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Abstract—The preparation of relational data for machine
learning (ML) has largely remained a manual, labor-intensive
process, while automated machine learning has made great
strides in recent years. Long-standing challenges, such as reliable
foreign key detection still pose a major hurdle towards more
automation of data integration and preparation tasks. We created
a new dataset aimed at increasing the level of automation of
data preparation tasks for relational data. The dataset, called
GITSCHEMAS, consists of schema metadata for almost 50k real-
world databases, collected from public GitHub repositories. To
our knowledge, this is the largest dataset of such kind, containing
approximately 300k table names, 2M column names including
data types, and 100k real (not semantically inferred) foreign key
relationships. In this paper, we describe how GITSCHEMAS was
created, and provide key insights into the dataset. Furthermore,
we show how GITSCHEMAS can be used to find relevant tables
for data augmentation in an AutoML setting.

Index Terms—database schemas, relational data, data prepa-
ration, machine learning

I. INTRODUCTION

Data preparation and feature engineering are insufficiently
automated, time-consuming, and knowledge-intensive tasks in
the data science workflow. Data scientists or data engineers
must first identify useful data sets for a given prediction
problem and then transform the raw input data into a set of
numerical features that have high predictive power for the task
at hand (s. Fig. 1).
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Fig. 1: A typical machine learning (ML) data preparation
workflow of (1) finding relevant data; (2) identifying re-
lationships between tables (primary and foreign keys); (3)
joining, filtering, and aggregating data into a single feature
table; (4) applying feature transformations; (5) and running
feature selection. The process spans multiple problem areas
(in orange). GITSCHEMAS supports work towards establishing
a better integration between dataset discovery and relational
feature engineering (red zig-zag).

Towards automating data preparation for ML. Modern
AutoML systems such as AWS Auto-Gluon [1] and Google
AutoML Tables [2] allow users to create quite powerful
machine learning models with a single button click or a few
lines of code, thereby simplifying the model creation process
and making it more accessible to less technical users. These
AutoML systems, however, usually expect a single table as
input and do not assist users with integrating and preparing
data from multiple sources.

Relational feature engineering frameworks like feature-
tools [3] automatically extract predictive features from mul-
tiple tables by joining and aggregating (resolving 1-n and n-n
relationships) data based on predefined relationships. However,
discovering relevant tables and their relationships in schema-
less data stores can in itself be a tedious task prone to errors
and oversights. Hence, in many practical scenarios, e.g., when
relevant data is spread across different tables in an enterprise
data lake, or different CSV files in an open data portal,
or different feature groups in a feature store, manual data
discovery is still a major hurdle to one-button-click relational
data preparation for ML.

Data discovery systems such as Aurum [4] or D3L [5] are
built to navigate schema-less data and find related tables, but
are geared towards human-guided usage where incorrectly
related tables can easily be weaved out by the user. Inte-
grating dataset discovery with automated relational feature
engineering solutions, to automatically augment training data
with information from other tables, is particularly challenging.
Relations between tables that are falsely assumed to be correct
by the dataset discovery system have a direct negative impact
on the resulting ML model’s quality. As we will show in
section IV, the GITSCHEMAS corpus is useful for making the
results of such an end-to-end system more reliable.

The case for GITSCHEMAS. To improve the results of our
data augmentation pipeline (s. section IV) the core idea is
to learn from real foreign key relationships in relational
database schemas that contain foreign key relationships be-
tween columns and tables. The largest public relational
database corpus we could find was the CTU Prague Rela-
tional Learning Repository [6], which includes 83 database
schemas. The second largest was the Public BI Benchmark
Repository [7] with 43 datasets, inspired by Vogelsgesang et
al.’s [8] paper on the need for real-world benchmarks. Both



appear too small for our purposes.
Other data sources are also not very suitable. Tabular

data collections such as WebTables [9], GitTables [10] or
Kaggle [11] are rich sources for individual tables, but do
not contain original information about the relationships be-
tween tables. Large knowledge graphs such as DBPedia [12]
contain curated relationships between entities. However, these
are mostly natural language terms that do not commonly
appear in database schemas. For example, the relationship
“Person”→“Place” would more likely be modeled as “per-
son id”→“place id” in a database schema.

As noted in Shah et al.’s work [13] towards automatic
feature type detection, “It is almost impossible for researchers
to get access to large numbers of truly “in-the-wild” data from
enterprises and other organizations”. However, do we neces-
sarily need the data content to “learn” something from real
data to make automated data preparation more efficient and
reliable? Inspired by the seminal work of Hulsebos et al. on
GitTables [10], and Yan and He’s work on Auto-Suggest [14],
we utilize public code repositories to extract a large amount of
relational schema metadata from CREATE TABLE statements
in SQL scripts, resulting in GITSCHEMAS.

