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Abstract

Inductive relation prediction, an important task001
for knowledge graph completion, is to predict002
the relations between entities that are unseen003
at the training stage. The latest methods use004
pre-trained language models (PLMs) to encode005
the paths between the head entity and tail entity006
and achieve state-of-the-art prediction perfor-007
mance. However, these methods cannot well008
handle no-path situations and are also unable009
to learn comprehensive relation representations010
for distinguishing different relations to over-011
come the difficulty of inductive relation predic-012
tion. To tackle this issue, we propose a novel013
Relation-aware knowledge reasoning model014
entitled Raker which introduces an adaptive015
reasoning information extraction method to016
identify relation-aware reasoning neighbors of017
entities in the target triple to handle no-path018
situations, and enables the PLM to be more019
aware of the possible relations by the relation-020
specific soft prompting. Raker is evaluated on021
three public datasets and achieves SOTA per-022
formance in inductive relation prediction when023
compared with the baseline methods. Notably,024
the absolute improvement of Raker is even025
more than 10% on the FB15k-237 dataset in the026
inductive setting. Moreover, Raker also demon-027
strates its superiority in transductive and few-028
shot settings. The code of Raker is available029
at https://anonymous.4open.science/r/Raker-030
9234.031

1 Introduction032

Knowledge graphs (KGs) are usually heteroge-033

neous graphs consisting of different nodes as enti-034

ties and different types of edges as relations. KGs035

play an essential role in a wide range of appli-036

cations such as recommendation systems (Zhang037

et al., 2021) and intelligent question answering (Ya-038

sunaga et al., 2021; Saxena et al., 2022). However,039

most KGs suffer from incompleteness, making pre-040

dicting missing relations between entities in KGs041

a popular research problem (Ji et al., 2021; Chen 042

et al., 2023; Liang et al., 2022). 043

Given an incomplete knowledge graph, the gen- 044

eral relation prediction task is to score the proba- 045

bility that the target triple (h, r, t) is true, where 046

h and t denote the head and tail entities, respec- 047

tively, and r refers to a certain relation. Specifically, 048

inductive relation prediction is to predict the rela- 049

tions between entities that are unseen at the training 050

stage (Hubert et al., 2023). Existing methods for 051

relation prediction can be roughly divided into 4 052

categories, i.e., embedding-based methods, rule- 053

based methods, graph-based methods, and PLM- 054

based methods (Ji et al., 2021; Chen et al., 2023). 055

Embedding-based methods, e.g., TransE (Bordes 056

et al., 2013) and RoateE (Sun et al., 2019), encode 057

the entities and relations into a semantic space, 058

and design a score function to measure the pos- 059

sibility of the target triple based on the encoded 060

representations. These approaches achieve good 061

performance on some knowledge graph completion 062

(KGC) benchmarks but are limited to the transduc- 063

tive setting which requires all entities and relations 064

to be seen at the training stage (Chen et al., 2022). 065

Rule-based methods (Meilicke et al., 2018) extract 066

logical rules from KGs to infer whether the target 067

triple is correct. Graph-based methods (Teru et al., 068

2020; Mai et al., 2021) mainly use Graph Neural 069

Networks (GNNs) to encode the graph structures of 070

KGs for inferring relations between entities. PLM- 071

based methods, e.g., BERTRL (Zha et al., 2022) 072

and KRST (Su et al., 2023), feed the KG structure 073

information and the textual embeddings of entities 074

and relations into PLMs for target triple predic- 075

tion, and achieve state-of-the-art performance in 076

inductive relation prediction. 077

Particularly, the latest PLM-based methods, e.g., 078

BERTRL and KRST, extract the paths between en- 079

tities as reasoning information to predict the target 080

triple and are thus highly dependent on the con- 081

nectivity of KGs. However, KGs often suffer from 082
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Figure 1: An example of knowledge subgraph.

