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Abstract

The vision transformer has achieved state-of-the-
art performance in various vision tasks; however,
the memory consumption is larger than those of
previous convolutional neural network based mod-
els because of O(N2) time and memory complex-
ity of the general self-attention models. Many ap-
proaches aim to change the complexity to O(N)
to solve this problem; however, they stack deep
convolutional layers to retain locality or compli-
cate the architecture as seen in window attention,
to compensate for the performance degradation. To
solve these problems, we propose ViBid algorithm,
which resolves the complexity problem of O(N2)
by replacing Softmax with bidirectional normaliza-
tion (BiNorm). In addition, it has a much simpler
architecture than the existing transformer model
with O(N) complexity. Owing to our simple ar-
chitecture, we were able to use larger resolutions
for training, and we obtained a lighter and superior
GPU throughput model with competitive perfor-
mance. ViBid can be used with any transformer
method that uses queries, keys, and values (QKV )
because of BiNorm, and it is quite universal due to
its simple architectural structure.

1 INTRODUCTION

Transformers have been used in various fields. Initially,
they were mostly employed in natural language processing
(NLP) [Dosovitskiy et al., 2020, Touvron et al., 2020, Wu
et al., 2021, Srinivas et al., 2021, Heo et al., 2021, Graham
et al., 2021, El-Nouby et al., 2021], but currently, transform-
ers are used in many domains of vision [Dosovitskiy et al.,
2020, Touvron et al., 2020, Jiang et al., 2021, Esser et al.,
2021, Durall et al., 2021]. The transformer has achieved
state-of-the-art performance on several benchmark datasets.

In the early stages, the vision transformer splits the input
into patch units and then learns the image features after
securing the locality with the convolutional layer. In this
process, general transformer models which have an O(N2)
complexity, for the number of tokens N , prohibit the size
of the model parameters from growing excessively by using
deeper convolutional layers or decreasing the size of the
input sent to the transformer.

This is because the size of the model parameters increases
as the square of the input size, that is, the size of the token,
increases. Our proposed algorithm dramatically reduces the
complexity of O(N2) to O(N) by changing Softmax, which
is the most commonly used function, to bidirectional nor-
malization (BiNorm) and changing the multiplication order
of the query, key, and value (QKV ). This allows to stack
the transformer module deeper and use a higher resolution
as the input because the number of model parameters does
not increase owing to the increased token size. Because L2-
normalization operates in distinct directions on the channel
axis of Q and the spatial axis of KTV , BiNorm is defined
as bidirectional normalization.

One of the most essential aspects of the proposed method is
that it has the simplest architecture among O(N) complex-
ity transformer algorithms. Contrastingly, existing methods
for reducing complexity have resulted in performance degra-
dation. To compensate, additional modules were added to
the models, resulting in a complicated architecture, as seen
in Figure 1(b), 1(c) and 1(d). However, ViBid is a linear
transformer with O(N) complexity and has an extremely
simple architecture that does not require additional modules
to supplement performance. Consequently, our suggested
approach can be used with any transformer algorithm that
has QKV and for any vision-related tasks.

The contributions of our algorithm can be summarized as
follows.

• Our proposed algorithm facilitates the building
of an efficient architecture, even when the token
size(resolution) increases, by improving the complex-
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Figure 1: Comparison with existing self-
attention algorithms: (a) Self-attention:
The query and key generate N ×N atten-
tion maps, resulting in an O(N2) operation.
(b) Window attention: This method splits
input images into several windows before
computing self-attention. While it avoids
the O(N2) problem of self-attention, it also
slows down computation due to a fixed win-
dow size. (c) (d) Efficient self-attention:
These methods choose a fixed number of
tokens to generate attention maps. However,
these procedures are heuristic and compli-
cated, and some of them require operations
not supported by common frameworks. (e)
Ours: BiNorm-based self-attention is not
as complicated and has an O(N) complex-
ity since it does not require any additional
processing.

ity from O(N2) to O(N).

• The sequence in which QKV is multiplied varies even
within the same O(N) model, and our proposed model
has a simpler architectural structure than other models
with the same O(N) complexity; therefore, it is more
effective for model parameters.

