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ABSTRACT

Language models demonstrate remarkable abilities when pre-trained on large text
corpora and fine-tuned for specific tasks, but how and why pre-training shapes
the success of the final model remains poorly understood. Notably, although pre-
training success is often quantified by cross entropy loss, cross entropy can be
poorly predictive of downstream performance. Instead, we provide a theoretical
perspective on this relationship through the lens of coverage, which quantifies
the probability mass the pre-trained model places on high-quality responses and
which is necessary and sufficient for post-training and test-time scaling methods
like Best-of-N to succeed. Our main results develop an understanding of the cover-
age principle, a phenomenon whereby next-token prediction implicitly optimizes
toward a model with good coverage. In particular, we uncover a mechanism that
explains the power of coverage in predicting downstream performance: coverage
generalizes faster than cross entropy, avoiding spurious dependence on problem
dependent parameters such as the sequence length. We also study practical algo-
rithmic interventions with provable benefits for improving coverage, including (i)
model/checkpoint selection procedures, (ii) gradient normalization schemes, and
(iii) test-time decoding strategies.

1 INTRODUCTION

The remarkable capabilities of language models stem from a two-stage training process: (1) large-
scale pre-training via next-token prediction with the cross-entropy loss (predicting what token should
follow a prefix) and (2) targeted post-training—typically via reinforcement learning—to adapt the
model to specific domains and tasks. Investing more compute and data into pre-training often enables
post-training to produce a stronger model, but theoretical understanding of how these stages interact
is limited. Indeed, despite substantial investment into scaling pre-training (Gadre et al., 2025; Sardana
et al., 2024; Hoffmann et al., 2022), several works have demonstrated that starting post-training from
a better next-token predictor does not ensure stronger performance on downstream tasks (Liu et al.,
2022; Zeng et al., 2025; Chen et al., 2025; Lourie et al., 2025). Motivated by this disconnect, we theo-
retically investigate the connection between pre-training objectives and downstream success, asking:

Can we precisely characterize the relationship between the next-token prediction loss and
downstream performance? What metrics are most predictive of downstream success?

Motivated by the recent interest in test-time scaling, we focus our attention on post-training via Best-of-
N (BoN) sampling or reinforcement learning with verifiable rewards. For a prompt =, Best-of-N draws
n responses y from the model and returns the best response according to a task-specific reward. Sev-
eral prior works have demonstrated that the performance of BoN is strongly indicative of how well the
model will perform after post-training via reinforcement learning (Yue et al., 2025; Wu et al., 2025).

Our starting point is the observation that cross-entropy alone cannot provide meaningful answers
to the questions above; see Figure 1, which illustrates that cross-entropy can be anti-correlated with
BoN performance, echoing Chen et al. (2025). Instead, we show that the missing link is the coverage
profile, a novel refinement of cross-entropy that explicitly quantifies the model’s ability to assign
sufficient probability mass to rare but high-quality responses.

Definition 1.1 (Coverage profile). The coverage profile of a model 7 for a distribution T is

COVN(TF || %) = wau,ywwth) [;\Ez:g > N:|, Q)

where N > 1 is the number of Best-of-N sampling attempts.
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Figure 1: The coverage profile predicts PassQN better than KL divergence. We train models
in a graph reasoning task and record KL divergence, coverage profile (both measured w.r.t., 7p), and
Pass@NN performance; see Appendix G for details. Left: Convergence of coverage and KL divergence
over training, showing that KL improves monotonically but coverage can degrade with training.
Right: Scatter plots of KL (top axis), Cov /o (lower axis) and Pass@QN of checkpoints. Although KL
and Cov y exhibit comparable predictive power for small N, Covy is a better predictor for large N.
Also visualized are checkpoints selected via the tournament procedure of Eq. (13) (marked ¢) and
by minimizing KL (marked red), demonstrating that the former selects better models for PassQN .

Here, y is the full response when prompted with x, 7 represents the pre-training data distribution,
which we presuppose covers downstream tasks of interest, and 7 is the pre-trained model. We prove
that a good coverage profile is necessary and sufficient for Best-of-N to succeed (see Section 2,
as well as Propositions D.6 and D.7). This is highlighted in Figure 1, where we find that the coverage
profile is correlated with downstream performance for Best-of-N (which is exactly PassQN), even
when cross-entropy is not.! Motivated by this characterization of BoN performance, we ask: When,
and through what mechanism, does next-token prediction produce a model T with good coverage?

1.1 CONTRIBUTIONS

We develop a theoretical understanding of the coverage principle, whereby next-token prediction
implicitly optimizes toward a model with a good coverage profile, inheriting the training corpus’
coverage over tasks of interest.

Cross-entropy: Scaling laws and limitations (Section 3). We begin by deriving provable scaling
laws that link cross-entropy—specifically, a certain sequence-level notion—to coverage and hence
downstream performance, but show that cross-entropy can be sensitive to sequence length and other
problem parameters, leading to vacuous predictions; this motivates our main results.

Next-token prediction implicitly optimizes coverage (Section 4). The first of our main theoretical
results (Theorem 4.1) is a new generalization analysis for next-token prediction (more generally,
maximum likelihood) that exploits the unique structure of the logarithmic loss to show that coverage
can generalize faster than cross entropy; we refer to this as the coverage principle. Concretely,
our analysis shows that the coverage profile for models learned with next-token prediction (i) avoids
spurious dependence on problem-dependent parameters such as sequence length (in contrast to cross-
entropy), and (ii) converges faster still as the tail parameter [V is increased. Our analysis—which is
similar in spirit to Mendelson’s small ball method (Mendelson, 2014; 2017)—can be viewed as a
giving a new, fine-grained understanding of maximum likelihood.

Stochastic gradient descent through the lens of coverage (Section 5). The preceding results apply

to general model classes 11, but consider the empirical maximizer of the next-token prediction (maxi-
mum likelihood) objective, in the vein of classical techniques in learning theory. For the second of our

main results, we focus on a specific model class—overparameterized autoregressive linear models (2)—
but take a more realistic approach and analyze stochastic gradient descent (SGD) on the next-token

prediction objective, in the one-pass (“compute-optimal”) regime. We show that while SGD provably

optimizes the coverage profile, it experiences suboptimal dependence on the sequence length H. We

then show that gradient normalization (which is loosely connected to Adam-like updates (Bernstein

& Newhouse, 2024)) provably improves coverage, removing dependence on the sequence length.

"Formally, the coverage profile refines cross-entropy/KL divergence; the former is the cumulative distribution

function (CDF) of the log density ratio log ;EZE; , while KL divergence is the mean; see Remark C.1.
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Interventions for better coverage (Section 6). Finally, we look beyond standard next-token pre-
diction and explore families of new interventions aimed at improving coverage in theory.

(i) Test-time (Section 6.1). We show that for standard token-level SGD, a new test-time decoding strat-
egy inspired by test-time training (Sun et al., 2020; Akytirek et al., 2025) provably improves coverage.
(ii) Model/checkpoint selection (Section 6.2). For selecting the best model (or checkpoint) from
a small number of candidates, we give fournament procedures that enjoy significantly better coverage
profile (particularly with respect to the tail parameter /V) than naive validation with cross-entropy.

Additional results (Appendix F). Beyond the results above, we show that: (1) MLE can find
models with low coverage even in the presence of severe misspecification; (2) coverage can generalize
better under additional structural properties of the model class such as convexity (Appendix F.2).

In summary, we believe that coverage offers a new perspective on the connection between pre-training
objectives and downstream post-training success. Our results demonstrate that this perspective is
mathematically rich and fundamental, opening the door to a deeper understanding; cf. Appendix A.

2 PROBLEM SETUP
We now introduce the formal problem setup for the remainder of the paper.

Next-token prediction and maximum likelihood. We work in the following setting, which
subsumes next-token prediction: X is the prompt space, ) is the response space, and mp : X —
A(Y) is the data distribution. We are given a dataset D = {(2%,y")}_, where z* ~ p and

y' ~ mp(- | ). We consider the maximum likelihood objective L, () := >, log 7 (y’

x'),
and refer to 7 := argmax, cp L, () as the maximum likelihood estimator for a user-specified
model class II. This is a generalization of the next-token prediction, where )} = VH is a token
sequence and 7(y | z) = HhH:1 m(yn | ,y1.n—1) is explicitly autoregressive, so that L, (r) =

S Zle logm(y;, | «*,yi.,_,). We specialize to next-token prediction at certain points but
otherwise focus on the general setting. We make the following realizability assumption throughout.

Assumption 2.1 (Realizability). The data distribution my is realizable by some model w € 11
This formulation captures pre-training and SFT, with some caveats; see Appendix A.1.

