
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MASAM: MULTIMODAL ADAPTIVE SHARPNESS-
AWARE MINIMIZATION FOR HETEROGENEOUS DATA
FUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal learning requires integrating heterogeneous modalities, such as struc-
tured records, visual imagery, and temporal signals. It has been revealed that this
heterogeneity causes modality encoders to converge at different rates, making the
multimodal learning imbalanced. We empirically observe that such an imbalance
is related to the sharpness of the solution. Modality encoders that converge faster
could be dragged into sharp regions due to inter-modal interference, degrading the
generalization capability of unimodal features learned. Sharpness-Aware Minimiza-
tion is effective in improving generalization via finding solutions in flat regions.
However, its application in multimodal scenarios is challenging: 1) SAM pays
excessive attention to the dominant modality, exacerbating modality imbalance,
and 2) the perturbation gradient calculation is affected by interference from other
modalities. To address these issues, we propose Multimodal Adaptive Sharpness-
Aware Minimization (MASAM), which optimizes different modalities based on
their dominance. We design an Adaptive Perturbation Score (APS) using con-
vergence speed and gradient alignment to identify dominant modalities for SAM
application. Our Modality-Decoupled Perturbation Scaling (MDPS) then reduces
inter-modal interference during optimization, better aligning each modality with
shared information. Extensive empirical evaluations on five multimodal datasets
and six downstream tasks demonstrate that MASAM consistently attains flatter
solutions, achieves balanced multimodal learning, and subsequently surpasses
state-of-the-art methods across diverse datasets and tasks.

1 INTRODUCTION

Multimodal learning leverages complementary information from heterogeneous data sources and
has achieved remarkable progress in domains such as audio–video understanding (Huang et al.,
2023) and clinical decision support (Stahlschmidt et al., 2022). Despite these successes, prior studies
have highlighted the persistent issue of modality imbalance, where faster-converging modalities
dominate training and weaker modalities are under-optimized, often leading to suboptimal fusion
or even inferior performance compared to unimodal models (Wang et al., 2020; Peng et al., 2022;
Wei & Hu, 2024). A range of strategies, gradient modulation (Li et al., 2023), iterative unimodal
optimization (Zhang et al., 2024), and representation regularization (Fan et al., 2023), have been
developed to alleviate this problem, but these approaches primarily modulate gradient magnitudes
and overlook deeper geometric factors, such as the sharpness of the loss landscape and the solutions.

Such geometric factors have a close linkage to the generalization capability and also modality
balance in the multimodal settings: flatter minima typically correspond to more robust and stable
solutions (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Foret et al., 2021). In multimodal
settings, heterogeneous modalities exhibit inherently divergent convergence dynamics. Even when a
modality progresses toward a flatter solution, joint optimization can continually disrupt its trajectory
through cross-modal interference, preventing the model from reaching a jointly flat optimum and
thereby making multimodal learning imbalanced and limiting its generalization capacity. We em-
pirically observe this phenomenon in real-world datasets. Fig. 1a plots the Hessian trace (a proxy
for sharpness) of modality-specific encoders for the MIMIC dataset (EHR + CXR), where the CXR
encoder initially converges toward a flatter region (smaller Hessian Trace) but later becomes sharper
as the unstable optimization of the EHR encoder disrupts its trajectory.
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Figure 1: (a) The Hessian trace analysis for CXR modality in the MIMIC dataset, where a lower
normalized Hessian trace represents a flatter minima. It suggests that the CXR encoder in the naive
late fusion model converges to a sharp region, whereas that in our MASAM converges to a much
flatter region. (b) An illustration of the optimization trajectory of naive late fusion and MASAM.
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Figure 2: The proposed MASAM model achieves
the best performance across all datasets and tasks.

Sharpness-Aware Minimization (SAM) has
demonstrated consistent improvements in gen-
eralization for single-modality deep learning by
steering optimization towards flat regions of the
loss landscape (Foret et al., 2021). This benefit
stems from the fact that flat minima are associ-
ated with robustness to parameter perturbations
and data variability (Hochreiter & Schmidhu-
ber, 1997; Keskar et al., 2017), making SAM a
widely adopted technique for enhancing model
reliability in diverse domains. We conjecture
that similar ideas could be used to mitigate the
modality imbalance issue in multimodal learn-
ing. However, directly applying SAM to mul-
timodal settings introduces fundamental chal-
lenges that undermine its effectiveness: (1) Am-
plified modality imbalance: Different modal-
ities exhibit heterogeneous convergence speeds
and gradient magnitudes. SAM’s uniform sharp-
ness minimization thus disproportionately ben-
efits dominant modalities with faster convergence, while under-optimizing slower yet informative
ones (Fan et al., 2024). (2) Modality-agnostic perturbation: Beyond imbalance in magnitude,
modalities also possess distinct loss landscape geometries. The perturbation applied by SAM is
agnostic to differences in loss landscape geometries, forcing encoders of different modalities to
adapt to a shared trajectory rather than their own flat regions. This one-size-fits-all approach leads to
undermined multimodal generalization.

To address these challenges, we propose Multimodal Adaptive SAM (MASAM), an optimization
framework tailored for multimodal learning. To mitigate amplified modality imbalance, MASAM
introduces an Adaptive Perturbation Score (APS) to quantify the dominance of each modality through
its convergence speed and gradient alignment with the fusion objective. Perturbations are then
selectively applied to dominant modalities, stabilizing their convergence in flatter regions while
preventing them from overwhelming slower yet informative modalities. To address modality-agnostic
perturbation, MASAM develops a Modality-Decoupled Perturbation Scaling (MDPS) that adjusts
perturbation strength according to cross-modal gradient alignment. This enables each modality to
explore flatter minima along directions that align with shared information while remaining robust to
heterogeneous loss landscapes. Together, these mechanisms make SAM modality-aware, allowing
multimodal models to retain the benefits of flatness-driven generalization without suffering from
imbalance or incompatible perturbations.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our main contributions are summarized as follows:

• We identify two fundamental limitations: amplified modality imbalance and modality-agnostic
perturbation, which hinder the direct application of SAM to multimodal learning.

• We propose MASAM, a multimodal optimization framework that explicitly tackles modality
imbalance and heterogeneous loss geometries through Adaptive Perturbation Score (APS) and
Modality-Decoupled Perturbation Scaling (MDPS).

• We conduct extensive experiments across diverse domains, from widely used multimodal bench-
marks (CREMA-D, Kinetics, UPMC-Food101) to noisy clinical datasets (MIMIC-IV, ADNI).
Results show that MASAM significantly outperforms existing baselines, consistently addresses
modality imbalance issues by achieving flatter optima, and obtains better robustness against noisy
labels.

2 PRELIMINARIES AND RELATED WORK

Preliminaries on Sharpness-Aware Minimization Sharpness-Aware Minimization (SAM) (Foret
et al., 2021) seeks parameters in flat regions in the loss landscape. Formally, SAM minimizes both
the loss value and the sharpness of the loss surface, where sharpness is defined as the maximum
increase in loss under a small perturbation ϵ within an l2-ball of radius ρ of the parameters θ:

min
θ

[
max

∥ϵ∥2≤ρ
L(θ + ϵ)− L(θ)

]
+ L(θ). (1)

By applying a first-order Taylor expansion, the inner maximization reduces to perturbing parameters
in the gradient direction:

min
θ

L(θ + ϵ̂), where ϵ̂ ≜ ρ · ∇L(θ)
∥∇L(θ)∥ . (2)

