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Abstract

The need for abundant labelled data in supervised Adversarial Training (AT) has prompted
the use of Self-Supervised Learning (SSL) techniques with AT. However, the direct application
of existing SSL methods to adversarial training has been sub-optimal due to the increased
training complexity of combining SSL with AT. A recent approach DeACL (Zhang et al.,
2022) mitigates this by utilizing supervision from a standard SSL teacher in a distillation
setting, to mimic supervised AT. However, we find that there is still a large performance gap
when compared to supervised adversarial training, specifically on larger models. In this work,
investigate the key reason for this gap and propose Projected Feature Adversarial Training
(ProFeAT) to bridge the same. We show that the sub-optimal distillation performance is a
result of mismatch in training objectives of the teacher and student, and propose to use a
projection head at the student, that allows it to leverage weak supervision from the teacher
while also being able to learn adversarially robust representations that are distinct from
the teacher. We further propose appropriate attack and defense losses at the feature and
projector, alongside a combination of weak and strong augmentations for the teacher and
student respectively, to improve the training data diversity without increasing the training
complexity. Through extensive experiments on several benchmark datasets and models, we
demonstrate significant improvements in both clean and robust accuracy when compared to
existing SSL-AT methods, setting a new state-of-the-art. We further report on-par/ improved
performance when compared to TRADES, a popular supervised-AT method. Our code is
available at: https://github.com/val-iisc/ProFeAT.

1 Introduction

Deep Neural Networks are known to be vulnerable to crafted imperceptible input-space perturbations known
as Adversarial attacks (Szegedy et al., 2013), which can be used to fool classification networks into predicting
any desired output, leading to disastrous consequences. Amongst the diverse attempts at improving the
adversarial robustness of Deep Networks, Adversarial Training (AT) (Madry et al., 2018; Zhang et al., 2019)
has been the most successful. This involves the generation of adversarial attacks by maximizing the training
loss, and further minimizing the loss on the generated attacks for training. While adversarial training based
methods have proved to be robust against various attacks developed over time (Carlini et al., 2019; Croce &
Hein, 2020; Sriramanan et al., 2020), they require significantly more training data when compared to standard
training (Schmidt et al., 2018), incurring a large annotation cost. This motivates the need for self-supervised
learning (SSL) of robust representations, followed by lightweight standard training of the classification head.
Motivated by the success of contrastive learning for standard self-supervised learning (Van den Oord et al.,
2018; Chen et al., 2020b; He et al., 2020), several works have attempted to use contrastive learning for
self-supervised adversarial training as well (Jiang et al., 2020; Kim et al., 2020; Fan et al., 2021). While this
strategy works well in a full network fine-tuning setting, the performance is sub-optimal when the robustly
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pretrained feature encoder is frozen while training the classification head (linear probing), demonstrating
that the representations learned are indeed sub-optimal. A recent work, Decoupled Adversarial Contrastive
Learning (DeACL) (Zhang et al., 2022), demonstrated significant improvements in performance and training
efficiency by splitting this combined self-supervised adversarial training into two stages; first, where a standard
self-supervised model is trained, and second, where this pretrained model is used as a teacher to provide
supervision to the adversarially trained student network. Although the performance of this method is on par
with supervised adversarial training on small model architectures (ResNet-18), we find that it does not scale
to larger models such as WideResNet-34-10, which is widely reported in the adversarial ML literature.

In this work, we aim to bridge the performance gap between self-supervised and supervised adversarial
training methods, and improve the scalability of the former to larger model capacities. We utilize the
distillation setting discussed above, where a standard self-supervised trained teacher provides supervision
to the student. In contrast to a typical distillation scenario, the student’s objective or its ideal goal is not
to replicate the teacher, but to leverage weak supervision from the teacher while also learning adversarially
robust representations. This involves a trade-off between the sensitivity towards changes that flip the class of
an image (for better clean accuracy) and invariance towards imperceptible perturbations that preserve the
true class (for adversarial robustness) (Tramèr et al., 2020). Towards this, we propose to impose similarity
with respect to the teacher in the appropriate dimensions by applying the distillation loss in a projected space
(output of a projection MLP layer), while enforcing the smoothness-based robustness loss in the feature space
(output of a backbone/ feature extractor). However, we find that enforcing these losses at different layers
results in training instability, and thus introduce the complementary loss (clean distillation loss or robustness
loss) as a regularizer to improve training stability. We further propose to reuse the pretrained projection
layer from the teacher model for better convergence. In line with the training objective, the attack used for
training aims to find images that maximize the smoothness loss in the feature space, and cause misalignment
between the teacher and student in the projected space. Further, since data augmentations are known to
increase the training complexity of adversarial training resulting in a drop in performance (Zhang et al., 2022;
Addepalli et al., 2022), we propose to use augmentations such as AutoAugment (or strong augmentations)
only at the student for better attack diversity, while using spatial transforms such as pad and crop (PC) (or
weak augmentations) at the teacher. We summarize our contributions below:

• We propose Projected Feature Adversarial Training (ProFeAT) - a teacher-student distillation setting
for self-supervised adversarial training, where the projection layer of the standard self-supervised
pretrained teacher is utilized for student distillation. We further propose appropriate attack and
defense losses for training, coupled with a combination of weak and strong augmentations for the
teacher and student respectively.

• Towards understanding why the projector helps, we first show that the compatibility between the
training methodology of the teacher and the ideal goals of the student plays a crucial role in the
student model performance in distillation. We further show that the use of a projector can alleviate
the negative impact of the inherent misalignment of the above.

• We demonstrate the effectiveness of the proposed approach on the standard benchmark datasets
CIFAR-10 and CIFAR-100. We obtain significant gains of 3.5 − 8% in clean accuracy and ∼ 3% in
robust accuracy on larger model capacities (WideResNet-34-10), and improved performance on small
model architectures (ResNet-18), while also outperforming TRADES supervised training (Zhang
et al., 2019) on larger models.

2 Preliminaries

We consider the problem of self-supervised learning of robust representations, where a self-supervised standard
trained teacher model T is used to provide supervision to a student model S. The feature, projection and
linear probing layers of the teacher are denoted as Tf , Tp and Tl, respectively. We will use projection layer
and projector interchangeably in the rest of the paper. A composition of the feature extractor followed by
the projector of the teacher is denoted as Tpf = Tp ◦ Tf , and a composition of the feature extractor followed
by the linear probing layer is denoted as Tlf = Tl ◦ Tf . An analogous notation is followed for the student as
well. The dataset used for self-supervised pretraining D consists of images xi where i ≤ N . An adversarial
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image corresponding to the image xi is denoted as x̃i. We consider the ℓ∞ based threat model where
||x̃i − xi||∞ ≤ ε. The value of ε is set to 8/255 for CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), as is
standard in literature (Madry et al., 2018; Zhang et al., 2019). To evaluate the learned representations, we
freeze the pretrained backbone, and perform linear layer training on a downstream labeled dataset consisting
of image-label pairs using cross-entropy loss on clean samples, popularly referred to as linear probing (Kumar
et al., 2022). We compare the robustness of the representations on both in-distribution data and in a transfer
learning setting, where the distribution of images is different from pretraining.

3 Related Works
Self Supervised Learning (SSL): Early works on SSL had focused on designing well-posed tasks called
“pretext tasks”, such as rotation prediction (Gidaris et al., 2018) and solving jigsaw puzzles (Noroozi &
Favaro, 2016), to provide a meaningful supervisory signal in the absence of true labels. However, the design
of these hand-crafted tasks involves manual effort, and is generally specific to the dataset and training
task. To alleviate this problem, contrastive learning based SSL approaches have emerged as a promising
direction (Van den Oord et al., 2018; Chen et al., 2020b; He et al., 2020), where different augmentations of a
given anchor image form the positives, and augmentations of other images in the batch form the negatives.
The training objective involves pulling the representations of the positives together, and pushing away the
representations of negatives. Strong augmentations like random cropping and color jitter are applied to make
the learning task sufficiently hard, while also enabling the learning of invariant representations.

Self Supervised Adversarial Training: To alleviate the large sample complexity and training cost of
adversarial training, there have been several works that have attempted self-supervised learning of adversarially
robust representations. Chen et al. (2020a) propose AP-DPE, an ensemble adversarial pretraining framework
where several pretext tasks like Jigsaw puzzles (Noroozi & Favaro, 2016), rotation prediction (Gidaris et al.,
2018) and Selfie (Trinh et al., 2019) are combined to learn robust representations without task labels. Jiang
et al. (2020) propose ACL, that combines the popular contrastive SSL method - SimCLR (Chen et al.,
2020b) with adversarial training, using Dual Batch normalization layers for the student model - one for the
standard branch and another for the adversarial branch. RoCL (Kim et al., 2020) follows a similar approach
to ACL by combining the contrastive objective with adversarial training to learn robust representations. Fan
et al. (2021) propose AdvCL, that uses high-frequency components in data as augmentations in contrastive
learning, performs attacks on unaugmented images, and uses a pseudo label based loss for training to
minimize the cross-task robustness transferability. Luo et al. (2023) study the role of augmentation strength in
self-supervised contrastive adversarial training, and propose DynACL, that uses a “strong-to-weak" annealing
schedule on augmentations. Additionally, motivated by Kumar et al. (2022), they propose DynACL++ that
obtains pseudo-labels via k-means clustering on the clean branch of the DynACL pretrained network, and
performs linear-probing (LP) using these pseudo-labels followed by adversarial full-finetuning (AFT) of the
backbone. This is a generic strategy that can be integrated with several algorithms including ours.