• When the resolution (token) must be large, most ViT
designs tend to reduce the final input to the transformer
by deeply stacking the early convolutional layer stage.
However, because our algorithm is not burdened by
large-sized inputs, it may be learned using a trans-
former without significantly reducing its size in the
early convolutional layer stage.

2 RELATED WORKS

Vision transformers. Dosovitskiy et al. [Dosovitskiy
et al., 2020] proposed a vision transformer (ViT), which
demonstrated the use of transformer-based models for vision
tasks. After the achievements of ViT, DeiT [Touvron et al.,
2020] introduced data-efficient training strategies for vision
transformers with detailed ablation studies. They solved the
ViT data efficiency problem successfully, and most of the
current transformer-based models follow their schemes.

In further research, various architectures based on trans-
former variants have been presented. Touvron et al. [Tou-
vron et al., 2021b] proposed two simple types of modules.
One is the class attention module, which is the additional SA
layer used to extract class information. These layers help the
model aggregate features from the last outputs. The other is
the LayerScale modules. These are learnable parameters for
scaling residual connections. This prevents larger models

from being overfitted. A simple variant of the LayerScale
was presented at ResMLP [Touvron et al., 2021a]. While
MLP-based models are irrelevant to our model, we apply
Affine modules to our model as scalers.

Liu et al. [Liu et al., 2021] proposed a shifting window
and patch merging. This generates local attention using two
types of windows: Normal windows and shifted windows.
At the end of each stage, this method merges the patches to
preserve large receptive fields without heavy computation.
Swin Transformer is organized in a hierarchical structure.
The Swin Transformer alters the image resolution as the lay-
ers deeper, similar to how CNN reduces the resolution of the
input image as the layers deepen. Feature Pyramid Network
(FPN) structure of object detection can be employed since
they have varied scale information. The performance in ob-
ject detection and segmentation tasks is invariably superior
to ViT because it takes advantage of multi-scale information
via the FPN structure.

Hybrid architectures. Various methods for integrating
convolutional layers [Heo et al., 2021, Wang et al., 2021,
Graham et al., 2021, El-Nouby et al., 2021, Xiao et al.,
2021, Hassani et al., 2021] instead of searching for new
spatial structures have been introduced. LeViT, designed
by Graham et al. [Graham et al., 2021], applies multi-stage
networks to transformers using SA with convolution and
pooling layers. Xiao et al. [Xiao et al., 2021] found that
replacing linear patch embedding layers with convolutions
helps transformers better capture low-level features. This
is very similar to the stemming stage of existing CNN net-
works. El-Nouby et al. introduced local patch interactions
in XCiT [El-Nouby et al., 2021]. With two depthwise con-
volutions [Chollet, 2017] added after XCA, XCiT achieved



better performance. Our models are generally inspired by
the intrinsic optimization strategies that XCiT introduced,
while we present our own SA method.

Efficient self-attention. Instead of architectural strategies,
several approaches have been proposed to solve the O(N2)
problem of the self-attention (SA) mechanism. They are clas-
sified into several categories: those that use their own spatial
patterns [Ho et al., 2019, Child et al., 2019, Sukhbaatar
et al., 2019], linear approximation by sampling important
tokens [Kitaev et al., 2020, Xiong et al., 2021], various low-
rank factorization methods [Choromanski et al., 2020, Shen
et al., 2021, Wang et al., 2020], and local attention [Liu
et al., 2021].

However, these approaches have issues beyond complexity.
The pattern and sampling methods are difficult to implement,
and the GPU efficiency is low because a dynamic graph
has to be created each time. The low-rank factorization
method has the disadvantage of being a human heuristic, in
which a person must empirically decide the kernel function.
Local attention has a complex architecture, and the Swin
transformer [Liu et al., 2021], which is used as an example,
has the disadvantage of not having a simple architecture,
such as using it as input through split windows.

These approaches, however, have issues beyond the com-
plexity. The pattern and sampling methods were not easy to
implement, and gpu efficiency was low because a dynamic
graph had to be created each time. The low-rank factoriza-
tion method has the disadvantage of being human heuristic,
in which a person has to empirically decide the kernel func-
tion. The local attention has a complex architecture, and
the Swin Transformer [Liu et al., 2021], which is used as
an example, has the disadvantage of not being a simple
architecture, such as using it as input through split windows.