Intuitively, this procedure penalizes sharp directions in the loss surface, steering training toward
flatter minima that enhance generalization and robustness (Andriushchenko et al., 2023). Several
variants of SAM refine the perturbation or sharpness estimation (Wang et al., 2023; Wu et al., 2024a;
Li et al., 2024), but all are developed for unimodal tasks, leaving their applicability to multimodal
optimization unexplored.
Related Work on Balancing Multimodal Learning Recent efforts have been made to mitigate
the modality competition issue, where the learning is dominated by stronger modalities. Existing
works mostly rely on gradient modulation, such as G-Blend (Wang et al., 2020), OGM (Peng et al.,
2022), and AGM (Li et al., 2023). They tackle the modality imbalance by dynamically rescaling
gradients, but do not take the geometry of the loss surface into consideration, potentially leading to
poor generalization. For more discussions of related work, see Appendix B.
Why SAM Fails in Multimodal Learning? While SAM and its variants have demonstrated
consistent improvements in unimodal learning, directly applying SAM to multimodal learning
is problematic since the gradients of the fusion objective are coupled across modalities. When
one modality dominates the prediction, weaker modalities receive distorted gradients, and SAM
perturbations derived from them fail to ensure modality-specific flatness. We formally summarize
this observation as follows.
Observation 1 (Difficulties of applying SAM to multimodal learning). Consider multimodal learning
with at least two modalities, trained under a joint late fusion loss Lfuse. If one modality is dominant
(i.e., contributes disproportionately to the fused prediction), then:

1. The gradient ∇θmLfuse for each weaker modality m is biased toward the dominant modality,
rather than aligned with its own unimodal objective.

2. The SAM perturbation direction for modality m

ϵm = ρ · ∇θm
Lfuse

∥∇θmLfuse∥2
(3)

is therefore also biased, preventing weaker modalities from converging to their flat minima.

As a result, applying SAM directly to multimodal training can exacerbate modality imbalance and
fail to achieve modality-specific flatness.

We provide a detailed derivation in Appendix C. This observation shows that SAM’s perturbation
mechanism, while effective in unimodal training, becomes counterproductive in multimodal settings,
motivating the modality-adaptive variant we propose in this paper.

3
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Figure 3: Overview of MASAM. We propose to adaptively apply perturbations to specific modalities,
guiding each modality towards its own flat minimum to address modality imbalance. First, we
introduce the Adaptive Perturbation Score (APS) to identify strong modalities in training. Then,
Modality-Decoupled Perturbation Scaling (MDPS) aligns gradients between unimodal and fusion
objectives, mitigating cross-modal interference under SAM perturbations.

3 MASAM: MULTIMODAL ADAPTIVE SHARPNESS-AWARE MINIMIZATION

3.1 THE MASAM FRAMEWORK

Prior analysis demonstrates that in multimodal training, the dominant modality often steers the
joint optimization process, resulting in insufficient exploration and suboptimal learning for weaker
modalities. Moreover, the perturbation direction in SAM tends to align with the stronger modality’s
gradient, further impeding the weaker modality’s ability to converge to flatter minima. To mitigate
these challenges, we propose a method that dynamically selects which modality to perturb and
enforces gradient alignment across modalities. The overall framework is illustrated in Fig. 3.

Multimodal fusion Without loss of generality, we assume two modalities m1 and m2. For each
data sample indexed by i, we consider a paired multimodal instance with the downstream task label
denoted as (xm1

i , xm2
i , yi). The data modalities xm1

i and xm2
i are encoded using modality-specific

encoders, denoted as ϕm1
and ϕm2

and parameterized by θm1
and θm2

, respectively. Then, they are
combined for downstream tasks.

ŷfusei = f fuse(zfusei ), zfusei = Fusion(zm1
i , zm2

i ; θfuse) = W [zm1
i ||zm2

i ] + b, (4)

zm1
i = ϕm1(x

m1
i ; θm1), zm2

i = ϕm2(x
m2
i ; θm2), (5)

where || denotes concatenation, f fuse is the task-specific classification head, and ŷfusei is the final
prediction. We adopt a unified cross-entropy objective, denoted as CE. The fusion loss Lfuse and the
auxiliary unimodal objective Lm of modality m are defined as:

Lfuse =
1

N

N∑
i=1

CE
(
yi, ŷ

fuse
i

)
, Lm =

1

N

N∑
i=1

CE
(
yi, ŷ

m
i

)
, m ∈ {m1,m2}, (6)

where ŷm
i = fm(zmi ) is the prediction from modality m using its unimodal feature representation.

The final training objective combines the fusion loss and unimodal auxiliary losses:

Ltotal = Lfuse + λm1Lm1 + λm2Lm2 , (7)

where λm1 and λm2 are hyperparameters that control the strengths of the unimodal objectives.

Adaptive perturbation score (APS) As noted in prior works (Wang et al., 2020; Li et al., 2023),
different modalities exhibit distinct convergence behaviors and make uneven contributions to the joint
optimization process during training. A modality with a faster decrease of the uni-modal loss Lm

typically indicates that its information is being efficiently and continuously learned, thus suggesting a
stronger contribution. To capture this phenomenon, we introduce a measure for modality learning
speed based on moving averages:

Decay(t)
m = max

(
0,L(t−1)

m − MA(t)
m

)
, m ∈ {m1,m2} , (8)
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where MA(t)
m = β ·MA(t−1)

m +(1− β) · L(t)
m is the moving average of the loss values during training,

t denotes the number of training steps. MA(t)
m provides a stable estimate of the long-term loss trend,

while Decay(t)m reflects the short-term reduction relative to this trend. A higher decay value indicates
faster learning progress, implying that the modality is contributing more actively at the current step.

In addition to learning speed, we also consider gradient alignment as an indicator of modality strength.
Our earlier analysis suggests that strong modalities, which convey richer shared information, tend
to dominate the optimization trajectory of the fusion objective. This manifests as a high alignment
between the gradients of the uni-modal loss and that of the fusion loss, since the latter is largely
steered by the stronger modality. Conversely, weaker modalities may have misaligned or even
conflicting gradient directions with respect to the fusion gradient, resulting in limited influence during
joint learning. This perspective is also observed in Fan et al. (2023) and Guo et al. (2024). We
therefore define a gradient-based modality dominance metric as:

γ(t)
m =

⟨∇θm
Lfuse,∇θm

Lm⟩
∥∇θmLfuse∥2 · ∥∇θmLm∥2

, m ∈ {m1,m2} (9)

where ∇θm
Lm and ∇θm

Lfuse denote the gradients from the unimodal objective and the fusion
objective, respectively. This unimodal loss not only promotes the acquisition of modality-specific
information but also serves as a proxy to assess the modality’s standalone learning dynamics. By
combining both perspectives, we define our Adaptive Perturbation Score (APS) as:

APS(t)m = α · Decay(t)m + (1− α) · γ(t)
m , m ∈ {m1,m2} (10)

where α ∈ [0, 1] is a tunable hyperparameter that balances learning speed and gradient consistency
in determining the dominance of each modality. To mitigate the risk of strong modalities being
pushed away from flatter minima due to the continued updates driven by weaker modalities, we first
identify the strong modality as the one with a higher APS in each training step. Then, we impose
modality-specific SAM-based regularization over the strong modality.

Modality-decoupled perturbation scaling (MDPS) In joint learning, the final prediction is derived
from the output of the fusion module, which primarily captures modality-shared information that is
directly relevant to the downstream task. Consequently, the gradient of the fusion objective, ∇θmLfuse,
can be interpreted as the direction that guides the learning of shared representations. Motivated by
this, we apply perturbations along the fusion gradient direction to the dominant modality identified by
APS. However, as discussed in Observation 1 and Appendix C, the gradient ∇θm

Lfuse has a coupled
effect from different modalities; therefore, directly applying the SAM perturbation may mislead
weaker modalities during optimization. To address this issue, we propose a method that dynamically
adjusts the perturbation magnitude based on the degree of alignment between unimodal and fusion
gradients, yielding

ϵm = ρ · γm · ∇θmLfuse

∥∇θm
Lfuse∥2

= ρ · ⟨∇θmLfuse,∇θmLm⟩
∥∇θm

Lfuse∥2 · ∥∇θm
Lm∥2

· ∇θmLfuse

∥∇θm
Lfuse∥2

, (11)

where ϵm is the perturbation applied to θm, ρ is a scalar that controls the step size of the perturbation
(consistent with the definition in Eq. (3)), and γm is the cosine similarity between the unimodal and
fusion gradients, as defined in Eq. (9). This scaling can also be interpreted as a projection of the
gradient of unimodal loss onto the gradient direction of the fusion loss, thus achieving modality-
decoupled perturbation.