high incompleteness and sparsity, and there could083

be no paths between entities. For example, about084

12% of entity pairs have no path connection in the085

widely used knowledge graph dataset FB15k-237.086

Without paths connecting the head entity h and the087

tail entity t, inferring the target triple becomes dif-088

ficult. In this case, a natural idea is to add effective089

relational neighbor triples around entities to enrich090

the reasoning information for prediction. For exam-091

ple, as illustrated in Figure 1, we wish to predict the092

target triple (A, profession, Director), and assume093

that the direct relation between C and Movie1 is094

missing. By analyzing the associated triples of A,095

e.g., (A, direct, Movie1) and (A, award, Oscars),096

we can infer that the target triple is likely correct.097

Therefore, analyzing the relations surrounding the098

entities is helpful to infer the target triple. However,099

the contributions of neighbors associated with the100

head and tail entities are not equal. Some neighbors101

can provide strong support information for the tar-102

get triple prediction, while others may be noisy and103

unhelpful. For example, the neighbor triple (A, live104

in, USA) of entity A cannot provide strong clues105

for predicting (A, profession, Director). Therefore,106

identifying effective relational neighbors is an im-107

portant yet challenging task.108

In addition, inductive relation prediction needs109

rich information about the target relations because110

the associated entities are unseen at the training111

stage. PLM-based methods like BERTRL and112

KRST use hard prompts to directly input the re-113

lation names into PLMs, and cannot learn compre-114

hensive representations for relations, which could115

impede PLMs’ ability to be aware of the target rela-116

tions in KGs. Moreover, these inherently inflexible117

hard prompts cannot adapt to different types of rela-118

tions of similar textual tokens. For example, in the119

FB15k-237 dataset, the names of different relations120

may share common textual tokens, such as the rela-121

tions named ‘/location/location/partially_contains’ 122

and ‘/location/location/contains’. The high reliance 123

on textual tokens within hard prompts could lead to 124

confusion for the PLM, thus hindering its ability to 125

accurately differentiate textually similar relations. 126

To address the above issues, we propose the 127

Relation-aware knowledge reasoning model en- 128

titled Raker. Raker introduces an adaptive reason- 129

ing information extraction method to adaptively 130

extract reasoning information, i.e., reasoning paths 131

and relation-aware reasoning neighbors, for rela- 132

tion prediction. In addition, Raker designs a soft 133

prompting approach to dynamically learn compre- 134

hensive and semantic relation representations. Fi- 135

nally, we combine the learned relation represen- 136

tations, hard prompts and extracted reasoning in- 137

formation as the input sequence of PLMs for fine- 138

tuning and relation prediction. 139

In sum, we make the following contributions: 140

• We propose a relation-aware knowledge rea- 141

soning model Raker for inductive relation pre- 142

diction and adaptively extract reasoning infor- 143

mation to address the issue of no-path connec- 144

tion between entities in PLM-based methods. 145

• We propose the relation-aware reasoning 146

neighbors extraction method to effectively 147

identify those neighbors that are helpful 148

for target relation prediction, and design a 149

relation-specific soft prompting method to 150

learn comprehensive representation for the tar- 151

get relation. 152

• We conduct extensive experiments on three 153

public datasets. Raker outperforms the strong 154

baseline methods by a large margin in induc- 155

tive relation prediction, and also demonstrates 156

its superiority in transductive and few-shot 157

settings. 158

2 Related Work 159

More details about the four categories of relation 160

prediction methods in KGs are provided below. 161

Embedding-based methods. Embedding- 162

based methods, e.g., TransE(Bordes et al., 2013), 163

TransR(Lin et al., 2015), RoateE(Sun et al., 2019), 164

Complex(Trouillon et al., 2016), ConvE(Dettmers 165

et al., 2018), and TuckER(Balazevic et al., 2019), 166

encode entities and relations as low-dimensional 167

vectors to learn their semantic and structural infor- 168

mation and design certain score functions to eval- 169

uate the possibility of the target triples based on 170
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the encoded vectors. These methods are effective171