3 METHOD

For the SA algorithm of the transformer [Vaswani et al.,
2017], the query (Q) and key (K) are multiplied first to
compute every pairwise relation of the tokens. The multipli-
cation has time and memory complexity that is quadratic to
the number of tokens. If the matrix multiplication of K and
V is computed first, the computational resource of the SA
is reduced to O(N). However, the Softmax function must
be applied to key-query interactions to generate a probabil-
ity distribution for the attention mechanism. Softmax is a
nonlinear operation; therefore, it must be removed from the
SA to change the order of matrix multiplication.

To determine the effect of removing Softmax, we exper-
imented with the ImageNet1k classification task for the
Softmax-free ViT models. It implied that these models did
not employ probabilistic approaches to SA. Interestingly, it
was found that removing Softmax had no effect on the per-
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Figure 2: ViBid model. Our proposed ViBid model consists
of a BiNorm attention module, two 3× 3 separable convo-
lution layers, and a feedforward layer. Note that LayerNorm
and Affine layers are omitted for simplicity.

formance of the ViT models, as hypothesized. However, if
Softmax was eliminated, the models were trained slowly and
unstably during the early epochs of training. Furthermore,
when additional experiments were conducted for other ar-
chitectural optimizations, such as convolutional modules,
the performance decreased. We proposed BiNorm method
and integrated it with several existing architectural strate-
gies to address these issues. This section explains how our
proposed strategy generates stable Softmax-free SA models
while avoiding quadratic complexities.

3.1 BINORM

The pixel-to-pixel relationship which can be obtained in
basic SA methods as Softmax(QKT ) is calculated as a dot
product. Softmax smooths the range of output vectors from 0
to 1 for obtaining an attention map, as shown in Figure 2(a).
When Softmax is removed from the QKV , its output has
a normal distribution from the initialization. However, in
the case of a normal distribution, it has a range of [-inf, inf].
This makes the initial value more biased for a specific pixel



(a) Normal SA. (b) Softmax-free SA. (c) BiNorm-based SA.

Figure 3: Attention maps in the early
epochs. (a) Normal SA. (b) Softmax-
free SA. If the softmax is eliminated
without replacement, it is heavily biased
to specific patches. (c) BiNorm-based
SA. BiNorm makes the output vectors
unit-sized to debias the attention maps.

without Softmax, as shown in Figure 2(b).

Considering the previous insight, we conclude that the pri-
mary priority of the Softmax function is not to construct
a probability distribution. Its sole purpose is to limit the
output range of the function. Consequently, we determined
that the Softmax function is not essential in ViT. We propose
BiNorm, which is a combination of two L2-normalizations,
applied bidirectionally to the spatial dimension of KTV
and channel dimension of Q. It can make the SA have a
complexity of O(N) with a few lines of modification. Let
x ∈ Rb×N×d be the input image, where b is the batch size,
N is the number of tokens, and d is the number of channels.
Then, BiNorm-based SA is defined as:

Q = WQx,K = WKx, V = WV x (1)

(Q ∈ RN×dq,k ,K ∈ RN×dq,k , V ∈ RN×dv ) (2)

SA(x) = BiNorm(Q,KTV ) (3)

(Q ∈ RN×dq,k ,KTV ∈ Rdq,k×dv ) (4)

BiNorm(A,B) = [L2(A)dim=2]
TL2(B)dim=1 (5)

for arbitrary matrices A ∈ Rb×N×d and B ∈ Rb×N×d. Bi-
Norm consists of two simple L2- normalizations that apply
to the channel dimension of Q and the spatial dimension of
KTV .

The output vectors of BiNorm-based attention are limited to
unit size. All vectors have the same weight during the atten-
tion mechanism. Therefore, because Q and K are calculated
as a unit vector by L2-normalization, BiNorm generates a
smoothed attention map that differs from Softmax-free, as
shown in Figure 2(c). Mathematically, it is a cosine similar-
ity matrix of Q and KTV that generates clearer relations.
Empirically, the ViT models with BiNorm converged faster
than those without BiNorm. Additionally, the performance
of BiNorm-based models did not decrease when other archi-
tectural optimizations were added to the models.

3.2 COMPARISON OF COMPUTATIONAL
COMPLEXITY

The original SA has a complexity of O(N2) when comput-
ing QKT .