Decoupled Adversarial Contrastive Learning (DeACL): While most self-supervised adversarial training
methods aimed at integrating contrastive learning methods with adversarial training, Zhang et al. (2022)
showed that combining the two is a complex optimization problem due to their conflicting requirements. The
authors propose DeACL, where a teacher model is first trained using existing self-supervised training methods
such as SimCLR (Chen et al., 2020b), followed by the adversarial training of a student model using the
supervision from the earlier-trained teacher in a distillation framework, as shown in Figure 4 in Appendix A.1.
The loss used during distillation is a combination of the cosine similarity between the representations of
the clean image at the output of the teacher and student, along with a smoothness loss at the output of
the student, as shown in Equation (5). The attack used during training is generated by a minimizing the
cosine similarity between the teacher and student representations at the feature output (see Equation (6)).
We present a more detailed description of DeACL in Appendix A.1. The robust student model is used for
the downstream tasks. While existing methods used ∼ 1000 epochs for contrastive adversarial training, the
compute requirement for DeACL is much lesser since the first stage does not involve adversarial training,
and the second stage is similar in complexity to supervised adversarial training (details in Appendix E). In
this work, we investigate and address the shortcomings of the distillation framework presented in DeACL by
introducing a projection layer during the distillation process, along with well-designed training and attack
losses, and an appropriate augmentation scheme for better attack diversity, when compared to DeACL.
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Table 1: Diverse representations of Standard Trained (ST) and Adversarially Trained (AT)
models (CIFAR-100, WRN-34-10): ST models achieve 0% robust accuracy even with adversarial training
of the linear layer, and AT models lose their robustness with standard full-finetuning. SA: Standard Accuracy,
RA-G: Robust accuracy against GAMA Sriramanan et al. (2020), RA-PGD20: Robust accuracy against
PGD-20 Madry et al. (2018) attack.

Training/ LP Method SA RA-PGD20 RA-G Training/ LP Method SA RA-PGD20 RA-G
Standard trained model 80.86 0.00 0.00 TRADES AT model 60.22 28.67 26.36
+ Adversarial Linear Probing 80.10 0.00 0.00 + Standard Full Finetuning 76.11 0.37 0.11

4 Proposed Method

4.1 Projection Layer in Self-supervised Distillation

In this work, we follow the setting proposed by Zhang et al. (2022), where a standard self-supervised
pretrained teacher provides supervision for self-supervised adversarial training of the student model. This is
different from a standard distillation setting (Hinton et al., 2015) because the representations of standard
and adversarially trained models are known to be inherently different (Engstrom et al., 2019). Ilyas et al.
(2019) attribute the adversarial vulnerability of models to the presence of non-robust features which can
be disentangled from robust features that are learned by adversarially trained models. The differences in
representations of standard and adversarially trained models can also be justified by the fact that linear
probing of standard trained models using adversarial training cannot produce robust models as shown in
Table 1. Similarly, standard full finetuning of adversarially trained models destroys the robust features
learned (Chen et al., 2020a; Kim et al., 2020; Fan et al., 2021), yielding 0% robustness, as shown in the table.
Due to the inherently diverse representations of these models, the ideal goal of the student in the considered
distillation setting is not to merely follow the teacher, but to be able to take weak supervision from it while
being able to differ considerably. In order to achieve this, we take inspiration from standard self-supervised
learning literature (Van den Oord et al., 2018; Chen et al., 2020b; He et al., 2020; Navaneet et al., 2022; Gao
et al., 2022; Gupta et al., 2022) and propose to utilize a projection layer following the student backbone,
so as to isolate the impact of the enforced loss on the learned representations. Bordes et al. (2022) show
that in standard supervised and self-supervised training, a projector is useful when there is a misalignment
between the pretraining and downstream tasks, and aligning them can eliminate the need for the same. Xue
et al. (2024) further shows theoretically that lower layers represent more features evenly resulting in better
generalizability of the learned representations. Motivated by this, we hypothesize the following for the setting
of self-supervised distillation:

Student model performance improves by matching the following during distillation:

1. Training objectives of the teacher and the ideal goals of the student,

2. Pretraining and linear probe training objectives of the student.

Here, the ideal goal of the student depends on the downstream task, which is clean (or standard) accuracy in
standard training, and clean and robust accuracy in adversarial training. On the other hand, the training
objective of the standard self-supervised trained teacher is to achieve invariance to augmentations of the same
image when compared to augmentations of other images.

We now explain the intuition behind the above hypotheses and empirically justify the same by considering
several distillation settings involving standard and adversarial, supervised and self-supervised trained teacher
models in Tables 2 and 3. The results are presented on CIFAR-100 (Krizhevsky et al., 2009) with WideResNet-
34-10 (Zagoruyko & Komodakis, 2016) architecture for both teacher and student. The standard self-supervised
model is trained using SimCLR (Chen et al., 2020b). Contrary to a typical knowledge distillation setting
where a cross-entropy loss is also used (Hinton et al., 2015), all the experiments presented involve the use of
only self-supervised losses for distillation (cosine similarity between representations), and labels are used only
during linear probing. Adversarial self-supervised distillation in Table 3 is performed using a combination of
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Table 2: Role of projector in self-supervised distillation (CIFAR-100, WRN-34-10): The drop in
accuracy of student (S) w.r.t. the teacher (T ) indicates distillation performance, which improves by matching
the training objective of the teacher with ideal goals of the student (S3/ S4 vs. S1), and by using similar
losses for pretraining and linear probing (LP) (S2 vs. S1). Using a projector improves performance in case of
mismatch in the above (S5 vs. S1). The similarity between teacher and student is significantly higher at the
projector space when compared to the feature space in S5.

Exp # Teacher
training

Teacher
acc (%) Projector LP Loss Student accuracy after linear probe cos(T , S)

Feature space (%) Projector space (%) Feature space Projector space

S1 Self-supervised 70.85 Absent CE 64.90 - 0.94 -
S2 Self-supervised 70.85 Absent cos(T , S) 68.49 - 0.94 -
S3 Supervised 80.86 Absent CE 80.40 - 0.94 -
S4 Supervised 69.96 Absent CE 71.73 - 0.98
S5 Self-supervised 70.85 Present CE 73.14 64.67 0.19 0.92

Table 3: Role of projector in self-supervised adversarial distillation (CIFAR-100, WRN-34-10):
Student performance after linear probe at feature space is reported. The drop in standard accuracy (SA) of
the student (S) w.r.t. the teacher (T ), and the robust accuracy (RA-G) of the student improve by matching
the training objective of the teacher with ideal goals of the student (A3 vs. A1), and by using similar losses
for pretraining and linear probing (LP) (A2 vs. A1). Using a projector improves performance in case of
mismatch in the above (A4 vs. A1).

Exp # Teacher training Teacher accuracy Projector LP Loss Student accuracy cos(T , S)SA (%) RA-G (%) SA (%) RA-G (%)
A1 Self-supervised (standard training) 70.85 0 Absent CE 50.71 24.63 0.78
A2 (DeACL) Self-supervised (standard training) 70.85 0 Absent cos(T , S) 54.48 23.20 0.78
A3 Supervised (TRADES adversarial training) 59.88 25.89 Absent CE 54.86 27.17 0.94
A4 Self-supervised (standard training) 70.85 0 Present CE 57.51 24.10 0.18

distillation loss on natural samples and smoothness loss on adversarial samples as shown in Equation (2)
(Zhang et al., 2022). A randomly initialized trainable projector is used at the output of student backbone in
S5 of Table 2 and A4 of Table 3. Here, the training loss is considered in the projection space of the student
(Sp) rather than the feature space (Sf ).

1. Matching the training objectives of teacher with the ideal goals of the student: Consider
task-A to be the teacher’s training task, and task-B to be the student’s downstream task or its ideal goal.
The representations in deeper layers (last few layers) of the teacher are more tuned to its training objective,
and the early layers contain a lot more information than what is needed for this task (Bordes et al., 2022).
Thus, features specific to task-A are dominant or replicated in the final feature layer, and other features that
may be relevant to task-B are sparse. When a similarity based distillation loss is enforced on such features,
higher importance is given to matching the task-A dominated features, and the sparse features which may
be important for task-B are suppressed further in the student (Addepalli et al., 2023). On the other hand,
when the student’s task matches with the teacher’s task, a similarity based distillation loss is very effective
in transferring the necessary representations to the student, since they are predominant in the final feature
layer. Thus, matching the training objective of the teacher with the ideal goals of the student should improve
downstream performance.

