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ABSTRACT

Emergent communication aims for a better understanding of human language evo-
lution and building more efficient representations. We posit that reaching these
goals will require scaling up, in contrast to a significant amount of literature that
focuses on setting up small-scale problems to tease out desired properties of the
emergent languages. We focus on three independent aspects to scale up, namely
the dataset, task complexity, and population size. We provide a first set of re-
sults for large populations solving complex tasks on realistic large-scale datasets,
as well as an easy-to-use codebase to enable further experimentation1. In more
complex tasks and datasets, we find that RL training can become unstable, but re-
sponds well to established stabilization techniques. We also identify the need for
a different metric than topographic similarity, which does not correlate with the
generalization performances when working with natural images. In this context,
we probe ease-of-learnability and transfer methods to assess emergent languages.
Finally, we observe that larger populations do not induce robust emergent proto-
cols with high generalization performance, leading us to explore different ways to
leverage population, through voting and imitation learning.

1 INTRODUCTION

Language emergence is at the intersection of cognitive science and machine learning. From a cogni-
tive science view, researchers have been looking at artificial agents as another expressive species to
shed light on the source of linguistic regularities (Wagner et al., 2003; Guo et al., 2019; Chaabouni
et al., 2021). From a machine learning view, language evolution is deemed as a promising direction
to shape agents’ representation and design interactive AI (Steels, 1997; Lazaridou et al., 2020).

Most of the literature in this field relies on different variants of the Lewis game (Lewis, 1969).
There, a speaker network must describe an object to a listener network, which must then retrieve it
among a set of other objects. To solve the game, the two agents need to settle on a communication
protocol. While deep agents manage to solve the Lewis game, their communication protocols are
usually degenerate, lacking core properties of human languages (Bouchacourt & Baroni, 2018;
Chaabouni et al., 2019). In response to these findings, several works proposed ad-hoc solutions
by constraining the game and agents’ capacity (Kottur et al., 2017; Resnick et al., 2020). While
reducing problem complexity is tempting, it can lead to unexpected outcomes and may miss general
language emergence behaviors (Hayes, 1985). We take a different route and advocate that scaling
up communication games is a prerequisite to building interactive AI (Baroni et al., 2017; Sutton,
2019) or modeling language evolution (Barsalou, 2008). Indeed, contrary to other machine learning
communities, the emergent communication field mostly relies on small-scale games where only one
speaker and one listener communicate about disentangled stimuli, which can hinder the generality of
its conclusions. In this paper, we focus on three scaling dimensions: the dataset, the task complexity,
and the population size. That is, we argue that making populations of deep agents communicate
about larger and more realistic datasets and solve more complex tasks, is necessary if in the end we
want these agents to interact with us or if we want to model human communication.

We study three properties of emergent languages: generalization, robustness to input noise, and ease
of learning over transfer tasks, analyzing different facets of communication protocols. The proposed
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scaling up remains computationally tractable, as most of the experiments can be done within a day
on a single GPU. The source code is based on the Jaxline pipeline (Babuschkin et al., 2020).

Overall, our experiments provide a large spectrum of observations, both positive and negative. First,
we found that scaling up the Lewis game quickly entails unstable RL optimization. We propose KL
regularization (Geist et al., 2019) as an effective way to overcome this issue. Second, we observe
that complexifying the task has two positive aspects: it better discriminates between methods and
improves the generalization of the learned communication protocol. Third, we note no correlation
between generalization and the widely used topographic similarity metric, which suggests that the
latter is not adequate to assess the compositionality of the languages in our more complex setup. In-
stead, we take inspiration from the self-supervised learning literature and explore transfer learning as
a new evaluation metric. Fourth, unlike what was observed in human communication (Gary Lupyan,
2010; Raviv et al., 2019a;b), we find little to no systematic benefit on emergent languages’ properties
when increasing the population size. Instead, we propose alternative methods to leverage popula-
tions, namely voting and imitation among speakers (Hester et al., 2018; Vecerik et al., 2017). In
particular, we show that such population dynamics lead to more robust, productive, and in some
cases easy-to-learn languages even when compared to our best seed without population, opening
up new research opportunities. In the end, we expect that these observations, baselines, and good
practices would allow the language emergence community to benefit further from deep RL advances
and move the field closer to its goals of improving representations and interactive systems.

2 SETUP

2.1 DISCRIMINATION GAME

The discrimination game involves two players, Speaker and Listener, and is decomposed into three
sequential stages. First, Speaker receives a target image x and outputs a message m that is sent to
Listener. Second, Listener receives m and selects an image x̂ among a set C of different images
containing the target image x. The set C is called candidates. Finally, the target image x is revealed
to Listener. If Listener selects the target image, then both players receive a positive reward of 1, and
0 otherwise. Speaker and Listener are parameterized by a set of parameters θ and φ respectively. The
message m(x, θ) = (wt(x, θ))

T−1
t=0 is a sequence of length T of words wt(x, θ). When no confusion

is possible, we omit the dependence on x and θ to simplify notations. A word wt is an element of a
finite vocabulary setW . For the image selected by Listener x̂(φ,m, C), we also omit the dependence
on φ, m and C. Finally, the reward for Listener and Speaker is denoted by R(x, x̂) = 1x=x̂.

Communication in a population of agents. A straightforward extension of the standard discrimi-
nation game is to train a population of agents. In this case, given a population of N Speakers and N
Listeners, we sample S Speakers and S Listeners with replacement at each training step to construct
S random pairs; where each Speaker is paired with only one Listener.2 All pairs observe the same
examples and are trained independently to play the discrimination game as described in the 1-pair
setting above. In our case, S = N so that each agent is trained on average once per step, which
allows a fair comparison with the baseline of 1-pair. At inference time, we take the first P Speak-
ers and Listeners and construct all the possible P 2 pairs to compute the accuracy, by averaging the
rewards of all pairs as in (Mordatch & Abbeel, 2018).

Exploiting the population. The training dynamic of the population of agents described above does
not take advantage of the diversity of the population. Indeed, we treat all agents in the same way.
Yet, one motivation for the effectiveness of the population is the variety between Speakers to invent
new structures and between Listeners to avoid over-specialization (Bromham et al., 2015). Prior
works have looked at the impact of training agents with different dynamics (e.g., Ren et al., 2019;
Guo et al., 2019; Cogswell et al., 2019; Li & Bowling, 2019). In this work, we introduce two
different ways to exploit the population; on Speakers’ side, we add imitation, and on Listeners’ side,
we allow Listeners to vote to get the final prediction. Mathematical details are found in Sec. 2.3.
Imitation training consists of two different steps. First, as described above, Speakers and Listeners
are paired randomly for M interaction steps to learn to communicate. Second, Speakers are trained
for 1 imitation step as follows: we select the best Speaker (called “teacher”) among K randomly
sampled Speakers without replacement, and use the remaining K-1 samples as “students”. We then
train all students in a supervised way to imitate the teacher. We alternate between the interaction

2In this work, we only consider populations with the same number of Speakers and Listeners.
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and imitation steps. Both M and K are hyper-parameters (see Appendix A.5). Finally, Voting is
only used at inference time, irrespective of the training mode. Here, instead of averaging P 2 pairs’
rewards to compute accuracy, we now allow P Listeners to vote to get a unique prediction. This is
inspired by ensemble methods to reduce prediction errors (Polikar, 2012). More details on imitation
and voting are reported in Sec. 2.3. For completeness, we also reproduce ease-of-teaching protocol
as another effective way to exploit population in Appendix B.4 (Li & Bowling, 2019).

2.2 DATASETS AND NEURAL ARCHITECTURES

Datasets. We use the ImageNet (Deng et al., 2009; Russakovsky et al., 2015), and CelebA
datasets (Liu et al., 2015), which respectively contain 1400k and 200k labelled images. CelebA
contains 40 binary attributes per image, such as the presence of glasses, blond hair. As the official
CelebA splits have non-overlapping identities, it is impossible to perform regular identity classifica-
tion on the test/valid sets. We thus construct a new split, where we shuffle images to have overlapping
identities across splits. In both datasets, each image is center-cropped before being processed by a
ResNet-50 encoder f pretrained on ImageNet with the self-supervised method BYOL (Grill et al.,
2020) to extract a representation of size 2048. Full implementation details are in Appendix A.6.