Parameter Update We divide all model parameters into three disjoint subsets, where {θm⋆} and
{θm|m ̸= m⋆} denote the parameters of the dominating and non-dominating modalities, respectively,
and θother denotes all other model parameters. In each iteration, we first update θother using a base
optimizer, e.g., SGD or Adam. Then, we identify the dominant modality using the APS score by
m⋆ = argmaxm APSm, MASAM then employs MDPS as defined in Eq. (11) to perform sharpness-
aware optimization that eliminates interference from other modalities. The update direction is given
by the combination of the perturbed fusion gradient and the unimodal loss gradient:

θt+1
m = θtm − ηt

[
∇θmLfuse

(
θtm + ρt γ

t
m

∇θmLt
fuse

∥∇θmLt
fuse∥2

)
+∇θmLm(θtm)

]
, m ∈ {m⋆} , (12)

For each non-dominant modality, MASAM updates the parameters using the gradients of both the
fusion and unimodal objectives computed at the current parameters:

θt+1
m = θtm − ηt

[
∇θmLfuse

(
θtm

)
+∇θmLm

(
θtm

)]
, m ̸= m⋆. (13)

We summarize the learning algorithm for an arbitrary number of modalities in Algorithm 1.

5
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Algorithm 1: MASAM: Multimodal Adaptive Sharpness-Aware Minimization
Input: Training dataset D; Perturbation radius ρ; weights {λm}; momentum µ; score weight α.
Output: Modality encoder parameters {θm}Mm=1 and other model parameters θother.

1 for each iteration with mini-batch S ⊂ D do
2 Compute Lfuse(S) and {Lm(S)}Mm=1;
3 Update θother by gradient descent;
4 for each modality m ∈ {1, . . . ,M} do
5 Compute modality-specific APS score APSm using Eqs. (8) to (10);
6 Select dominant modality by m⋆ = argmaxm APSm;
7 Obtain the perturbed parameters θm⋆ + ϵm⋆ using Eq. (11);
8 Update dominant modality encoder parameters using Eq. (12);
9 for each non-dominant modality m ∈ {1, . . . ,M} \ {m⋆} do

10 Update modality encoder parameter θm using gradient descent;

3.2 THEORETICAL ANALYSIS

We analyze the convergence of MASAM under standard smoothness and step size conditions, building
on the inexact gradient descent (IGD) framework of Khanh et al. (2024).
Theorem 1 (Convergence of MASAM). For the modality-specific MASAM update as in Eq. (12):
suppose the fusion loss Lfuse has Lfuse-Lipschitz continuous gradients with Lfuse > 0. Assume the
learning rate sequence {ηt} and the perturbation radius sequence {ρt} satisfy

(i)
∞∑
t=1

ηt = ∞, (ii) ηt ↓ 0, (iii)
∞∑
t=1

ηtρt < ∞, (iv) lim sup
t→∞

ρt <
2

Lfuse
. (14)

Then {θtm} converges to a stationary point of the multimodal objective Eq. (7).

The complete proof of this result is presented in Appendix D. The conditions in Theorem 1 are
practical in implementation, given that the fusion loss is cross entropy loss and the radius sequence
{ρt} can approximate a constant (see Khanh et al., 2024, Remark 3.6).

4 EXPERIMENTS AND RESULTS

We evaluate the proposed method on diverse multimodal datasets: two audio–video datasets, CREMA-
D (Cao et al., 2014) and Kinetics (Arandjelovic & Zisserman, 2017), one image–text dataset,
UPMC-Food101 (Wang et al., 2015), and two clinical multimodal datasets, MIMIC (Johnson et al.,
2023; 2019) and ADNI (Jack Jr et al., 2008). On MIMIC dataset, we perform two clinical tasks,
the Phenotype Classification and the Mortality Prediction. For comparison, we include several
representative methods for addressing modality imbalance, including OGM (Peng et al., 2022),
AGM (Li et al., 2023), MMPareto (Wei & Hu, 2024), PMR (Fan et al., 2023), MLA (Zhang et al.,
2024), and G-Blend (Wang et al., 2020), as baseline models. For clinical datasets, we additionally
include DrFuse (Yao et al., 2024) and MedFuse (Hayat et al., 2022), which are tailored for clinical
multimodal learning. Due to page limit, we report AUPRC for the two tasks on MIMIC, mAP for
ADNI, and accuracy for CREMA-D, Kinetics, and UPMC-Food101 datasets in the paper, and report
additional evaluation metrics in the Appendix E.3.

We follow pipelines from existing works to preprocess the datasets, and split them into training,
validation, and test sets with a 7:1:2 ratio. We use identical encoders across all models within each
dataset for fair comparisons and determine the hyperparameters via grid search. All experiments are
performed using a server with four NVIDIA RTX 4090 GPUs. The details of data preprocessing and
hyperparameter settings can be found in Appendices A.3 and A.4.

4.1 OVERALL PERFORMANCE ACROSS DATASETS

MASAM consistently achieves significant improvements across all datasets. The overall experi-
mental results are summarized in Table 1 and Fig. 2. On the Kinetics dataset, MASAM attains 0.74
accuracy, providing a substantial 7.62% improvement over the strongest baseline (AGM). Similar
performance gain is also observed on CREMA-D, where MASAM reaches 0.814 accuracy with a
5.77% relative gain. On clinical datasets, despite their high noise levels and considerable missing
rates (statistics in Appendix A.4), MASAM achieves reliable improvements over the best baselines:
3.75% for phenotype and 3.08% for mortality on MIMIC, and 2.57% higher mAP on ADNI. We
provide detailed MIMIC performance analysis across individual disease phenotypes in Appendix E.1.

6
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Table 1: Unified comparison across datasets. Columns report the primary evaluation metric used for
each dataset. Underlined values indicate the strongest baseline, while bold highlights our method.
Relative Gain is computed against the strongest baseline in each column. All results are averaged
over four runs with different random seeds.

Phenotype Mortality CREMA-D Kinetics UPMC-Food101 ADNI
Method AUPRC AUPRC Accuracy Accuracy Accuracy mAP
Late Fusion 0.475 ±0.0020 0.567 ±0.0121 0.660 ±0.0209 0.636 ±0.0117 0.907 ±0.0015 0.826 ±0.0069

G-Blend (Wang et al., 2020) 0.480 ±0.0029 0.584 ±0.0026 0.717 ±0.0134 0.670 ±0.0091 0.924 ±0.0021 0.818 ±0.0120

OGM Peng et al. (2022) 0.475 ±0.0012 0.577 ±0.0092 0.769 ±0.0040 0.677 ±0.0092 0.907 ±0.0009 0.812 ±0.0200

AGM (Li et al., 2023) 0.472 ±0.0012 0.572 ±0.0042 0.746 ±0.0106 0.688 ±0.0027 0.908 ±0.0010 0.817 ±0.0160

MLA (Zhang et al., 2024) 0.474 ±0.0006 0.582 ±0.0006 0.705 ±0.0033 0.681 ±0.0132 0.928 ±0.0011 0.836 ±0.0095

MMPareto (Wei & Hu, 2024) 0.479 ±0.0027 0.585 ±0.0089 0.717 ±0.0106 0.658 ±0.0067 0.925 ±0.0006 0.823 ±0.0110

PMR (Fan et al., 2023) N.A.† 0.572 ±0.0046 0.713 ±0.0309 0.631 ±0.0142 0.920 ±0.0015 0.820 ±0.0082

DrFuse (Yao et al., 2024) 0.479 ±0.0012 0.576 ±0.0034 N.A.‡ N.A.‡ N.A.‡ 0.836 ±0.0044

MedFuse (Hayat et al., 2022) 0.470 ±0.0017 0.549 ±0.0018 N.A.‡ N.A.‡ N.A.‡ 0.828 ±0.0115

MASAM (ours) 0.498 ±0.0010 0.603 ±0.0086 0.814 ±0.0046 0.740 ±0.0084 0.935 ±0.0011 0.857 ±0.0042

Relative Gain (%) +3.75 +3.08 +5.77 +7.62 +0.74 +2.57
† PMR relies on a contrastive learning module, which cannot be applied to the multi-label phenotype task.
‡ DrFuse and MedFuse are tailored for clinical data; thus, we exclude them for datasets and tasks in other domains.
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Figure 4: Unimodal performance across different datasets and modalities. Unimodal Baseline refers
to a model trained and evaluated using only a single modality. Dots closer to the upper-right corner
indicate stronger unimodal performance.