To test this hypothesis, we first consider the standard training of a student model, using either a self-supervised
or supervised teacher, in Table 2. One can note that in the absence of a projector, the drop in student
accuracy w.r.t. the respective teacher accuracy is 6% with a self-supervised teacher (S1), and < 0.5% with a
supervised teacher (S3). To ensure that our observations are not a result of the 10% difference in teacher
accuracy between S1 and S3, we present results and similar observations with a supervised sub-optimally
trained teacher in S4. Thus, a supervised teacher is significantly better than a self-supervised teacher for
distilling representations specific to a given task. This justifies the hypothesis that, student performance
improves by matching the training objectives of the teacher and the ideal goals of the student.

We next consider adversarial training of a student, using either a standard self-supervised teacher, or a
supervised adversarially trained (TRADES) teacher, in Table 3. Since the TRADES model is more aligned
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with the ideal goals of the student, despite its lower clean accuracy, the clean and robust accuracy of the
student are better than those obtained using a standard self-supervised model as a teacher (A3 vs. A1). This
further justifies the first hypothesis.

2. Matching the pretraining and linear probe training objectives of the student: For a given
network, aligning the pretraining task with downstream task results in better performance since the matching
of tasks ensures that the required features are predominant, and they are easily used by, for e.g., an SVM
or a linear classifier trained over it (Addepalli et al., 2023). In context of distillation, since the features of
the student are trained by enforcing similarity based loss w.r.t. the teacher, we hypothesize that enforcing
similarity w.r.t. the teacher is the best way to learn the student classifier as well. To illustrate this, let’s
consider task-A to be the teacher pretraining task, and task-B to be the downstream task or ideal goal of the
student. As discussed above, the teacher’s features are aligned to task-A and these are transferred effectively
to the student. The features related to task-B are suppressed in the teacher and are further suppressed in
the student. As the features specific to a given task become more sparse, it is harder for an SVM (or a
linear) classifier to rely on that feature, although it important for classification (Addepalli et al., 2023). Thus,
training a linear classifier for task-B is more effective on the teacher when compared to the student. The
linear classifier of the teacher in effect amplifies the sparse features, allowing the student to learn them more
effectively. Thus, training a classifier on the teacher and distilling it to the student is better than training a
classifier directly on the student.

We now provide empirical evidence in support of this hypothesis. To align pretraining with linear probing,
we perform linear probing on the teacher model, and further train the student by maximizing the cosine
similarity between the logits of the teacher and student. This boosts the student accuracy by 3.6%, in Table 2
(S2 vs. S1) and by 3.8% in Table 3 (A2 vs. A1). The projector isolates the representations of the student
from the training loss, as indicated by the lower similarity between the student and teacher at feature space
when compared to that at the projector (in S5 and A4), and prevents overfitting of the student to the teacher
training objective. This makes the student robust to the misalignment between the teacher training objective
and ideal goals of the student, and also to the mismatch in student pretraining and linear probing objectives,
thereby improving student performance, as seen in Table 2 (S5 vs. S1) and Table 3 (A4 vs. A1).

4.2 ProFeAT: Projected Feature Adversarial Training

We now present our proposed approach ProFeAT which is illustrated in Figure 1. ProFeAT training happens
in two stages. Firstly, a teacher model T is trained using a standard self-supervised learning algorithm
such as SimCLR (Chen et al., 2020b), whose weights are used as an initialization for the student S for
better convergence in the next stage. Next, the student model is trained robustly in a distillation framework
where the teacher model supervises the student model (see Figure 1). Both the student and the teacher are
trained with a projection layer on top of their feature backbone. The projection layer is kept frozen and
is initialized using the learned weights from the earlier teacher training. We use well-designed attack and
defense losses along with appropriate augmentations to ensure the student model is trained robustly while
taking appropriate supervision from the teacher model. We now describe in detail the individual design
components of the proposed approach ProFeAT:

Projection Layer: As discussed in Section 4.1, to overcome the impact of the inherent misalignment between
the training objective of the teacher and the ideal goals of the student, and to mitigate the mismatch between
the pretraining and linear probing objectives, we propose to use a projection head at the output of both the
teacher and the student backbone. Most self-supervised pretraining methods (Chen et al., 2020b; He et al.,
2020; Grill et al., 2020; Chen & He, 2021; Zbontar et al., 2021) use similarity based losses at the output of
a projection layer for standard training, resulting in a projected space where similarity has been enforced
during pretraining, thus giving higher importance to the key dimensions.

Defense Loss: As is common in adversarial training literature (Zhang et al., 2019), we use a combination
of (1) loss on clean samples and (2) a smoothness loss, to enforce adversarial robustness in the student
model. Since the loss on clean samples utilizes supervision from the self-supervised pretrained teacher, it is
enforced at the outputs of the respective projectors of the teacher and student. The goal of the smoothness
loss is to enforce local smoothness in the loss surface of the student backbone (Zhang et al., 2019), and is
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PGD attack

Figure 1: Proposed approach (ProFeAT): The student is trained using a distillation loss on clean samples
using supervision from an SSL pretrained teacher, and a smoothness loss to enforce adversarial robustness
(details of exact loss formulation is presented in Section 4). A frozen pretrained projection layer is used at the
teacher and student to prevent overfitting to the clean distillation loss. The use of strong augmentations at the
student increases attack diversity, while weak augmentations at the teacher reduce the training complexity.

ideally enforced at the feature space of the student network, since these representations are directly used for
downstream applications. While the ideal locations for the clean and adversarial losses are the projected
and feature spaces respectively, we find that such a loss formulation is hard to optimize, resulting in either a
non-robust model, or collapsed representations (shown in Table 18). We therefore use a complimentary loss
as a regularizer in the respective spaces. This results in a combination of losses at the feature and projection
spaces as shown below:

Lpf = −
∑

i

cos
(
Tpf (xi), Spf (xi)

)
+ β cos

(
Spf (xi), Spf (x̃i)

)
(1)

Lf = −
∑

i

cos
(
Tf (xi), Sf (xi)

)
+ β cos

(
Sf (xi), Sf (x̃i)

)
(2)

LProFeAT = 1
2

(
Lpf + Lf

)
(3)

x̃i = arg min
x̃i:||x̃i−xi||∞≤ε

cos
(
Tpf (xi), Spf (x̃i)

)
+ cos

(
Sf (xi), Sf (x̃i)

)
(4)

Here, Lpf and Lf are the defense losses enforced at the projection and feature spaces, respectively. S̃ = S(x̃)
is the student representation for the adversarial input x̃ (see Section 2 for notations). The first terms in
Equations (1) and (2) represents the Distillation loss (see Figure 1) involving only the clean input xi, whereas
the second terms correspond to the Smoothness loss at the respective layers of the student, involving both
clean and adversarial input x̃i, and is weighted by a hyperparameter β that controls the robustness-accuracy
trade-off in the downstream model. The overall loss LProFeAT in Equation (3) is minimized during training.

Attack generation: The attack used during training is generated by a maximizing a combination of losses
at both projection and feature spaces as shown in Equation (4). Since the projection space is primarily used
for enforcing similarity with the teacher, we minimize the cosine similarity between the teacher and student
representations for attack generation. Since the feature space is primarily used for enforcing local smoothness
in the loss surface of the student, we utilize the unsupervised formulation that minimizes similarity between
representations of clean and adversarial samples at the student.

Augmentations: Standard supervised and self-supervised training approaches are known to benefit from the
use of strong data augmentations such as AutoAugment (Cubuk et al., 2018). However, such augmentations,
which distort the low-level features of images, are known to deteriorate the performance of adversarial training
(Rice et al., 2020; Gowal et al., 2020). Addepalli et al. (2022) attribute the poor performance to the larger
domain shift between the augmented train and unaugmented test set images, in addition to the increased
complexity of the adversarial training task, which overpower the superior generalization attained due to the
use of diverse augmentations. Although these factors influence adversarial training in the self-supervised
regime as well, we hypothesize that the need for better generalization is higher in self-supervised training,
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Table 4: SOTA comparison: Standard Linear Probing performance (%) on CIFAR-10 and CIFAR-100
datasets on ResNet-18 and WideResNet-34-10 models. Mean and standard deviation across 3 reruns are
reported for the best baseline DeACL (Zhang et al., 2022) and the proposed approach ProFeAT. Standard
Accuracy (SA), Robust Accuracy against PGD-20 attack (RA-PGD20) and AutoAttack (RA-AA) reported.