for transductive relation prediction (Li et al., 2023).172

However, they cannot generalize to unseen enti-173

ties, making them unsuitable for inductive relation174

prediction.175

Rule-based methods. Rule-based methods un-176

cover logical rules to infer the correctness of the177

target triple. For example, AMIE (Galárraga et al.,178

2013) and RuleN (Meilicke et al., 2018) extract179

the inference patterns for relation prediction. Neu-180

ralLP (Yang et al., 2017) and DRUM (Sadeghian181

et al., 2019) employ an end-to-end approach to182

learn the differentiable rules, and use the rules to183

predict the target triple.184

Graph-based methods. Graph-based meth-185

ods (Das et al., 2018; Schlichtkrull et al., 2018;186

Li et al., 2022) exploit the structure information187

of knowledge graphs to infer the relations between188

entities. For example, GraIL (Teru et al., 2020)189

and CoMPILE (Mai et al., 2021) extract the sub-190

graph that encompasses the target triple and lever-191

ages GNN message passing to achieve relation pre-192

diction. DeepPath (Xiong et al., 2017) and MIN-193

ERVA (Das et al., 2018) identify the paths that con-194

nect the head and tail entities of the target triple and195

use them to predict the missing relation. However,196

according to (Zhang et al., 2022), the aggregation197

mechanisms in GNNs are not effective for KGs.198

PLM-based methods. The pre-trained language199

models (PLMs) like BERT (Devlin et al., 2018),200

T5 (Raffel et al., 2020), and GPT-3 (Brown et al.,201

2020) have revolutionized natural language pro-202

cessing, and are widely used for knowledge graph203

completion (Gesese et al., 2022). For example,204

KG-BERT (Yao et al., 2019) fine-tunes BERT with205

the descriptions of entities and relations to pre-206

dict the missing relations. PKGC (Lv et al., 2022)207

uses PLMs to encode the definition and attributes208

of head and tail entities for predicting the target209

triple. BERTRL (Zha et al., 2022) employs BERT210

to encode the reasoning paths between head and211

tail entities to predict the target triple. KRST (Su212

et al., 2023) further introduces path extraction met-213

rics, i.e., relation path coverage and confidence, to214

select relevant paths for the target triple. Specifi-215

cally, BERTRL and KRST capture both structural216

and semantic information in knowledge graphs and217

achieve SOTA performance for inductive relation218

prediction. However, they still struggle to infer219

the target triple (h, r, t) when there are no paths220

between entities h and t.221

3 Methodology 222

Figure 2 illustrates the framework of Raker which 223

proposes the adaptive reasoning information extrac- 224

tion method to address the no-path issue and the 225

relation-specific soft prompting method to make 226

PLMs aware of the predicted relation’s seman- 227

tic representation. Concretely, given the target 228

triple (h, r, t), Raker tries to extract the paths be- 229

tween entities h and t to obtain reasoning infor- 230

mation. If there are no paths between the two 231

entities, Raker extracts relation-aware reasoning 232

neighbors as the reasoning information. Mean- 233

while, Raker designs a soft prompt to learn com- 234

prehensive representations for the target relation, 235

thereby guiding the PLMs to focus on the rele- 236

vant information for relation inference. Finally, 237

Raker fine-tunes PLMs for relation prediction with 238

the learned relation representations and extracted 239

reasoning information. 240

3.1 Adaptive Reasoning Information 241

Extraction 242

Given the target triple (h, r, t), Raker first tries to 243

extract the paths between entities h and t since 244

these paths provide effective reasoning informa- 245

tion to evaluate the relation r (Zha et al., 2022; 246

Su et al., 2023). If the two entities are discon- 247

nected, Raker uses the relation-aware reasoning 248

neighbors extraction method to accurately iden- 249

tify those neighbor triples that are helpful for the 250

relation prediction. In this way, we can achieve 251

adaptive reasoning information extraction. Note 252

that, the reasoning paths and relation-aware rea- 253

soning neighbors usually contain duplicate reason- 254

ing information. For example, to predict triple 255

(A, profession, Director) in Figure 1, the reason- 256

ing path A direct−→ Movie1
direct←− C

profession−→ 257

Director between A and Director covers the 258

reasoning neighbor A direct−→ Moive1. Thus, 259

Raker only uses the reasoning paths if head and 260

tail entities are connected to reduce redundancy. 261

For easy representation, we denote a KG as 262

G=(E,R,D), where E and R represent the 263

sets of entities and relations, respectively, and 264

D={(h, r, t)|h, t ∈ E, r∈R} represents all the 265

triples in G. 266

3.1.1 Reasoning Paths Extraction 267

Reasoning paths can be formulated as the logic 268

rules for knowledge reasoning. For exam- 269

ple, we can easily infer (C, mother of, B) 270
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Figure 2: The framework of Raker which extracts adaptive reasoning information, generates relation-specific
prompts from learnable embeddings and hard prompts, and fine-tunes the PLM for relation prediction with the
reasoning information and generated prompts.