Broader utility of GITSCHEMAS. We believe GITSCHEMAS can
facilitate use-cases beyond relational data integration as well.
For example, Shah et al.’s [13] work on feature type detection
aims at separating, e.g., “id” columns from numeric columns
to inform automated feature engineering pipelines. The benefit
of GITSCHEMAS being created from SQL schema definitions
is that it distinguishes between, e.g., serial and integer
types (s. Figure 2) for the “id” column. GITSCHEMAS is rich
of such more granular data types which can be used to inform
automated feature engineering pipelines.

A related example is the data validation system Deequ,
which uses machine learning to infer from the column name
which quality constraints should apply to the column (e.g. “id”
columns should have constraints isUnique) [15]. We find that
schemas in SQL files frequently contain such constraints.

Another use case could be header detection in CSV files.
Since the schema in CSV files is underdefined, correctly
identifying header rows in heterogeneous CSV files from, e.g.
Open Government Data Portals, can be challenging [16]. With
a corpus like GITSCHEMAS, which contains a large number
of known column names used in the wild, one could in the
simplest case identify the header row based on whether it has
above average hits in the corpus.

In this paper, we first describe the collection process of
GITSCHEMAS in Section II. Then, we provide an analysis of the
dataset, as well as information about licenses and availability
in Section III. Finally, we demonstrate how GITSCHEMAS can
be leveraged for automated relational data augmentation in
Section IV. In summary, we make the following contributions:

• A process for extracting schema metadata from SQL files.
• A schema metadata dataset and analysis thereof.
• An experiment showing how GITSCHEMAS improves data

augmentation methods in ML pipelines.

II. DATA COLLECTION

In this section, we describe the collection process of
GITSCHEMAS. We extract raw SQL files from GitHub, and
parse them in order to extract structured schema metadata.
Although some of the SQL scripts contain INSERT INTO
statements (i.e. potential table contents), we focus on ex-
tracting metadata such as table names, column names, and
foreign key column names. Figure 2 shows an overview of
the extraction process, which starts with a crawled SQL script
(see GitHub crawler paragraph) that is transformed with a
SQL parser into an Abstract Syntax Tree (AST) from which
the schema metadata can be easily extracted (see SQL parser
paragraph). The source code of our data collection pipeline is
publicly available at https://github.com/tdoehmen/gitschemas.

CREATE TABLE order(

);;
…

CREATE TABLE product(

);
…

SQL files

parse
file 2125

create table

columns constraints

query

Abstract Syntax Tree

  …

…

GitSchemas

name varchar

column

extract
schema_2125

id serial

column

CREATE TABLE customer(
  id serial,
  name varchar,

…
);
…

…
“schema_2124” : { … },
“schema_2125” : { 
  “INFO” : { … },
  “TABLES” : { 
    “customer” : { 
      “COLUMNS” : [ 
        [ “name”, “varchar” ],
        [ “id”, “serial” ],
        [ … ],
      ],
      “PRIMARY_KEYS” : [ … ],
      “FOREIGN_KEYS” : [ … ],
…

file 2125

Fig. 2: The data extraction process. We extract SQL files
indicating table schemas from GitHub, parse them into an
Abstract Syntax Tree, and extract relevant schema metadata.

GitHub crawler. The GitHub SQL crawler is built based on
the GitHub Search API [17]. It uses the API to search for
all public GitHub repositories that contain SQL code with
the expressions CREATE TABLE and FOREIGN KEY. With
this, we want to reduce the set of all SQL scripts as much as
possible to those that are used to create a reasonably complex
schema (with at least one foreign key reference). The SQL
crawler performs the following three steps:

1) Crawl a list of URLs via the GitHub API.
2) Download files based on the list of URLs.
3) Deduplicate the files based on their SHA256 hash.

As of December 2021, the GitHub search index contains
about 7.8M SQL files, of which about 800k contain the
selected keywords. Of these, approximately 700k files could
be successfully retrieved. To filter out duplicated files from
forks and clones, the files were deduplicated using a file hash,
which reduced the number to approx. 370k.

SQL files range in size from 0.1kB to 400kB, with an
average file size of 20kB. GitHub does not index files larger
than 400kB for the search API. The files contain a total of
110M lines of code (LOC), including comments and blank
lines, with an average 300 LOC per file.