Method CIFAR-10 CIFAR-100
SA RA-PGD20 RA-AA SA RA-PGD20 RA-AA

ResNet-18

Supervised (TRADES) 83.74 49.35 47.60 59.07 26.22 23.14
AP-DPE 78.30 18.22 16.07 47.91 6.23 4.17
RoCL 79.90 39.54 23.38 49.53 18.79 8.66
ACL 77.88 42.87 39.13 47.51 20.97 16.33
AdvCL 80.85 50.45 42.57 48.34 27.67 19.78
DynACL 77.41 - 45.04 45.73 - 19.25
DynACL++ 79.81 - 46.46 52.26 - 20.05
DeACL (Reported) 80.17 53.95 45.31 52.79 30.74 20.34
DeACL (Our Teacher) 80.05± 0.29 52.97± 0.08 48.15± 0.05 51.53± 0.30 30.92± 0.21 21.91± 0.13

ProFeAT (Ours) 81.68± 0.23 49.55± 0.16 47.02± 0.01 53.47± 0.10 27.95± 0.13 22.61± 0.14

WideResNet-34-10

Supervised (TRADES) 85.50 54.29 51.59 59.87 28.86 25.72
DynACL++ 80.97 48.28 45.50 52.60 23.42 20.58
DeACL 83.83± 0.20 57.09± 0.06 48.85± 0.11 52.92± 0.35 32.66± 0.08 23.82± 0.07

ProFeAT (Ours) 87.62± 0.13 54.50± 0.17 51.95± 0.19 61.08± 0.18 31.96± 0.08 26.81± 0.11

since the pretraining task is not aligned with the ideal goals of the student, making it important to use
strong augmentations. However, it is also important to ensure that the training task is not too complex. We
thus propose to use a combination of weak and strong augmentations as inputs to the teacher and student
respectively, as shown in Figure 1. From Figure 5 we note that, the use of strong augmentations results in
the generation of more diverse attacks, resulting in a larger drop when differently augmented images are
used across different restarts of a PGD 5-step attack. The use of weak augmentations at the teacher imparts
better supervision to the student, reducing the training complexity.

5 Experiments and Results

We first present an empirical evaluation of the proposed method, followed by several ablation experiments to
understand the role of each component individually. Due to lack of space, details on the training, datasets
and compute are presented in Appendices C and D.

For evaluation, we compare the proposed approach ProFeAT with several existing self-supervised adversarial
training approaches (Chen et al., 2020a; Kim et al., 2020; Jiang et al., 2020; Fan et al., 2021; Zhang et al.,
2022; 2019) by performing linear probing (LP) using cross-entropy loss on clean samples. To ensure a fair
comparison, the same is done for the supervised AT method TRADES (Zhang et al., 2019) as well. The
results are presented on CIFAR-10 and CIFAR-100 datasets Krizhevsky et al. (2009), and on ResNet-18
He et al. (2016) and WideResNet-34-10 (WRN-34-10) Zagoruyko & Komodakis (2016) architectures, as
is common in the adversarial research community. The results of existing methods on ResNet-18 are as
reported by Zhang et al. (2022). Since DeACL (Zhang et al., 2022) also uses a teacher-student architecture,
we reproduce their results using the same teacher as used in our method, and report it as “DeACL (Our
Teacher)”. Since existing methods do not report results on larger architectures like WideResNet-34-10, we
compare our results only with the best performing method (DeACL) and a recent approach DynACL (Luo
et al., 2023). As the results with larger architectures are not reported in these papers, we run them using
their official code.
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Table 5: Performance with additional evaluations: Performance (%) of DeACL (best baseline) and
ProFeAT (Ours) on CIFAR-10 and CIFAR-100 datasets with WideResNet-34-10 architecture. The model is
first pretrained using the respective self-supervised adversarial training algorithm, and further we compute
the standard accuracy (SA) and robust accuracy against GAMA (RA-G) using several methods such as
standard linear probing (LP), training a 2 layer MLP head (MLP), and performing KNN in the feature space
with k = 10. The proposed method achieves improvements over the baseline across all evaluation methods.

Method LP Eval MLP Eval KNN Eval (k = 10)
SA RA-G SA RA-G SA RA-G

CIFAR-10
DeACL 83.60 49.62 85.66 48.74 87.00 54.58
ProFeAT (Ours) 87.44 52.24 89.37 50.00 87.38 55.77

CIFAR-100
DeACL 52.90 24.66 55.05 22.04 56.82 31.26
ProFeAT (Ours) 61.05 27.41 63.81 26.10 58.09 32.26

The Robust Accuracy (RA) in the SOTA comparison table is presented against AutoAttack (RA-AA) (Croce
& Hein, 2020) which is widely used as a reliable benchmark for robustness evaluation (Croce et al., 2021). In
other tables, we also present robust accuracy against the GAMA attack (RA-G) (Sriramanan et al., 2020)
which is known to be a competent and a reliable estimate of AutoAttack while being significantly faster to
evaluate. We additionally present results against a 20-step PGD attack (RA-PGD20) (Madry et al., 2018)
in the SOTA comparison table (Table 4), although it is a significantly weaker attack. A larger difference
between RA-PGD20 and RA-AA indicates that the loss surface is more convoluted due to which weaker
attacks are unsuccessful, yielding a false sense of robustness (Athalye et al., 2018). Thus this difference serves
as a check for verifying the extent of gradient masking (Papernot et al., 2017; Tramèr et al., 2018). Therefore,
in order to compare true robustness between any two defenses, accuracy against RA-AA or RA-G should be
considered, while RA-PGD20 should not be considered. The accuracy on clean or natural samples is denoted
as SA, which stands for Standard (Clean) Accuracy.

5.1 Comparison with the state-of-the-art

Table 4 presents the standard linear probing results of the proposed method ProFeAT in comparison to several
SSL-AT baseline approaches. The proposed approach obtains superior robustness-accuracy trade-off when
compared to the best performing baseline method DeACL, with ∼ 3−3.5% gains in both robust and clean
accuracy on CIFAR-10 dataset and similar gains in robustness on CIFAR-100 dataset with WideResNet-34-10
architecture. We obtain significant gains of ∼ 8% on the clean accuracy on CIFAR-100. With ResNet-18
architecture, ProFeAT achieves competent robustness-accuracy trade-off when compared to DeACL on CIFAR-
10 dataset, and obtains ∼ 2% higher clean accuracy alongside improved robustness on CIFAR-100 dataset.
We notice significantly less gradient masking, indicated by a lower value of (RA-PGD20 − RA-AA), for the
proposed approach compared to all other baselines across all settings, indicating a reliable attack generation
even in the absence of ground truth labels. Overall, the proposed approach significantly outperforms all
the existing baselines, especially for larger model capacities (WRN-34-10), with improved results on smaller
models (ResNet-18). Additionally, we obtain superior results when compared to the supervised AT method
TRADES as well, at higher model capacities.

Performance comparison with other evaluation methods: We also present results of additional
evaluation methods to evaluate the performance of the pretrained backbone in Table 5. We note that the
proposed method achieves improvements over the baseline across all evaluation methods. Since the training
of classifier head in LP and MLP is done using standard training and not adversarial training, the robust
accuracy reduces as the number of layers increases (from linear to 2-layers), and the standard accuracy
improves. The standard accuracy of KNN is better than the standard accuracy of LP for the baseline,
indicating that the representations are not linearly separable. Whereas, as is standard, for the proposed
approach, LP standard accuracy is higher than that obtained using KNN. The adversarial attack used for
evaluating the robust accuracy using KNN is generated using GAMA attack on a linear classifier. The attack
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Table 6: Transfer Learning with Linear Prob-
ing: Standard LP Performance (%) for transfer
learning from CIFAR-10/100 to STL-10 dataset
on ResNet-18 and WRN-34-10 model. ProFeAT
(Ours) outperforms both DeACL and the supervised
TRADES model.

Method

CIFAR-10
→ STL-10

CIFAR-100
→ STL-10

SA RA-AA SA RA-AA
ResNet-18

Supervised 54.70 22.26 51.11 19.54
DeACL 60.10 30.71 50.91 16.25
ProFeAT 64.30 30.95 52.63 20.55

WideResNet-34-10
Supervised 67.15 30.49 57.68 11.26
DeACL 66.45 28.43 50.59 13.49
ProFeAT 69.88 31.65 56.68 19.46

Table 7: Transfer Learning with Adv. Full-
Finetuning: AFF performance (%) using TRADES
algorithm for 25 epochs, when transferred from
CIFAR-10/100 to STL-10 and Caltech-101 dataset
on WideResNet-34-10 model.

Method
SA RA-G SA RA-G

CIFAR-10
→ STL-10

CIFAR-100
→ STL-10

Supervised 64.58 32.78 64.22 31.01
DeACL 61.65 28.34 60.89 30.00
ProFeAT 74.12 36.04 68.77 31.23

CIFAR-10
→ Caltech-101

CIFAR-100
→ Caltech-101

Supervised 62.46 39.40 64.97 41.02
DeACL 62.65 39.18 61.01 39.09
ProFeAT 66.11 42.12 64.16 41.25

Table 8: Efficiency of Self-supervised adversarial training (CIFAR-100, WRN-34-10): Performance
(%) using lesser number of attack steps (2 steps) when compared to the standard case (5 steps) during
adversarial training. Clean/ Standard Accuracy (SA) and robust accuracy against GAMA attack (RA-G)
and AutoAttack(RA-AA) are reported. The proposed approach is stable at lower attack steps as well, while
being better than both TRADES (Zhang et al., 2019) and DeACL (Zhang et al., 2022).

Method 2-step PGD attack 5-step PGD attack
SA RA-G RA-AA SA RA-G RA-AA

Supervised (TRADES) 60.80 24.49 23.99 61.05 25.87 25.77
DeACL 51.00 24.89 23.45 52.90 24.66 23.92
ProFeAT (Ours) 60.43 26.90 26.23 61.05 27.41 26.89

is suboptimal since it is not generated by using the evaluation process (KNN), and thus the robust accuracy
against such an attack is higher.