from rule (A, father of, B) ∧ (C,married, A) →271

(C,mother of, B). Therefore, the paths between272

head and tail entities show great reasoning power273

for inductive relation prediction. Following274

BERTRL (Zha et al., 2022) and KRST (Su et al.,275

2023), Raker directly uses the Breadth-First Search276

algorithm to extract the reasoning paths between277

head and tail entities.278

3.1.2 Relation-aware Reasoning Neighbors279

Extraction280

To predict a target triple, the contributions of neigh-281

bors associated with the head and tail entities are282

not equal. As discussed previously, some neigh-283

bors can provide strong support information for284

the target triple, while others may be noisy and285

unhelpful. Therefore, we propose a relation-aware286

reasoning neighbors extraction method to identify287

those neighbors associated with the head and tail288

entities of the target triple that are helpful to the289

relation prediction.290

Given the target triple (h, r, t), relation-aware291

reasoning neighbors refer to these triples that con-292

tain h or t, and their relations could help to predict293

the target relation r. To identify these relation-294

aware reasoning neighbors, we first calculate the295

relative frequency of relations for all entities in296

the entire KG, and then calculate the contribution 297

score of each relation associated with the head and 298

tail entities. Finally, the relation-aware reasoning 299

neighbors are extracted based on the contribution 300

scores. 301

For entity e, all the relations associated with e 302

are denoted as Re. For each relation r ∈ Re, the 303

relative frequency fe
r is calculated as below. 304

fe
r =

ne
r∑

ri∈Re ne
ri

(1) 305

where ne
r is the frequency of relation r associated 306

with e. For example, we have fC
direct = 1/3 for 307

entity C and relation direct in Figure 1. Then, for 308

each entity e, we can obtain a vector F e consist- 309

ing of the relative frequencies of all the relations 310

associated with e. The vectors for all entities form 311

a matrix F . 312

For the target relation r, we extract the entities 313

that are heads of r in KG G and analyze the dis- 314

tributions of relations associated with these enti- 315

ties. Concretely, we define Dr as the set of triples 316

containing relation r, Dh
r as the set of triples that 317

contain relation r and have h as their head enti- 318

ties, and EH
r as the set of head entities appear- 319

ing in Dr. In addition, we define RH
r as the set 320
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of relations associated with entities in EH
r , i.e.,321