SQL parser. To facilitate downstream use cases, we aimed
at extracting structured schema information from the crawled
SQL files. This includes table names, column names, primary
keys, and foreign keys including their reference table and their
reference column names. We deemed this information to be

https://github.com/tdoehmen/gitschemas


most easily and reliably extractable from an abstract syntax
tree (AST) of the CREATE TABLE queries inside of the
crawled SQL files. Unsurprisingly, a manual sampling showed
that the crawled SQL files have different SQL dialects, contain
comments, and are even partially incomplete and/or have
syntactical errors. We therefore tested different SQL parsers
on a random subset of the data, including mysqlparse. [18],
pglast [19], and sqlparse [20]. mysqlparse could only parse
<5% of SQL files successfully, whereas pglast could suc-
cessfully parse and create an abstract syntax tree (AST) for
approx. 16% of the files. This eventually allowed us to extract
61k ASTs from the 373k SQL files in total. Given the ASTs,
we identified CREATE TABLE statements and extracted all
appropriate metadata. By choosing a production-grade SQL
parser, the extraction process is very reliable and leads to high-
quality data.

We think that the retrieval rate can still be improved
though. The non-validating SQL parser sqlparse was able to
successfully read, tokenize and lexicalize >95% of all SQL
files. But with this tool, the creation of the AST is entirely up
to the user, and the subtle differences in SQL syntax between
different databases (e.g. the way comments are marked, or the
way control sequences are escaped) make it difficult to create
a correct AST without knowing the type and version of the
target database, which is the case for our crawled SQL files.
Reliably extracting schema information from heterogeneous
SQL files appears to be an interesting and challenging problem
that we could not exhaustively explore, yet. A framework such
as Apache Calcite [21], which contains approx. 35 different
SQL dialects, could be a promising starting point for future
work on the parsing problem.

In summary, we established a process for retrieving schema-
defining SQL files from GitHub and accurately extracting
schema metadata from them.

III. DATASET

This section describes GITSCHEMAS. We explain the schema
of the dataset and present an analysis illustrating the scale and
coverage of the dataset. Finally, we discuss accessibility and
license restrictions.

Schema metadata. The schema data extracted as described
in Section II is stored as a JSON file. This representation is
suitable because the schema data is considerably hierarchical.
The final JSON file consists of a list of numbered and named
database schemas as depicted on the right side of Figure 2.
Each schema has an info section that contains the URL of
the SQL file, the filename, repository name, file size, and the
license. Each schema also has a named list of tables contained
in the schema. Each table has a name attribute and contains a
list of columns (column name and data type), a list of primary
keys, and a list of foreign keys consisting of a foreign key
column, reference table name, and reference columns.

Analysis. GITSCHEMAS currently contains a total of 49k
database schemas. Of the 61k schemas originally extracted
from the SQL files, approximately 20% were identified as

exact duplicates and removed from the dataset. Each database
schema has on average 6.6 tables and each table has on average
6.3 columns. The exact count of all entities is shown in Table I.
This table contains an additional column showing the number
of entities extracted from code published under licenses that
permit redistribution.

Entity Full Dataset Permissive Licenses
schemas 49,146 6,642
tables 323,953 (114,926 unique) 51,594 (21,255 unique)
columns 2,054,026 (303,443 unique) 363,420 (55,157 unique)
primary keys 248,187 (31,599 unique) 36,620 (5,053 unique)
foreign keys 142,421 (31,041 unique) 24,380 (5,772 unique)

TABLE I: Entity counts in GITSCHEMAS.
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Fig. 3: Most frequent terms in GITSCHEMAS (Full Dataset)
illustrating its resemblance to enterprise database schemas.

Figure 3 shows the most frequently appearing terms in
different attributes. One can see that classic database tables
like “users”, “employees”, “customers” are very common.
Similarly for the most common column names like “id”,
“name”, and “description”. Not surprisingly, “id” is the most
common primary key, which is the same for foreign keys. The
distribution of names in all cases has a very long tail (a high
number of unique/low-frequency terms). Table II illustrates the
depth of GITSCHEMAS by the high diversity in column names
starting with the prefix “user ”. The diversity of column names
in a random excerpt illustrates the breadth of domains covered.

beginning
with
’user ’

user address id, user agent fk, user agent id,
user answer id, user app id, user associated,
user attendance id, user auth id, user authentication

random
sample

id title, role ref id, reg no, partnerid, rent book no,
teamId, n orden pag, id apartment, history id

TABLE II: Two samples of foreign key columns occurring in
GITSCHEMAS (Full Datset). The one beginning with “user ”
shows that the dataset is rich in nuances, and the random
sample gives an impression of the breadth of domains it covers.

60% of all tables have a primary key, of which 77% are
simple keys and the rest are composite primary keys. 27%
of all tables have a foreign key relationship to at least one



other table, 44% of them to more than one table. Foreign key
relationships are established via a simple (non-compound) key
in 95% of the cases.
Download and Licenses. 80% of the files we crawled from
GitHub were published without license information. Overall,
we are only able to ensure for about 13% of the files that they
were published under a permissive MIT or Apache 2.0 license.
This is the subset of files that we make publicly available. The
extent to which derivatives of the other sources can be made
publically available has yet to be determined. However, we
make the full dataset available for reproduction upon request,
and furthermore, anyone is free to reproduce a full dataset
locally using the scripts provided in our official repository
(see section II).