Speaker architecture. Speaker is a neural network that receives an image x and outputs a mes-
sage m = (wt)

T−1
t=0 . It is composed of a fixed (non-trainable) image encoder f that transforms

x into an embedding f(x), before being projected by a state adapter cθ to an initial state of an
LSTM (Hochreiter & Schmidhuber, 1997), z−1,θ = cθ(f(x)). The LSTM receives as input a word
embedding et,θ = gθ(wt−1) and outputs the next state zt,θ = hθ(zt−1,θ, et,θ). The first word em-
bedding e0,θ = gθ(sos) is initialized with a start of sequence. The state zt,θ is then fed to two
different heads; the value head vθ estimates the value of the expected reward knowing zt,θ and the
policy head πθ computes the probability of the chosen word given zt,θ. Then, a sampling function
s picks the word wt = s(πθ(.|zt,θ)). Finally wt is fed back to gθ to produce the next word and
so on until the maximum length T is reached. At training, the word wt is sampled according to
the policy whereas it is greedily selected at evaluation. Contrary to prior works (e.g., Kottur et al.,
2017; Resnick et al., 2020), we do not restrict the channel capacity of agents to spur the emergence
of systematic languages. Instead, we endow Speaker with a message space of size |W |T = 2010

(|W | = 20, T = 10), significantly larger than the number of available training examples.

Listener architecture. Listener is a neural network that receives Speaker’s message m and a set
of image candidates C, containing the target image x. It outputs the probability over each image
x̃ ∈ C of being the target image. Listener is composed of an LSTM cell hφ, which is initialized to
the null vector z−1,φ. The message m is decoded by processing the sequence of word embeddings
et,φ = gφ(wt) through the LSTM such as zt,φ = hφ(zt−1,φ, et,φ). The state zT−1,φ is then fed to the
network pφ to output pm,φ = pφ(zT−1,φ). In parallel, each image x̃ is projected through the encoder
f and the network tφ to obtain the image embedding tx̃ = tφ(f(x̃)). Both message and image
embeddings are then compared through a score function score(m, x̃, φ) = cos(

pm,φ
‖pm,φ‖2 ,

tx̃
‖tx̃‖2 ).

The scores over all images are normalized via a softmax to get a probability πφ(.|m, C). Finally,
Listener selects an image by taking the best guess according to πφ, i.e. x̂ ∈ argmaxx̃∈C πφ(x̃|m, C).
Architecture details, hyper-parameters and graphical descriptions are provided in Appendices A.2
and A.4. All experiments are run over 10 seeds.

2.3 OPTIMIZATION

Speaker training and loss. The goal of Speaker is to optimize the message m sent to Listener such
that the expected reward of the game is the highest possible. This can be framed as a sequential
decision making problem where the decision is the choice of each word wt. Therefore, following
the policy gradient approach with a baseline (Sutton et al., 2000), we train Speaker’s network by (i)
minimizing a value loss LV (θ) to make the value head vθ(zt,θ) fit the expected reward over a batch
X : LV (θ) = 1

|X |
∑
x∈X

∑T−1
t=0 (R(x, x̂)− vθ(zt,θ))2 , (ii) maximizing the expected reward through

minimizing the policy loss Lπ(θ) = 1
|X |
∑
x∈X

∑T−1
t=0 sg (R(x, x̂)− vθ(zt,θ)) log(πθ(wt|zt,θ)),

where sg(.) is the stop gradient function.

In addition, it is common practice in RL and emergent language literature to minimize an entropy
loss LH(θ) encouraging to explore other choices of words by Speaker (Mnih et al., 2016; Williams
& Peng, 1991; Espeholt et al., 2018). Finally, several deep RL (Schulman et al., 2015; 2017) and
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theoretical RL papers (Geist et al., 2019; Vieillard et al., 2020a;b) argued that minimizing a KL
loss LKL(θ) between the online policy πθ and a target policy πθ instead of or in addition to entropy
regularization could be beneficial for better final performance as well as stabilizing the learning.
The policy πθ is obtained by doing an exponential moving average of the weights θ over training:
θ ← (1 − η)θ + ηθ where η is the exponential moving average parameter. The KL minimization
encourages the online policy to change slowly and smoothly.
To sum up, the speaker training loss L(θ) on a batch of images X is: L(θ) = LV (θ) + Lπ(θ) +
αLH(θ) + βLKL(θ), where α and β are hyper-parameters.

Listener training and loss. Listener is also trained to maximize the reward but acts by predicting
the best guess for the game x̂ ∈ argmaxx̃∈C πφ(x̃|m, C). For each image x in a batch X , a set of
image candidates C is sampled randomly (uniform without replacement over X \ {x}) chosen in X .
When |C| = |X |, we take C = X . Finally, Listener’s goal is to retrieve x among C, i.e. outputting
a probability πφ(x̃|m, C) = 1 if x = x̃ and πφ(x̃|m, C) = 0 otherwise. Therefore, we use a multi-
class classification loss where the correct class is the index of x in the set of candidates C also called
InfoNCE loss (van den Oord et al., 2018): L(φ) = − 1

|X |
∑
x∈X log (πφ(x|m, C)).

Imitation training among a group of Speakers. In a training imitation step, a group ofK speakers
among the total population of N speakers is sampled without replacement. Among those K speak-
ers, one speaker plays the role of the teacher and K − 1 play the role of the students. To choose
the teacher, we compute, for each sampled speaker i, the exponential moving average of the accu-
racies over each batch on which the speaker i has been trained on, σi. Then the teacher is simply
the speaker with the highest σi. For convenience,we respectively note θT and θS the parameters of
the teacher and student. A student θS is trained on a batch of data X by imitating the messages of
the teacher θT with the following loss: LI(θS) = − 1

|X |
∑
x∈X

∑T−1
t=0 log πθS (wt(x, θT )|x, zθS ,t),

where LI(θS) is a cross-entropy loss to encourage a student to output the same words as the teacher.

Listener’s voting at inference time. At inference time, we can use all listeners (φi)N−1i=0 of the pop-
ulation as an ensemble of networks. Together, they vote for a joint guess x̂ over a set of candidates
C of images for a message m coming from a speaker. One simple way consists in averaging the
score probabilities of the listeners and taking the best guess of this average. Formally, for each lis-
tener φi, each message m and batch X , we have the score probability πφi(.|m, C). Then the choice
x̂(m, C, (φi)N−1i=0 ) of the population of listeners for the message m and the set C is the best guess of
the average distribution which is x̂(m, C, (φi)N−1i=0 ) = argmaxx̃∈C

1
N

∑N−1
i=0 πφi(x̃|m, C).

More details about how we derive the different losses are found in Appendix A.3.
2.4 LANGUAGE PROPERTIES

Generalization. It measures the ability of agents to communicate about never-seen inputs. To com-
pute generalization, we simply report test accuracy. In the simple case where inputs are constructed
by disentangled attributes, test inputs are new combinations of previously seen attributes at training.

Robustness. We report agents’ drop of accuracy when faced with noisy inputs relatively to clean
inputs at test time. To construct noisy stimuli, we add a Gaussian noise for each batch, with mean
0 and a standard deviation that is half of the standard deviation of the batch. Note that we sample
different noises for Speakers’ and Listeners’ inputs. That is, while Listeners are trained to find the
exact input of Speakers at train time, they are now required to uncover a different input at eval time.

Topographic Similarity (TopSim). TopSim (Brighton & Kirby, 2006) is used as a proxy for com-
positionality (e.g., Li & Bowling, 2019; Lazaridou et al., 2018), and it is widely considered crucial
for generalization (Fodor & Lepore, 2002; Marcus, 2003). TopSim tests whether close objects in the
input space are described by close messages by computing the Spearman correlation between the
pairwise distances in the input and message spaces. Following prior works, we use the edit-distance
and the cosine-distance in the message and input spaces respectively.

Ease and transfer learning (ETL). It captures how fast and well the emergent language is transmit-
ted to new Listeners performing a distinct task. It is similar to the ease-of-teaching (Li & Bowling,
2019) to the exception that Listeners are trained to solve a different task from the initial one that
the emergent language was optimized for. This task transfer is inspired by the self-supervised linear
evaluation protocol (Chen et al., 2020). To measure ETL, we take min(N, 5) fixed Speakers from
the population after convergence, and feed their deterministic language to 3 newly initialized Lis-
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teners. We argmax from Speakers’ distribution to construct the deterministic languages. Finally, we
show how fast and well new Listeners perform in a given task when trained on fixed languages by
reporting the training curve for 10k steps. We look at the ease of learning when Listeners are trained
to solve harder discrimination, classification, and image reconstruction tasks. Hence, ETL not only
captures the generality of the language to new Listeners but also its ability to transfer to new tasks.