RH
r =

⋃
hi∈EH

r
Rhi .322

For target relation r, we calculate the contribu-323

tion score p(r | ri) of each relation ri ∈ RH
r to r,324

i.e.,325

p(r | ri) =
p (r) p (ri | r)∑

rk∈R p (rk) p (ri | rk)
(2)326

p(r) =
|Dr|∑

ri∈R |Dri |
(3)327

where p(r) is the appearance probability of relation328

r in KG G, and |Dr| denotes the number of triples329

in Dr. Intuitively, given relation ri, p(r | ri) means330

the probability that the head entity of ri also has331

the relation r. The item p (ri | r) in Eq. (3) is332

calculated as below.333

p (ri | r) =
∑

hi∈EH
r

shi

(r,ri)
(4)334

where sh(r,ri)=fh
ri × finv, fh

ri is the relative fre-335

quency of relation ri associated with entity h∈EH
r ,336

and finv is the inverse frequency, i.e., the logarithm337

of the ratio between the total number of entities and338

the number of entities having relation ri.339

For example, in Figure 1, only triple (C, pro-340

fession, Director) contains target relation profes-341

sion. Therefore, we have EH
pro={C} and RH

pro =342

{profession, direct, live in}, and just need to an-343

alyze the relations associated with C. Specifi-344

cally, for relation direct, we have fC
dir=1/3 and345

finv=log(8/2) since the example KG has 8 entities346

among which 2 entities have relation direct if the re-347

lation direct between entities C and Movie1 is miss-348

ing. Finally, we have p (pro | dir) = sC(pro,dir) =349

1/3× log(8/2) = 0.462.350

After calculating the contribution score p(r | ri)351

for each relation ri ∈ RH
r , we use a threshold α to352

filter out those relations in RH
r with contribution353

scores lower than α to get the helpful relations354

RH′
r associated with head entities for relation r. In355

addition, we also calculate the helpful relations,356

i.e., RT ′
r , associated with tail entities for relation r357

in the same way.358

Then, we further calculate the specific helpful359

relations Rh′
and Rt′ for the head entity h and tail360

entity t, respectively, in the target triple, i.e.,361

Rh′
= Rh ∩RH′

r , Rt′ = Rt ∩RT ′
r (5)362

where Rh and Rt are the sets of relations associated363

with entities h and t, respectively.364

Finally, if both Rh′
and Rt′ are not empty, we 365

extract the relation-aware reasoning neighbors RN 366

for the target triple (h, r, t) as below. 367

RN = (∪rh∈Rh′D
h
rh
) ∪ (∪rt∈Rt′D

t
rt) (6) 368

For the implementation details of relation-aware 369

reasoning neighbors extraction, please refer to ap- 370

pendix A. 371

3.2 Relation-specific Soft Prompting 372

Existing PLM-based relation prediction methods 373

usually use hard prompts to encode the target en- 374

tities and relations, e.g., "Question: [head entity] 375

[relation] what ? Is the correct answer [tail en- 376

tity] ?". Only using these hard prompts struggle 377

to be aware of the target relation and cannot adapt 378

to diverse triples. Furthermore, these inherently 379

inflexible hard prompts are limited to a pre-defined 380

set of instructions, rendering them incapable of 381

interacting with reasoning information and discrim- 382

inating textually similar relations. To overcome 383

these limitations, we propose the relation-specific 384

soft prompting method. 385

For each relation r, the corresponding relation- 386

specific soft prompt vr comprises k trainable vec- 387

tors [vr
0;v

r
1; ...;v

r
k−1], where vr

i ∈ Rm and [; ] 388

denotes the vector concatenation operation. The 389

soft prompts for all relations forms the matrix 390

Vϕ ∈ R|R|×k×m, where |R| denotes the number 391

of distinct relations, and m is the dimension of 392

trainable vectors and set to 768. 393

We prepend vr to the prefix of the PLM’s input. 394

In the self-attention process of the PLM, the soft 395

prompt vector interacts with the textual informa- 396

tion in the input sequence, thus making the model 397

focus on the textual content that is relevant to the 398

specific relation. Concretely, given a pre-trained 399

language model LMθ parametrized by θ, the in- 400

put sentence embedding generated by Raker is 401

z=[e([CLS]) v e(q) e([SEP]) e(c)] which fuses 402

the embedding of [CLS], the relation-specific soft 403

prompt v, the embedding of hard prompt q for the 404

target triple, the embedding of [SEP] and the em- 405

bedding of adaptive reasoning information c, where 406

e(·) denoted as embedding operation. 407

During the training, the ith input lji for the jth 408

layer of the PLM in Raker is calculated as below. 409

lji =

{
zi (j = 0)

LMθ

(
lj−1
:

)
i

Otherwise
(7) 410

where j = 0 corresponds to the input layer and 411
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LMθ(·) is the forward function of language model412

layer.413

Raker leverages the trainable matrix Vϕ to dy-414

namically learn comprehensive representations of415

relations. By combining the soft prompts with hard416

prompts, Raker can enhance PLMs’ awareness of417

the target relation for better prediction.418

3.3 Triple Prediction via PLM419

3.3.1 Input Sentence Formation420

Raker combines prompts and adaptive reasoning
information to generate the input sentence for the
PLM, i.e.,

z = [e([CLS]) v e(q) e([SEP]) e(c)]

Adaptive reasoning information c can be cp or cn,421

where cp represents the reasoning paths and cn422

represents the relation-aware reasoning neighbors.423

Take the target triple (A, profession, Director) in424

Figure 1 as an example, we have425

z = [e([CLS]) vpro e(q) e([SEP]) e(c)]
q = Question: A profession what ? Is the correct answer

Director ?
c = [cp or cn]

cp = A direct Movie1; C direct Movie1; C profession
Director [SEP] Des(A) [SEP] Des(Director)

cn = A direct Movie1; A award Oscars [SEP] Des(A)
[SEP] Des(Director)

426

where Des(·) is the textual description of the entity427

that is used to augment the reasoning information428

for the target triple (Yao et al., 2019; Wang et al.,429

2022). If the relation direct between entities C and430

Movie1 exits, we have c = cp, otherwise c = cn.431

3.3.2 Relation Prediction432

After input sentence formation, Raker uses one433

linear layer on top of [CLS] to score the target434

triple’s correctness, which can be regarded as a435

binary classification task. If reasoning paths are436

used, following BERTRL and KRST, Raker takes437

each reasoning path as a separate input to the PLM.438

We define z(cpi) as the input sentence embedding439

using the ith reasoning path, and the corresponding440

prediction probability is proi, i.e.,441

proi = pro(y|z(cpi)), i = 1, 2, ..., N (8)442

where y ∈ {0, 1} is class label, and N is the num-443

ber of reasoning paths. Then, the final score of444

target triple (h, r, t) is calculated as below.445

score(h, r, t) = max
i=1,2,...,N

pro(y = 1 | z(cpi))
(9)446

If relation-aware reasoning neighbors are 447

used as the reasoning information, we have 448

score(h, r, t) = pro(y|z(cn)). 449

We follow the negative sampling strategy in 450

BERTRL to produce negative samples, i.e., ran- 451

domly sampling entities from the common 3-hop 452

entities of head and tail entities to corrupt the head 453

or tail of each positive triple. 454

Raker is trained based on the cross entropy loss, 455

i.e., 456

L = −
∑
τ

(yτ log p+ (1− yτ ) log (1− p))

(10) 457

where yτ ∈ {0, 1} is the label, p is the triple score, 458

τ ∈ D+ ∪ D−, D+ is the positive triple set, and 459

D− is the negative triple set. 460

4 Experiments 461

4.1 Datasets 462

We conducted extensive experiments on three 463

widely used knowledge graph completion 464

datasets, i.e., FB15k-237 (Toutanova et al., 465

2015), WN18RR (Dettmers et al., 2018), and 466

NELL-995 (Xiong et al., 2017). Table 1 presents 467

the details of three datasets. We use the inductive, 468

transductive, few-shot subsets of these three 469

datasets according to the setting in BERTRL (Zha 470

et al., 2022). 471

Table 1: Statistics of three datasets.