On UPMC-Food101, MASAM achieves a 0.74% accuracy gain; although the improvement is modest,
we perform a statistical test that confirms the significance of the improvement (p = 0.0046 < 0.005).
Overall, the promising results show that MASAM consistently outperforms existing methods across
diverse and highly heterogeneous multimodal datasets.

4.2 MODALITY BALANCE AND LOSS LANDSCAPE FLATNESS

MASAM consistently improves unimodal performance across all datasets, demonstrating bal-
anced multimodal learning. We further evaluate unimodal performance by freezing the encoders
obtained from multimodal training and training a classifier head on top. The results are summarized
in Fig. 4, where dots closer to the upper-right corner indicate overall stronger single-modality per-
formance. On CREMA-D and Kinetics, MASAM surpasses all baselines, exceeding the unimodal
Audio baseline and approaching the unimodal Video baseline. On the clinical dataset MIMIC, which
is characterized by substantial noise and missingness, most baselines fail to obtain better unimodal
performance than the models trained using unimodal data, indicating severe multidality imbalance
during learning. In contrast, MASAM demonstrates a significant advantage: it achieves consistent
superiority over all multimodal baselines, and also significantly exceeds the unimodal baselines for
both modalities, suggesting that MASAM is effective in balanced multimodal learning.
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(a) The MASAM loss landscape for mortality prediction with respect to CXR (left) and EHR (right) encoders.

(b) G-Blend (c) DrFuse (d) Late Fusion (e) MASAM (Ours)

Figure 5: Visualizations of the loss landscape. (a) 2D visualization of the MASAM loss landscape
for mortality prediction. (b-e) 3D visualizations of representative methods for disease phenotype
classification with respect to all model parameters. MASAM consistently achieves flat solutions
jointly for both modalities.
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(a) CREMA-D noise robustness heatmap.
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(b) Kinetics noise robustness heatmap.

Figure 6: The performance under varying noise levels for CREMA-D (left) and Kinetics (right).

MASAM enables all modalities to converge jointly to flatter minima. To better understand
the advantages of MASAM in multimodal learning, we further visualize the loss landscape for the
MIMIC dataset in Fig. 5 using methods presented in Li et al. (2018). On both phenotype and mortality
tasks, MASAM consistently converges to flatter regions than all baseline methods for each modality
encoder. While existing methods make notable progress in mitigating modality imbalance, they
only rely on gradient modulation, which overlooks the geometry of the loss landscape. As a result,
they may not ensure convergence to flat minima, leaving modality encoders prone to sharp regions
and more sensitive to interference from other modalities. In contrast, MASAM overcomes these
challenges by steering all modality encoders toward flatter regions of the loss landscape along their
own optimization trajectories, reducing the influence of other modalities on their update directions
and ensuring that each modality converges stably to a flatter solution. More in-depth discussion on
flatten minima analysis can be found in Appendix F.
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Table 2: Ablation study of MASAM(AUPRC). ✓ indicates the module is enabled. Experiments are
numbered for easier reference in the text. The first row shows our proposed model, while rows 1
through 4 represent different ablation experiments. All results are averaged over 4 random seeds.
# Method APS MDPS SAM AUPRC vs. w/o APS vs. w/o MDPS vs. SAM Only vs. Late Fusion

– MASAM ✓ ✓ ✓ 0.498 +2.89% +1.43% +4.18% +4.84%
1 w/o APS ✗ ✓ ✓ 0.484 — -1.43% +1.26% +1.89%
2 w/o MDPS ✓ ✗ ✓ 0.491 +1.45% — +2.72% +3.37%
3 SAM Only ✗ ✗ ✓ 0.478 -1.24% -2.65% — +0.63%
4 Late Fusion ✗ ✗ ✗ 0.475 -1.86% -3.26% -0.63% —

4.3 ROBUSTNESS TO LABEL NOISE

In many real-world scenarios, label noise is often inevitable for multimodal data. We further conduct
experiments by injecting different levels of label noise (20%–60%) into the CREMA-D and Kinetics
datasets. The results are summarized in Fig. 6. MASAM consistently outperforms all baselines
across varying noise levels. This is because MASAM guides each modality to converge toward
flatter minima; therefore, MASAM could achieve better generalization and robustness under noisy
supervision. For completeness, we also provide sensitivity analysis in Appendix E.4, which further
supports the robustness evaluation of our method.

4.4 ABLATION STUDY

To verify the contributions of each component in MASAM, we conduct an ablation study by system-
atically removing individual components and assessing their impact on performance. The variants
include: #1 removes APS-based dynamic modality selection, #2 removes decoupled gradient pertur-
bation, #3 employs SAM without APS or gradient decoupling, and #4 uses the standard Late Fusion
strategy without sharpness-aware regularization. Additional ablation results on other evaluation
metrics are provided in Appendix E.5.

(1) Adaptive perturbation score. The APS module demonstrates a significant contribution, as
shown in our ablation experiments. By comparing MASAM with #1 as well as comparing #2
with #3, we observe that APS achieves notable improvements of 2.89% in MASAM and 2.72% in
SAM. This demonstrates that APS effectively resolves the optimization imbalance across modalities,
ensuring that each modality converges to flatter regions, which leads to better overall performance.
(2) Modality-decoupled perturbation scaling. The decoupled gradient module also plays a critical
role. Comparing MASAM with #2 and #1 with #3, we find that the decoupling mechanism provides
relative improvements of 1.43% in MASAM and 1.26% in SAM, respectively. This affirms that our
proposed MDPS plays a crucial role in effectively reducing cross-modal interference and ensuring a
stable training trajectory. (3) Sharpness-aware minimization. By comparing experiments 1 and 3,
and 2 and 3, we observe that our APS and MDPS modules lead to performance improvements of
1.26% and 2.72% in the SAM-only model, respectively. This demonstrates that the two proposed
modules effectively address the challenges of SAM in multimodal settings: APS mitigates SAM’s
reliance on the dominant modality, while MDPS ensures independent optimization trajectories for
each modality, avoiding the issue of forcing modalities to adapt to a shared optimization path, thus
enhancing multimodal generalization.

5 CONCLUSIONS

In this paper, we propose MASAM, a multimodal adaptive sharpness-aware minimization framework
to address the modality imbalance issue via attaining flat minima jointly for different modalities.
At its core, MASAM dynamically identifies dominant modalities at different training stages via the
adaptive perturbation score (APS), and applies modality-decoupled perturbation scaling (MDPS) to
mitigate the cross-modal interference in SAM-style perturbation. This design allows each modality to
preserve its own independent optimization trajectory while still benefiting from shared information.
Extensive empirical evaluations across five multimodal datasets and six downstream tasks from
diverse application domains show that MASAM could attain flat minima for all modalities simultane-
ously, achieving balanced multimodal learning, and consequently outperforming all state-of-the-art
multimodal learning methods compared.
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ETHICS STATEMENT

All datasets used in this work are publicly available. Among them, the two datasets containing
clinical data, MIMIC (Johnson et al., 2023; 2019) and ADNI (Jack Jr et al., 2008), were rigorously
de-identified by the official institutions prior to release, ensuring that no personal privacy of patients
is compromised. These datasets are employed strictly for research purposes. The work presented
here does not pose any foreseeable risk to individuals or society.