3 EXPERIMENTS

3.1 TASK SCALING UP: INCREASING THE NUMBER OF CANDIDATES

In the emergent communication literature, agents are typically required to discriminate between less
than 20 objects (Mu & Goodman, 2021) or reconstruct hand-crafted attributes (Rita et al., 2020).
Yet, this simple training setting was shown to sometimes lead to degenerate communication proto-
cols (Bouchacourt & Baroni, 2018). As highlighted by (Dessı̀ et al., 2021; Guo et al., 2021), the
Lewis game is a discrete variant of Contrastive Predictive Coding in the self-supervised learning
field (van den Oord et al., 2018). There, it was observed that the intermediate representation qual-
ity improved when increasing the number of candidates (He et al., 2019). We hence look at the
impact of the number of candidates |C| on languages generalization and the technical challenges it
introduces. In this subsection, we consider the 1-pair setting trained on ImageNet while varying |C|.
Scaling up task difficulty requires to carefully tune optimization. We first train agents without
KL regularization (β = 0) as it is commonly done in the field (see e.g., Strub et al., 2017; Cao
et al., 2018; Lu et al., 2020, among many others). As displayed in Fig. 1(a), the training becomes
unstable when increasing the number of candidates from 20 to 1024 candidates. The mean train
accuracy drops from 98.9% to 76.0%, and we observe a large variance across seeds. This high
variance demonstrates how crucial it is to run multiple seeds to state robust conclusions. A remedy
against such instability in RL consists in adding a KL regularisation LKL loss between the online
policy and a target policy as described in Sec. 2.3. Such a solution has yet not been explored in the
emergent communication field. We add a KL regularization with a coefficient β = 0.5 and display
the results in Fig. 1(b). We note that, with this better regularization, 20 and 1024 candidates converge
to 99.8% and 98.3% mean accuracy respectively with small variance during training. Adding LKL
thus stabilizes the training and leads to better performances. We illustrate further the effect of this
regularization across multiple sweeps in Appendix B.3.
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(a) KL coefficient β = 0.0

50K 100K 150K 200K 250K 300K
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

20
1024

(b) KL coefficient β = 0.5

Figure 1: Training curves per task complexity (20 vs. 1024 candidates) w/ and w/o KL regularization
on ImageNet. Thin lines are the accuracy of 10 seeds while thick lines represent the mean.

Scaling up task difficulty is necessary to differentiate representations and enhance protocol’s
generalization. In Fig. 2(a), we train 1-pair of agents on different number of candidates ranging
from 64 to 1024 and evaluate them on 16 candidates.3 Note that, in the literature, the number of dis-
tractors rarely exceeds a dozen both at train and eval times (Mu & Goodman, 2021; Li & Bowling,
2019). In such settings, our experiments do not provide any interesting conclusions: all methods
are above 99.7% test accuracy and within standard deviation. However, when evaluating the same
communication protocols now on harder tasks with 1024 candidates, as shown in Fig. 2(b), we note
that these protocols are actually different. In particular, agents achieve an accuracy of 87.36%,
93.25%, 96.09% when trained on 64, 256, and 1024 candidates respectively, differentiating the var-
ious representation’s generalization capacity. While expected in light of the recent self-supervised
results (Chen et al., 2020) - harder training tasks lead to better representation and harder evaluation
tasks better discriminate algorithms - these results clearly illustrate how current emergent language

3We kept the training batch size to 1024, and only varied the number of candidates in the InfoNCE loss.
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experiments may be ill-scaled to have robust conclusions. We report further experiments in Ap-
pendix B.5. In the following, we use 1024 candidates at train and eval to fully leverage our findings.
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(a) Num candidates (eval): 16
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(b) Num candidates at (eval): 1024
Figure 2: Test accuracy for different |C| at train (lines) and eval (subplot) times on ImageNet. (a)
Easy eval task: no differentiation between methods. (b) Hard eval task: more candidates at training
induces higher test accuracy. Shaded region represents the standard deviation across 10 seeds.

3.2 DATASET SCALING UP: RETHINKING EVALUATION

In most emergent communication works, deep agents are situated in a simple disentangled environ-
ment where objects are one-hot vectors (Kottur et al., 2017; Li & Bowling, 2019). As a result, the
state space rarely goes beyond a few thousands of discrete samples. Besides, such representations
are unambiguous as they are inherently compositional. We argue that such environments may be
too simplistic to reach complex or diverse communication behaviors. In contrast, the major success
stories in machine learning collectively prove the importance of training neural networks on a rich
and large amount of data to emulate complex distributions (Brown et al., 2020; Krizhevsky et al.,
2012; Sutton, 2019). Furthermore, if the goal is to reproduce human interaction, it is fundamen-
tal to incorporate complex stimuli to develop advanced concepts in language evolution (Miller &
Johnson-Laird, 1976; Barsalou, 2008). In this subsection, we scale up the input space by using large
natural image datasets, namely ImageNet and CelebA. In particular, we investigate further emergent
language properties in the same setting of 1-pair of agents while varying |C| at train time.

TopSim ImageNet CelebA
Training Image Image Attributes

|C| = 16 15.50±0.61 31.92±1.32 14.22±1.36

|C| = 64 19.01±0.35 28.7±0.56 12.23±0.76

|C| = 256 17.06±1.09 30.69±1.04 12.29±1.27

|C| = 1024 16.52±1.16 30.21±1.22 13.49±0.89

Figure 3: (left) TopSim (x100) with different representation of the input space (Image and Attributes)
for different training difficulties, |C|. We do not observe a correlation between TopSim and |C|, and
thus generalization. ± denotes 1 standard error of the mean. (right) Example of predicted images by
new Listener trained on reconstruction task given a message of 1-pair for |C|=1024. Reconstructions
are expected to be blurry, as we are regressing the mean of all faces associated to one message.

TopSim may fall short with natural images. We compute TopSim using the pretrained image log-
its on ImageNet and CelebA as input representation while varying the task complexity at train, |C|.
Results are provided in Fig. 3(left). We do not observe a consistent pattern between TopSim and |C|.
Furthermore, we note a non-significant (p-value>0.19) Spearman correlation of−0.09 and 0.08 be-
tween TopSim and generalization for ImageNet and CelebA respectively. Although pretrained logits
are excellent linear features (Grill et al., 2020), they may not be compositional. We thus reiterate
the evaluation by using the attributes from CelebA as input representation to compute TopSim. In
that case too we do not note any significant correlation (p-value=0.13). Similar findings have been
observed in (Andreas, 2019; Chaabouni et al., 2020). This could be due to different reasons. First,
agents could be communicating in a compositional way, to support good generalization, by encoding
unexpected compositional features that are not labeled, like forehead shape or smile angle. That is,
human-labeled features may differ from the agents’ ones. Second, TopSim relies on strong assump-
tions, such as the chosen distance, and the use of a linear correlation. Such hypotheses may not
hold when moving from artificial to realistic data. Finally, due to the large channel capacity, agents
could be using synonyms to generalize with low TopSim values. In sum, our results demonstrate that
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Table 1: Evaluation of Speakers on multiple settings on CelebA in %. ± denotes one standard error
of the mean. We report final accuracy for all ETL tasks but Recons. where we report the final loss.

Metrics Generalization Ease and Transfer Learning
Training Accuracy ↑ Discr. ↑ Identity ↑ Attributes ↑ Recons. ↓
|C| = 16 74.50±0.96 56.31±1.07 15.52±0.90 86.99±0.10 2448±16
|C| = 64 80.19±0.63 66.53±1.09 23.12±1.06 87.91±0.11 2419±12
|C| = 256 85.03±0.72 76.61±1.14 33.72±1.52 88.81±0.16 2355±13
|C| = 1024 89.00±0.48 83.57±0.78 44.00±1.26 90.08±0.13 2351±14

TopSim is not a good predictor of communication protocol generalization for large-scale settings.
Instead, we investigate the information content via ETL.

ETL is a robust metric to evaluate languages with natural images. ETL, contrary to TopSim,
evaluates how useful the emergent language is for a target task beyond overfitting. As such it is
an important metric, since the goal of emergent communication is to endow agents with commu-
nication skills, rather than solving a specific game. Results are reported in Table 1 over distinct
tasks on CelebA. We observe that, even though ETL only looks at the information content and not at
compositionality, it is a better predictor for language generalization performances than TopSim, with
a strong and significant correlation >0.90 (p-value∼0) for all considered tasks. As a visual sanity
check, we generate predicted images of the reconstruction ETL task in Fig. 3(right). There, a new
Listener is trained to minimize an l2 loss with the target images given the precomputed messages.
We observe that gender, makeup, and hair color are fairly encoded, while others such as the smile
are not. More samples and training details are available in Appendix B.1. Interestingly, some ETL
tasks, like discrimination or reconstruction, do not depend on (human-)predefined input representa-
tions, and are all more robust to channel capacity and linearity assumptions, as opposed to TopSim,
which makes ETL a more general evaluation metric.

Zero-shot dataset transfer highlights emergent protocols’ differences and limits. Scaling up
to natural image opens a large diversity of visual distributions that we can leverage by using zero-
shot dataset transfer (Yogatama et al., 2019; Lambert et al., 2020). We hence measure how generic
and high-level the emergent protocols are. We take agents trained on ImageNet with |C|=1024, and
evaluate them on CelebA in a zero-shot fashion. There, the mean accuracy dropped from 95.96 to
36.73, and the standard deviation raised from 0.49 to 12.86. Noticeably, the most different agents
obtain a zero-shot accuracy of 27.88 and 68.49, while their initial ImageNet accuracy only differed
by 0.23. Firstly, such a standard deviation gap suggests that different emergent protocols have
emerged between agent pairs. Secondly, the accuracy drop indicates that the emergent protocols
remain specific to the initial data-distribution, and no systematic language has yet emerged.