Q = WQx,K = WKx, V = WV x (6)

(Q ∈ RN×dq,k ,K ∈ RN×dq,k , V ∈ RN×dv ) (7)

SA(x) =
Softmax(QKT )√

d
V (8)

(QKT ∈ RN×N , V ∈ RN×dv ) (9)

If the order of matrix multiplication is changed to sequen-
tial order, using BiNorm, both KTV and Q(KTV ) have a
complexity of O(N) (see Equation 1 for details). For vision
tasks, the number of tokens is proportional to the resolu-
tion and reciprocal of the patch size. For example, if the
height and width of an input image are scaled to 2×, the
original SA requires 16× computational resources. This is
not efficient for cases require high-resolution inputs, such
as the compound scaling method at EfficientNet. [Tan and
Le, 2019]

In previous studies, various methods have been proposed
to make self-attention O(N) complexity (see Section 2 for
further information). Most of these reduce the tokens that
generate attention maps by utilizing local functions, learn-
able kernel functions, or human-designed patterns. However,
they have several limitations. Primarily, they rely heavily
on human heuristics. When the entire workflow is altered
to some degree, new heuristics are required for the entire
workflow. Further, they frequently require specialized opera-
tions that are not generally supported. This implies that they
may be difficult to optimize for different tasks, frameworks,
and devices. Finally, they confuse the overall flow. Many
machine-learning devices have been designed for dense op-
erations. A complicated computational graph may result in
redundancy and memory leakage when it is used to operate
on them.

BiNorm-based algorithms can reduce the complexity from
O(N2) to O(N) by modifying a few lines of the code. As



Table 1: Design of ViBid models. The architectural param-
eters contain the depth of model, the output dimension of
each model d, the size of embedding h, and the number of
heads.

Model depth d h #heads
ViBid-U 12 192 96 4
ViBid-T 24 192 96 4
ViBid-S 12 384 128 8
ViBid-M 24 384 128 8
ViBid-B 24 512 128 8

depicted in Figure 1, the computational graph of BiNorm-
based attention is not complicated compared with the origi-
nal SA. Because of its simple structure, our module is much
more efficient at GPU than most other SA algorithms. We
should discuss the numerical analysis of the computational
efficiency in Section 4. Our proposed method consumes
the least GPU memory and has the highest GPU through-
put on a similar scale of FLOPs and the size of the model
parameters.

3.3 VIBID MODEL

As shown in Figure 2, the input images are passed through
convolutional patch embedding layers and divided into
16× 16 patches. The convolutional patch embedding layers
outperform the linear patch embedding layers in terms of
the model performance. ViBid module consists of BiNorm-
based SA, two 3 × 3 separable convolution layers, and a
feedforward module. Unlike other models, BiNorm-based
attention adopts a bottleneck design. The embedding size h
is smaller than the output channel size d. In our experiments,
a smaller embedding size prevented overfitting of the model.
Locality is used as a weak inductive bias by convolutional
layers that use relatively fewer resources. We adopted the
class attention layers proposed by Touvron [Touvron et al.,
2021b] but used BiNorm-based class attention layers dif-
ferently from the existing ones. Table 1 presents the model
design used in our experiments.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

Implementation details. For the image classification task,
we evaluate our models using the ImageNet1k [Deng et al.,
2009] dataset which spans 1000 semantic classes. It contains
1,281k images for training and 50k images for validation.
There is no additional labeled or unlabeled dataset used.
We train our model for 400 epochs with the AdanW opti-
mizer [Loshchilov et al., 2017]. Following the linear scaling
rule [You et al., 2017], the learning rate is scaled by b/512
for batch size b. It warms up linearly for the first 5 epochs be-

Table 2: The results of fine-tune at higher resolutions.
Our models show the fastest GPU throughput and the lowest
peak memory in comparison to the other models which
accomplish similar performance. Note that XCiT [El-Nouby
et al., 2021] models use 224 × 224 resolution, since they
use smaller patch size.