Post-training and the coverage profile. Given a reward function 7(x,y) € {0, 1} represent-
ing success at a downstream task T, the goal is to fine-tune 7—through reinforcement learning or
test-time scaling—to obtain near-optimal reward. We show (Propositions D.6 and D.7) that for any
task-specific comparator policy 7y : X — A()Y), Best-of-N sampling with ©(N') samples satisfies
Egplrr(z, mr(z)) — rr(z, 73" (2))] < Covy (7 || 7), so a good coverage profile for 7y is sufficient
for high reward. Moreover, in a worst-case sense a good coverage profile is necessary for high reward;
see Proposition D.7. Further, while less well understood, some form of coverage is thought to be neces-
sary for the success of reinforcement learning methods like GRPO (Yue et al., 2025; Song et al., 2024).

Returning to pre-training, it is clear that there is little hope that next-token prediction will produce
a model 7 with good coverage with respect to a downstream task unless the data distribution 7y itself
has reasonable coverage with respect to this task. We therefore posit that the data distribution covers
such a downstream task, in the sense that it includes high-reward responses with some bounded-below
probability. Since coverage satisfies a transitivity property, it follows that coverage with respect to mp
implies coverage with respect to the optimal policy for the downstream task. For example, if 7 has
a 10% chance of generating a correct response, and Covy/1(7p || @) = &, then we get 10e error.?
Thus, going forward, we focus on understanding when next-token prediction achieves good
coverage Cov y (7p || 7) relative to the data distribution 7 itself, and avoid concerning ourselves
with specific details of the task policy 7y or the specific relationship between 7 and 7.

Autoregressive linear models. We analyze next-token prediction and maximum likelihood for
general model classes II, but our running example throughout the paper will be the class II of
autoregressive linear models, defined by a known feature map ¢ : X x V* — R%. For each parameter
0 € © C RY the model g = (mg)F_, is defined by

mo(yn | 2, y1:n—1) < exp((0, d(z, y1:1)))- 2

2See Proposition D.5 for formal results.
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In practice, autoregressive sequence models—such as those based on transformers—generate each to-
ken by sampling from a softmax distribution whose logits are given by a linear combination of learned
features (Radford et al., 2019). Eq. (2) simplifies this by freezing the feature map, yet remains expres-
sive enough to model complex non-Markovian dependencies, depending on the choice of features.

¢(Jf, yl:h) || S B.

3 CROSS-ENTROPY AND COVERAGE: SCALING LAWS AND LIMITATIONS

Assumption 2.2. We assume that © C {0 : ||0|| < 1} is convex, and supy, ,, .

A natural approach to understanding when next-token prediction achieves good coverage is to appeal
to cross-entropy—perhaps first showing that next-token prediction achieves low cross-entropy (which
is true asymptotically), and then relating cross-entropy to coverage. In this section we motivate
our main results by showing that while this is possible in a weak sense, it does not yield predictive
guarantees for downstream performance in the finite-sample regime.

Define the sequence-level cross-entropy for 7 as Dcg(mp || 7T) = En, ZZIZI log m .

Since E i [En(w)] = —n - Dcg(mp || ), one expects that as we scale up compute, number of
~ Tp

samples n, and model capacity II, Dcg(mp || ) — Dce(mp || 7). or equivalently Dy (mp || 7) — O,

where Dy (mp || T) == Eq, [Ethl log %} is the sequence-level KL divergence.

A simple scaling law for cross-entropy. We show below that if that the model 7 has reasonable
KL divergence to the data distribution, the coverage profile can be bounded:

Proposition 3.1 (KL-to-coverage; see Proposition D.1). Forall N > e, Covy(m || 77) < %.

Combining Proposition 3.1 with Proposition D.6 and our assumption that 7, has good coverage with
respect to the downstream task yields a simple “scaling law” for test-time compute with BoN:

Consider a task of interest with reward r1(z, y), and suppose the data distribution 7p itself has
constant probability of success (i.e., sampling y ~ mp (- | ) with r¢(z,y) = 1). To achieve
sub-optimality € with Best-of-N, it suffices to choose the compute budget N as

D)

€

N~ exp< 3)

That is, for a fixed model 7 and KL-divergence level Dk (mp || ) < Dce(mp || T), Eq. (3) predicts
that test-time compute should increase exponentially with the desired accuracy €.

Insufficiency of cross-entropy. At first glance, this seems to be in line with empirical test-time
scaling laws (OpenAl, 2024), but there is an issue: While token-level cross-entropy has been observed
to be modest in contemporary language models (Kaplan et al., 2020; Hoffmann et al., 2022; Xia et al.,
2022), the sequence-level cross-entropy (and KL-divergence) generally grows with the length H of
the sequence, so that Eq. (3) predicts exponential test-time scaling in the sequence length. Moreover,
such a law cannot hold if we only assume token-level cross-entropy is bounded; see Proposition D.7.

Is this the end of the story? On the one hand, it is simple to show (Proposition D.2) that Proposition 3.1
is tight for a worst-case pair of models. Moreover, even for the autoregressive linear model in Eq. (2),
sequence-level KL divergence scales linearly with the sequence length H, as shown in the next result.

Proposition 3.2. Fix H € N. There exists ¢ : X x V* — Bo(1) and induced autoregressive linear
class I1 with parameter space © = By(1), distribution i over X and data distribution my € I, such
that for any proper estimator & = 7(D) € 11, it holds that w.p. at least 0.5, Dy (mp || ©) > Q(£).

This behavior is reflected empirically in Figure 2 in a graph reasoning task. Yet, for this task
(Figure 2), we find that, in spite of large cross-entropy/KL, next-token prediction learns a model
7 with a good coverage profile across a range of sequence lengths and that downstream Best-of-N
succeeds. Why is this happening? In light of the discussion above, it must be related to specific
inductive bias of the next-token prediction objective itself.

3Neither KL divergence nor the coverage profile are observable quantities (though cross entropy is an
estimable upper bound on KL), so this is a theoretical prediction rather than a practical one as-is; see Remark C.2.
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Figure 2: The coverage profile avoids spurious dependence on sequence length. We train models
in a graph reasoning task and record their KL divergence and coverage profile, measured w.r.t., mp
as we vary the problem horizon (sequence length); see Appendix G for details. Left: Convergence
of KL over training for three horizons H, demonstrating that KL at convergence scales linearly in
the horizon H. Center: Convergence of Cov over training, manifesting no dependence on H at
convergence. Right: Ratio of KL over Cov, showing that Proposition 3.1 can be overly conservative.

A glimmer of hope: Case study in Bernoulli models. To see why large cross-entropy may not
be a barrier to coverage, consider perhaps the simplest setting, Bernoulli models, where X = {1},
Y ={0,1}, T = {Ber(p)} (9,1 2)> and mp = Ber(p*) for some small p* € (0,1/2).

The maximum likelihood model is 7 = Ber(p), where p is the empirical frequency of y = 1 in the
dataset. We observe that with positive probability (and constant probability if n < 1/p*), the dataset
D will only contain examples where y = 0, so that the maximum likelihood model is 7 = Ber(0).
This implies that expected KL divergence is infinite: E[Dgy (mp || )] = +o00. However, the coverage

profile turns out to be well-behaved; a direct calculation shows that Covy (mp || 7) < % with
probability at least 1 — ¢ for all N > 2; this gives hope that even though cross-entropy itself is infinite,
maximum likelihood may actually learn a model with good coverage in the background. In what
follows, we will show that this is not a fluke, but a general phenomenon.

Remark 3.1 (Missing mass). The underlying issue is one of missing mass: there are responses
that even a well-generalizing learner will fail to cover, and for these we may incur a large contri-
bution to the KL-divergence. More generally, KL-divergence and cross-entropy are susceptible to
contributions of the scale log Wiax where Wha, = max cq H % ||oo (which could be as large as H,
as in Proposition 3.2) when the model does not have enough information to generalize/extrapolate.
This phenomenon is particularly pronounced when the prompt distribution is heterogeneous.

4 NEXT-TOKEN PREDICTION IMPLICITLY OPTIMIZES COVERAGE

We now present our main result, which establishes the coverage principle: due to the unique structure
of the logarithmic loss, maximum likelihood can learn models with good coverage even when
cross-entropy is vacuously large. We make use of the following covering number.

Definition 4.1. For a class Il and oo > 0, we let N5 (I1, @) denote the size of the smallest cover T’
such that for all w € 11, there exists ' € 11" such that sup,¢c  ,eyllogm(y | ) —logm'(y | z)| < cu

Theorem 4.1 (Coverage principle). Let N > 8 be given and c¢ > 0 be an absolute constant. Suppose
Assumption 2.1 holds. With probability at least 1 — 0§, the maximum likelihood estimator satisfies

) -1
o1 [logN(lle) |\ logAi (IclogN) +log(6™)
~logN &>0 n n

“

Covy (7)

— CFine(H7n) = Ccoarse(HvNan)

Theorem 4.1 has two terms: a coarse-grained term Ceoarse(Il, N,n) and fine-grained term
Crine(II, n); we interpret each term below.