3.3 POPULATION SCALING UP: EXPLOITING THE POPULATION DYNAMIC

The emergent communication literature often considers a single pair of agents (Lazaridou et al.,
2017; Foerster et al., 2016). However, there is evidence in the multi-agent literature that such a set-
ting may lead to extreme co-adaptation and overfitting (Lanctot et al., 2017). One counter-measure
consists of sampling agents within a population (Jaderberg et al., 2018). From a linguistic per-
spective, different large-scale corpora analyses and human simulations support the importance of
the population in shaping our languages (Gary Lupyan, 2010; Bromham et al., 2015; Raviv et al.,
2019a;b). In this context, Raviv et al. (2019a) show that larger populations develop more system-
atic languages through human experimentation. Nonetheless, a few artificial simulations tentatively
consider population sizes up to 32 agents, but with mixed results about their advantage (Mordatch
& Abbeel, 2018; Tieleman et al., 2018; Graesser et al., 2019; Cogswell et al., 2019). In this part, we
consider up to 100 agents. Specifically, we explore the impact of the population size on languages
properties when we deal with more complex tasks (|C|=1024 at train and eval) and realistic inputs
(CelebA & ImageNet) while varying the population size N ∈ {1, 10, 50} pairs.

The best single-pair seed should be the baseline against population. A few works in the emergent
communication framework looked at the benefit of the population by comparing 2N -agent’s perfor-
mances to the 2-agent baseline (Cogswell et al., 2019). However, the former introduces ×N more
parameters, which could be responsible for its slight observed benefit. Here, we consider instead the
“best 1 pair” setting to investigate whether it is computationally advantageous to train a population
of size N rather than training N independent pairs. That is, for a given computational budget, we
ask whether it is beneficial to train agents within a population as opposed to N pairs in parallel, as
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Table 2: Different language properties on CelebA and ImageNet datasets, in %. For each setting we
report the mean over 10 seeds. ± denotes 1 standard error of the mean.

CelebA ImageNet

Setting Generalization ↑ Robustness ↓ Generalization ↑ Robustness ↓
best 1 pair 90.73 35.82 97.55 27.83
1 pair 89.00±0.48 37.90 96.09±0.21 18.90
10 pairs 91.06±0.23 37.56 95.78±0.29 14.58
50 pairs 90.69±0.61 38.87 95.29±0.34 15.21

10 pairs + imitation 91.84±0.31 35.47 96.79±0.12 13.46
10 pairs + imitation + vote 92.19±0.30 35.21 96.95±0.11 13.27
50 pairs + imitation 92.82±0.51 32.69 96.70±0.16 12.92
50 pairs + imitation + vote 93.13±0.50 32.40 96.85±0.15 12.75

also done in (Tieleman et al., 2018). “Best 1 pair” is constructed by selecting the best seed among
the 10 seeds of “1 pair”, based on validation accuracy, offering a fairer baseline specifically for the
“10 pairs” setting. Results are shown in Table 2 and Fig. 4. We observe different behavior of “best 1
pair” across datasets. Particularly, if it always achieves better generalization and ETL discrimination
compared to “1 pair”, it shows, for ImageNet only, the worst Robustness and ETL classification. We
hypothesize that in that specific case, the emergent protocol overspecializes to the task. Still, “best
1 pair” outperforms the standard baseline “1 pair” 6/8 times, which makes it a stronger baseline. In
the following, we thus always compare the population setting with “best 1 pair” for a fair evaluation.

Population size does not lead to a systematic advantage. We look at the language generalization
and robustness performances when increasing the population size. Results in Table 2 do not show
a clear trend between population size and these metrics. For example, for both datasets, “50 pairs”
achieves lower Generalization and Robustness than “10 pairs”. Furthermore, “best 1 seed” always
achieves better Generalization compared to the largest population setting “50 pairs”. In Fig. 4, we
look at ETL for a further investigation of the languages’ properties. CelebA results exhibit a benefit
of the population. However, this benefit does not always correlate with population size where “10
pairs” outperforms “50 pairs” on the discrimination task. This non-systematic benefit is also found
when experimenting with ImageNet. Again, our results suggest no benefit of the population size
in the current setting. We thus explore new approaches to leverage the population dynamics and
improve the representation of the emergent protocol in the following.

A better use of the population is needed to see larger benefit. As population size does not improve
the emergent language in itself, we took advantage of the richness of the population by consider-
ing imitation at training and vote at inference. In Table 2, we observe that both imitation and vote
introduce a systematic improvement compared to the standard training in a population and lead to
better performances compared to “1 pair” in all metrics. Moreover, when considering the stronger
baseline “best 1 pair”, the latter only outperforms the imitation and vote settings 1/4 times (Gen-
eralization for ImageNet). However, as noted previously, this case is an over-specialized protocol.
Furthermore, if both imitation and vote introduce a systematic improvement of the protocol, their
benefit is even more noticeable for distribution-shifted settings. For example, the imitation for 50
pairs adds a relative improvement of 12.8% in Robusteness compared to 2.3% for Generalization on
CelebA. The same observation holds for the vote but with a lower degree. Note that if vote induces
only a slight benefit, it does not incur any training cost. When considering ETL on discrimination
in Figs. 4(a)&4(c), we observe that imitation leads to a systematic improvement. In CelebA, if the
standard population was already beneficial, adding the imitation strengthens the results. In Ima-
geNet, “10/50 pairs + imitation” perform similarly at the end of training than the overspecialized
“best 1 pair” while having more stable optimization and it is considerably better than the standard
training w/ and w/o population. Yet, the results are more nuanced when considering ETL over clas-
sification in Fig. 4(b)&4(d). Specifically, while CelebA experiments suggest an advantage when
training a population of agents w/o imitation as opposed w/ imitation or “1 pair”, this pattern is ab-
sent with ImageNet. There all settings with population are on par. In sum, both considered dynamics
outperform in most cases the strong “best 1 pair” baseline (7/8 times), highlighting their viability.
4 DISCUSSION AND CONCLUSION

The emergent communication framework has been extensively studied for decades before the suc-
cesses of deep RL. In this context, many works have revisited this framework through deep RL
settings (e.g., Kirby 2002 vs. Ren et al. 2019, Myers-Scotton et al. 2002 vs. Graesser et al. 2019, or
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Figure 4: ETL per datasets and tasks. The results are averaged across min(N, 5) Speakers, 3 new-
born Listeners’ over 10 different seeds. The shaded region represents the standard deviation.

Batali 1998 vs. Choi et al. 2018). However, the experimental settings have barely evolved for twenty
years. For instance, Kirby (2002) and Ren et al. (2019) both used a binary input vector of size eight,
and only a few papers try to go beyond such artificial input spaces or simple tasks (Lazaridou et al.,
2017; Havrylov & Titov, 2017; Dessı̀ et al., 2021). While computational constraints may have been a
limiting factor, we show that our setting is possible with widely available hardware in Appendix B.2.
For example, Table 1 requires approximately 400 hours of compute, i.e. 16 GPUs for a single day.
Compared to other communities, this is equivalent to medium-scale studies in vision or NLP. We
argue that it is finally time for the emergent language community to scale up!

In this spirit, we start clearing the way by identifying some scaling up challenges: optimization
instabilities, ill-adapted metrics, or lack of population synergy. We show how to face these new
difficulties by proposing: alternative optimization (KL regularization), new evaluation protocols
(ETL, zero-shot dataset transfer, best seed baseline), and new dynamics to leverage populations
(imitation, voting). There are different theories about the necessity of complex tasks to model human
communication (e.g., (Barrett & Skyrms, 2017) vs. (Bickerton, 2015; Dupoux, 2018)). Hence, we
endorse here Bickerton’s view and adopt performance-inspired solutions to scale up such as KL-
regularization and imitation. An interesting future debate is whether our findings could influence
the status quo of similar research in human communication.

Although we only examine three scaling up dimensions, many other directions can be pursued in the
future: using larger or different architectures to improve agent abilities (Desai & Johnson, 2021),
experimenting with multimodal data like video or sounds for more realistic stimuli (Arandjelovic &
Zisserman, 2017), or building symmetric communication channels to have emergent dialogues (Gao
et al., 2019). Another frontier would be to incorporate interaction within environments to ground
language into actions (Bisk et al., 2020). As such embodiment is crucial for human language un-
derstanding (Harnad, 1990; Barsalou, 2008), we may start exploring small grid world (Kajić et al.,
2020) before scaling up to 3D-environments (Abramson et al., 2020).
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REPRODUCIBILITY STATEMENT

In this paper, we ensure the reproduciblity of the different findings through several (and voluntary
redundant) ways, namely:

• The task is detailed in Section 2.1 and we provide a visual sketch in Appendix A.1.