Top-1 FLOPs GPU Thr.Model Acc. (G) Res. (img/s)
EfficientNet-B7 84.3 37.0 600 53.6
XCiT-S24/8 83.9 36.0 224 106.5
XCiT-M24/8 83.7 63.9 224 69.5
DeiT-B 83.1 49.4 384 87.8
Swin-B 84.5 47.0 384 86.5
ViBid-M 83.8 20.5 384 171.2
ViBid-B 84.5 35.1 384 114.9
ViBid-B 84.7 62.4 512 66.6
ViBid-B 84.8 140.4 768 28.6

fore decaying using a cosine schedule. LayerNorm [Ba et al.,
2016] and Affine [Touvron et al., 2021a] are used in each
residual block to improve generalization. As strong regular-
ization, our proposed method utilize RandAugment, stochas-
tic depth [Huang et al., 2016], and CutMix [Yun et al., 2019]
for data-efficient training. The size of each model affects
the amplitude of RandAugment [Cubuk et al., 2020] and the
probability of dropping residual connections. To improve
the training enough for the larger models, stronger regular-
ization is required. We do not employ distilled knowledge
from a pre-trained instructor model to boost performance.
All training procedures are performed on 32 NVIDIA A100
GPUs.

Comparison with the concurrent models. In Table 3, we
compare our models with existing transformer-based and
CNN models. Our models achieved higher performance than
the other models at a similar scale of FLOPs and parameters
(refer to Figure 4). Our models can perform well with fewer
computational resources and lower capacities, even they
does not utilize the architectural optimizations for vision
like local self-attention or multi-scale structure. As a metric
of performance, we measured the GPU throughput of each
model. In particular, at a resolution of 768× 768, the GPU
throughput of our models surpassed the CNN models as well
as the other transformer-based models. While our proposed
method computes global spatial relations, our models show
superior performance at various resolutions compared with
CNN models that utilize local relations.

Fine-tune at higher resolution. Instead of training the
models from scratch, we fine-tuned ViBid-M and ViBid-B
at a higher resolution for 10 epochs. We report the results of
fine-tuning at resolutions of 384, 512, and 768. The batch
sizes for each training session were set to 1024, 512, and 256.
Owing to the benefit of lower memory consumption, our



Table 3: Comparison with the concurrent models. The image classification results include the top-1 accuracy, param size,
FLOPs, and GPU throughput of various models on ImageNet1k. Our models show competitive results for top-1 accuracy,
and show the fastest GPU throughput among models which achieve similar performance.

Top-1 Params FLOPs GPU Throughput GPU ThroughputModel Acc. (M) (G) (img/s, res=224) (img/s, res=768)
RegNetY-800MF [Radosavovic et al., 2020] 76.3 6 0.8 1642.2 145.0
RegNetY-1.6G [Radosavovic et al., 2020] 78.0 11 1.6 932.0 103.1
DeiT-Ti [Touvron et al., 2020] 72.2 5 1.3 2390.3 70.4
ViBid-U 76.3 6 1.0 1177.7 163.8
ViBid-T 78.8 10 1.9 650.3 94.4
ResNet-50 [He et al., 2016] 75.3 26 3.8 1097.0 104.7
RegNetY-4G [Radosavovic et al., 2020] 80.0 21 4.0 837.2 33.9
DeiT-S [Touvron et al., 2020] 79.8 22 4.6 892.5 31.7
Swin-T [Liu et al., 2021] 81.3 29 4.5 729.0 -
XCiT-S12/16 [El-Nouby et al., 2021] 82.0 26 4.8 678.4 52.8
CoAtNet-0 [Dai et al., 2021] 81.6 25 4.2 - -
PVTv2-B2 [Wang et al., 2022] 82.0 25 4.0 - -
MViTv2-T [Li et al., 2022] 82.3 24 4.7 - -
ViBid-S 82.0 21 3.7 832.2 61.6
ResNet-101 [He et al., 2016] 76.4 47 7.6 657.1 63.1
RegNetY-8G [Radosavovic et al., 2020] 81.7 39 8.0 477.5 27.8
Swin-S [Liu et al., 2021] 83.0 50 8.7 409.1 -
XCiT-S24/16 [El-Nouby et al., 2021] 82.6 48 9.1 369.3 31.4
ViBid-M 82.8 37 7.0 465.8 38.6
RegNetY-16G [Radosavovic et al., 2020] 82.9 84 16.0 317.3 16.3
DeiT-B [Touvron et al., 2020] 81.8 86 17.5 303.4 13.1
Swin-B [Liu et al., 2021] 83.5 88 15.4 274.6 21.3
XCiT-M24/16 [El-Nouby et al., 2021] 82.9 84 16.2 249.0 21.5
ViBid-B 83.3 64 11.9 330.8 28.6

models can be trained faster by utilizing a large batch size,
whereas the capable computational resources are limited.