Transfer learning: To evaluate the transferrability of the learned robust representations, we compare
the proposed approach with the best baseline DeACL in Table 6 under standard linear probing (LP). We
consider transfer from CIFAR-10/100 to STL-10 (Coates et al., 2011). When compared to DeACL, the clean
accuracy is ∼ 4 − 10% higher on CIFAR-10 and ∼ 1.7 − 6% higher on CIFAR-100. We also obtain 3 − 5%
higher robust accuracy when compared to DeACL on CIFAR-100, and higher improvements over TRADES.
We also present transfer learning results using lightweight adversarial full finetuning (AFF) to STL-10 and
Caltech-101 (Li et al., 2022) in Table 7. We defer the details on the process of adversarial full-finetuning and
the selection criteria for the transfer datasets to Appendix D. The transfer is performed on WRN-34-10 model
that is pretrained on CIFAR-10/100. As shown in Table 7, the proposed method outperforms DeACL by a
significant margin. Note that by using merely 25 epochs of adversarial full-finetuning, the proposed method
achieves improvements of around 4% on CIFAR-10 and 11% on CIFAR-100 when compared to the linear
probing accuracy presented in Table 6, highlighting the practical utility of the proposed method. The AFF
performance of the proposed approach is better than that of a supervised TRADES pretrained model as well.

Efficiency of self-supervised adversarial training Similar to prior works (Zhang et al., 2022), the
proposed approach uses 5-step PGD based optimization for attack generation during adversarial training. In
Table 8, we present results with lesser optimization steps (2 steps). The proposed approach is stable and
obtains similar results even by using 2-step attack. Even in this case, the clean and robust accuracy of the
proposed approach is significantly better than the baseline approach DeACL (Zhang et al., 2022), and also
outperforms the supervised TRADES model (Zhang et al., 2019). We compare the computational aspects of
the existing baselines and the proposed method in more detail in Appendix E.
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Table 9: Ablations on ProFeAT (CIFAR-100, WRN-34-10): Performance (%) by enabling different
components of the proposed approach. A tick mark in the Projector column means that a frozen pretrained
projector is used for the teacher and student, with the defense loss being enforced at the feature and projector
as shown in Equation (3). E1 represents the baseline or DeACL defense, and E9 represents the proposed
defense or ProFeAT. E8*:Defense loss applied only at the projector. SA: Standard Accuracy, RA-G: Robust
Accuracy against GAMA attack.

Ablation Projector Augmentations Attack loss SA RA-G
E1 52.90 24.66
E2 ✓ 57.66 25.04
E3 ✓ 52.83 27.13
E4 ✓ 51.80 24.77
E5 ✓ ✓ 55.35 27.86
E6 ✓ ✓ 56.57 25.29
E7 ✓ ✓ 62.01 26.89
E8 ✓* ✓ ✓ 59.65 26.90
E9 ✓ ✓ ✓ 61.05 27.41

5.2 Ablations

We now present some of the ablation experiments to gain further insights into the proposed method, and
defer more in-depth ablation results to Appendix F due to space constraints.

Effect of each component of the proposed approach: We study the impact of each component of the
ProFeAT in Table-9, and make the following observations based on the results:

• Projector : A key component of the proposed method is the introduction of the projector. We observe
significant gains in clean accuracy (∼ 5%) by introducing the projector along with defense losses at the
feature and projection spaces (E1 vs. E2). The importance of the projector is also evident by the fact that
removing the projector from the proposed defense results in a large drop (5.7%) in clean accuracy (E9 vs.
E5). We observe a substantial improvement of 9.2% in clean accuracy when the projector is introduced in
the presence of the proposed augmentation strategy (E3 vs. E7), which is significantly higher than the
gains obtained by introducing the same in the baseline DeACL (4.76%, E1 vs. E2). Further ablations on
the projector are provided in Appendix F.1.

• Augmentations: The proposed augmentation strategy improves robustness across all settings. Introducing
the proposed strategy in the baseline improves its robust accuracy by 2.47% (E1 vs. E3). Moreover, the
importance of the proposed strategy is also evident from the fact that in the absence of the same, there is
a 4.48% drop in SA and ∼ 2% drop in RA-G (E9 vs. E6). Further, when combined with other components
as well, the proposed augmentation strategy shows good improvements (E4 vs. E5, E2 vs. E7, E6 vs. E9).
Detailed ablation on the respective augmentations used for the teacher and student model can be found in
Appendix F.2.

• Attack loss: The proposed attack objective is designed to be consistent with the proposed defense strategy,
where the goal is to enforce smoothness at the student in the feature space and similarity with the teacher
in the projector space. The impact of the attack loss in feature space can be seen in combination with the
proposed augmentations, where we observe an improvement of 2.5% in clean accuracy alongside notable
improvements in robust accuracy (E3 vs. E5). However, in presence of projector, the attack results in
only marginal robustness gains, possibly because the clean accuracy is already high (E9 vs. E7). More
detailed ablations on the attack loss in provided in Appendix F.3.

• Defense loss: We do not introduce a separate column for defense loss as it is applicable only in the presence
of the projector. We show the impact of the proposed defense losses in the last two rows (E8 vs. E9). The
proposed defense loss improves the clean accuracy by 1.4% and robust accuracy marginally. Appendix F.4
provides further insights on various defense loss formulations and their impact on the proposed method.

Performance across different model architectures: We report performance of the proposed method
ProFeAT and the best baseline DeACL on diverse architectures including Vision transformers (Dosovitskiy
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Figure 2: Performance of ProFeAT when compared
to DeACL (Zhang et al., 2022) across variation in the
robustness-accuracy trade-off parameter β on CIFAR-
100 dataset with WRN-34-10 architecture.
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Figure 3: Performance (%) of ProFeAT by varying the weight
λ between the defense losses at the feature and projector. The
performance is stable across the range λ ∈ [0.25, 0.75]. We thus
fix the value of λ to 0.5 in the proposed approach.

Table 10: Performance across different architecture types and sizes: Standard Linear Probing
performance (%) of DeACL (Baseline) and ProFeAT (Ours) across different architectures on CIFAR-100.
ViT-B/16 uses Imagenet-1K trained SSL teacher for training, while the SSL teacher in all other cases is
trained on the CIFAR-100. SA: Standard Accuracy, RA-AA: Robust Accuracy against AutoAttack.

Method #params (M) DeACL ProFeAT (Ours)
SA RA-AA SA RA-AA

ResNet-18 11.27 51.53 21.91 53.47 22.61
ResNet-50 23.50 53.30 23.00 59.34 25.86
WideResNet-34-10 46.28 52.92 23.82 61.08 26.81
ViT-B/16 85.79 61.34 17.49 65.08 21.52

et al., 2021) on the CIFAR-100 dataset in Table 10. ProFeAT consistently outperforms DeACL in both clean
and robust accuracy across various model architectures. An explanation behind the mechanism for successful
scaling to larger datasets can be found in Appendix B.

Robustness-Accuracy trade-off: We present results across variation in the robustness-accuracy trade-off
parameter β (Equations (1) and (2)) in Figure 2. Both robustness and accuracy of the proposed method are
significantly better than DeACL across all values of β.

Weighting of defense losses at the feature and projector: In the proposed approach, the defense losses
are equally weighted between the feature and projector layers as shown in Equation (3). In Figure 3, we
present results by varying the weighting λ between the defense losses at the feature (Lf ) and projector (Lpf )
layers: LProFeAT = λ · Lf + (1 − λ) · Lpf , where Lpf and Lf are given by Equations (1) and (2), respectively.
It can be noted that the two extreme cases of λ = 0 and λ = 1 result in a drop in clean accuracy, with a
larger drop in the case where the loss is enforced only at the feature layer. The robust accuracy shows lesser
variation across different values of λ. Thus, the overall performance is stable over the range λ ∈ [0.25, 0.75],
making the default setting of λ = 0.5 a suitable option.

6 Conclusion
In this work, we bridge the performance gap between supervised and self-supervised adversarial training
approaches, specifically for large capacity models. We utilize a teacher-student setting (Zhang et al., 2022)
where a standard self-supervised trained teacher is used to provide supervision to the student. Due to the
inherent misalignment between the teacher training objective and the ideal goals of the student, we propose to
use a projection layer to prevent the network from overfitting to the standard SSL trained teacher. We present
a detailed analysis on the use of projection layer in distillation to justify our method. We additionally propose
appropriate attack and defense losses in the feature and projector spaces alongside the use of weak and strong
augmentations for the teacher and student respectively, to improve the attack diversity while maintaining low
training complexity. The proposed approach obtains significant gains over existing self-supervised adversarial
training methods, specifically for large models, demonstrating its scalability. While we improve the scalability
of self-supervised AT methods to larger capacity models, we limit the datasets to CIFAR scale similar to
prior works in this field due to the large computational costs. We hope future works explore the application
of such SSL-AT methods to large scale datasets such as ImageNet.
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Appendix

A Background

A.1 Decoupled Adversarial Contrastive Learning (DeACL)

DeACL introduces a teacher-student distillation framework to train robust models in a self-supervised setting
without the need of labeled training data. While most self-supervised adversarial training methods aimed at
integrating contrastive learning methods with adversarial training, the authors (Zhang et al., 2022) showed
that combining the two is a complex optimization problem due to their conflicting training requirements. The
training is thus decoupled to two stages as discussed below. The first stage trains a standard self-supervised
model using any of the existing Self-supervised Learning (SSL) techniques such as SimCLR, BYOL, or
BarlowTwins. This is followed by the second stage that involves adversarial training of a student model using
the supervision from the earlier-trained teacher in a distillation framework as shown in Figure 4. The loss
used during distillation is a combination of the cosine similarity between the representations of the clean
image at the output of the teacher and student, along with a smoothness loss at the output of the student as
shown in Equation (5).