• We use open-source datasets (ImageNet and CelebA). Also, dataset processing is explained,
with pseudo-code to reproduce our splits, in Appendix A.6.

• The speaker and listener architectures are first explained in Section 2.2, we then detail
model size values, and provide visual sketches in Appendix A.2. The specifics for image
reconstruction for ETL are in Appendix B.1 with a pseudo-code for the reconstruction head.

• The optimization is first described in Section 2.3. The equations are then fully detailed in
Appendix A.3.

• All training and evaluation hyperparameters are listed in Appendix A.4.

• Through the paper, we voluntary provide training curves, test curves, and final scores to
have a global view of the training trends.

• We listed computation time and memory footprint for multiple experiments and multiple
hardware in Appendix B.2

• The source code should be released upon paper acceptance.
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A ADDITIONAL SETTING DETAILS

A.1 DISCRIMINATION GAME

Speaker Listener

Phase 1 Phase 2 Phase 3

Listener

Speaker

Listener

Figure 5: Example of a discrimination game on Imagenet with a set C of 4 candidates. In this
specific instance, Listener does not select an image x̂ that is identical to the target image x received
by Speaker. Therefore the reward received by both player R(x, x̂) = 1x=x̂ will be 0.

A.2 ARCHITECTURE DETAILS

Speaker The speaker’s network architecture is composed of several components to transform the
target image x into a message m = (wt)

T−1
t=0 :

• The encoder f is a fixed Resnet-50 architecture that has been previously trained on Ima-
genet with the BYOL algorithm. The resulting embedding f(x) is of size 2048.

• The RNN hθ used is an LSTM of hidden size 256. Therefore the core state zt,θ is of size
512.

• The core-state adapter cθ is a linear layer with input size 2048 and an output size of 512 that
allows to transform the embedding f(x) into an appropriate core state z−1,θ = cθ(f(x)).
We split z−1,θ into two equal parts to obtain the initial hidden state zh,−1,θ and the initial
cell state zc,−1,θ.

• The word embedder gθ associates to each discrete symbols inW ∪ {sos} an embedding
of size 10.

• The value head vθ first selects the hidden part zh,t,θ of the core state zt,θ and then applies
a linear layer of output size 1.

• The policy head πθ first selects the hidden part zh,t,θ of the core state zt,θ and then applies
a linear layer of output size |W| to obtain logits lt,θ. Then a softmax layer transforms the
logits into the output distribution πθ(.|zt,θ).

Listener The listener’s network architecture is composed of several components to transform the
message m and the input image x̃ into a score score(m, x̃, φ):

• The encoder f is a fixed Resnet-50 architecture that has been previously trained on Ima-
genet with the BYOL algorithm. The resulting embedding f(x) is of size 2048.

• The RNN hφ used is an LSTM of hidden size 512. Therefore the core state zt,φ is of size
1024 and is composed of an hidden state zh,t,φ of size 512 and a cell state zc,t,φ of size
512.

• The word embedder gφ associates to each discrete symbols inW an embedding of size 10.

• The target projection tφ is a linear layer with output size 256.

• The core-state projection pφ is a linear layer with output size 256.
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As explained in Sec.2.2, the score function is defined as score(m, x̃, φ) = cos(
pm,φ
‖pm,φ‖2 ,

tx̃
‖tx̃‖2 ).

The scores over all images are normalized via a softmax to get a probability πφ(.|m, C) such that:

∀x̃ ∈ C, πφ(x̃|m, C) =
exp(score(m, x̃, φ))∑
x∈C exp(score(m,x, φ))

.

Finally, the listener selects an image by taking the best guess according to πφ, i.e. x̂ ∈
argmaxx̃∈C πφ(x̃|m, C).

Figure 6: Graphical representation of a speaker’s architecture that shows how the words (wt)
T−1
t=0

are computed from the inputs x.

Figure 7: Graphical representation of a listener’s architecture that shows how the score
score(m, x̃, φ) is computed given a message (wt)

T−1
t=0 and an input image x̃.

A.3 OPTIMISATION DETAILS

Speaker training and loss The goal of a speaker, parameterized by θ, is to optimize the message
m sent to a listener, parameterized by φ, such that the mean reward of the game is the highest possi-
ble. This can be framed as a sequential decision making problem where the decision is the choice of
each word wt. Thus, each word is sampled from a parameterized stochastic policy πθ(.|x, (wk)t−1k=0)

that depends on the image x and past words (wk)t−1k=0, where for t = 0 we have (wk)−1k=0 = ∅. Then,
the goal is to maximize the expected reward J(θ, φ) by finding the best policy πθ:

J(θ, φ) = Ex∼ρ [Eπθ,x[R(x, x̂)]] ,

16



Published as a conference paper at ICLR 2022

where the expectation Ex∼ρ is over the dataset of training images and the expectation Eπθ,x is over
all possible sequences (x, (wt)T−1t=0 ) that can be generated by πθ starting from x. For a given image
x, we define the value V πθ (x) = Eπθ,x[R(x, x̂)] as the expected reward for a given image, here we
left the dependence over the choice of the listener x̂ for ease of notations as the speaker cannot act
on it. For a parameterized policy πθ, we can use the policy gradient theorem to obtain the gradient:

∂θV
πθ (x) = Eπθ,x

[
T−1∑
t=0

(
R(x, x̂)− V πθt−1(x)

)
∂θ log(πθ(wt|x, (wk)t−1k=0))

]
,

where V πθt−1(x) = Eπθ,x
[
R(x, x̂)|(wk)t−1k=0

]
is the value conditioned on all the information revealed

at time t− 1. For our particular choice of speaker network, we encode the policy πθ(.|x, (wk)t−1k=0)
and the value V πθt−1(x) with the policy head πθ(.|zt,θ) and the value head vθ(zt,θ) respectively. Doing
so is legitimate because by construction of our recurrent speaker network the embedding zt,θ is
a function of the image x and the past words (wk)

t−1
k=0. We train then our speaker network by

minimizing a value loss LV (θ) to make vθ(zt,θ) fit V πθt−1(x) over a batch X of images:

LV (θ) =
1

|X |
∑
x∈X

LV (θ, x) =
1

|X |
∑
x∈X

T−1∑
t=0

(R(x, x̂)− vθ(zt,θ))2 ,

and a policy loss function Lπ(θ) to maximise the expected reward:

Lπ(θ) =
1

|X |
∑
x∈X

Lπ(θ, x) =
1

|X |
∑
x∈X

T−1∑
t=0

sg (R(x, x̂)− vθ(zt,θ)) log(πθ(wt|zt,θ)),

where sg(.) is the stop gradient function. If we assume that vθ(zt,θ) fits perfectly V πθt−1(x), one
can easily verify that ∂θLπ(θ, x) is an unbiased estimate of −∂θV πθ (x) therefore ∂θLπ(θ) is also
an unbiased estimate of −∂θJ(θ, φ). In addition to following the gradient ∂θV πθ (x), it is common
practice in RL and emergent language literature to maximize an entropy term encouraging to explore
other choices of words by Speaker:

H(πθ) =Ex∼ρ

[
Eπθ,x

[
T−1∑
t=0

H(πθ(.|x, (wk)t−1k=0))

]]
,

= Ex∼ρ

[
Eπθ,x

[
T−1∑
t=0

Ew∼πθ(.|x,(wk)t−1
k=0)

[
πθ(w|x, (wk)t−1k=0) log(πθ(w|x, (wk)

t−1
k=0))

]]]
.

In practice, a sampled version of the negative entropy LH(θ) is minimized with the speaker network:

LH(θ) = −
1

|X |
∑
x∈X

T−1∑
t=0

Ew∼πθ(.|zt,θ) [πθ(w|zt,θ) log(πθ(w|zt,θ))] .

Recently, several deep RL (Schulman et al., 2015; 2017) and theoretical RL papers (Geist et al.,
2019; Vieillard et al., 2020a;b) argued that minimizing the KL between the online policy πθ and
a target policy πθ instead of or in addition to entropy regularization could be beneficial for better
final performance as well as stabilizing the learning. Generally, πθ is an older policy or an exponen-
tial moving average of past policies. Therefore, we also consider the following KL regularization
KL(πθ, πθ):

KL(πθ, πθ) =Ex∼ρ

[
Eπθ,x

[
T−1∑
t=0

KL(πθ(.|x, (wk)t−1k=0), πθ(.|x, (wk)
t−1
k=0))

]]
,

=Ex∼ρ

[
Eπθ,x

[
T−1∑
t=0

Ew∼πθ(.|x,(wk)t−1
k=0)

[
πθ(w|x, (wk)t−1k=0) log(

πθ(w|x, (wk)t−1k=0)

πθ(w|x, (wk)
t−1
k=0)

)

]]]
.