REPRODUCIBILITY STATEMENT

All datasets used in our experiments are publicly available. All source codes will be released,
including both the model framework and the dataset processing pipeline. Additional details of the
preprocessing steps are provided in Appendix A.4. For hyperparameter selection, we adopt grid
search, and the best configurations for each dataset are detailed in Appendix A.3 for reproducibility.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 DATASETS AND BASELINES

This section presents the datasets used and baseline models compared in our study.

MIMIC Johnson et al. (2023; 2019): MIMIC-IV contains de-identified clinical records of patients
admitted to ICUs at Beth Israel Deaconess Medical Center between 2008 and 2019. Following prior
worksHayat et al. (2022); Yao et al. (2024), we extract eight important physiological variables along
with the Glasgow Coma Scale (GCS) recorded within the first 48 hours of ICU stay as the EHR
modality input. For the image modality, we use the most recent anterior-posterior (AP) view X-ray
image acquired within the first 48 hours of ICU stays. The downstream prediction tasks include
disease phenotype classification of 25 diseases and in-ICU mortality prediction. Given the inherent
class imbalance in clinical data and the importance of correctly identifying positive cases, we adopt
the Area Under the Precision-Recall Curve (AUPRC) as the primary evaluation metric, and report the
Area Under the Receiver Operating Characteristic Curve (AUROC) as a complementary indicator.

ADNI Jack Jr et al. (2008): The ADNI project has evolved through four phases, namely ADNI-
1, ADNI-GO, ADNI-2, and ADNI-3, and has developed into a systematic and comprehensive
multimodal research database that provides rich information for clinical prediction of Alzheimer’s
disease. Following the MUSE Wu et al. (2024b) preprocessing pipeline, we selected demographic
information, genetic data, and cognitive assessment scores as tabular inputs, and employed MRI scans
as the visual modality. These multimodal data were utilized to perform classification across three
diagnostic categories: Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and Cognitively
Normal (CN).

CREMA-D Cao et al. (2014) and Kinetics Arandjelovic & Zisserman (2017): Both datasets contain
paired audio and video modalities. CREMA-D consists of audiovisual recordings of actors reading 12
English sentences under six common emotional states (angry, happy, sad, neutral, disgust, and fear),
with perceptual validation provided by 2,443 crowd workers. The Kinetics dataset contains short
video clips of approximately ten seconds collected from YouTube, covering a wide range of daily
activities, sports, and social interactions. It is commonly used for action recognition tasks involving
31 distinct categories. Both datasets are processed in accordance with the OGMPeng et al. (2022).

UPMC-Food101 Wang et al. (2015): This dataset consists of text data paired with food images. Each
sample contains a food image and the corresponding web text, covering 101 distinct food categories.
It is commonly used as a multimodal benchmark for food classification. We use accuracy as the
primary evaluation metric.

A.2 BASELINES

Baseline methods We compare MASAM with the following existing methods.

• Uni-modal: Models trained independently on each single modality using its dedicated encoder.
• Late Fusion: A standard fusion strategy that concatenates modality-specific features at the decision

level after separate feature extraction.
• G-Blend Wang et al. (2020): It modulates the contribution of each modality during training by

incorporating generation quality and overfitting sensitivity metrics.
• AGM Li et al. (2023): Dynamically reweights modality gradients based on their Shapley value-

estimated contributions to the overall loss.
• MLA Zhang et al. (2024): It adopts a shared prediction head while alternately updating unimodal

branches, enforcing directional orthogonality across modalities.
• MMPareto Wei & Hu (2024): It resolves optimization conflicts between unimodal and multimodal

objectives via Pareto-based gradient projection.
• PMR Fan et al. (2023): It mitigates modality imbalance by promoting weaker modalities through

prototypical clustering while regularizing dominant ones with prototype-based entropy.
• MedFuse Hayat et al. (2022): It sequentially aggregates multimodal representations using an

LSTM-based fusion architecture, designed for partially paired clinical data.
• DrFuse Yao et al. (2024): It integrates EHR and CXR modalities by disentangling modality-specific

features and aligning shared representations for robust fusion.
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Table 3: Best hyperparameter configurations across datasets. ρ, score weight, and momentum are
selected from predefined search spaces.

Dataset ρ Score Weight Momentum
ADNI 0.5 0.3 0.9
CREMA-D 0.6 0.3 0.9
UPMC-Food101 0.3 0.3 0.9
Kinetics 0.9 0.3 0.9
MIMIC-Mortality 0.1 0.3 0.9
MIMIC-Phenotype 0.5 0.3 0.9

A.3 SEARCH SPACE

We conducted each experiment with four random seeds ({42, 123, 1234, 2024}) and report the
averaged results. Different datasets correspond to distinct search spaces, and the optimal hyper-
parameters obtained from grid search are reported in Table 3 to ensure the reproducibility of our
results. Specifically, we search over ρ ∈ {0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9}, α ∈ {0.1, 0.3, 0.5},
and β ∈ {0.5, 0.7, 0.9}

A.4 CLINICAL DATA PROCESSING

A.4.1 MIMIC DATASET

We extracted EHR and CXR data within the first 48 hours of ICU admission from MIMIC-IV Johnson
et al. (2023) and MIMIC-CXR Johnson et al. (2019), following the preprocessing steps described in
DrFuse Yao et al. (2024) and MedFuse Hayat et al. (2022).

For EHR data, we excluded variables with more missing ratio greater than 80%, such as those
in the blood gas category. This resulted in 12 variables, including Heart Rate, Diastolic Blood
Pressure, Mean Blood Pressure, Systolic Blood Pressure, Respiratory Rate, Temperature, Peripheral
Capillary Oxygen Saturation, Glucose, Glasgow Coma Scale Total Score, Glasgow Coma Scale
Motor Response, Glasgow Coma Scale Verbal Response, and Glasgow Coma Scale Eye Opening
Response. The missing ratio information is shown in Fig. 7. We additionally added a masking column
for each variable to indicate whether the value is missing at each time step, enabling the model to
learn missingness-related patterns. Missing values were imputed using the median, and all variables
were normalized with statistics computed from the training set. For CXR images, we used the most
recent AP-view chest X-ray taken within the first 48 hours of the ICU admission.

We also analyzed the distribution of disease phenotypes in our MIMIC dataset, as shown in Table 4.
The dataset contains 7,623 samples across 25 different clinical conditions, with varying positive ratios
ranging from 5.26% to 49.26%. Notably, some labels exhibit substantial imbalance, which poses
additional challenges for robust multimodal learning. This diverse distribution ensures comprehensive
evaluation of multimodal fusion methods across different disease prevalence levels.

A.4.2 ADNI DATASET

We selected demographics, genetics, CSF/PET biomarkers, and cognitive scores as the tabular
modality, while excluding variables with a high missing rate (>90%). The missing ratio of these
tabular features is summarized in Table 5. For missing values within variables, we employ mean
imputation and include corresponding mask indicators, while all variables are normalized using
statistics computed from the training set. For prediction, we used baseline data for each subject and
followed prior studies Wu et al. (2024b); Asgharzadeh-Bonab et al. (2023); Yun et al. (2024) by
merging EMCI (early mild cognitive impairment) and LMCI (late mild cognitive impairment) into a
single MCI group, resulting in three classes: Alzheimer’s Disease (AD), Mild Cognitive Impairment
(MCI), and Cognitively Normal (CN). For the imaging modality, we adopted T1-weighted MRI scans;
when a subject’s baseline MRI was unavailable, we substituted scans acquired within a six-month
window Zhu et al. (2021).
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Figure 7: Missing ratios of EHR variables in our dataset. We use GCS as an abbreviation for the
Glasgow Coma Scale and BP as an abbreviation for Blood Pressure. Variables with missing ratios
greater than 80% were excluded from our analysis.