Fine-grained term. Cr;,.(I1, n) evaluates the covering number N (I, ) at a small scale € (typically
e = poly(1/n)), which matches typical bounds for conditional density estimation (e.g., Bilodeau et al.
(2023)) in KL divergence; however, unlike KL-based bounds this term has no explicit dependence on
sequence length H or density ratios log Whax. The term is further scaled by 1/ log N, which implies
that coverage enjoys faster convergence as we move further into the tail by increasing NN; this reflects
the unique structure of the logarithmic loss, and may be viewed as a new form of implicit bias.
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Summarizing, the fine-grained term witnesses the coverage principle: coverage enjoys faster gener-
alization than cross-entropy; roughly, the rate is what we would expect (via Proposition 3.1) if we
could somehow control KL without paying for the sequence length H or density ratio log Wya.y. See
Appendix E for a detailed comparison to standard (asymptotic and non-asymptotic) generalization
bounds for maximum likelihood based on Hellinger distance and KL-divergence.

Coarse-grained term. The coarse-grained term Ceoarse (I, N, 1) captures the missing mass phe-
nomenon exemplified by the Bernoulli example in the prequel. This term is not explictly normalized
by 1/log N (compared to the fine-grained term), but depends on the covering number N (I, )
only at a very large scale a =~ log N. This implies that the dependence on the capacity of II in this
term vanishes as we increase N.

Overall, while the guarantee in Eq. (4) might look surprising at first glance (particularly the coarse
term, as we are not aware of any existing generalization bounds with dependence on covering numbers
at such a large scale), we show in Proposition F.1 (Appendix J) that both terms are tight in general.

Overview of analysis. The proof of Theorem 4.1 is given in Appendix J (with a high-level sketch
in Appendix J.1). The basic idea is to interpret the condition Covy (7) > ¢ as a small ball-like anti-
concentration condition in the vein of Mendelson (2014; 2017). That is, for models 7 where coverage
is large, the condition Cov v (7) > € witnesses a one-sided bound which implies that the empirical like-
lihood of 7 is not too large with high probability, and thus 7 cannot be a maximum-likelihood solution.

The coarse-grained term Ceoarse (I, N, 1) enters because we only need to show that the coverage
profile concentrates, not the log loss itself. The fine-grained term Cyine (IT, ) enters from one-sided
concentration of the empirical likelihood, with the 1/log N scaling arising from the following form
of implicit bias: If an example (7, y?) is such that m(¥'l=")/x(y'|2?) > N, this witnesses a negative
contribution of order log N to the difference L, () — Ly (mp).

Discussion. We emphasize that while covering numbers are a fundamental and widely used noton of
capacity in statistical learning and estimation (van de Geer, 2000; Zhang, 2002; Rakhlin & Sridharan,
2012; Bilodeau et al., 2023), they are conservative from a modern generalization perspective. Nonethe-
less, Theorem 4.1 shows that they are sufficient to capture rich aspects of generalization for coverage,
and we expect that our core analysis techniques can be combined with contemporary advances in
generalization theory for overparameterized models (Belkin et al., 2019; Bartlett et al., 2020).

4.1 EXAMPLES
To build intuition, we analyze the behavior of Theorem 4.1 under a growth assumption on the

covering number, then discuss how autoregressive linear models exemplify the coverage principle.

Corollary 4.1. (i) Parametric regime: Suppose that there are parameters d > 2 and C > 2 such
that log N (I1, ) < dlog(C/a) for o« € (0,C/2]. Then for any N > 8, with probability at least

1 — 5, Coun (7) < los(C/log ML, + 553 [ +los(1/9)

(ii) Nonparametric regime: Suppose that there are parameters C > 2 and p > 0 such that
log Now (I, @) < (C/)? for a € (0,C/2]. Then for any N > 8 and n > log'/P N - (C/log N)P,

e
with probability at least 1 — 6, Covy (T) < loglN (%p) P4 W.

This result shows that for sufficiently rich classes (e.g., when p > 0), the fine-grained term dominates
the coarse-grained term for n sufficently large. On the other hand, for simple classes (e.g., when
p = 0), the coarse-grained term can dominate the fine-grained term.

Autoregressive linear models: Low dimension. We now specialize to our running example,
the autoregressive linear model in Eq.(2). This class satisfies log Noo (I, ) < dlog(BH /)
(corresponding to the parametric regime in Corollary 4.1), and so, coverage generalizes in a (nearly)
horizon-independent fashion, in stark contrast to the cross-entropy lower bound in Proposition 3.2.
The only drawback (which is fundamental) is that since the class has low capacity, the coarse-grained
term dominates for most parameter regimes, and the improvement as N scales is quite modest.

Autoregressive linear models: High dimension. As a more interesting example, we next look
at the behavior of next-token prediction for autoregressive linear models in an “overparameterized”
regime where the dimension d is arbitrarily large (Zhang, 2002; Neyshabur et al., 2015; Bartlett et al.,
2017); here we expect polynomial dependence on the norm parameter B, as it is the only parameter
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that controls the richness of the class II. In this regime, it turns out that in the worst-case, the capacity
log Noo (I, @) scales polynomially in H. To address, this we prove a refined version of Theorem 4.1
that adapts to the variance in the data distribution 7p, avoiding explicit dependence on sequence length.

Define the inherent variance for the data distribution as
H — 2
U,% = ETK'D [Zh:lH(b(xayl:h) _¢7T0(x7y1:h—l)H :|a (5)

where ¢, (2, y1.h_1) = Ey, ~mo(-,y1.n_1) [©(2, Y1:0)] is the average feature vector given the prefix
(x,y1.n_1). We can interpret the inherent variance o2 as a notion of effective sequence length; it
captures the number tokens that are “pivotal” in the sense that they have high variation conditioned
on the prefix; the name reflects the observed phenomenon that, in language modeling, most tokens
are near-deterministic given their prefix, with only a few having high entropy (Abdin et al., 2024).

Thus, while o2 can be as large as B2 H in the worst case, we expect it to be smaller in general.
Theorem 4.2 (Overparameterized autoregressive linear models). Consider the autoregressive linear
model (2), and suppose Assumptions 2.1 and 2.2 hold. For any N > 2, next-token prediction achieves

Elcovy (7)) $ /oy + £2. ©

Similar to Theorem 4.1, the first term in Eq. (6) can be viewed as “fine-grained”, but decreases with the
tail parameter IV, while the second “coarse-grained” term does not decrease with [V but will typically
be smaller to begin with. We prove (details in Proposition K.1) that this result is tight in the sense that
if 02 < H,n > H is indeed necessary to achieve good coverage in the high-dimensional regime.

We view the introduction of the inherent variance o as an instance-dependent notion of complexity

for autoregressive models to be a non-trivial conceptual contribution, which may find broader use.

5 STOCHASTIC GRADIENT DESCENT THROUGH THE LENS OF COVERAGE

The coverage-based generalization guarantees for next-token prediction in the prequel apply to

general model classes II, but consider the empirical maximizer 7 = argmax, oy Ln(7) of the
next-token prediction (maximum likelihood) objective, in the vein of classical techniques in learning
theory. For our second set of main results, we focus on autoregressive linear models (2) but take a
more realistic approach and analyze stochastic gradient descent (SGD) in the single-pass regime. This
setup is motivated by contemporary (‘“compute-optimal”’) language model training, which typically
uses one or fewer passes over the training corpus (Kaplan et al., 2020; Hoffmann et al., 2022).

5.1 STOCHASTIC GRADIENT DESCENT HAS SUBOPTIMAL COVERAGE

For the next-token prediction objective, single-pass stochastic gradient descent (SGD) takes the form*
0*T! < Projg (0" + nVlog mo: (y' | x*)), @)

for z* ~ pand y* ~ mp(- | z*), where 7 > 0 is the learning rate. As the next-token prediction
loss L(6) := E,,[—logme(y | x)] is convex under this parameterization, we can show that SGD
converges to mp in KL divergence. This implies a coverage bound, albeit a suboptimal one.
Proposition 5.1 (SGD for autoregressive linear models). Upper bound: Suppose Assumptions 2.1
and 2.2 hold. As long as n < ﬁ, it holds that E[+ Zthl Dy (mp || mee)] < 7%T + 4no?.
Choosing 1 to minimize this bound gives

E[+ Y1, Covy(mer)] S iy - (V5 + ZE). ®)

Lower bound: Suppose that B > c-log” (T H). Then there exists an autoregressive linear class I1 such
that for any constant step size 1 > 0, there exists an instance Ty € 1l with o, < 1 such that with prob-
ability at least 0.5, the SGD iterates satisfy Covy (mp || mgt) > ¢ - min{ ﬁ, l}for any t € [T).