Dataset KG Relations Entities Triples Avg. degree

WN18RR

train 9 2746 6670 4.86
train-2000 9 1970 2002 2.03
train-1000 9 1362 1001 1.47
test-transductive 7 962 638 1.32
test-inductive 8 922 1991 4.32

FB15k-237

train 180 1594 5223 6.56
train-2000 180 1280 2008 3.14
train-1000 180 923 1027 2.23
train-rel50 50 1310 3283 5.01
train-rel100 100 1499 3895 5.20
test-transductive 102 550 492 1.79
test-inductive 142 1093 2404 4.40

NELL-995

train 88 2564 10063 7.85
train-2000 88 1346 2011 2.99
train-1000 88 893 1020 2.28
test-transductive 60 1936 968 1.00
test-inductive 79 2086 6621 6.35

4.2 Experiment Settings 472

Raker is implemented based on the bert-base- 473

uncased using PyTorch, and trained on two 474

NVIDIA GeForce RTX 3090 GPUs. Following 475

the evaluation in Grail (Teru et al., 2020) and 476

BERTRL(Zha et al., 2022), we measure the Mean 477
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Table 2: Results of transductive and inductive relation prediction.

Transductive Inductive

WN18RR FB15k-237 NELL-995 WN18RR FB15k-237 NELL-995

MRR

RuleN 0.669 0.674 0.736 0.780 0.462 0.710
GRAIL 0.676 0.597 0.727 0.799 0.469 0.675
MINERVA 0.656 0.572 0.592 - - -
TuckER 0.646 0.682 0.800 - - -
KG-BERT - - - 0.547 0.500 0.419
BERTRL 0.683 0.695 0.781 0.792 0.605 0.808
KRST 0.899 0.720 0.800 0.890 0.716 0.769
Raker 0.912 0.784 0.813 0.930 0.817 0.835
Absolute Imp. 1.3%↑ 6.4%↑ 1.3%↑ 4.0%↑ 10.1%↑ 2.7%↑

Hits@1

RulN 0.646 0.603 0.636 0.745 0.415 0.638
GRAIL 0.644 0.494 0.615 0.769 0.390 0.554
MINERVA 0.632 0.534 0.553 - - -
TuckER 0.600 0.615 0.729 - - -
KG-BERT - - - 0.436 0.341 0.244
BERTRL 0.655 0.620 0.686 0.755 0.541 0.715
KRST 0.835 0.639 0.694 0.809 0.600 0.649
Raker 0.853 0.701 0.730 0.888 0.729 0.748
Absolute Imp. 1.8%↑ 6.2%↑ 3.6%↑ 7.9%↑ 12.9%↑ 3.3%↑

Reciprocal Rank (MRR) and Hits@1 of one pos-478

itive triple among 50 samples with 49 negative479

triples. MRR calculates the average reciprocal rank480

of all positive triples and Hits@1 calculates the per-481

centage of cases where the positive triple appears482

as the top-1 ranked triple. Following BERTRL, we483

randomly generate negative triples and use them484

for training and validation. For a fair comparison,485

we directly use the negative triples provided by486

BERTRL for testing. Each experiment is run twice487

and the mean results are reported. We set the learn-488

ing rate, the length of relation-specific soft prompts489

k and relation-aware reasoning neighbors filtering490

threshold α to 5× 10−5, 10, and 0.1, respectively.491

4.3 Results of Transductive and Inductive492

Relation Prediction493

Table 2 presents the results of both transductive and494

inductive relation prediction. Since the WN18RR495

dataset has only 9 relations, and the paths between496

entities could be highly redundant, we employ the497

path filtering strategy in KRST to reduce such re-498

dundancy.499

According to the results in Table 2,500

Raker achieves the best performance among501

all methods, and largely outperforms the baselines.502

Especially, the improvement of Raker is more503

than 10% on the FB15k-237 inductive subset504

which has the largest number of distinct relations505

among three datasets, and has many entity pairs506

that are not connected. The relation-specific soft507

prompting and relation-aware-reasoning neighbors508

together contribute to such improvement.509

We also evaluated the performance of Raker ,510

BERTRL, and KRST in terms of Hits@3 and 511

Hits@10 on three inductive datasets. The results 512

are summarized in Appendix C. 513

4.4 Results of Few-shot Relation Prediction 514

For few-shot relation prediction, Raker follows 515

BERTRL to extract reasoning paths on the sub- 516

graphs and Raker* follows KRST to extract reason- 517

ing paths on the entire KG graph. According to the 518

results in Table 3, Raker and Raker* outperform 519

most baseline methods over three datasets. In gen- 520

eral, Raker* performs better than Raker because ex- 521

tracting reasoning paths from the entire KG graph 522

could learn more information about the target triple. 523

KRST performs best on the NELL-995 dataset for 524

transductive relation prediction since most entity 525

pairs in this dataset are connected and the contri- 526

bution from relation-aware reasoning neighbors is 527

thus limited. 528

4.5 Unseen Relation Prediction 529

Raker leverages a pre-trained language model for 530

relation prediction, and has the potential to pre- 531

dict unseen relations. Table 4 presents the results 532

of unseen relation prediction on the subsets of 533

FB15k-237 with a zero-shot setting introduced by 534

BERTRL. Following BERTRL, we use the triples 535

with different numbers of relation types for train- 536

ing, and testing on the FB15k-237 inductive dataset. 537

According to the results, Raker largely outperforms 538

BERTRL and KRST since it can extract more rea- 539

soning information for relation prediction. 540
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Table 3: Results of few-shot relation prediction.