Table 4: Statistical overview of disease phenotypes in MIMIC dataset. The table shows the distribution
of positive and negative samples across 25 clinical conditions, along with their prevalence rates.

Disease Phenotypes Total Positive Negative Positive %

Fluid and electrolyte disorders 7623 3755 3868 49.26
Essential hypertension 7623 3431 4192 45.01
Disorders of lipid metabolism 7623 2903 4720 38.08
Cardiac dysrhythmias 7623 2858 4765 37.49
Acute and unspecified renal failure 7623 2696 4927 35.37
Respiratory failure 7623 2400 5223 31.48
Congestive heart failure 7623 2087 5536 27.38
Coronary atherosclerosis 7623 1935 5688 25.38
Septicemia 7623 1855 5768 24.33
Complications of surgical procedures 7623 1668 5955 21.88
Shock 7623 1605 6018 21.05
Pneumonia 7623 1578 6045 20.70
Chronic kidney disease 7623 1512 6111 19.83
Diabetes mellitus without complication 7623 1499 6124 19.66
Hypertension with complications 7623 1401 6222 18.38
Other liver diseases 7623 1320 6303 17.32
COPD and bronchiectasis 7623 1159 6464 15.20
Other lower respiratory disease 7623 980 6643 12.86
Pleurisy; pneumothorax 7623 808 6815 10.60
Diabetes mellitus with complications 7623 794 6829 10.42
Conduction disorders 7623 773 6850 10.14
Acute cerebrovascular disease 7623 762 6861 10.00
Acute myocardial infarction 7623 694 6929 9.10
Gastrointestinal hemorrhage 7623 579 7044 7.60
Other upper respiratory disease 7623 401 7222 5.26
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Table 5: Missing ratios and descriptions of variables in the ADNI dataset.

Category Name Missing Ratio (%) Description

Demographics
AGE 0.17 Age (years)
PTGENDER 0.00 Gender
PTEDUCAT 0.00 Years of education
PTETHCAT 0.00 Ethnicity
PTRACCAT 0.00 Race category
PTMARRY 0.04 Marital status

Genetics
APOE4 8.64 APOE-ε4 allele copies (0/1/2)

CSF / PET Biomarkers
ABETA 49.77 CSF β-amyloid protein
TAU 49.77 CSF total Tau
PTAU 49.77 CSF phosphorylated Tau
FDG 37.45 FDG-PET cerebral metabolism
PIB 99.17 PIB-PET amyloid deposition
AV45 53.20 AV45-PET amyloid deposition
FBB 85.78 Florbetaben PET

Cognitive Scores
CDRSB 0.00 Clinical Dementia Rating – Sum of Boxes
ADAS11 0.41 Alzheimer’s Disease Assessment Scale, 11 items
ADAS13 0.91 Alzheimer’s Disease Assessment Scale, 13 items
ADASQ4 0.17 Alzheimer’s Disease Assessment Scale, 4 items
MMSE 0.04 Mini-Mental State Examination
RAVLT_immediate 0.33 Rey Auditory Verbal Learning Test – Immediate recall
RAVLT_learning 0.33 RAVLT – Learning
RAVLT_forgetting 0.37 RAVLT – Forgetting
RAVLT_perc_forget 0.58 RAVLT – Percent forgetting
FAQ 1.12 Functional Activities Questionnaire
MOCA 35.26 Montreal Cognitive Assessment

B RELATED WORK

B.1 SHARPNESS-AWARE MINIMIZATION (SAM) AND ITS VARIANTS

Improving model generalization has long been associated with finding flatter minima in the loss
landscape. SAM (Foret et al., 2021) explicitly encourages flat solutions by minimizing the worst-case
loss within a neighborhood of the parameters. Building on this idea, several variants have been
proposed:

• FisherSAM (Kim et al., 2022): Reformulates the parameter space as a Riemannian manifold
using the Fisher information matrix. Sharpness is then measured as a distributional distance
between perturbed and original parameters, offering a more principled curvature metric.

• SAGM (Wang et al., 2023): Extends SAM by simultaneously considering three objec-
tives—empirical risk, perturbed loss, and gradient similarity—to guide optimization toward
flatter and more stable regions.

• CR-SAM (Wu et al., 2024a): Observes that curvature estimation is highly sensitive to
gradient scales, and introduces a scale-invariant approach to normalize curvature estimation,
thus improving stability across different architectures.

• FriendlySAM (Li et al., 2024): Proposes directionally perturbed gradients, which diversify
perturbation directions rather than restricting them to the normalized gradient, leading to
improved generalization.

These approaches have refined the measurement of sharpness and the design of perturbations, but they
are all developed in unimodal contexts. Their direct extension to multimodal learning is non-trivial
because different modalities exhibit heterogeneous convergence dynamics and distinct loss landscape
geometries.
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B.2 ALLEVIATING MODALITY COMPETITION IN MULTIMODAL LEARNING

A central challenge in multimodal learning is modality competition, where strong modalities dominate
optimization, causing weaker but informative modalities to be under-optimized. This phenomenon
often leads to degraded multimodal fusion and even underperformance compared to unimodal
baselines (Wang et al., 2020). Several strategies have been proposed to mitigate this problem:

• Gradient modulation approaches:

– GBlend (Wang et al., 2020): Introduces gradient blending coefficients based on the
overfitting-to-generalization ratio of each modality, dynamically reweighting their
contributions during training.

– OGM (Peng et al., 2022): Promotes exploration of weaker modalities by slowing down
the optimization of stronger ones.

– AGM (Li et al., 2023): Accelerates weaker modalities by explicitly defining their
relative strength and adjusting gradients accordingly.

– PMR (Fan et al., 2023): PMR leverages prototypical representations to diagnose
modality strength via prototype-based separability, regularizing strong modalities to
prevent dominance and enhancing weak modalities by encouraging more discriminative
prototype alignment.

• Training schedule and gradient conflict approaches:

– MLA (Zhang et al., 2024): Proposes an iterative training strategy that alternates across
modalities, combined with an orthogonality constraint on modality-specific gradients
to reduce interference.

– MMPareto (Wei & Hu, 2024): Frames multimodal optimization as a multi-objective
problem and applies Pareto optimization to resolve conflicts between unimodal and
multimodal gradients.

– Diagnosing-Relearning (Wei et al., 2024): Employs a global soft reinitialization strat-
egy, resetting modalities to varying extents during training to balance learning progress.

While these methods effectively rebalance optimization across modalities, they do so primarily by
modulating gradient magnitudes or training schedules. This helps address imbalance but does not
account for the loss landscape geometry of each modality. Consequently, they cannot guarantee that
each modality converges to its own flat minimum, leaving the generalization benefits of flatness-aware
optimization unexplored.

In summary, prior work on SAM and its variants focuses on flatness for unimodal tasks, while
multimodal learning methods emphasize gradient-based balancing across modalities. However, no
existing method explicitly addresses how sharpness-aware optimization interacts with multimodal
imbalance. This motivates our proposed MASAM framework, which integrates flatness-aware
perturbation with modality-specific adaptation to overcome the limitations of both lines of research.