The coverage bound in Eq. (8) (which follows by passing from KL to coverage through Proposi-

. . . . 2
tion 3.1) is similar to Theorem 4.2, except that the second term % has an unfortunate dependence

on the sequence length H. The lower bound shows that this dependence is tight, and SGD can indeed

*Proje (+) denotes Euclidean projection onto ©, so this is SGD on the loss L(#) := E[— log g (y | z)].
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experience poor coverage. The failure of SGD in Proposition 5.1 is related to heterogeneity across
prompts: there are some prompts for which the effective scale of the gradient in Eq. (7) grows with H,
leading to divergence unless we use a small learning rate < H 5 Yet for other prompts, the effectlve

gradient range is small, leading to slow convergence (on the order of Q)(H) steps) unless 7 > H = -

Remark 5.1 (Sequence-level SGD). The update in Eq.(7) can be interpreted as a ‘“‘sequence-
level” form of SGD, since we perform a single gradient step for each full sequence y' (note that
Viegmge (y* | z*) = Zf:l Viogme(y}, | @', yi._1)) We view this as a model for what is
done in practice, whereby one performs SGD on sequences of tokens spanning some fixed context
window. While this context window may be shorter than the full training example (e.g., a long article),
understanding the implications of a limited context window is beyond the scope of this work.

5.2 GRADIENT NORMALIZATION IMPROVES COVERAGE

To address the suboptimality of SGD, we consider gradient normalization as a simple intervention.
For a mini-batch D = {(z*, y)}fil of K samples from 7p, define the batch stochastic gradient as
g9(0;D) = ﬁ > (zyep V1ogma(y | ©).  We consider the following normalized SGD update:

t 3 t 65D
0 ¢ Proje (6 + - 1 I0S2D Y. ®

here D* is a mini-batch with K fresh samples drawn i.i.d. from 7rp, and A > 0 is a regularization param-
eter for numerical stability. We show that this update achieves a horizon-independent coverage bound.

Theorem 5.1. Suppose Assumption 2.1 and Assumption 2.2 hold. Let T, K > 1, N > 3 be given.
For an appropriate choice of n, A > 0, the normalized SGD update (9) achieves the following bound:

T o2
E[% >t COVN(W‘)} ST Tog IV Jr - + K- ng (10)

To achieve E[Cov (T)] < ¢ for a target level € > 0, it suffices to choose T =0(

o B2

e? logN + )’
B3 +o’ 32

g3 log2 N + e2log N + )

K=0 ( g™ T 1) giving total sample complexityn = TK = O(

Theorem 5.1 shows that gradient normalization achieves horizon-independent coverage with a
qualitatively similar rate to the guarantee for next-token prediction in Theorem 4.2: To achieve
coverage ¢, both rates scale as poly(— B 5_1) though the dependence on ¢ for Theorem 5.1

is worse. We view this as another instance of the coverage principle, as the rate achieved by gradient
normalization goes beyond what can be achieved by passing through KL divergence. We emphasize
that minibatching alone is not enough to achieve this result; rather, minibatching is necessary to
avoid excessive bias once we introduce gradient normalization.

As a remark, the normalized SG update in (9) is closely related to SignSGD (Balles & Hennig, 2018)
and Adam (Kingma & Ba, 2015) as shown by Bernstein & Newhouse (2024). We believe that similar
coverage guarantees could potentially be shown for these methods using our techniques.

Distillation. As an additional result, we show (Theorem F.2 in Appendix F.3) that for a distillation
setting, where 7 corresponds to a teacher model and we have access to its per-token logits, we can
derive an improved gradient normalization scheme that fully closes the gap with Theorem 4.2.

6 INTERVENTIONS FOR BETTER COVERAGE

In this section, we develop new interventions that improve coverage (and downstream performance)
beyond the conventional algorithms analyzed in Sections 4 and 5. We view these results as promising
proofs of concept, opening the door for further research into interventions driven by coverage.

6.1 IMPROVING COVERAGE AT TEST TIME

In this section, we show that a new test-time decoding strategy inspired by fest-time training (Sun
et al., 2020; Akyiirek et al., 2025) leads to improved coverage when combined with token-level SGD.

We begin by departing from Eq. (7) and learning models with a foken-level SGD update, defined as
""" = Proje (0"" + nVlog mgen (yh, | @', yip_1)), forh=0,---  H—1, (11)
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and 0'** = 6'*1° := §*¥ for t € [T, and where (z',y}.;;) ~ 7. Below we show that, when
combined with a test-time training-like update that performs token-level gradient updates during test
time, the updates in Eq. (11) can circumvent the [/ -dependence in the lower bound of Proposition 5.1.

Concretely, we consider a distribution 7”7 : X — A(Y) formally introduced in Appendix L.1,
which can be interpreted as an augmented version of the autoregressive linear model 7y that uses
test-time training to sample. Given a prompt x, we first sample y; ~ mg(- | =), then perform a
gradient step 6’ < Projg (0 +nV1ogme(y1 | x)) to increase the probability of the token we just
sampled. We then sample y2 ~ 7o/ (- | ,y1), update 8” < Projg (6 + nV log mg: (y2 | x,y1)), and
so on. Once the full sequence y;.y is sampled, we reset back to €, to process the next example at
test-time. We show that when augmented with this test-time sampling scheme, token-level SGD
achieves a horizon-independent coverage bound that matches and even slightly improves upon the
bound for next-token prediction in Theorem 4.2.

Theorem 6.1 (Token-level SGD with test-time training). Suppose Assumption 2.1 and As-
sumption 2.2 hold. For a suitably chosen parameter n > 0, token-level SGD (11) achieves

2 2 2 2
E[7 Z;[:l Dy (mo || m5i")] S \V T+ 5, and thus E[ 7 Z;[:l Covn (mpi")] < loglN ( V F+5).

This improves Theorem 4.2 by a factor of 1/+/log N on the leading term and a factor of 1/ log N
on the second term. Furthermore, the algorithm bypasses the lower bound on KL divergence for
proper methods (Proposition 3.2), demonstrating a provable benefit of being improper.

6.2 SELECTING FOR COVERAGE

We now consider the problem of selecting a model (e.g., checkpoint) from a small number of
candidates to achieve the best coverage. We introduce a tournament-like procedure that improves
upon maximum likelihood in that it removes the requirement that 7, € II; it is guaranteed to find
a model in the class with good coverage if one exists, even if 7p itself is not in the class. As an
algorithmic intervention, we envision using this procedure to select a single training checkpoint or
hyperparameter configuration to use for RL fine-tuning or test-time scaling. Indeed, as demonstrated
in Figure 1, using cross-entropy as a selection criterion—as is standard—may result in poor coverage,
and these procedures can be used to select better checkpoints. Our results here concern the general
setting in Section 2, and are not restricted to autoregressive linear models.

A simple tournament estimator for coverage. Given a dataset D = {(2", ") }ic[n), define

; (12)

which can be interpreted as an empirical version of the coverage profile Covy (7’ || 7) in Eq. (1) when
7! = mp. For N > 1, we consider the estimator

Covw(n'||m) = 2 |{i € [n] : T > N}

T 1= argmin_ .y max, en @N(W’ || 7). (13)

Intuitively, this estimator chooses the model 7 that minimizes the maximum coverage against any other
model 7’ in the class IT. When II is small, we can implement this tournament by simply evaluating
the empirical coverage in Eq. (12) for each pair. The main guarantee for this estimator is as follows.

Theorem 6.2. Let N > 1 be given. Then, for any a € |0, 1], with probability at least 1 — 6, the
tournament estimator (13) achieves

Covyi+a(7) S minger Cova (1) + yims + &2 (14)
This shows that the tournament achieves a coverage profile nearly as good as the best-in class, except
for a small polynomial blow up, in that we bound the coverage at level N'*¢ in terms of the coverage

for the best-in class at level N®.

Infinite class and improving the tournament. Eq.(13) can also be applied to general, infinite
classes II. In this case, it turns out that it improves upon the coverage achieved by the maximum
likelihood estimator in Theorem 4.1 (see Theorem 6.2"). Furthermore, in Appendix F.4, we describe
an improved tournament estimator that is able to remove the 1/N*~¢ term from Theorem 6.2, thereby
achieving nontrivial guarantees even when the coverage parameter [V is a constant.

DISCUSSION AND FUTURE WORK
See Appendix A for discussion and open problems, and Appendix F for additional results.
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REPRODUCIBILITY STATEMENT

We provide full proofs for all theoretical results in the appendix. Appendix G includes extensive
experiment setup and implementation details for all empirical results. The source code is included
in the supplementary material, along with the plotting scripts and data to reproduce Figure 1 and
Figure 2.
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Part I
Additional Discussion and Results

A DISCUSSION AND FUTURE WORK

Our work, through the lens of coverage, takes a first step toward clarifying the mechanisms through
which pre-training with next-token prediction leads to models for which post-training is effective.

A.1 SIMPLIFICATIONS IN THE PROBLEM FORMULATION

In the course of the paper we have made various simplifying assumptions, some of which can be
relaxed in a straightforward fashion, while others are more fundamental:

* In language model pre-training, the pre-training corpus consists of sequences y with varying lengths
H, and does not typically split examples into prompts and responses. Our formulation in Section 2
is a simplification (one that is closer in spirit to supervised fine-tuning), but we expect that the
insights derived here can extend to the general setting.

* Much of our analysis focuses on the realizable/well-specified setting where mp, € II. We give
evidence in Appendix F that the coverage profile is more tolerant to misspecification than KL-
divergence, but we leave a deeper investigation for future work.