IV. EXEMPLAR USE-CASE

In this section, we demonstrate how GITSCHEMAS supports
data augmentation based on foreign-key detection to improve
machine learning (ML) pipelines. We note that the utility of
GITSCHEMAS is not limited to this use-case as it benefits a
plethora of data management tasks as discussed in Section I.
Automated data augmentation for ML pipelines. When
the performance of an ML pipeline is unsatisfactory, data
practitioners often attempt to augment their data in order to
improve performance [22]. To identify complementary tables
and join them, one may use schema-matching methods to find
database tables with schemas similar to the table at hand,
based on attribute, value, and semantic overlap, and data types,
distribution, and embeddings [23]. One bottleneck is that these
methods often yield false positives with the consequence that
the integrated tables do not provide a relevant signal for an ML
pipeline or, even worse, deteriorate its performance. Database
schemas in GITSCHEMAS provide rich and accurate metadata
regarding the joinability of database tables based on foreign-
key relations to improve this step.
Experimental setup. To illustrate this, we consider the Stats
database from the CTU Prague Relational Learning Reposi-
tory [6], which is not contained in the GITSCHEMAS corpus,
and train a regression model from auto-sklearn to predict the
“Reputation” attribute from the “users” table. We measure the
performance of the AutoML pipeline with the R2 metric. We
compare the model performance when 1) we do not augment
the initial “users” table, 2) we augment it based on a schema-
matching method, 3) we augment the table using foreign-key
lookups in GITSCHEMAS.
Results. Without joining the “users” table with any other table,
the model yields an R2 of 0.72 as shown in Table III. To
improve this model, we augment the “users” table by first
deploying the Cupid schema-matching method from the Valen-
tine library [23]. We augment the “users” table by matching
its schema to overlapping schemas. This results in joining
the “Id” column from the “badges” table, to the “AccountId”
column from the “users” table. We retrain the ML pipeline
on this augmented dataset and find a decreased R2 value of
0.69. In contrast, if we re-rank the suggestions from Cupid

by the string-distance to the closest match in GITSCHEMAS (s.
Figure 4), the model performance increases to an R2 of 0.85.
This demonstrates the bottleneck of current schema-matching
methods and shows how the accurate schema relations in
GITSCHEMAS can be leveraged to improve data augmentation
for ML pipelines, even with a relatively simple lookup method.

Data augmentation method AutoML accuracy (R2)
No Joins 0.72
Joins by Cupid schema-matching 0.69
Joins by lookup in GITSCHEMAS 0.85

TABLE III: Accuracy (R2 value) of an automated machine
learning pipeline with (1) no data augmentation, (2) data
augmentation by schema-matching using Cupid, and (3) data
augmentation by re-ranking Cupid results with GITSCHEMAS.

Candidate joins ranked by Cupid Rank
(users.Id) ↔ (badges.Id) 1

(users.AccountId) ↔ (badges.Id) 0.91

(users.Id) ↔ (badges.UserId) 0.83

Re-ranked joins with GitSchemas Rank
(users.Id) ↔ (badges.UserId)
(users.Id) ↔ (badges.Id)

(users.AccountId) ↔ (badges.Id)

search FK relations:
“users” ↔ “badges”

fuzzy match results:
“user_id” ↔ “UserId”

1

2
FK search results:
users.id ↔ badges.user_id
users.id ↔ badges.user_id

GitSchemas

Fig. 4: Initial join candidates for augmenting the “users” table
as ranked by Cupid (upper table), and re-ranked based on
Foreign Key (FK) search in GITSCHEMAS (lower table). Green
indicates the correct matches, bold the predicted matches, and
strikethrough invalid ones.

V. CONCLUSION

In this paper, we present GITSCHEMAS: a relational schema
metadata dataset corresponding to 50k databases and 300k
tables comprising table names, and column names, types, and
relations. We outline the data extraction process which parses
SQL files from GitHub through Abstract Syntaxt Trees into
structured metadata, and provide an analysis of the dataset
illustrating its resemblance to typical enterprise database
schemas. In addition, we demonstrate how GITSCHEMAS im-
proves existing methods for augmenting tables in automated
data preparation pipelines.

We have high expectations about the utility of GITSCHEMAS

for various data management use-cases, such as data integra-
tion, feature type detection and learning data validation rules,
and are ourselves in an early stage of experimentation. We
share this early version of the dataset with the community to
spark more use-cases and support ongoing research efforts in
the data management and machine learning communities.
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