In practice, the policy πθ is obtained by doing an exponential moving average of the weights θ over
training. Then, a sampled version of the KL is minimized LKL(θ) with our specific speaker network:

LKL(θ) =
1

|X |
∑
x∈X

T−1∑
t=0

Ew∼πθ(.|zt,θ)

[
πθ(w|zt,θ) log(

πθ(w|zt,θ)
πθ(w|zt,θ)

)

]
.
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To sum up, the speaker training loss L(θ) on a batch of images X is:

L(θ) = LV (θ) + Lπ(θ) + αLH(θ) + βLKL(θ),

where α and β are hyper-parameters.

Listener loss One important detail in Sec. 2.3 is that for each image x in a batch X , a set of image
candidates C(x,X ) is sampled randomly (uniform without replacement over X \ {x}) chosen in X .
We omitted the dependencies of C(x,X ) on x andX in the main text for ease of reading. In addition,
as explained in Sec. 2.3, the listener loss is a multi-class classification loss where the correct class
is the index of x in the set of candidates C also called InfoNCE loss (van den Oord et al., 2018):
L(φ) = − 1

|X |
∑
x∈X log (πφ(x|m, C)). This can be rewritten more explicitly:

L(φ) = − 1

|X |
∑
x∈X

log (πφ(x|m, C)) ,

= − 1

|X |
∑
x∈X

log

(
exp(score(m,x, φ))∑
x∈C exp(score(m,x, φ))

)
,

= − 1

|X |
∑
x∈X

log

(
exp(cos(

pm,φ
‖pm,φ‖2 ,

tx
‖tx‖2 ))∑

x∈C exp(cos(
pm,φ
‖pm,φ‖2 ,

tx
‖tx‖2 ))

)
.

Imitation training among a group of speakers. In a training imitation step, a group of K speak-
ers among the total population of N speakers is selected. Among those K speakers, one speaker
is going to play the role of the teacher and K − 1 are going to play the role of the students. To
choose the teacher among the K speakers, we use as metric the exponential moving average of the
accuracies over each batch on which a given speaker has been trained on. To be more precise, let θi
be the i-th speaker and X the present batch on which θi has just been trained on, then σi is updated
according to the following rule:

σi ← µσi + (1− µ) 1

|X |
∑
x∈X

1x=x̂

and is the exponential moving average of coefficient µ of the accuracies over each batch on which
speaker i has been trained. Then the teacher is simply the speaker with the highest σi among the K
speakers. Now for convenience, let us note θT the parameters of the teacher and θS the parameters
of a student. A student θS is going to be trained on a batch of data X by imitating the messages of
the teacher θT with the following loss:

LI(θS) = −
1

|X |
∑
x∈X

T−1∑
t=0

log πθS (wt(x, θT )|x, zθS ,t).

The loss LI(θS) is a cross-entropy loss that encourages the student to output the same words as the
teacher.

Optimizer hyper-parameters Each member of the population (listener or speaker) uses its own
optimiser. All optimisers are Adam optimisers (Kingma & Ba, 2015) with the same set of hyper-
parameters:

• learning rate: 1e− 4,
• β1: 0.9,
• β2: 0.999,
• ε: 1e−8.

For the speakers’ loss, we use α = 0.0001 for the entropy regularization and β = 0.5 for the KL
regularization. See Sec. B.3 for more details about the impact of these parameters.
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A.4 HYPER-PARAMETERS

We use the same hyper-parameters across the different settings. When experimenting with ImageNet
vs. CelebA, we only vary the number of maximum steps. Specifically, we use 300k maximum steps
for CelebA (we already start observing some overfitting with this value) and 900k maximum steps
for ImageNet. In all cases, we select the best checkpoint for evaluation with respect to the listener
loss at validation time. For robust evaluation, we average the scores over 5 epochs to have different
candidates for a given target and get a score less dependent on the sampling of the candidates. Unless
mentioned otherwise, the remaining training hyper-parameters are reported in Table 3.

Table 3: Hyper-parameters values across datasets and settings.

Learning rate lr 0.0001
Batch training size |X | 1024
Number of Candidates |C| 1024
Number of agent sampled P min(N, 10)
KL coefficient β 0.5
KL EMA η 0.99
Entropy Coefficient α 0.0001
Vocabulary size |W| 20
Message Length T 10
Imitation EMA µ 0.99

ETL learning rate ETL, lr 0.001
ETL training batch size ETL, |X | 4096
ETL training candidates ETL discr., |C| 4096

A.5 IMITATION HYPER-PARAMETERS

In all our experiments, we perform a grid search over the parameters of M (number of interaction
steps) and K (number of sampled speakers at the imitation step). For the case of a population of
N = 10,K is chosen from {1, 4, 9} andM from {10, 50, 100} according to the validation accuracy.
For N = 50, K is selected from {4, 9, 24} and M from {1, 10, 50}. Table 4 shows the selected
hyper-parameters (K,M) for the different settings.

Table 4: Imitation hyper-parameters values chosen according to the best accuracy at validation.

Dataset 10 pairs + imitation
(K, M )

50 pairs + imitation
(K, M )

CelebA (1, 10) (9, 10)
ImageNet (1, 100) (9, 10)
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A.6 DATASETS DETAILS

ImageNet ILSVRC2012, also known as ImageNet (Deng et al., 2009; Russakovsky et al., 2015)
is among the historical largest natural RGB image dataset. It mostly contains images of animals and
objects over 1000 labels, e.g., camel, ostrich, hourglass, or bow tie. In our experiments, we use 99%
of the official train set for training, i.e., 1300k images, the last 1% of the train set for validation, i.e.,
13k images, and the official validation set as our test set (i.e., 50k images).

CelebA CelebA is a large natural RGB dataset (Liu et al., 2015), which contains image of celebrity
faces over 10,177 identities. Noticeably, each face also contains 40 binary attributes, e.g., glasses
and hair. Such attributes are interesting to compute, for instance, language topography. Although
there is an official CelebA split, there are no overlapping identities between the train, validation,
and test set. We thus reshuffle the split as described in Listing 1. In the end, we respectively obtain
169,444 training, 16,669 valid, and 16,486 test images.

Image Processing In both datasets, we resize images to 256 pixels along the shorter side us-
ing bicubic resampling before applying a 224x224 center crop. We normalize the color channels
subtracting the mean color and dividing by ImageNet std. We then use the ResNet-50 encoder pre-
trained on ImageNet with the self-supervised method BYOL (Grill et al., 2020) to extract the final
representation of dimension 2048.

Listing 1: CelebA Splits

SPLIT RATIO = 5 # t h e r a t i o t r a i n : v a l i d i s 5 :1

def c e l e b a s p l i t s ( d a t a ) :
””” S p l i t t h e da ta i n t h r e e s e t s w i t h o v e r l a p p i n g i d e n t i t i e s ”””

# I n i t i a l i z e v a r i a b l e s
i m a g e t r a i n , i m a g e v a l i d , i m a g e t e s t = [ ] , [ ] , [ ]
c o u n t e r l a b e l = c o l l e c t i o n s . Coun te r ( )

f o r d a t a in d a t a s e t . v a l u e s ( ) :

l a b e l = d a t a [ ’ l a b e l ’ ] # l a b e l encode t h e f a c e i d e n t i t y
c o u n t = c o u n t e r l a b e l [ l a b e l ]

i f c o u n t > 0 and c o u n t % SPLIT RATIO == 0 :
# We e q u a l l y s p l i t v a l i d and t e s t by Even and Odd l a b e l s
i f l a b e l % 2 == 0 :

i m a g e v a l i d . append ( d a t a )
e l s e :

i m a g e t e s t . append ( d a t a )
e l s e :

i m a g e t r a i n . append ( d a t a )

c o u n t e r l a b e l [ l a b e l ] += 1

re turn i m a g e t r a i n , i m a g e v a l i d , i m a g e t e s t
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Figure 8: Face reconstructions. Left: Randomly sampled input images from the CelebA dataset;
Middle: Reconstructions, using messages from a model trained with 16 candidates; Right: Recon-
structions, using messages from a model trained with 1024 candidates.

B ADDITIONAL RESULTS AND ANALYSIS

B.1 FACE RECONSTRUCTION

To visualize some of the features encapsulated in the messages used by the agent, we propose a
face reconstruction procedure. For a single speaker, parameterized by θ, and given an initial image
x ∈ X , we produce a message m = (wt)

T−1
t=0 . We feed the messages to a listener-like architecture,

consisting of an embedding layer of size 10 followed by an LSTM with 512 units. We keep the
last output of the LSTM, hT−1 as a message representation. We then pass the message through a
deconvolutional architecture, similar to the one in Radford et al. (2016), but without batch normal-
izations. Pseudocode for the architecture is provided in Listing 2. The full network is trained by
minimizing the `2 loss between the input image and the reconstructed one. To optimize the loss, we
use AdamW (Kingma & Ba, 2015) with a batch size of 128, a learning rate of 3 · 10−4, β1 = .9,
β2 = .9, ε = 10−8 and a weight decay of 0.01. We clip gradients by norm with a clipping threshold
of 500, and skip gradient updates with norm superior to 2000. In Table 1, we report reconstruction
losses for different number of candidates |C|. The reconstruction loss is computed as a squared er-
ror, summed over both spatial and channel axes. Figure 8 displays examples of input images, and
corresponding reconstructions for two discrimination games with different number of candidates.