* Our treatment assumes the distribution over prompts 1 is the same for pre-training and post-training.
This is straightforward to relax at the cost of introducing an additional coverage or distribution shift
coefficient to handle the mismatch between the two distributions.

* We show that a good coverage profile is necessary for BoN to succeed on downstream tasks. While
there is ample evidence current RL techniques can fail in the absence of coverage (Yue et al., 2025;
Gandhi et al., 2025; Wu et al., 2025), it is not clear what the minimal conditions required for RL
are, and they may be weaker than coverage.

A.2 FUTURE WORK
Our results open several new directions for future research.

* Interventions for coverage. There is much to be done in understanding and improving existing
algorithms such as optimizers through the lens of coverage. Our results in Section 6 show initial
promise for using coverage to guide design of optimizers and model selection schemes, but the
algorithm design space remains opaque, and there may be significant room for futher improvement.
More ambitiously, one could imagine re-structuring the entire language modeling pipeline itself
around coverage.

* Semantic coverage. The notion of coverage we focus on, the coverage profile, is mathematically
convenient but may be conservative in regard to downstream performance, since it only depends
on the model through its predicted probabilities. An important direction for future work is to
understand pre-training and post-training through fine-grained “semantic” notions of coverage
that more explicitly account for the representations learned by next-token prediction.

B ADDITIONAL RELATED WORK

Related empirical observations. On the empirical side, our results are connected to a line of
work that studies to scaling laws for zero-shot downstream performance based on pre-training
metrics such as cross-entropy (Gadre et al., 2024; Huang et al., 2024; Chen et al., 2024; Sardana
et al., 2024). Several empirical works have also investigated how specific capabilities scale with
additional pre-training, including machine translation (Ghorbani et al., 2022), knowledge capacity and
memorization (Allen-Zhu & Li, 2025; Lu et al., 2024), and multi-hop reasoning (Wang et al., 2025).
Our findings are consistent with Liu et al. (2022); Zeng et al. (2025); Lourie et al. (2025); Springer
et al. (2025), who observe that cross-entropy is not always sufficient for predicting downstream
performance, and in some cases can be anti-correlated.
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Perhaps most closely related, Chen et al. (2025) show empirically the decreasing cross-entropy in
pre-training does not necessarily lead to better pass@N performance, and that pass@N can even
degrade as pre-training proceeds—a finding similar to Figure 1.> Our theoretical results can be
viewed as placing their findings on stronger theoretical footing; conversely, their empirical results
provide strong motivation for our theoretical treatment. Chen et al. (2025) also study a modification to
the maximum likelihood objective aimed at improving coverage (in the spirit of Section 6), but, when
instantiated with chain-of-thought, their approach requires a small space of possible final answers.

We mention in passing a few additional works. Chu et al. (2025) explored the different synergistic
roles that supervised fine-tuning (SFT) and RL play in language model development, and subsequent
work observed that the best checkpoint to start RL from can sometimes be in the middle of SFT (Jin
et al., 2025). Bansal et al. (2025) empirically identified the coverage of teacher-generated synthetic
data as an important indicator of how effective distillation would be for reasoning tasks. Several
papers have also investigated empirical tradeoffs between model size and reasoning performance
under best-of-N sampling (Snell et al., 2025; Brown et al., 2025).

Coverage in post-training. Coverage metrics similar to coverage profile play a central role in
theoretical literature on post-training and test-time algorithms (Huang et al., 2025a;b;c; Foster et al.,
2025; Liu et al., 2024; Song et al., 2024; Gao et al., 2024; Liu et al., 2024; Ji et al., 2024), which
analyze algorithms under the assumption that the base model has good coverage; our work can be
viewed as providing theoretical motivation for this assumption.

Various notions of coverage similar to coverage profile have also appeared in the more classical
literature on offline reinforcement learning (Farahmand et al., 2010; Chen & Jiang, 2019; Xie &
Jiang, 2020; Jin et al., 2021; Foster et al., 2022; Jiang & Xie, 2024); here coverage is typically used
to quantify the quality of an offline dataset rather than a model/policy itself.

Generalization in deep learning. Understanding the generalization behavior of deep learning
models has been a central focus of the theory community for the last decade (Neyshabur et al., 2015;
Zhang et al., 2017; Bartlett et al., 2017; Jacot et al., 2018; Belkin et al., 2019; Nagarajan & Kolter,
2019; Bartlett et al., 2020; Bartlett & Montanari, 2021). Our approach is somewhat complementary,
in the sense that it focuses on the specific objective of next-token prediction with the logarithmic loss,
and aims to understand when minimizing this loss leads to generalization for an alternative objective,
coverage profile. We expect that our techniques can be combined with these more general results to
provide more refined understanding of generalization for coverage profile with deep models.

From this line of work, perhaps most closely related are Lotfi et al. (2023; 2024); Finzi et al.
(2025), which aim to provide non-vacuous generalization bounds for the cross-entropy loss itself for
autoregressive models.

Analysis of maximum likelihood. On the theoretical side, our results are most closely related to a
classical line of work in statistics (Wong & Shen, 1995; van de Geer, 2000; Zhang, 2006), which
shows that maximum likelihood can converge to the true model in Hellinger distance (or other Renyi
divergences) under minimal assumptions, even when KL divergence is poorly behaved (large or
infinite). Our results in Section 4 are similar in spirit, but provide a more fine-grained perspective,
showing that coverage profile can converge even faster than these results might suggest, particularly
as one ventures further into the tail. Our analysis has some conceptual similarity to the small ball
method of Mendelson (2014; 2017), which we elaborate on in Appendix J.1.

Our techniques are also related to recent work of Foster et al. (2024); Rohatgi et al. (2025), which
specialize the general techniques above to autoregressive models (e.g., under Hellinger distance).

C PROPERTIES OF THE COVERAGE PROFILE

Before proceeding, we briefly discuss some conceptual properties of the coverage profile that will be
helpful to keep in mind.

Remark C.1 (Coverage profile as a refinement of cross-entropy). While we position the coverage
profile as a new quantity of interest, it can also be viewed as a fine-grained, inference budget-sensitive

SWhile Chen et al. (2025) use the term “coverage”, it is used as a synonym for pass@N, and is not specifically
related to the notion of the coverage profile we consider here.
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refinement of cross-entropy. Concretely, if we write

m(y | z)
Ty | =)
it becomes clear that the coverage profile is simply the cumulative distribution function (CDF) of

the log density ratio X := log ?(Sflf))’
well known that the CDF of a random variable is a more informative statistic than its mean (Durrett,
2019); the former can be much more sensitive to the model’s behavior at the tail than the latter.

Indeed, the coverage profile can behave very differently across scales, as shown by Figure 1.5

Covn(mp || T) = Py, |log > log N |, (15)

while KL-divergence corresponds to the mean: E, [X]. It is

Remark C.2 (KL divergence and coverage profile are not estimable). We emphasize that KL-
divergence and the coverage profile are not estimable quantities in general, due to the fact both
depend on the unknown density mp(y | x) for the data distribution. This motivates the use of cross-
entropy in practice, as the former is an estimable upper bound on Dg\ (mp || 7). Analogously, we
show in Section 6.2 that various estimable proxies for the coverage profile can be used to select
models with good coverage.

An exception is the expert distillation setting (see Section 6.1), where Ty is a teacher network for
which the log-probabilities log mp(y | ) are available.

Remark C.3 (Sequence-level versus answer-level coverage). Our discussion so far has focused
on coverage at the sequence level. For reasoning tasks, it is natural to explicitly factorize the
response Y = (Yeot, Yans) iNto a chain-of-thought (reasoning trajectory) component ycor and an
answer component Yans. For this setting, a weaker notion coverage is the following answer-level
coverage profile:

Covi(mp || 7) = P, moWans [ 7) o ]
T(Yans | )
Informally, the answer-level coverage profile is sufficient for downstream BoN success for tasks
where it is only important to produce the right answer, not a correct reasoning trace. We have

Cov¥*(mp || ) < Covn (mp || ), but the former can be strictly smaller in general.

We hope that by providing a comprehensive understanding of sequence-level coverage, our work
can set the stage for future research on answer-level coverage and other finer-grained notions of
coverage; we give some initial results along these lines in Appendix F.

SInterestingly, we show (Proposition D.1) that if the coverage profile satisfies a certain growth condition
uniformly for all scales M, then it implies a bound on KL-divergence—a weak converse to Proposition 3.1.
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D SUPPORTING RESULTS
D.1 PROPERTIES OF THE COVERAGE PROFILE

Proposition D.1 (KL-to-coverage conversion). For all models my and w and M > 2, we have

D
logN -1+ %

Proof of Proposition D.1. Lemma 27 of Block & Polyanskiy (2023) states that for any /N > 1 and
any convex f : [0, 00] — [0, 00] with f(1) = f/(1) =0,

m(y | ) NDj(m || 7)
P”D[w(ym) >N} < R

Covy(m) = (16)

dmp

where Dy(m || ) := Er[f()]. Applying this with KL-divergence, which corresponds to
f(z) = zlogz — x4+ 1 with f'(z) = log x, we have that

N 1
f(N) logN—1+1/N’

a7

which gives the result.

