimental evidence with complex
large-scale transformer models is needed. In summary, we believe that the proposed framework provides
an interesting direction for exploring new models for block-local parallel training of deep networks with
many potential applications in energy-constrained, distributed settings.
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