LDeACL = −
∑

i

cos
(
Tf (xi), Sf (xi)

)
+ β cos

(
Sf (xi), Sf (x̃i)

)
(5)

x̃i = arg min
x̃i:||x̃i−xi||∞≤ε

cos
(
Tf (xi), Sf (x̃i)

)
(6)

In Equation (5), the first term is the Distillation loss on the feature backbone Tf of the teacher T , and
Sf of the student S for a clean input xi. x̃ is the adversarial input. The second term corresponds to the
Smoothness loss at the student to enforce similar representations for the clean and adversarial inputs, and
is weighted by a hyperparameter β that controls the robustness-accuracy trade-off in the downstream model.
The loss LDeACL (Equation (5)) is minimized during training. The attack used during training is generated
by a minimizing the cosine similarity between the teacher and student representations at the feature output
as shown in Equation (6).

SSL pretrained 
Teacher

Student

Weak 
Augmentation

PGD attack

Distillation Loss

Smoothness Loss

Frozen

Trainable

Clean Train Loss

Robust Train Loss

Figure 4: Decoupled Adversarial Contrastive Learning (DeACL): The student is trained using a
distillation loss on clean samples using supervision from an SSL pretrained teacher, and a smoothness loss to
enforce adversarial robustness (Equation (5)).

A.2 Supervised Adversarial Defenses

Following the demonstration of adversarial attacks by Szegedy et al. (2013), there have been several attempts
of defending Deep Networks against them. Early defenses proposed intuitive methods that introduced
non-differentiable or randomized components in the network to thwart gradient-based attacks (Buckman et al.,
2018; Ma et al., 2018; Dhillon et al., 2018; Xie et al., 2018; Song et al., 2018). While these methods were efficient
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and easy to implement, Athalye et al. (2018) proposed adaptive attacks which successfully broke several such
defenses by replacing the non-differentiable components with smooth differentiable approximations, and by
taking an expectation over the randomized components. Adversarial Training (Madry et al., 2018; Zhang
et al., 2019) was the most successful defense strategy that withstood strong white-box (Croce & Hein, 2020;
Sriramanan et al., 2020), black-box (Andriushchenko et al., 2020; Chen & Gu, 2020) and adaptive attacks
(Athalye et al., 2018; Tramer et al., 2020) proposed over the years. PGD (Projected Gradient Descent) based
adversarial training (Madry et al., 2018) involves maximizing the cross-entropy loss to generate adversarial
attacks, and further minimizing the loss on the adversarial attacks for training. Another successful supervised
Adversarial Training based defense was TRADES (Zhang et al., 2019), where the Kullback-Leibler (KL)
divergence between clean and adversarial samples was minimized along with the cross-entropy loss on clean
samples for training. Adjusting the weight between the losses gave a flexible trade-off between the clean and
robust accuracy of the trained model. Although these methods have been robust against several attacks, it
has been shown that the sample complexity of adversarial training is large (Schmidt et al., 2018), and this
increases the training and annotation costs needed for adversarial training.

B Mechanism behind Scaling to Larger Datasets

For a sufficiently complex task, a scalable approach results in better performance on larger models given
enough data. Although the task complexity of adversarial self-supervised learning is high, the gains in prior
approaches are marginal with an increase in model size, while the proposed method results in significantly
improved performance on larger capacity models (Table 4). We discuss the key factors that result in better
scalability below:

• As discussed in Section 4.1, a mismatch between training objectives of the teacher and ideal goals of
the student causes a drop in student performance. This primarily happens because of the overfitting
to the teacher training task. As model size increases, the extent of overfitting increases. The use of a
projection layer during distillation alleviates the impact of this overfitting and allows the student to
retain more generic features that are useful for the downstream robust classification objective. Thus,
a projection layer is more important for larger model capacities where the extent of overfitting is
higher.

• Secondly, as the model size increases, there is a need for higher amount of training data for achieving
better generalization. The proposed method has better data diversity as it enables the use of
more complex data augmentations in adversarial training by leveraging supervision from weak
augmentations at the teacher.

C Details on Datasets

We compare the performance of the proposed approach ProFeAT with existing methods on the benchmark
datasets CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), that are commonly used for evaluating the
adversarial robustness of models (Croce et al., 2021). Both datasets consist of RGB images of dimension
32 × 32. CIFAR-10 consists of 50,000 images in the training set and 10,000 images in the test set, with the
images being divided equally into 10 classes - airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck. CIFAR-100 dataset is of the same size as CIFAR-10, with images being divided equally into 100
classes. Due to the larger number of classes, there are only 500 images per class in CIFAR-100, making it a
more challenging dataset when compared to CIFAR-10.

D Details on Training and Compute

Model Architecture: We report the key comparisons with existing methods on two of the commonly
considered model architectures in the literature of adversarial robustness (Pang et al., 2021; Zhang et al.,
2019; Rice et al., 2020; Croce et al., 2021) - ResNet-18 (He et al., 2016) and WideResNet-34-10 (Zagoruyko &
Komodakis, 2016). Although most existing methods for self-supervised adversarial training report results

18



Published in Transactions on Machine Learning Research (10/2024)

Table 11: Total number of Forward (FP) or Backward (BP) Propagations during training of the
proposed approach when compared to prior works. Distillation based approaches - ProFeAT and DeACL
require significantly lesser compute when compared to prior methods, and are only more expensive than
supervised adversarial training.

Method #Epochs #Attack steps #FP or BP
AT Teacher model Total

Supervised (TRADES) 110 10 1210 - 1210
AP-DPE 450 10 4950 - 4950
RoCL 1000 5 6000 - 6000
ACL 1000 5 12000 - 12000
AdvCL 1000 5 12000 1000 13000
DynACL 1000 5 12000 - 12000
DynACL++ 1025 5 12300 - 12300
DeACL 100 5 700 1000 1700
ProFeAT (Ours) 100 5 800 1000 1800

only on ResNet-18 (Zhang et al., 2022; Fan et al., 2021), we additionally consider the WideResNet-34-10
architecture to demonstrate the scalability of the proposed approach to larger model architectures. We
perform the ablation experiments on the CIFAR-100 dataset with WideResNet-34-10 architecture, which is
a very challenging setting in self-supervised adversarial training, to be able to better distinguish between
different variations adopted during training.

Training Details: The self-supervised training of the teacher model is performed for 1000 epochs with the
SimCLR algorithm (Chen et al., 2020b) similar to prior work (Zhang et al., 2022). We utilize the solo-learn
1 GitHub repository for this purpose. For the SimCLR SSL training, we tune and use a learning rate of 1.5
with SGD optimizer, a cosine schedule with warmup, weight decay of 1e−5 and train the backbone for 1000
epochs with other hyperparameters kept as default as in the repository.

The self-supervised adversarial training of the feature extractor using the proposed approach is performed
for 100 epochs using SGD optimizer with a weight decay of 3e−4, cosine learning rate with 10 epochs of
warm-up, and a maximum learning rate of 0.5. We consider the standard ℓ∞ based threat model Zhang et al.
(2022); Fan et al. (2021) for attack generation during both training and evaluation, i.e., ||x̃i − xi||∞ ≤ ε,
where x̃ is the adversarial version of the clean sample xi. The value of ε is set to 8/255 for both CIFAR-10
and CIFAR-100 datasets, as is standard in literature (Madry et al., 2018; Zhang et al., 2019). A 5-step
PGD attack is used for attack generation during training with a step size of 2/255. We fix the value of β,
the robustness-accuracy trade-off parameter (Ref: Equations (1) and (2) in the main paper) to 8 in all our
experiments, unless specified otherwise.

Details on configurations in Tables 2 and 3: In these tables, we present the experiments showing the
importance of the projector in self-supervised distillation, first in a standard setting (Table 2) and then in an
adversarial setting (Table 3). In Table 2, the linear probing performance of the student model is shown at
both the feature and projection space when linear probed using two different probing methods (column “LP
Loss”): standard CE loss (S1, S3-S5), and cosine similarity loss between the student and the teacher (denoted
as cos(T , S), S2). Experiments S1-S4 refer to settings where there is no projector involved during distillation,
while S5 includes the projector network. S1 and S2 considers a self-supervised trained teacher for distillation,
whereas S3 and S4 uses a standard teacher trained using label supervision. In the absence of a projector,
when the training objectives of teacher matches with the student (S3/S4 vs. S1), or when similar losses are
used for pretraining and linear probing (S2 vs. S1), we see an improvement in the downstream performance
of the student. On the other hand, in the event of misalignment between the student and teacher objectives,
one can employ a projector network (see S5 vs. S1) to alleviate the impact of the mismatch and gain back the
performance of the student. In that case, the similarity between the teacher and the student is significantly
higher at the projector space when compared to the feature space (S5).