O

Proposition D.2 (Tightness of KL-to-coverage conversion). For any N > 2, there exist models mp
and T such that
~ D T
Covy () > —KL(W[iH 7r)1 .
logN — 5 + 55

Proof of Proposition D.2. Consider 7, = Ber(p) and 7 = Ber(p/N) with p < L. Then
Covy(T) = p and

~ l-p l-p
DKL(WDHW):plogN+(1—p)1og1 - gplogN—i—(l—p)( — —1)

N 1-%

1- 1

—p(logN—(l—p)ljﬁ)

N
1 1
<p-{logN — -+ —
<p <0g 2+2N>

This is the desired result. O

Proposition D.3 (Uniform coverage decay implies bounded KL). Given w,mp : X — A()), define
Whax := sup,,, % and

C := sup{Covy(7) -log N},
N>1

where we note that C' < log Wiay. It holds that

Dy(mp || 7) < C - (1 + log(log(Whax)/C)). (18)

Proof of Proposition D.3. Let § > 0 a fixed parameter, and define X := /7. Then we have

Dy (mo || 7) = Exy[log(X)] < Er, [log(X)I{log(X) > 6}] + 0. (19)
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Since X < W« almost surely, we can write

log(Whax)
E,, [log(X)I{log(X) > 6}] = / P, [log(X) > t]dt (20)
s
log(Whax)
:/ Py [X > ef]dt @1
IOg(Wmax) 1
<C / S (22)
1 max
- Clog(Og(I;Va)) (23)
The result now follows by setting § = C. O

Proposition D.4 (Hellinger-to-coverage conversion). For all models 7y and ™ and N > 1, we have
2N

(VN —1)2

Proof of Proposition D.4. Without loss of generality, we assume ) is discrete in the following proof.
By definition,

Covy(m || m) < - DE(mp, ).

1
Da(WDﬂr) = ) Egnm

Z (Vmly Te) = v/r(y | x)ﬂ
gyuux@—¢NYQﬂyms§m@xﬁ]

1 1)? [WD(y | ) }
—(1- =) p, [T N,
2 ( \/N) m(y | z)
where the inequality follows from the fact that \/m(y | 2) — \/7(y | ) > (1 — \/Lﬁ) m(y | T)

is implied by 7(y | #) < % (y | ). Re-organizing completes the proof. O

1

2 wNﬂ'D

Proposition D.5 (Chain rule for coverage profile). For any models p, 71, and 7, and any My, My >
2, we have

COVA/\/[1 (ﬂ'T H %) S Mg . COV]\/[I/]\/[2 (ﬂ'D H %) + COV]W2 (7TT || 7TD). (24)

Proof of Proposition D.5. We can write

i _p [mlo)
con 1) =B [ Z15 > 2]
o 7TT(y | 95) mr(y | fU) 7TT<y | ) 7rT(y | 55)
‘“hmm>MwmmFM4W4ﬂym>Mm@m>%
7TD(2/ | x)

< MyP, { > M, /MQ} + Py, [WT(y:x) > Mg]

T(y | =) mo(y | =)
= MQCOVMl/]MZ(ﬂ—D H 77?) +COVM2(7TT || 7TD).

D.2 ANALYSIS OF BEST-OF-N SAMPLING UNDER A GOOD COVERAGE PROFILE

In this section we analyze the performance of the Best-of-N algorithm under a good coverage profile.
Let a base model 7 be given, and let a reward function r1(z, y) € [0, 1] be given. Let 7 : X — A(Y)
denote an arbitrary task-specific comparator policy.

We let 73N (x) denote the distribution of the Best-of-N algorithm with parameter N, which draws N

N idd
responses y',...,y"~ '~ 7(- | x) and returns y = arg max,, r1(z,y;)-
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Proposition D.6 (Coverage implies success for BoN). Let M > 1 be given. For any € > 0, if
N > 2M log(e™"') and Covy(mr || @) < L, then we are guaranteed that

By [rr(@, mi(x)) — r1(2, 73" (2))] < Covay(mr || 7) +e. (25)

Proof of Proposition D.6. This is an immediate consequence of Lemma F.1 in Huang et al. (2025b),
noting that we can bound £y (77 || 7) < Covypy (77 || 7). O

Proposition D.7 (Coverage is necessary for BoN). For any model T and reference w1, and for any
N > 2, there exists a reward function r1(z,y) € {0, 1} such that

Eomp [rr(z, mr(x) — rr(z, 73" (2))] > %COVQN(TFT [|7). (26)

Proof of Proposition D.7. For any z € X, we define S, := {y € V : % > 2N} and let
ri(z,y) =y € Sx }.

By definition, for any fixed x € &, it holds that

rr(z, TMN(x)) = Py sy (y € Sz) =P i € [N],y' € Sy)

yl,...,yN%iﬂ-\w)(
N
=1—(1=Pyor(y(¥ € 52)) <N -Pyiz(a)(y € Sz)

1
=N- Z y | €T < N- Z 77TT y | l‘ 2Py~m( \z)(Sw)7
YESa YESy

where we use the fact that 7(y | ) < Fom(y | z) for any y € S,. We also note that
P (y € S;) = Covan(mr || 7). Therefore,

zropy~mr(c|x)

1

By [rr(@, mr(2)) = refw, 784(2))] 2 5Covaw (e | 7).

D.3 PROPERTIES OF MAXIMUM LIKELIHOOD

Proposition D.8 (Convergence of maximum likelihood in Hellinger distance). Assume that m, € 1L
With probability at least 1 — 6, the maximum likelihood estimator T := arg max ¢y L, () satisfies,

log Noo (11,
D3 (m, %) < 1f{‘mdv<fﬂ+s}, 27)
e>0 n
and consequently
~ log N (1,
Covar(7) < inf{Og(€)+g}. (28)
e>0 n
forall M > 2.
Proof of Proposition D.8. The first bound follows from Proposition B.2 of Foster et al. (2024). The
second bound follows from applying Proposition D.4. O

Proposition D.9 (Convergence of maximum likelihood in KL). Assume that m, € I, and that all
7w € II satisfy || %HOO < Whax. With probability at least 1 — §, the maximum likelihood estimator

7 := arg max oy Ly () satisfies,

log Noo (I1,
zmmﬂsm%mﬂ%N(@ﬂ} (29)
>0 n
and consequently
. log Whay . log Noo (11, €)
< =2 77 C R h S
Covar(®) 3 log M gf){ n Tep 0)

forall M > 2.
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We remark that the log(Whax )-factor in Eq. (29) can be tight in general. For example, for the class IT
considered in Proposition 3.2, it holds that log Mo (IT, ¢) < log(1/€) V 1 and H%Hm < e,

Proof of Proposition D.9. By Lemma 4 of Yang & Barron (1998), it holds that
D (o | 7) < (2 + Log(Waax)) Dii (0, 7).

Therefore, the first bound then follows from Eq. (27). The second bound follows from applying
Proposition D.1. O

D.4 AUTOREGRESSIVE MODELS: COVERAGE AND STOPPED KL-DIVERGENCE
Proposition D.10. Define

H
Dseq,N(ﬂ—D || 77) - E(m,yl:H)Nﬂ'D mln{log Nv Z DKL(’]TD(' | $7y1:h71) H 7T(' | x, yl:hl))}~ (31)
h=1
Then for N > e, it holds that
2

COVN(TFD || 7T) < mDse%N(WD || 77). (32)

Proof of Proposition D.10. Consider the stopping time
T:=mins h:h=H or ZDKL(WD(yj—s-l =-|z,y15) | 7(Yj+1 = - | ®,91:5)) > log N
J<h
Then, for the process Y™ = (z, y;.- ), we have the chain rule:

Dri(mo (Y7 =) [#(YT =)

=E.,

ZDKL(WD(yh =z, yun-—1) [ 7(yn = | xaylzh—l))]
h=1

H
< En min{log N> Du(molyn = - | 2,y1n-1) | w(yn = - | $,y1:h1))}7

h=1
where the inequality uses >, Dxi(mo(yj+1 = - | ,y15) | 7(yj41 = - | #,91.5)) < log N, which
follows from the definition of 7. Therefore, by Proposition D.1, we have

m((Y7) D (mp(Y7 =) [ (YT = -))
WD(T{‘(YT) ZlOgN)S KL 10gN—1—|—1/N .

Finally, we bound

P, (m > N) < Pp (T < H) + P, (7:((;/:)) > log N).