Our models showed higher performance than DeiT-B and
Swin-B at the same resolution. In addition, the GPU through-
put was not reduced much at a higher resolution than that of
the other models. Moreover, our models allocated a much
smaller amount of memory. DeiT-B trained at a resolution
of 384 × 384 possesses 20% more memory than ViBid-B
trained at a resolution of 512×512, even if DeiT-B uses half
the number of tokens that ViBid-B uses. As the resolution
increases, fine-tuning offers a boost without increasing the
model capacity. This implies that the model learns high-
resolution features without additional parameters.

4.2 ABLATION STUDY

The effect of the convolutional layers. We conducted an
experiment to compare the performance of BiNorm with
a pure architecture by subtracting the depth-wise convolu-
tional layer, which is Local Patch Interactions (LPI) pro-
posed at XCiT [El-Nouby et al., 2021]. We compared ViBid-
S(w/o conv) and DeiT-S [Touvron et al., 2020] in the Ima-
geNet1k dataset because our architecture is essentially the

same as DeiT, except for BiNorm. In conclusion, ViBid-
S(w/o Conv) performed better than DeiT-S, which has an
accuracy of 79.8%, with 80.3%. Undoubtedly, adding LPI
results in better performance. However, the role of BiNorm
is proven to be accurately represented because it is better
than DeiT and higher than XCiT when LPI is present.

Comparison of the activation functions. As mentioned
in Sec. 3, we compared Softmax-free ViT [Dosovitskiy et al.,
2020], the original ViT, and ViBid-S without LPI to observe
the main role of Softmax function. The results are in Table 4.
In our tests, Softmax-free ViT models perform a little worse
than the original ViT models. Although the divergence does
not appear to be as large as we had anticipated, Softmax-free
models did not converge well in the early epochs. (Refer to
our supplementary materials.)

We trained the ViBid-S model using the same techniques
as BiNorm to confirm its advantages. In comparison to
Softmax-free and Softmax models, our models perform
better. Empirically, those findings support both our theory
regarding the primary function of Softmax in the original
self-attention and the necessity of BiNorm as a replacement
for Softmax.



(a) FLOPs vs. ImageNet Top-1 Acc.

(b) Params vs. ImageNet Top-1 Acc.

Figure 4: Comparison with the transformer-based vision
models. Our models show superior performance at most
regime of FLOPs and param size. More details containing
the comparison with CNN models are in Table 3.

4.3 MEASURING COMPUTATIONAL
EFFICIENCY

As denoted in Section 3, BiNorm-based self-attention can be
a useful solution for transformer-based vision models when
high resolution features are required. To perform quantita-
tive analysis, we report the required computational resources
on various resolutions for different vision models and our
proposed models. (See Figure 5.) All measurements were
performed on a NVIDIA V100 GPU with batch size b = 32.

Memory efficiency. In terms of capability for both train-
ing and inference, memory efficiency is one of the most
important factors. As shown in Figure 5a, the models based
on BiNorm consumed much less memory for larger reso-
lutions compared to the other models, which are based on

(a) Allocated memory according to the input resolution

(b) GPU throughput according to the input resolution

Figure 5: Comparison of consumption of computational
resources at high resolution. (a) The results of the peak
GPU memory measured on different resolutions. Our mod-
els require significantly less memory than the other models
at overall resolutions. (b) The results of the GPU throughput
measured on varying resolutions. GPU throughput axis is
log2-scaled. Note that the GPU throughput of ViBid models
is more slowly decreased as the resolution increases.

the original self-attention or the local attention. It demon-
strates our BiNorm-based self-attention scheme works on
high-resolution inputs more efficiently, even compared to
the local attention algorithms such as Swin [Liu et al., 2021].
Our model can process up to a 4× batch size compared with
the other models showing similar performance. Another ad-
vantage of the proposed methods is that our models can be
easily scaled up without concerning the growth of memory
usage. As depicted in Figure 5a, the allocated memory of
our models does not increase much whereas the size of the
model grows up. It allows the training at a large scale with
reasonable computational resources.