C DERIVATION OF OBSERVATION 1

Without loss of generality, here we assume late fusion of two modalities. In the following content we
continue to use the notations in Section 3.1. In late fusion methods, although each modality appears
to be optimized independently, their training remains inherently coupled through the shared fused
prediction. Specifically, the gradient of the fused loss with respect to the parameters of modality m
can be expressed as:

∇θmLfuse =

N∑
i=1

C∑
c=1

∂Lfuse

∂ŷfusei,c

·
∂ŷfusei,c

∂zfusei

· ∂z
fuse
i

∂zmi
· ∂z

m
i

∂θm
=

N∑
i=1

C∑
c=1

(ŷfusei,c −yi,c)·Wm
c,: ·

∂ϕm(xm
i )

∂θm
. (15)

Here, the fused prediction is defined as ŷfusei,c = g
(
Wm1

c,: · zm1
i +Wm2

c,: · zm2
i + bc

)
, where g(·)

denotes the task-specific activation function: a softmax function in multiclass classification tasks with
categorical cross-entropy loss, or a sigmoid function in multilabel tasks with binary cross-entropy
loss. This formulation follows the standard late fusion paradigm, where the fused weight vector Wc,:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

in Eq. (4) can be decomposed into modality-specific parts Wm1
c,: and Wm2

c,: . From this formulation,
it is evident that a dominant modality (e.g., m2) with stronger discriminative signals will exert
more influence on the final prediction through a larger weighted contribution (Wm2

c,: · zm2
i ). This

dominance causes the computed loss gradient to be skewed in favor of the stronger modality, while
the weaker modality (e.g., m1) receives gradients that are misaligned with its own representation,
thereby limiting its learning capacity and reducing effective exploration.

This issue also extends to the computation of the SAM perturbation Eq. (3). Since the gradient
itself is already biased by the dominant modality, the resulting perturbation vector for the weaker
modality becomes largely determined by the optimization direction favored by the strong modality.
As a result, this perturbation may not only fail to benefit the weaker modality but may even steer it in
a suboptimal or harmful direction, thereby undermining the effectiveness of SAM and exacerbating
the imbalance across modalities.

D PROOF OF THEOREM 1

We now provide a full proof of Theorem 1 using the framework of inexact gradient descent (IGD).
Let g̃t

m =
∇θmLt

fuse

∥∇θmLt
fuse∥2

denote the normalized gradient of the fusion objective with respect to the

encoder parameters of modality m at step t.

Lemma 1 (Perturbation Error Bound for Fusion Gradient). For each modality m, given the Lfuse-
Lipschitz continuity of ∇Lfuse, the perturbed gradient of Lfuse satisfies∥∥∇θmLfuse(θ

t
m + ρt γ

t
m g̃t

m)−∇θmLfuse(θ
t
m)

∥∥ ≤ Lfuseρt. (16)

Proof. By Lipschitz continuity of ∇Lfuse, i.e.,∥∥∇θmLfuse(θ
t
m + ρt γ

t
m g̃t

m)−∇θmLfuse(θ
t
m)

∥∥ ≤ Lfuse∥ρt γt
m g̃t∥.

Eq. (16) is obtained as ∥γt
m∥ ≤ 1 and ∥g̃t

m∥ = 1.

Lemma 2 (MASAM as IGD instance). The MASAM update (Eq. (12)) for modality m is an instance
of the inexact gradient descent method as:

θt+1
m = θtm − ηtg

t
m with inexact condition ∥gtm −∇θmLtotal(θ

t
m)∥ ≤ Lfuseρt. (17)

Proof. Let gtm := ∇θmLfuse(θ
t
m + ρt γ

t
m g̃t

m) + ∇θmLm(θtm). Then the MASAM update gives
θt+1
m = θtm − ηtg

t
m. Together with Eq. (7) and Eq. (16), the inexact condition can be obtained as:

∥gtm −∇θmLtotal(θ
t
m)∥ =

∥∥∇θmLfuse

(
θtm + ρt γ

t
m g̃t

m

)
+∇θmLm(θtm)−∇θmLtotal(θ

t
m)

∥∥
=
∥∥∇θmLfuse

(
θtm + ρt γ

t
m g̃t

m

)
+∇θmLm(θtm)−∇θmLfuse

(
θtm

)
−∇θmLm(θtm)

∥∥
=
∥∥∇θmLfuse

(
θtm + ρt γ

t
m g̃t

m

)
−∇θmLfuse

(
θtm

)∥∥ ≤ Lfuseρt.

We next provide the proof of Theorem 1 based on Lemma 1, Lemma 2, and Khanh et al. (2024,
Theorem 3.3).

Proof of Theorem 1. Given that Khanh et al. (2024, Theorem 3.3) already established the conditions
for IGD method and that the IGD format of MASAM is given in Eq. (17), the convergence of
MASAM requires that

(i)
∞∑
t=1

ηt = ∞, (ii) ηt ↓ 0, (iii)
∞∑
t=1

ηt Lfuse ρt < ∞, (iv) lim sup
t→∞

Lfuseρt < 2, (18)

which is equivalent to the conditions in Eq. (14). Then the convergence of MASAM can be obtained.
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Table 6: This table compares the AUPRC of different models across 25 disease phenotypes. Bold
values indicate the best performance, and underlined values indicate second-best performance. The
Average Rank metric ranks all models for each phenotype individually and calculates their mean
ranking across all 25 disease labels. MASAM consistently ranked first or second across nearly
all phenotypes and achieved the highest average rank overall, validating the effectiveness of our
approach.

Clinical Condition Uni-EHR Uni-CXR G-Blend OGM AGM MLA MMPareto DrFuse MASAM

Acute renal failure 0.593 0.519 0.590 0.577 0.578 0.587 0.590 0.594 0.599
Acute cerebrovascular disease 0.465 0.193 0.491 0.484 0.500 0.471 0.478 0.496 0.487
Acute myocardial infarction 0.205 0.188 0.243 0.245 0.236 0.230 0.248 0.577 0.253
Cardiac dysrhythmias 0.576 0.583 0.638 0.633 0.627 0.625 0.634 0.412 0.653
Chronic kidney disease 0.472 0.461 0.550 0.535 0.528 0.542 0.539 0.581 0.556
COPD and bronchiectasis 0.328 0.361 0.424 0.413 0.407 0.403 0.420 0.572 0.435
Surgical complications 0.331 0.286 0.344 0.338 0.335 0.335 0.333 0.690 0.335
Conduction disorders 0.214 0.597 0.615 0.626 0.618 0.616 0.621 0.199 0.634
CHF; nonhypertensive 0.548 0.671 0.703 0.691 0.682 0.689 0.699 0.506 0.719
CAD 0.472 0.579 0.610 0.598 0.605 0.588 0.599 0.417 0.621
DM with complications 0.591 0.238 0.571 0.566 0.556 0.559 0.577 0.177 0.587
DM without complication 0.380 0.295 0.400 0.395 0.395 0.393 0.404 0.207 0.407
Disorders of lipid metabolism 0.563 0.551 0.585 0.575 0.573 0.584 0.578 0.241 0.586
Essential hypertension 0.542 0.524 0.566 0.565 0.565 0.568 0.562 0.217 0.576
Fluid and electrolyte disorders 0.678 0.625 0.689 0.677 0.676 0.681 0.687 0.436 0.686
Gastrointestinal hemorrhage 0.171 0.168 0.199 0.200 0.188 0.203 0.204 0.638 0.225
Secondary hypertension 0.446 0.424 0.506 0.494 0.483 0.492 0.503 0.572 0.511
Other liver diseases 0.309 0.399 0.419 0.415 0.395 0.406 0.418 0.591 0.445
Other lower respiratory disease 0.160 0.191 0.178 0.178 0.181 0.173 0.183 0.638 0.185
Other upper respiratory disease 0.206 0.161 0.223 0.247 0.219 0.265 0.238 0.544 0.309
Pleurisy; pneumothorax 0.134 0.238 0.232 0.230 0.215 0.210 0.229 0.415 0.235
Pneumonia 0.392 0.392 0.438 0.431 0.428 0.433 0.434 0.335 0.441
Respiratory failure 0.612 0.564 0.644 0.637 0.642 0.643 0.643 0.617 0.650
Septicemia 0.569 0.431 0.566 0.565 0.567 0.565 0.565 0.699 0.576
Shock 0.571 0.440 0.581 0.572 0.579 0.589 0.590 0.608 0.594

Average Rank 6.38 6.72 4.36 4.98 5.16 5.16 4.72 4.16 2.36

Table 7: Unified comparison on additional metrics. Columns report AUROC for MIMIC-Phenotype
and MIMIC-Mortality, mAP for CREMA-D and Kinetics, and Accuracy for ADNI. Underlined
values indicate the strongest baseline, while bold highlights our method. Relative Gain is computed
against the strongest baseline in each column. All results are averaged over four runs with different
random seeds.