By Markov’s inequality,

H
Pr, (7 < H) < Pr, (Z Dy (mo(- | 2, y1p—1) ([ (- [ 2, y1:0-1)) > logN>
h=1

<

H
ETFD min{IOgNa ZDKL(ﬂ-D(' | -T7y1:h—1) ” 77(' ‘ xvyl:h—l))}'

1
log N Pt

Combining the inequalities above completes the proof. O

Proposition D.11. Forany N > 1,6 € (0, 1), it holds that

H
Covn(mp || ) > Pr, <Z Di(mo(- | @, y1n—1), 7(- | 2, y1:0-1)) > 10g(N/5)> — 0.
h=1

22



Under review as a conference paper at ICLR 2025

Proof of Proposition D.11. By definition,
1 o (Yn | 2, y1:n—1)
Eupvmtiemacy o0 g 1os T S
= > Vol [2yin) 7y 2,910 1)
Yn€Y

=1- Dﬁ(WD(' | l'vylzh—l)ﬂr(’ | ﬂf,ylzh—l)) < eXP(*Da(WD(' \ l’ayl:h—l)ﬂT(' | x,y1:h—1)))~
Therefore, it holds that

H
1 mo(Yn | T, Y1:n-1)
E., ex D3 (mo(- | 2, y1:n—1), (- | 2, y1:h-1)) — = lo <1.
P(}?_l A(mo( |2, y1n-1), 7( | 2, y1:0-1)) D) g W | %, 91n1)

By Markov inequality, this implies

1
Pr (21 M ZD2 (mo(- | &, y1:n—1), 7 (- $7y1;h1))—log(1/5)> <6

(Y1 | @)

To conclude, we note that

H
Pﬂ'o (Z Da(ﬂ-D(' ‘ xvyl:h—l)vﬂ'(' | zvylzh—l)) > log(N/5)>

h=1

H
<P, (Z D(o- | 1), 1 ) = 1o DO 1og<1/6)>
h=1 :

1. mo(yua | z)
+ P, (2 log Tlorm 1 2) +log(1/6) > 10g(N/5)>

< 4 Covy (mp || 7).
Re-organizing gives the desired result. O

E COMPARISON TO CLASSICAL GENERALIZATION BOUNDS FOR MAXIMUM
LIKELIHOOD

In this section we briefly compare our main coverage-based generalization bound for maximum
likelihood to classical generalization bounds for maximum likelihood based on Hellinger distance
and KL-divergence.

Comparison to KL concentration. For general model classes II, the best KL generalization bound
we are aware of is Proposition D.9 (Appendix D), which scales as roughly

DKL(7TD || %) S log Whax - Cfine(H n)

under the assumption that all 7 € TT obey a sequence-level density ratio bound | H < Whax, Where
log NV is an apropriate notion of covering number; note that for the autoregresswe linear class, we
have log Wh.x = BH, matching Proposition 3.2. Combining such a guarantee with Proposition 3.1
gives a coverage bound of roughly

log Whax
log N

this is rather uninteresting since Covy (7) = 0 for N > W,; in other words, we do not get a
meaningful improvement as we scale NV.

COVN( ) Cfine(Han)§

Asymptotic bounds for maximum likelihood. We also note that the classical theory of maximum
likelihood (e.g., Van der Vaart (2000)) provides the following asymptotic convergence rate for
d-dimensional parametric classes II:

N d
Dy (mp || 7T) S - < Crine(IL, ), n — 4o0.

While this upper bound does not scale with log W, it can only be attained with n > ng for a
sufficiently large burn-in cost ng (typically scaling with log Wy, itself or similar problem-dependent
parameters; see, e.g., Spokoiny (2012) for non-asymptotic bounds of this type).
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Comparison to Hellinger concentration. For general model classes II, the best Hellinger general-
ization bound we are aware of is Proposition D.8 (Appendix D), which scales as roughly

Dii(m0,7) < Crine(I1,n)
Combining such a guarantee with Proposition 3.1 gives a coverage bound of roughly
Covy (/7'(\') 5 Cf-‘ine (H, n)

for all N > 2. Compare to the KL-based result above, this result gives a non-trivial bound on
coverage when N is constant (comparable to Theorem 4.1), but the issue is that it gives no further
improvement as we scale N.
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F ADDITIONAL RESULTS

F.1 TIGHTNESS OF THEOREM 4.1
To conclude, we show that the coarse and fine-grained terms in Theorem 4.1 are both tight in general.

Proposition F.1. The following lower bounds on coverage hold for the maximum likelihood estimator.

(a) Coarse rate: For any n,d > 1 and B > log(5n), there exists a class 11 with log Niw (I1, o) <
dlog(B/a) V 1 and my € 11 such that with probability at least 0.5, it holds that for any N < e®,

. d
Covn(T) > c- —.
n

(b) Fine rate: For anyn > d > 1, N > 1, there exists a class Il and 7y € 11 such that |TI| = 2¢ + 1
and Noo(I1, ) < 2 for any o« > \/%, and with probability at least 0.5, it holds that

d

C T)>c ——.
ovny(T) > ¢ nlog N

Informally, case (a) shows that for the class II under consideration, the coverage does not decrease
with log N until N is trivially large such that log N, (IT, log N') = 0; this is precisely the behavior
of the coarse term in Theorem 4.1, so this implies there is no hope of removing this term. Meanwhile,
case (b) can be interpreted as showing that there is no hope of replacing the high-precision covering
number found in the fine-grained term in Theorem 4.1 with a coarser notion (e.g, at the scale in the
coarse-grained term), since the rate grows with d = log|II| even though log N (I, «) is constant for

a > \/g . We note that Proposition F.1 is an algorithm-specific lower bound, not an information-

theoretic lower bound; we show in Section 6.2 is that it is possible to improve over Theorem 4.1 with
algorithms explicitly designed to optimize for coverage.

F.2 MAXIMUM LIKELIHOOD: TIGHTER RATES FOR CONVEX CLASSES
In the following, we analyze the MLE for convex model class.

Assumption F.1 (Convex model class). The class 11 satisfies 1 = {mp : 0 € O} for a convex,
compact parameter space ©, and the mapping 6 — wy(y | ) is concave forall x € X, y € ).

Theorem F.1 (Fast convergence of coverage for convex classes). Let o > 0, N’ > 1, N > 2e2*N’
be given, and suppose that Assumption F.I holds. Define

0* = arg min Dy (7p || 7).
0cO

With probability at least 1 — 6, the maximum likelihood estimator T := arg max, < En(w) satisfies

. -1 2a £/
+Clog]\/oo (IL; &) + log(6—1) N Ce®*N’ inf{logj\/m(l'l,e) JrE},

Covn () < Covr(mo+) " N o0 n

(33)
where C' > 0 is an absolute constant.

In words, we show that for convex class, the coverage of MLE 7 can be upper bounded by the
coverage of my«, the best-in-class approximate of mp. In particular, when m, € 1I, we get the
following bound for convex class II:

-1
{log./\/j.;(ﬂ,e) N 5} N log N (H,cloiN) +log(671)

1
~ < Lo
Covn(T) < N ;I;%

Crine(II,n
= % +Ccoarse(H7N7 n),

which improves upon the bound Covy (7) < % + Ceoarse (I, N, n) shown in Theorem 4.1 for

general class 1I. The proof is presented in Appendix J.3.
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F.3 STOCHASTIC GRADIENT DESCENT: IMPROVED GRADIENT NORMALIZATION FOR
DISTILLATION

In this section, we focus on autoregressive linear models (2), and consider a variant of our setting
inspired by distillation . We assume that for each example (z*,y;.;), foreachh = 1,..., H, we have
access to the true next-token probabilities 7 (yy, | 27, yi.,_) for all y5, € V. This is an unrealistic
assumption for general pre-training, but it is natural for distillation, where 7, corresponds to a teacher
model (in particular, the next-token probabilities are already computed as part of a standard forward
pass through the teacher model).

For the distillation setting, we give an improved gradient normalization scheme that improves upon the
rate achieved by Theorem 5.1, closing the gap between SGD and maximum likelihood by matching
the guarantee for Theorem 4.2.

Define ep(x, y1.n—1) := Dk (m(- | ©,y1.n—1) || m6 (- | Z,y1.n—1)); note that for the distillation set-
ting, we can compute this quantity in closed form for any prefix =, y1.5—1 in the training corpus. We
consider the following (single-sample) truncated/normalized stochastic gradient estimator:

H

Go(y | z) = Zae(fcayl:hq)VIOgﬂe(yh | 2, Y1:n-1), (34)
h=1
where A := log N, and where
]-7 ngh_l EG(x»ylzj) S Aa
a@(xayl:hfl) = O’ Ej<h71 €9(35711/1:_7’) > A, (35)

A_Zj<h,,1 Ee(-t,ym)

T , otherwise.

With this definition, we define the following normalized SGD update:
0"+ = Projo (0" + ngo: (' | 2)). (36)

Intuitively, the idea behind the update in Eq. (34) is to truncate the gradient at the point where the
KL divergence between the teacher and student model is too large, and then normalize the gradient
by the KL divergence; this is inspired by the structural result Proposition D.10 in Appendix D.4,
where we show a close connection between the coverage profile and a certain “stopped” variant of
KL divergence.