Transductive Inductive

WN18RR FB15k-237 NELL-995 WN18RR FB15k-237 NELL-995

1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000

MRR

RuleN 0.567 0.625 0.434 0.577 0.453 0.609 0.681 0.773 0.236 0.383 0.334 0.495
GRAIL 0.588 0.673 0.375 0.453 0.292 0.436 0.652 0.799 0.380 0.432 0.458 0.462
MINERVA 0.125 0.268 0.198 0.364 0.182 0.322 - - - - - -
TuckER 0.258 0.448 0.457 0.601 0.436 0.577 - - - - - -
KG-BERT - - - - - - 0.471 0.525 0.431 0.460 0.406 0.406
BERTRL 0.662 0.673 0.618 0.667 0.648 0.693 0.765 0.777 0.526 0.565 0.736 0.744
KRST 0.871 0.882 0.696 0.701 0.743 0.781 0.886 0.878 0.679 0.680 0.745 0.738
Raker 0.810 0.850 0.670 0.728 0.673 0.757 0.892 0.917 0.637 0.687 0.750 0.783
Raker* 0.877 0.887 0.731 0.736 0.718 0.751 0.891 0.910 0.701 0.723 0.662 0.727

Hits@1

RuleN 0.548 0.605 0.374 0.508 0.365 0.501 0.649 0.737 0.207 0.344 0.282 0.418
GRAIL 0.489 0.633 0.267 0.352 0.198 0.342 0.516 0.769 0.273 0.351 0.295 0.298
MINERVA 0.106 0.248 0.170 0.324 0.152 0.284 - - - - - -
TuckER 0.320 0.415 0.407 0.529 0.392 0.520 - - - - - -
KG-BERT - - - - - - 0.364 0.404 0.288 0.317 0.236 0.236
BERTRL 0.621 0.637 0.517 0.583 0.526 0.582 0.713 0.731 0.441 0.493 0.622 0.628
KRST 0.790 0.810 0.611 0.602 0.628 0.678 0.811 0.793 0.537 0.524 0.637 0.629
Raker 0.745 0.783 0.590 0.629 0.545 0.657 0.835 0.864 0.531 0.578 0.641 0.683
Raker* 0.815 0.823 0.621 0.632 0.589 0.637 0.819 0.850 0.566 0.593 0.505 0.598

Table 4: Results of unseen relation prediction.

Method 30 relations 50 relations 70 relations 100 relations 130 relations

MRR

KG-BERT - - - - -
BERTRL 0.574 0.580 0.610 0.612 0.621
KRST 0.642 0.660 0.677 0.692 0.694
Raker 0.651 0.714 0.770 0.769 0.788

Hits@1

KG-BERT - 0.266 - 0.450 -
BERTRL 0.519 0.534 0.573 0.585 0.577
KRST 0.509 0.551 0.555 0.560 0.557
Raker 0.537 0.619 0.671 0.678 0.690

4.6 Ablation Study541

Table 5 shows the results of Raker after remov-542

ing the relation-aware reasoning neighbors extrac-543

tion method and the relation-specific soft prompt-544

ing method. Obviously, after removing either of545

the two components, the performance of Raker de-546

creases dramatically, which indicates the effective-547

ness and necessity of the two components.548

Table 5: Results of ablation studies on FB15k-237-
inductive dataset.

Method MRR Hits@1 Hits@3 Hits@10

w/o Relation-aware reasoning neighbors 0.720 0.643 0.771 0.892
w/o Relation-specific soft prompts 0.746 0.646 0.809 0.939
Raker 0.817 0.729 0.873 0.978