E ADDITIONAL EXPERIMENT RESULTS

E.1 PREDICTION PERFORMANCE ACROSS DISEASE PHENOTYPES

We report the detailed breakdown of prediction performance across different disease phenotypes in
Table Table 6.

E.2 LOSS LANDSCAPE VISUALIZATION

We visualized the loss landscapes across different baseline models for disease phenotype classification
and ICU mortality prediction. As shown in Fig. 8 and Fig. 9, our proposed MASAM method converges
to a noticeably flatter region compared to other models, demonstrating stronger generalization and
robustness capabilities.

E.3 ADDITIONAL METIRCS

In this section, we provide additional experimental results to complement the main findings. Specif-
ically, we report AUROC for MIMIC-Phenotype and MIMIC-Mortality, mAP for CREMA-D,
Food101, and Kinetics, and Accuracy for ADNI. These results offer a more comprehensive evaluation
of the effectiveness of our proposed method.
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(a) G-Blend (b) OGM-GE (c) MMPareto

(d) DrFuse (e) Late Fusion (f) MASAM (Ours)

Figure 8: 3D loss landscape visualization of MASAM and baseline models. MASAM consistently
converges to a wider and flatter region, indicating better generalization and robustness.

As shown in Table 7, MASAM consistently achieves notable improvements across diverse datasets
and tasks on these supplementary metrics, providing strong evidence of the effectiveness of our
approach.

E.4 SENSITIVE ANALYSIS

To assess the robustness of our proposed model with respect to hyperparameter choices and to gain
insights into the functional roles of key components in our design, we perform a sensitivity analysis
on three key parameters: α, β, ρ. The parameter α controls the weighting between the loss descent
rate and gradient alignment in APS computation. A higher α emphasizes the contribution of the
loss descent rate when estimating modality dominance. The parameter β determines the momentum
accumulation rate for loss smoothing; a larger β places more emphasis on the historical trend of
loss values, making the model’s judgment of descent more reliant on long-term behavior, whereas a
smaller β increases sensitivity to short-term fluctuations. The parameter ρ specifies the magnitude of
the perturbation step in sharpness-aware optimization. A larger ρ expands the neighborhood over
which the loss surface is explored, effectively enlarging the search space.

MASAM demonstrates strong robustness to the hyperparameter α, while also highlighting the
importance of gradient alignment in quantifying dominant modalities. As shown in Fig. 10a, MASAM
consistently outperforms Late Fusion across a wide range of α values (0.1 to 0.8). Notably, the
model achieves the best performance when α is set between 0.2 and 0.3, suggesting that the degree of
gradient alignment plays a more critical role than loss descent rate in estimating modality dominance
in our settings.

Similarly, MASAM exhibits strong robustness with respect to the momentum parameter β, further
confirming that incorporating global loss trends is beneficial for estimating the learning speed of
each modality. As shown in Fig. 10b, MASAM maintains consistently high AUPRC scores across a
broad range of β values (0.1 to 0.7), with a slight increase observed at β = 0.9, where the model
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(a) G-Blend (b) OGM-GE (c) MMPareto

(d) DrFuse (e) Late Fusion (f) MASAM (Ours)

Figure 9: 3D loss landscape visualization of MASAM and baseline models in disease phenotype
classification. MASAM converges to a wider and flatter region, indicating improved robustness and
generalization compared to all baselines.
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(c) ρ Sensitive Analysis

Figure 10: Three key hyperparameters: α, β, ρ are shown with their results on the test set. All
experimental results represent averages across 4 different random seeds.

achieves its best performance. Overall, the performance remains stable and significantly superior to
that of Late Fusion, demonstrating that leveraging global loss dynamics helps stabilize modality-wise
learning assessments.

MASAM continues to demonstrate strong robustness with respect to the perturbation magnitude
ρ. As shown in Fig. 10c,although a slight performance drop is observed when ρ = 0.6, the overall
AUPRC remains consistently high and significantly outperforms Late Fusion across the entire range.
This indicates that MASAM remains stable even when the sharpness-aware perturbation radius varies,
highlighting the effectiveness of its decoupled, modality-aware optimization strategy.

E.5 ABLATION STUDY RESULTS MEASURED BY AUROC

We provide the results of ablation studies in AUROC in Table 8.
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Table 8: Ablation study of MASAM (AUROC). ✓ indicates the module is enabled. Experiments
are numbered for easier reference in the text. The first row shows our proposed model, while rows
1 through 4 represent different ablation experiments. All results are averaged over 4 random seeds.
This table demonstrates the ablation experiment results using the AUROC metric, revealing that both
our proposed APS and MDPS modules make significant contributions. Comparing MASAM with
#1, #2, and #3 shows that the APS module substantially improves model performance. Similarly,
comparisons between MASAM and #2, as well as between #1 and #3, demonstrate that the MDPS
module enhances the model’s overall effectiveness.

# Method APS MDPS SAM AUROC vs. w/o APS vs. w/o MDPS vs. SAM Only vs. Late Fusion

– MASAM ✓ ✓ ✓ 0.760 +0.93% +0.26% +1.06% +1.60%
1 w/o APS ✗ ✓ ✓ 0.753 — -0.66% +0.13% +0.67%
2 w/o MDPS ✓ ✗ ✓ 0.758 +0.27% — +0.80% +1.34%
3 SAM Only ✗ ✗ ✓ 0.752 -0.13% -0.79% — +0.53%
4 Late Fusion ✗ ✗ ✗ 0.748 -0.66% -1.32% -0.53% —

F FLATTEN MINIMA ANALYSIS

Gradient scaling methods are effective in solving modality competition, but they cannot ensure that
each modality converges to a flatten minima. In this part, we provide a in-depth analysis.

These works Li et al. (2023); Peng et al. (2022); Wang et al. (2020) adopt gradient-scaling strategies,
where each modality’s gradient is scaled by a static coefficient c based on a modality importance
score. This leads to an update rule of the form:

θt+1 = θt − ηt c∇L(θt). (19)

The flatness of the loss landscape is often correlated with the largest eigenvalue of the Hessian matrix,
λmax(H(w))Yang et al. (2021); Sankar et al. (2021); Wu et al. (2024a). To analyze how the update
affects this flatness, we apply a first-order Taylor expansion of the Hessian around w:

H(θt+1) ≈ H(θt)− ηtc∇H(θt)[∇L(θt)]. (20)

Since the Hessian is symmetric, we approximate the change in its largest eigenvalue using the
Rayleigh quotient:

λmax(H(θt+1)) ≈ λmax(H(θt))− ηtc ·
[
v⊤∇H(θt)[∇L(θt)]v

]
, (21)

where v is the eigenvector corresponding to λmax(H(θt)).

This analysis shows that simply scaling the gradient by a positive coefficient c does not alter the
direction of the term ∇H(w)[∇L(w)], which governs whether the model moves toward sharper or
flatter regions. The effectiveness of such an update in reducing sharpness depends on the natural
geometry of the optimization landscape, not on the algorithm itself.

In multimodal settings, this limitation is especially critical: a modality that initially converges toward
a flatter region may be pulled into sharper areas due to the continued influence of other modalities.
Gradient-scaling methods lack explicit mechanisms to prevent this, whereas MASAM explicitly
regularizes each modality toward flatter minima, thereby mitigating cross-modality interference and
ensuring more stable optimization.
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