1https://github.com/vturrisi/solo-learn
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Table 12: Floating Point Operations per Second (GFLOPS) and latency per epoch during
training of the proposed approach ProFeAT when compared to the baseline DeACL for ResNet-18 and
WideResNet-34-10 models. The computational overhead during training is marginal with the addition of the
projection layer, and reduces further for larger capacity models.

ResNet-18 WideResNet-34-10
GFLOPS Time/epoch #Params(M) GFLOPS Time/epoch #Params(M)

DeACL 671827 51s 11.27 6339652 4m 50s 46.28
ProFeAT (Ours) 672200 51s 11.76 6340197 4m 50s 46.86
% increase 0.056 0.00 4.35 0.009 0.00 1.25

Likewise, we show a similar behavior in the setting of adversarial self-supervised distillation in Table 3. Let’s
again consider the case when there’s no projector. When using CE loss for linear probing (A3 vs. A1),
using a supervised AT teacher for adversarial distillation (A3) which is also trained using CE loss, results in
much better student performance compared to a self-supervised teacher (A1) which has been trained using a
similarity-based objective, like a contrastive loss. On the other hand, when the linear probing objective is
changed instead to a similarity-based loss (A2: cos(T , S)), the mismatch of the student with a self-supervised
teacher vanishes, and we recover the student performance (note similar clean performance of A2 and A3,
w.r.t. A1). In the case of using a projector network, we see an improvement in the performance of the student
model even when distilled SSL teacher for distillation and linear probed using CE loss (A4 vs. A1).

Details on Linear Probing: To evaluate the performance of the learned representations, we perform
standard linear probing by freezing the adversarially pretrained backbone as discussed in Section 2 of the
main paper. We use a class-balanced validation split consisting of 1000 images from the train set and perform
early-stopping during training based on the performance on the validation set. The training is performed for
25 epochs with a step learning rate schedule where the maximum learning rate is decayed by a factor of 10 at
epoch 15 and 20. The learning rate is chosen amongst the following settings — {0.1, 0.05, 0.1, 0.5, 1, 5}, with
SGD optimizer, and the weight decay is fixed to 2e−4. The same evaluation protocol is used for the best
baseline DeACL (Zhang et al., 2022) as well as the proposed approach ProFeAT, for both in-domain and
transfer learning settings.

Details on Transfer Learning: To perform transfer learning using Adversarial Full-Finetuning, a robustly
pretrained base model is used as an initialization, which is then adversarially finetuned using TRADES Zhang
et al. (2019) for 25 epochs. After finetuning, the model is evaluated using linear probing on the same transfer
dataset. We consider STL-10 Coates et al. (2011) and Caltech-101 Li et al. (2022) as the transfer datasets.
Caltech-101 contains 101 object classes and 1 background class, with 2416 samples in the train set and 6728
samples in the test set. The number of samples per class range from 17 to 30, and thus is a suitable dataset
to highlight the practical importance of lightweight finetuning of an adversarial self-supervised pretrained
representations for low-data regime.

Compute: The following Nvidia GPUs have been used for performing the experiments reported in this
work - V100, A100, and A6000. Each of the experiments are run either on a single GPU, or across 2 GPUs
based on the complexity of the run and GPU availability. Uncertainty estimates in the main SOTA table
(Table 4 of the main paper) were obtained on the same machine and with same GPU configuration to ensure
reproducibility. For 100 epochs of single-precision (FP32) training with a batch size of 256, the proposed
approach takes ∼8 hours and ∼16GB of GPU memory on a single A100 GPU for WideResNet-34-10 model
on CIFAR-100.

E Computational Complexity

In terms of compute, both the proposed method ProFeAT and DeACL (Zhang et al., 2022) lower the overall
computational cost when compared to prior approaches. This is because self-supervised training in general
requires larger number of epochs (1000) to converge (Chen et al., 2020b; He et al., 2020) when compared to
supervised learning (<100). Prior approaches like RoCL (Kim et al., 2020), ACL (Jiang et al., 2020) and
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Table 13: Ablation on Projector training configuration (CIFAR-100, WRN-34-10): Performance
(%) using variations in projector (proj.) initialization (init.) and trainability. SA: Standard Accuracy, RA-G:
Robust accuracy against GAMA attack.

Ablation Student proj. Proj. init. (Student) Teacher proj Proj. init. (Teacher) SA RA-G
AP1 Absent - Absent - 55.35 27.86
AP2 Trainable Random Absent - 63.07 26.57
AP3 Frozen Pretrained Absent - 40.43 22.23
AP4 Trainable Pretrained Absent - 62.89 26.57
AP5 Trainable Random (common) Trainable Random (common) 53.43 27.23
AP6 Trainable Pretrained (common) Trainable Pretrained (common) 54.60 27.41
AP7 Trainable Pretrained Frozen Pretrained 58.18 27.73
Ours Frozen Pretrained Frozen Pretrained 61.05 27.41

Table 14: Ablation on Projector architecture (CIFAR-100, WRN-34-10): Performance (%) obtained
by varying the projector configuration (config.) and architecture (arch.). A non-linear projector effectively
reduces the gap in clean accuracy between the teacher and student. A bottleneck architecture for the projector
is worse than other variants. SA: Standard Accuracy, RA-G: Robust Accuracy against GAMA attack.

Ablation Projector config. Projector arch. Teacher SA Student SA Drop in SA % Drop in SA RA-G
APA1 No projector - 70.85 55.35 15.50 21.88 27.86
APA2 Linear layer 640-256 68.08 53.35 14.73 21.64 27.47
Ours 2 Layer MLP 640-640-256 70.85 61.05 9.80 13.83 27.41
APA3 3 Layer MLP 640-640-640-256 70.71 60.37 10.34 14.62 27.37
APA4 2 Layer MLP 640-640-640 69.88 61.24 8.64 12.36 27.36
APA5 2 Layer MLP 640-2048-640 70.96 61.76 9.20 12.97 26.66
APA6 2 Layer MLP 640-256-640 69.37 57.87 11.50 16.58 27.56

AdvCL (Fan et al., 2021) combine the contrastive training objective of SSL approaches and the adversarial
training objective. Thus, these methods require larger number of training epochs (1000) for the adversarial
training task, which is already computationally expensive due to the requirement of generating multi-step
attacks during training. ProFeAT and DeACL use a SSL teacher for training and thus, the adversarial
training is more similar to supervised training, requiring only 100 epochs. In Table 11, we present the
approximate number of forward and backward propagations for each algorithm, considering both pretraining
of the auxiliary network used and the training of the main network. It can be noted that the distillation based
approaches - ProFeAT and DeACL require significantly lesser compute when compared to prior methods, and
are only more expensive than supervised adversarial training. In Table 12, we present the FLOPS required
during training for the proposed approach and DeACL. One can observe that there is a negligible increase in
FLOPS compared to the baseline approach.

F Additional Results

F.1 More ablations on the Projector

Training configuration of the Projector: We present ablations using different configurations of the
projection layer in Table 13. As also discussed in Section 4.1 of the main paper, we observe a large boost in
clean accuracy when a random (or pretrained) trainable projection layer is introduced to the student (AP2/
AP4 vs. AP1 in Table 13). While the use of pretrained frozen projection head only for the student degrades
performance considerably (AP3), the use of the same for both teacher and student (Ours) yields a optimal
robustness-accuracy trade-off across all variations. The use of a common trainable projection head for both
teacher and student results in collapsed representations at the projector output (AP5, AP6), yielding results
similar to the case where projector is not used for both teacher and student (AP1). This issue is overcome
when the pretrained projector is trainable only for the student (AP7).
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Ablation Teacher Student SA RA-G
AG1 PC PC 56.57 25.29
AG2 AuAu AuAu 60.76 27.21
AG3 PC1 PC2 56.95 25.39
AG4 AuAu1 AuAu2 59.51 28.15
AG5 AuAu PC 57.28 26.14
Ours PC AuAu 61.05 27.41

Table 15: Ablation on Augmentations used (CIFAR-100,
WRN-34-10): Performance (%) using different augmentations for
the teacher and student. (PC: Pad+Crop, AuAu: AutoAugment).
Standard Accuracy (SA) and Robust accuracy (RA-G) reported.
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Figure 5: Robust accuracy of a supervised
TRADES model across random restarts of PGD
5-step attack (CIFAR-100, WRN-34-10).