Optimally, each reconstruction should converge to the average face, given the corresponding mes-
sage. The more features a message contains, the better reconstructions should be. Note first that
reconstructions are far from perfect, and much worse than reconstructions that an auto-encoder
trained end to end on images would provide: first, solving the discrimination game does not require
fully reconstructing the input image, but only capturing enough features to identify uniquely the
image in a batch of candidates; second, the discrete nature of the message, its limited size, and the
fact that it is learnt using reinforcement learning act as strong bottlenecks, that prevents messages
from containing all the information about input images.

Nonetheless, as qualitatively shown in Figure 8, messages contain semantic information about in-
puts images. For instance, hair color, gender, or open mouth are mostly preserved throughout the
reconstruction process. Other features, such as face orientation, skin tone, or age are mostly ignored
in messages. Furthermore, both quantitative and qualitative difference are visible when going from
low number of discriminators to high number of candidates. Quantitatively, going from 16 to 1024
candidates improves the reconstruction error from 2448±16 to 2351±14 (Table 1). Qualitatively,
messages with 1024 candidates seem to contain information about presence of eye-glasses (top left
image), as well as presence of head cover (bottom right image), that are absent in messages from the
Speaker trained with 16 candidates.
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Listing 2: Face reconstruction Head

def upsample 2d ( x , f a c t o r : i n t = 2 ) :
bs , h e i g h t , width , c h a n n e l s = x . shape
x = image . r e s i z e (

x , ( bs , h e i g h t ∗ f a c t o r , w id th ∗ f a c t o r , c h a n n e l s ) , method= ’ n e a r e s t ’ )
re turn x

def i m g r e c o n s t r u c t i o n ( x ) :
”””Take t h e LSTM o u t p u t , and t u r n i t i n t o an image . ”””

# P r o j e c t t h e f l a t embedding i n t o a 2d t e n s o r o f dim 4 x4x128
x = nn . L i n e a r (4 ∗ 4 ∗ 1 2 8 ) ( x )
x = x . r e s h a p e ( ( x . shape [ 0 ] , 4 , 4 , 1 2 8 ) )
x = nn . r e l u ( x )

x = upsample 2d ( x ) # 8 x8
x = nn . Conv3x3 ( 6 4 , w i t h b i a s = F a l s e , padd ing =”VALID” ) ( x )
x = nn . r e l u ( x )

x = upsample 2d ( x ) # 16 x16
x = nn . Conv3x3 ( 3 2 , w i t h b i a s = F a l s e , padd ing =”VALID” ) ( x )
x = nn . r e l u ( x )

x = upsample 2d ( x ) # 32 x32
x = nn . Conv3x3 ( 1 6 , w i t h b i a s = F a l s e , padd ing =”VALID” ) ( x )
x = nn . r e l u ( x )

x = upsample 2d ( x ) # 64 x64
x = nn . Conv3x3 ( 1 6 , w i t h b i a s = F a l s e , padd ing =”VALID” ) ( x )
x = nn . r e l u ( x )
x = nn . Conv3x3 ( 3 , w i t h b i a s = F a l s e , padd ing =”VALID” ) ( x )

re turn nn . t a n h ( x )

B.2 COMPUTATIONAL REQUIREMENTS

As mentioned in the article, our approach remains computationally tractable with widely available
hardware. Table 5 summarizes these requirements to reproduce our experimental setup.

B.3 IMPACT OF THE KL REGULARIZATION ON TRAINING STABILITY

We showed in the main paper how training a pair of agents to solve a complex task (a discrimination
game with 1024 candidates) becomes unstable when using common optimization algorithms. In this
section, we look at the training curves when agents are trained with and without KL regularization,
while varying the entropy coefficient α ∈ {10−4, 10−3, 10−2, 10−1}. Results are shown with a
population of size 1 (Figure 9) and 10 (Figure 10). In both cases, agents are trained to solve the
complex discrimination task with 1024 candidates.

First, we observe that the lower α is, the more crucial applying a KL regularization is. For example,
in Figure 9(a), we go from a chaotic setting that converges to an accuracy of ∼ 40% when the
KL coefficient β = 0 to a significantly more stable optimization with almost perfect accuracy when
β ≥ 0.5. Second, we observe that, if the KL regularization is useful for stable optimization, it comes
at the cost of the rapidity of convergence. This is clearly shown in Figures 9(c) and 10(c), where we
observe that the larger β is, the slower the convergence is. In other words, one should select the best
β optimizing the stability/rapidity trade-off. Third, in the presence of a KL regularization, training
stability depends less on the entropy coefficient α. Indeed, we observe a stable and high training
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Table 5: Computational requirements for our base setup. “GPU memory” refers to the peak GPU
memory usage.

Dataset Device Pop. size, N GPU memory (GiB) Step time (ms) Train. time (hours)

Im
ag

eN
et p100

1 0.29 42 10.5
10 0.71 381 95.2
50 2.63 1887 471.7

v100
1 0.29 25 6.3

10 0.71 223 55.7
50 2.63 1089 272.1

C
el

eb
A

p100
1 0.33 89 7.4

10 0.75 457 38.1
50 2.60 2248 187.4

v100
1 0.33 107 8.9

10 0.75 293 24.4
50 2.60 1408 117.3
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Figure 9: Training accuracy for a 1 communicating pair when varying the KL coefficient β. Each
sub-figure represents the results for a fixed entropy coefficient α. Thin lines represent the training
accuracy curves of different seeds. Thick lines represent the average across 10 seeds.

curves for α ∈ {10−4, 10−3, 10−2}.4 However, training without KL regularization (blue curves
with β = 0) is very sensitive to the value of α and the most stable case is observed for α = 0.01.
Still even in this best case without KL regularization, having a β > 0 is useful as shown in Figure 11.

4It is also the case for α = 0. Not shown here.
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Figure 10: Training accuracy for a 10 communicating pairs when varying the KL coefficient β. Each
sub-figure represents the results for a fixed entropy coefficient α. Thin lines represent the training
accuracy curves of different seeds. Thick lines represent the average across 10 seeds.
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Figure 11: Training accuracy for 1 and 10 pairs. Each sub-figure compares the best setting with
no KL regularization (with entropy coefficient of 0.01) and the selected setting for our experiments,
with a KL coefficient of 0.5 and entropy coefficient of 0.0001. Thin lines represent the training
accuracy curves of different seeds. Thick lines represent the average across 10 seeds. In both cases,
the setting with the KL regularization, (0.5, 0.0001), exhibits a more stable convergence with a
larger difference for population of 10 pairs.
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Table 6: Different language properties on CelebA dataset, in %. For each setting we report the mean
over 10 seeds. ± denotes 1 standard error of the mean.

Setting Generalization Robustness

best 1 pair 90.73 35.82
1 pair 89.00±0.48 37.90
10 pairs 91.06±0.23 37.56
50 pairs 90.69±0.61 38.87

10 pairs + imitation 91.84±0.31 35.47
10 pairs + imitation + vote 92.19±0.30 35.21
50 pairs + imitation 92.82±0.51 32.69
50 pairs + imitation + vote 93.13±0.50 32.40

1 pair + reset 92.21±0.44 18.34
10 pairs + reset 90.55±0.56 35.32
50 pairs + reset 91.52±0.42 34.46

B.4 STUDY OF THE RESETTING ON THE CELEBA DATASET

In this work, we argue that training deep agents to communicate in a population benefits from ex-
ploiting its richness, as opposed to a standard training (Mordatch & Abbeel, 2018). In this context,
we introduced imitation and voting mechanisms. However, other prior works have stipulated a sim-
ilar argument by focusing instead on the idea of the expressivity/compressibility trade-off (Kirby
et al., 2014). The latter attests that our language is shaped by the two competing pressures of
expressivity and compressibility. In practice, there were different methods to implement this trade-
off in deep agents communication such as iterated learning (Ren et al., 2019), cultural transmis-
sion (Cogswell et al., 2019), or ease-of-teaching (Li & Bowling, 2019). In this section, we compare
imitation and voting to the ease-of-teaching.5 To encourage languages’ ease-of-teaching, Li & Bowl-
ing (2019) trained deep agents to solve a discrimination task, while periodically resetting listeners.
In this section, we study the impact of this baseline on the different emergent languages’ properties
introduced in the main paper. Specifically, we consider 3 additional settings: (1) “1 pair + reset”
that consists of resetting the only listener, (2) “10 pairs + reset” where we reset a randomly selected
listener among the 10 available ones, and (3) “50 pairs + reset” where we reset a randomly selected
listener among the 50 available ones. In all cases, resetting takes place every 51k steps. Note that if
(1) is identical to Li & Bowling (2019) setting, (2) and (3) present 10 and 50 speakers respectively
unlike 1 speaker as it is the case in (Li & Bowling, 2019).