5 Conclusion549

In this work, we propose the relation-aware knowl-550

edge reasoning model Raker for inductive relation551

prediction, and adaptively extract reasoning infor-552

mation to address the issue of no-path connection553

between entities. Raker introduces the relation- 554

aware reasoning neighbors extraction method to 555

effectively identify those neighbors that are helpful 556

for target relation prediction, and designs a relation- 557

specific soft prompting method to learn compre- 558

hensive representation for the target relation. Ac- 559

cording to the experiment results under different 560

settings, Raker largely outperforms the baseline 561

methods in both inductive relation prediction and 562

transductive relation prediction, and also achieves 563

good performance for few-shot setting and unseen 564

relation prediction. 565

Limitations 566

Although Raker can well address the issue of no- 567

path connection between entities and largely out- 568

performs baseline methods, it still has two limi- 569

tations. First, Raker extracts paths and neighbors 570

for each triple, and could be of high computational 571

complexity if applied to predict missing entities. 572

Second, reasoning paths and neighbors are used al- 573

ternatively in Raker, and better integration methods 574
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are expected to take their advantage while avoiding575

redundancy.576
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A Implementation of Relation-aware 847

Reasoning Neighbors Extraction 848

Algorithm 1 provides the implementation details of 849

the relation-aware reasoning neighbors extraction 850

method.

Algorithm 1 Relation-aware Reasoning Neighbors
Extraction
Input: KG G, target triple (h, r, t), and α
Output: Relation-aware reasoning neigh-
bors

1: Get RH
r and EH

r , initialize RH′
r and RT ′

r as
list()

2: Calculate F as Eq. (1)
3: for h ∈ EH

r do
4: for ri ∈ F [h] do
5: // len(F [e][ri]) denotes numbers of enti-

ties has relation ri
6: finv = log(len(F )/len(F [e][ri]))
7: p (ri | r)+ = fh

ri × finv
8: end for
9: end for

10: for ri ∈ RH
r do

11: Calculate score p (r | ri) as Eq. (2)
12: if p (r | ri) >= α then
13: RH′

r .append(ri)
14: end if
15: end for
16: Repeat step 3-15 for calculating RT ′

r

17: Calculate Rh′
and Rt′ as Eq. (5)

18: if Rh′
is not empty and Rt′ is not empty then

19: return RN as Eq. (6)
20: else
21: return empty list()
22: end if

851

B Case Study 852

Table 6 presents a case study on FB15k-237 induc- 853

tive dataset using Raker, KRST, and BERTRL. For 854

instance, for the test triplet (Don Henley, person 855

profession, Drummer-GB), Raker achieves a rank 856

of 1 with a score of 0.8264, significantly outper- 857

forming the second-ranked triplet (Don Henley, per- 858

son profession, Animation Director) with a score of 859

0.0314. Due to the absence of a path between Don 860

Henley and Drummer-GB, KRST and BERTRL as- 861

sign a rank of 50 to the target entity Drummer-GB. 862

This demonstrates the effectiveness of Raker’s ap- 863

proach of incorporating relation-aware neighbors. 864
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Table 6: Case study on FB15k-237 inductive dataset.

Triple to predict Ground Truth BERTRL KRST Raker

(Don Henley, person profession, ?) Drummer-GB Rank: 50 Rank: 50

Rank: 1
(Drummer-GB,0.8264)

(Animation Director,0.0314)
(Diploma,0.000574);

(Kappei Yamaguchi,0.0002915);

(Freddie Mercury, profession, ?) Singer-songwriter-GB Rank: 50 Rank: 50

Rank: 1
(Singer-songwriter-GB,0.0633)

(Storyboard Artist,0.0483);
(Newcastle upon Tyne,0.000237);

(Sex comedy,0.000231);

C Hits@3 and Hits@10 of Inductive865

Relation Prediction866

We present Hits@3 and Hits@10 of Inductive867

Relation Prediction in Table 7. On Hits@3 and868

Hits@10, Raker achieves state-of-the-art perfor-869

mance on the FB15k-237 dataset and demonstrates870

strong performance on the WN18RR and NELL-871

995 datasets.

Table 7: Hits@3 and Hits@10 of inductive relation
prediction.

WN18RR FB15k-237 NELL-995

Hits@3
BERTRL 0.824 0.653 0.913
KRST 0.965 0.803 0.818
Raker 0.968 0.873 0.901

Hits@10
BERTRL 0.824 0.693 0.968
KRST 1.000 0.932 0.912
Raker 0.977 0.978 0.978

872

D Prompt Length Sensitivity Experiment873

To investigate the impacts of different soft prompt874

lengths on Raker , we conducted a prompt length875

sensitivity experiment under the FB15K-237 induc-876

tive setting as Figure 3. Experimental results show877

that the variation of k has little effect on the model’s878

performance. Considering both computational effi-879

ciency and model performance, we choose 10 for880

k.881

10 20 30 40 50
Prompt Length

0.5

0.6

0.7

0.8

0.9

1.0

Va
lu

es

Hyperparameter Sensitivity Experiment
Hit@1
MRR

Figure 3: Prompt length k sensitivity experiment on the
FB15K-237 dataset with inductive setting.
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