Table 4: Ablation study about the effect of Softmax. For
a fair comparison, we implemented and trained ViT models
again. Note that ViT-B without Softmax performs the matrix
multiplications sequentially for self-attention.

Activation Top-1Model Complexity Function Acc.
ViT-B O(N) None 78.6
ViT-B O(N2) Softmax 78.8

ViBid-S (w/o conv) O(N) None 79.1
ViBid-S (w/o conv) O(N) BiNorm 80.3

Table 5: Comparison of the linear attention algorithms
at ImageNet1k top-1 accuracy. To re-implement the Lin-
Former and Efficient Attention algorithms to compare Ima-
geNet1k top-1 accuracy, we adopted ViT-S design for them.
ViBid-S which LPI is absent acheives higher performance
than any other algorithms.

Top-1Model GPU Thr. Acc.
ViBid-S (w/o conv) 547.3 80.3

LinFormer 403.9 75.7
Efficient Attention 416.1 76.3

GPU throughput. In Figure 5b, the GPU throughput of
transformer-based models is reported at various resolutions.
As shown, our model is faster than other models showing
similar performance. In addition, the GPU throughput of
our model decreases slowly compared to other models as
input resolution increases. It is because our proposed algo-
rithm does not require additional kernel optimizations of the
frameworks as well as it has O(N) complexity.

Comparison with the existing linear attention algorithms.
To compare to various the linear self-attention algorithms,
which is introduced in Section 2, we implemented blending
of ViT design and the linear self-attention algorithms [Wang
et al., 2020, Qin et al., 2022, Shen et al., 2021]. Since all
the other algorithms do not use the additional layers, we re-
moved the convolutional layers from our models to perform
experiment on the equal conditions. Our proposed method
achieves the best GPU throughput and memory consump-
tion for every input resolution, and outperforms the other
algorithms for ImageNet1k classification task. We added
experimental results in Table 5-6 for details.

5 DISCUSSION AND CONCLUSION

We propose the simplest transformer architecture to im-
prove the time and memory complexity of any transformer
from O(N2) to O(N). The complexity of a general SA
transformer algorithm is O(N2), and it scales linearly with
the input resolution (token size). However, by multiplying

Table 6: Computational efficiency of the linear attention
algorithms. Note that all networks are implemented on the
same architecture design. ViBid-M shows the highest GPU
Throughputs, and consumes the lowest GPU memory. All
measurement is performed on 1 NVIDIA V100 GPU.

ViBid-M Cos- Lin- EfficientRes. (w/o conv) Former Former Attention
224 547.3 384.9 403.9 416.1
384 209.9 147.8 151.7 186.3
512 119.3 84.7 85.9 114.5

1024 24.2 18.4 20.1 23.9
(a) GPU Throughput (img/s, batch size b = 32)

ViBid-M Cos- Lin- EfficientRes. (w/o conv) Former Former Attention
224 0.38 0.41 0.42 0.38
384 0.65 0.69 0.70 0.65
512 1.05 1.08 1.11 1.05

1024 3.77 3.81 3.91 3.77
(b) GPU Memory Allocation (GB)

BiNorm by KTV and then Q, the proposed algorithm is
designed to be O(N), allowing the model parameters to be
considerably lowered, and a large resolution can be achieved.
Furthermore, previous transformer techniques had complex
architectures to compensate for the reduced performance
with window attention, kernel-based attention, and pattern-
based attention; however, ViBid employing BiNorm does
not have one. It performs similarly to the previous algorithm.
We expect our proposed algorithm to be universally applied
to all transformer algorithms with QKV because it can be
used with very small code modifications.

Limitation. Our proposed algorithm can be used for all
general vision tasks, such as image classification, object
detection, and segmentation. However, its structures need to
be more optimized for each task, so we did not introduce the
performance of our models for the object detection or the
segmentation tasks. In the future, we intend to perform ex-
periments using generally used architectural optimizations,
like multi-scale structures, or compound scaling, to show
the SoTA-level performance at those tasks.
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