We observe in Table 6 that resetting has a noticeable benefit only in the case of “1 pair” on the
generalization and robustness of the languages. In particular, we note an average Generalization of
89.00% for “1 pair” vs. 92.21% for “1 pair + reset” and an average Robustness of 18.34% vs. 35.82%.
However, there is no systematic improvement when agents are trained in a population, (“10 pairs”
vs. “10 pairs + resetting”) and (“50 pairs” vs. “50 pairs + resetting”). This is in line with Li &
Bowling (2019)’s results which show that an abrupt change during training leads to better results.
Still, “1 pair + reset” does not systematically improve the emergent languages’ properties compared
to the population when imitation and voting are at play.

However, as mentioned in the original paper, the purpose of resetting is not to boost agents’ general-
ization or robustness, but instead to incentivize agents to develop easy-to-transmit languages. In the
following, we look at ETL shown in Figure 12. Here, adding resetting does not lead to a significant
change showing curves almost identical to the ones with standard training in all cases.

Overall, our results suggest that resetting listeners is only beneficial in the one-pair agents in some
cases. Furthermore, resetting does not induce faster or better easy-to-learn communication protocols
over transfer tasks compared to the standard training of the Lewis game (with or without population).

5We also considered the setup of Cogswell et al. (2019). However, preliminary results showed systemati-
cally worse results compared to the ease-of-teaching settings. Our codebase provides both options.
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Figure 12: ETL for the CelebA dataset of the emergent languages for different tasks. The results are
averaged across the emergent languages of min(5, N) different Speakers, newborn listeners’ seeds,
and across the 10 seeds of each setting. The shaded region represents the standard deviation.

B.5 IMPACT OF THE NUMBER OF CANDIDATES AT TRAINING AND EVALUATION TIME

In this part we look the impact of task complexity at train (Figure 14) and evaluation (Figure 13)
times, by varying the number of candidates |C|. The results confirm our findings in the main paper.
That is, for a fixed train |C|, the harder the evaluation task is, the lower the test accuracy is. Still, if
the task is complex enough at train time (e.g., |C| = 1024), agents reach overall higher accuracies
for all evaluation settings, confirming the importance of hard training tasks to see the emergence
of communication protocols with good generalization performances. Also, similarly to our results
in the main paper, we observe in Figure 14 that harder evaluation task is necessary to discriminate
between the communication protocols.
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(d) Num candidates at (train): 1024

Figure 13: Test accuracy for different number of candidates at training time (subplot) and at evalu-
ation time (lines) on ImageNet. As one would expect, given one model trained with |C| candidates,
the more complex the evaluation task, the lower is the accuracy.
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Figure 14: Test accuracy for different number of candidates at training time (lines) and at evaluation
time on ImageNet. The more we complexify evaluation, the better we discriminate representations.
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B.6 CELEBA ATTRIBUTES:

Table 7: CelebA ETL attribute accuracies when varying the number of candidates at pretraining at
10k training steps.

Atribute |C| = 16 |C| = 64 |C| = 256 |C| = 1024

5 o Clock Shadow 89.93±0.74 90.57±0.75 91.46±0.5 92.76±0.54
Arched Eyebrows 77.73±0.75 79.49±0.88 81.35±1.15 83.22±0.8
Attractive 78.74±1.01 80.08±0.96 81.25±0.75 83.27±1.18
Bags Under Eyes 81.86±0.85 83.53±0.72 84.66±0.68 86.51±0.77
Bald 98.03±0.15 98.03±0.23 98.20±0.25 98.43±0.21
Bangs 85.60±0.53 86.29±0.71 87.05±0.71 88.42±0.62
Big Lips 77.57±0.92 78.73±0.81 80.31±0.97 82.09±0.87
Big Nose 80.58±0.74 82.56±0.77 83.77±0.77 85.56±0.75
Black Hair 78.22±0.83 79.78±1.32 81.32±1.39 83.52±0.93
Blond Hair 88.23±2.31 89.42±1.77 90.62±2.07 91.94±1.01
Blurry 95.11±0.19 95.40±0.26 95.65±0.28 96.31±0.41
Brown Hair 80.83±0.81 81.82±0.81 83.26±1.0 84.80±0.75
Bushy Eyebrows 86.53±0.5 87.28±0.51 87.87±0.54 89.46±0.5
Chubby 94.53±0.34 94.89±0.35 95.44±0.34 96.06±0.36
Double Chin 95.76±0.34 95.97±0.35 96.37±0.25 96.86±0.26
Eyeglasses 94.50±0.53 95.98±1.5 98.30±0.95 98.48±0.76
Goatee 94.28±0.38 94.66±0.36 95.00±0.37 95.88±0.44
Gray Hair 96.03±0.2 96.45±0.3 96.81±0.25 97.41±0.25
Heavy Makeup 88.08±0.5 88.75±0.64 89.36±0.65 90.49±0.95
High Cheekbones 77.94±1.87 79.70±1.07 79.98±1.57 82.39±1.33
Male 93.15±0.44 93.82±0.43 94.06±0.51 94.73±0.57
Mouth Slightly Open 71.25±2.1 73.62±1.2 74.77±1.98 77.86±1.53
Mustache 95.91±0.32 96.15±0.38 96.54±0.33 97.06±0.28
Narrow Eyes 89.12±0.49 89.53±0.55 89.98±0.53 90.35±0.45
No Beard 88.48±0.68 89.05±0.78 90.21±0.84 91.82±0.89
Oval Face 74.54±0.76 76.21±0.82 78.15±0.9 80.82±0.9
Pale Skin 95.69±0.23 95.94±0.24 96.13±0.31 96.50±0.31
Pointy Nose 75.61±0.84 77.31±1.03 78.78±1.23 80.96±0.79
Receding Hairline 92.49±0.39 92.88±0.3 93.23±0.39 93.95±0.42
Rosy Cheeks 93.79±0.24 94.17±0.3 94.70±0.43 95.42±0.45
Sideburns 94.80±0.3 95.06±0.32 95.62±0.32 96.33±0.47
Smiling 79.45±2.54 81.39±1.22 81.34±2.28 83.56±1.77
Straight Hair 80.55±0.57 81.64±0.6 82.95±0.75 84.46±0.77
Wavy Hair 76.42±0.76 78.09±0.98 80.24±1.35 82.22±0.92
Wearing Earrings 83.72±0.59 84.65±0.77 85.74±0.8 87.08±0.75
Wearing Hat 97.07±1.46 97.03±1.28 98.83±0.4 98.95±0.25
Wearing Lipstick 90.96±0.38 91.52±0.58 91.87±0.58 92.57±0.71
Wearing Necklace 87.93±0.41 88.51±0.47 89.23±0.7 90.37±0.59
Wearing Necktie 95.14±0.24 95.56±0.33 96.10±0.3 96.44±0.47
Young 83.45±1.34 84.93±1.12 85.79±0.78 87.85±0.65

B.7 OUT-OF-DISTRIBUTION GENERALIZATION: THE OFFICIAL CELEBA SPLIT

In the main paper, we consider a new CelebA split where train and test sets have overlapping iden-
tities. This allows us to test in-distribution performances. In this Subsection, we look at out-of-
distribution generalization considering the official CelebA split, where train, validation, and test sets
include distinct identities. In other words, we now consider a harder form of generalization by test-
ing agents on never-seen identities at training. Results are shown in Table 8. We observe a similar
pattern to the in-distribution results shown in Table 2. That is, we do not observe a benefit for the
population, where “best 1 pair” achieves better unseen-generalization than “10 pairs” and “50 pairs”.
However, when considering imitation and voting, agents develop languages that generalize better to

29



Published as a conference paper at ICLR 2022

never-seen identities. The setting “50 pairs + imitation + vote” attains the best performance, with a
93.75% success when communicating about previously unseen identities at training time.

Table 8: Generalization performance on the official CelebA split, in %. In this case, we look at
out-of-distribution generalization as train and test sets contain different identities. For each setting
we report the mean over 10 seeds. ± denotes 1 standard error of the mean.

Setting best 1 pair 1 pair 10 pairs 50 pairs

- - - +imitation + imitation+vote - +imitation + imitation+vote

Generalization 92.60 90.08±0.54 90.42±0.55 92.01±0.40 92.37±0.40 90.91±0.37 93.41±0.19 93.75±0.18
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