Architecture of the Projector: In the proposed approach, we use the following 2-layer MLP projector
architecture for both SSL pretraining of the teacher and adversarial training of the student: (1) ResNet-18:
512-512-256, and (2) WideResNet-34-10: 640-640-256. In Table 14, we present results using different
configurations and architectures of the projector. Firstly, the use of a linear projector (APA2) is similar to
the case where projector is not used for student training (APA1), with ∼ 21% drop in clean accuracy of the
student with respect to the teacher. This improves to 12 − 17% when a non-linear projector is introduced
(APA3-APA6 and Ours). The use of a 2-layer MLP (Ours) is marginally better than the use of a 3-layer
MLP (APA3) in terms of clean accuracy of the student. The accuracy of the student is stable across different
architectures of the projector (Ours, APA4, APA5). However, the use of a bottleneck architecture (APA6)
results in a higher drop in clean accuracy of the student.

F.2 Augmentation for the Student and Teacher

We present ablation experiments to understand the impact of different augmentations used for the teacher
and student separately in Table 15. The base method (AG1) uses common Pad and Crop (PC) augmentation
for both teacher and student. By using more complex augmentations —AutoAugment followed by Pad and
Crop (denoted as AuAu in the table), there is a significant improvement in both clean and robust accuracy.
By using separate augmentations for the teacher and student, there is an improvement in the case of PC
(AG3), but a drop in clean accuracy accompanied by better robustness in case of AuAu. Finally by using a
mix of both AuAu and PC at the student and teacher respectively (Ours), we obtain improvements in both
clean and robust accuracy, since the former improves attack diversity (shown in Figure 5), while the latter
makes the training task easier.

F.3 Attack Loss

For performing adversarial training using the proposed approach, attacks are generated by minimizing a
combination of cosine similarity based losses as shown in Equation (4) of the main paper. This includes an
unsupervised loss at the feature representations of the student and another loss between the representations
of the teacher and student at the projector. As shown in Table 16, we obtain a better robustness-accuracy
trade-off by using a combination of both losses rather than by using only one of the two losses, due to
better diversity and strength of attack. These results also demonstrate that the proposed method is not very
sensitive to different choices of attack losses.

F.4 Defense Loss

We present ablation experiments across variations in training loss at the feature space and the projection
head in Table 17. In the proposed approach (Ours), we introduce a combination of clean and robust losses
at both feature and projector layers, as shown in Equation (3) of the main paper. By introducing the loss
only at the features (AD1), there is a considerable drop in clean accuracy as seen earlier, which can be
recovered by introducing the clean loss at the projection layer (AD3). Instead, when only the robust loss is
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Table 16: Ablation on Attack Loss (CIFAR-100, WRN-34-10): Performance (%) with variations
in attack loss at feature (feat.) and projector (proj.). While the proposed defense is stable across several
variations in the attack loss, minimizing a combination of both losses cos(T , S) and cos(S, S) gives the best
robustness-accuracy trade-off. SA: Standard Accuracy, RA-G: Robust Accuracy against GAMA.

Ablation Attack @ feat. Attack @ proj. SA RA-G
AT1 cos(T , S) cos(T , S) 60.84 26.78
AT2 cos(S, S) cos(S, S) 61.30 26.75
AT3 cos(T , S) cos(S, S) 60.69 27.44
AT4 cos(S, S) - 61.62 26.62
AT5 - cos(S, S) 61.09 27.00
AT6 cos(T , S) - 62.01 26.89
AT7 - cos(T , S) 61.18 27.24
Ours cos(S, S) cos(T , S) 61.05 27.41

Table 17: Ablation on Defense Loss (CIFAR-100, WRN-34-10): Performance (%) with variations
in training loss at feature (feat.) and projector (proj.). “clean" denotes the cosine similarity between
representations of teacher and student on clean samples. “adv" denotes the cosine similarity between
representations of the corresponding clean and adversarial samples either at the output of student (S, S) or
between the teacher and student (T , S). SA: Standard Accuracy, RA-G: Robust accuracy against GAMA.

Ablation Loss @ feat. Loss @ proj. SA RA-G
AD1 clean + adv(S, S) - 55.35 27.86
AD2 - clean + adv(S, S) 59.65 26.90
AD3 clean + adv(S, S) clean 61.69 26.40
AD4 clean + adv(S, S) adv(S, S) 49.59 25.35
AD5 adv(S, S) clean 59.72 1.38
AD6 adv(S, S) clean + adv(S, S) 59.22 26.50
AD7 clean clean + adv(S, S) 62.24 25.97
AD8 clean + adv(S, S) clean + adv(T , S) 63.85 23.91
AD9 clean + adv(T , S) clean + adv(T , S) 65.34 22.40
Ours clean + adv(S, S) clean + adv(S, S) 61.05 27.41

Table 18: Failure of AD5 (refer Table 17) defense loss for SSL-AT training of WRN-34-10 model
on CIFAR-100: Using clean and adversarial loss exclusively at projector and feature space respectively,
results in an unstable optimization problem, giving either a non-robust model or collapsed representations at
the end of training. As shown below, a lower value of β (the robustness-accuracy trade-off parameter) results
in a non-robust model, while higher β results in the learning of collapsed representations.

β Standard Accuracy (SA) Robust Accuracy against GAMA (RA-G)
1 67.34 0.46
5 51.99 0.71
10 31.34 7.81
50 11.59 2.55
100 8.23 2.61
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Table 19: Ablations on the accuracy of the teacher SSL model (CIFAR-100, WRN-34-10):
Performance (%) obtained by varying the number of epochs for which the standard self-supervised teacher
model is pretrained. Improvements in accuracy of the teacher result in corresponding gains in both standard
and robust accuracy of the student. SA: Standard Accuracy, RA-G: Robust Accuracy against GAMA.

#Epochs of PT Teacher SA Student SA Drop in SA % Drop in SA RA-G
100 55.73 49.37 6.36 11.41 20.86
200 65.43 56.16 9.27 14.17 24.15
500 69.27 59.62 9.65 13.93 26.75
1000 70.85 61.05 9.80 13.83 27.41

Table 20: Ablations on the algorithm used for training the self-supervised teacher model (CIFAR-
100, WRN-34-10): Performance (%) of the proposed approach by varying the pretraining algorithm of the
teacher model. A random trainable projector is used for training the student model, to maintain uniformity
in projector architecture across all methods. SA: Standard Accuracy, RA-G: Robust Accuracy against GAMA
attack.

Method (Teacher training) Teacher SA Student SA RA-G
SimCLR 67.98 62.20 26.13
SimCLR (tuned) 70.85 63.07 26.57
BYOL 72.97 63.19 26.82
Barlow Twins 67.74 60.69 24.48
SimSiam 68.60 63.46 26.69
MoCoV3 72.48 65.57 26.65
DINO 68.75 60.61 24.80

introduced at the projection layer (AD4), there is a large drop in clean accuracy confirming that the need for
projection layer is mainly enforcing the clean loss. When the combined loss is enforced only at the projection
head (AD2), the accuracy is close to that of the proposed approach, with marginally lower clean and robust
accuracy. Enforcing only adversarial loss in the feature space, and only clean loss in the projector space is a
hard optimization problem, and this results in a non-robust model (AD5). As shown in Table 18, even by
increasing β in AD5, we do not obtain a robust model, rather, there is a representation collapse. Thus, as
discussed in Section 4.1 of the main paper, it is important to introduce the adversarial loss as a regularizer in
the projector space as well (AD6). Enforcing only one of the two losses at the feature space (AD6 and AD7)
also results in either inferior clean accuracy or robustness. Finally from AD8 and AD9 we note that the
robustness loss is better when implemented as a smoothness constraint on the representations of the student,
rather than by matching representations between the teacher and student. Overall, the proposed approach
(Ours) results in the best robustness-accuracy trade-off.

F.5 Accuracy of the self-supervised teacher model

The self-supervised teacher model is obtained using 1000 epochs of SimCLR (Chen et al., 2020b) training in
all our experiments. We now study the impact of training the teacher model for lesser number of epochs. As
shown in Table 19, as the number of teacher training epochs reduces, there is a drop in the accuracy of the
teacher, resulting in a corresponding drop in the clean and robust accuracy of the student model. Thus, the
performance of the teacher is crucial for training a better student model.

F.6 Self-supervised training algorithm of the teacher

In the proposed approach, the teacher is trained using the popular self-supervised training algorithm SimCLR
(Chen et al., 2020b), similar to prior works (Zhang et al., 2022). In this section, we study the impact of
using different algorithms for the self-supervised training of the teacher and present results in Table 20. In
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order to ensure consistency across different SSL methods, we use a random trainable projector (2-layer MLP
with both hidden and output dimensions of 640) for training the student and do not employ any projection
head for the pretrained frozen teacher. While the default teacher trained using SimCLR was finetuned across
hyperparameters, we utilize the default hyperparameters from the solo-learn Github repository for this
table, and thus present SimCLR also without tuning for a fair comparison. For uniformity, we report all
results with β = 8 (the robustness-accuracy trade-off parameter). From Table 20, we note that in most
cases, the clean accuracy of the student increases as the accuracy of the teacher improves, while the robust
accuracy does not change much. We note that this table merely shows that the proposed approach can be
effectively integrated with several base self-supervised learning algorithms for the teacher model. However,
it does not present a fair comparison across different SSL pretraining algorithms, since the ranking on the
final performance of the student would change if the pretraining SSL algorithms were used with appropriate
hyperparameter tuning.
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