Theorem F.2. Let T, N > 1 be given. With a suitably chosen stepsize n > 0, the normalized SGD
update (9) achieves the following coverage bound:

T
1 o2 B2
~Sc I <4 =2 2 37
T 2~ ov (7o )] S\ TogN T T 37

This guarantee matches the rate of Theorem 4.2 for the maximum likelihood estimator. The proof is
presented in Appendix L.2.

E

F.4 AN IMPROVED TOURNAMENT VIA ON-POLICY GENERATION

We describe an improved tournament estimator that is able to remove that 1/N*~¢ term from
Theorem 6.2, meaning it achieves nontrivial guarantees even when the coverage parameter NV is a
constant.

Note that the term 1/N1~% of Eq. (14) comes from the fact that P, ( :D((’;ll“i )) > N) can be as large as

1/N in the worst case, implying that the 7 produced by Eq. (13) may at best achieve a coverage of
1/N. To overcome this, we introduce an offset term:

7 = argmin, .y maxer {Covy (|| ) — 2N® - Coviy (' || )}, (38)
where we define Covy, (' || 1) := LS Py ) (i((glff)) > N) for models 7,7/, 7. This

estimator augments the simple tournament in Eq. (13) with an “offset” term that accounts for the fact
that some of the models might be quite far from 7. The main guarantee is as follows.
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Theorem F.3. Fix N > 1, a > 0 such that N1=2¢ > 4, Suppose that there exists T € 11 such that
logmp(y | ) —logT(y | )| < alog N forany x € X,y € Y. Then with probability 1 — ¢, the
tournament estimator (38) achieves Covoni+a (T) < W.

Compared to Theorem 6.2, this tournament eliminates the additive 1/N 1=a term. It does, however,
require a stronger condition on the best-in-class model 7 that [log mp(y | ) —log T (y | )| < alog N,
which implies in particular that Cov y« (7) = 0.

Infinite classes: Beating maximum likelihood. While we motivated the tournament estimators
through model/checkpoint selection with a finite class II, both estimators can also be applied to
general, infinite classes I1. In this case, it turns out that they both improve upon the coverage achieved
by the maximum likelihood estimator in Theorem 4.1, even in the well-specified case where mp € 11,
informally, the tournament estimators allow us to remove the fine-grained term in Theorem 4.1,
leaving only a coarse-grained term. See Theorem 6.2” and Theorem F.3’ for the formal statements.
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G EXPERIMENTS

We describe the general graph search task used throughout our experiments in Appendix G.1, then
detail the specific setups used for Figure 1 in Appendix G.2, and for Figure 2 in Appendix G.3.

G.1 GRAPH REASONING TASK

We evaluate our theoretical predictions using experiments in graph reasoning tasks, in which trans-
former models are trained to find paths between source and target nodes in graphs. Both graph
reasoning benchmarks and synthetic datasets have seen increasing use as abstractions for reasoning
problems and for probing language modeling phenomena (Sanford et al., 2024; Nagarajan et al.,
2025; Saparov et al., 2025; Bachmann & Nagarajan, 2024; Yehudai et al., 2025; Taylor et al., 2024;
Wang et al., 2023; Fatemi et al., 2024; Tang et al., 2025).

These tasks provide minimal abstractions of core reasoning problems, yet are expressive enough
to capture pre-training and fine-tuning phenomena. They also offer flexibility in problem structure
and difficulty: by specifying different graph topologies and path depths, we can modulate difficulty
and expose sources of hardness. At the same time, the simplicity of the setup enables training in
controlled settings with interpretable results with which to ground our theoretical predictions.

G.1.1 GRAPH SEARCH TASK DESCRIPTION

The graph search tasks in Appendix G.2 and Appendix G.3 share the same high-level structure, and
are comprised of

* A set of graph structures G that map bijectively to a set of prompts X, and induce the response
space )

* A distribution over the prompts p1 € A(X)
* A data collection policy mmp : X — A(Y)

Next, we describe the general details of the graph search task common to all experiments, and leave
the task details for each figure in the proceeding sections.

Graph Search. The nodes of all graphs in a given task G are drawn from the set [m], for some
integer m € N. Each graph structure G = (V| E) € G is comprised of a set of vertices (“nodes”)
V C [m] and edges E = {(u,v) : u,v € V,u # v}. It also contains one source node s € V and one
target node ¢ € V, so that (G, s, t) specifies one search problem instance within the class. The search
task can be translated into an autoregressive sequence modeling problem using the below prompt and
response specifications.

Layered Graph Structure. For all experiments, we utilize a layered directed acyclic graph (layered
DAG) with a rectangular structure. Following the source node, the graph has L layers each with a
fixed number of nodes. In each layer, only a subset of its nodes has edges connecting to the next layer,
and we refer to these nodes as passable nodes, or the set {v €V :degt(v) > O} that has non-zero
out-degree. In a given layer each passable node has edges to all nodes in the next layer, while the
remaining (non-passable) nodes in the layer cannot be used to traverse to the target, so that as soon as
the model outputs one such node its path cannot be valid.

In order to output a valid path from source to target, it is sufficient to keep outputting the passable
nodes in the next layer. In general a graph may have many valid paths, and in each experiment,
always samples valid paths. However, as will describe shortly, mp may use complex functions to
sample from only a subset of the valid paths, and 7 must learn to cover such behavior.

The layered DAG offers a natural interpretation as an abstraction for reasoning problems. Following
passable nodes in valid paths corresponds to taking reasoning steps that make progress towards the
solution, and selecting paths via more complex functions maps to learning high-quality solutions that
accurately reflect desired properties for the problem’s solution.

Graphs to Prompts. Given a graph structure G = (V, E') € G and a source node s € V' and target
node ¢ € V, the prompt x encodes the search problem as the adjacency list of G with the source and
target nodes appended to the end. The prompt is formatted as a string of the form

rz: u_lv_l |Ju2v_2]| ...]lukvk/sts=
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where (u;,v;) € [m]? are the vertices of the i-th edge in the adjacency list. For example, with edges
E = {(10,23), (86,47), ..., (45,32)}, the prompt is formatted as

x: 1023 | 86 47 | ... | 4532/ 10 45 =

where | and / are special characters that separate two edges and the adjacency list from the source
and target nodes, respectively. The special character = is indicates the end of the prompt.

Graphs to Responses. Given a graph structure G = (V, E) € G and a source node s € V and
target node ¢ € V, the response y encodes the path from the source to the target node in G. In general
a graph may have multiple paths from source to target. The horizon H corresponds to the longest
path length in G, and a response takes the form of a string

y: sv_1v_2v.i3...vHt
where v; € [m] are the vertices of the i-th edge in the path.

Sequence Modeling Problem. In summary, a graph search task with set of graphs G induces an
autoregressive sequence modeling problem with a vocabulary space V = [m] U {|, /, =}, prompts
X C V* corresponding to graph structures, and responses ) C V¥ corresponding to paths with
length at most H. In addition, the task is equipped with pn € A(X') and 7p : X — A()) that is used
to collect the training dataset D = {(z,y)}, where x ~ p and y ~ mp(x).

G.1.2 GENERAL IMPLEMENTATION DETAILS
Next, we describe the common implementation details of the graph search task.

Tokenizer. The tokenizer is a numeral tokenizer standard for graph reasoning tasks. Each node
v € [m)] is tokenized as its integer node value, and the special characters |, /, and = are tokenized as
m+ 1,m + 2, m + 3, respectively.

Transformer model. Throughout our experiments, we train causally-masked GPT?2 transformer
models to minimize the cross-entropy loss using the Adam optimizer with fixed learning rate, and
perform a grid search over the parameters displayed in Table 1. Parameters with fixed values were
chosen based on related papers such as Bachmann & Nagarajan (2024). In both experiments, the
model architecture with 4 heads, 6 hidden layers, and 384 hidden dimensions worked best. We use
absolute positional encodings. Training iterations and grid search values for the learning rate are
different for each experiment, and discussed further below.

Hyperparameter  Values

Number of heads {4,6, 8}
Number of layers {3,4,6,8}
Hidden dimensions 384
Activation function GeLU
Batch size 128
Weight decay 0.01

Table 1: Hyperparameter grid search values for transformer models in graph search.

G.2 EXPERIMENT DETAILS FOR FIGURE 1

The graph search task for Figure 1 exposes natural properties of pre-training data where cross-entropy
reduction comes at the cost of a worse coverage profile. In particular, because pre-training data is
diverse, the model in practice is generally unable to perfectly fit the distribution. When one mode of
behavior is better-represented than another, cross-entropy minimization, which is an average-case
distribution-matching metric, can sacrifice coverage over the different modes in order to increase
performance on one.

Correspondingly, our graph search task for Figure 1 is a mixture of two classes of graph structures.
Due to representational and finite-sample constraints, the model is unable to fit both perfectly during
training, and, in particular, fitting one class well (in the sense of cross-entropy loss) comes at the cost
of worse performance on the other. The checkpoint with the best coverage arises at some middle point
in training when the model learns both classes of graphs equally well, and has good coverage over
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both classes (the dip Cov v in the leftmost subplot of Figure 1). Further reduction of cross-entropy
loss over the latter half of training requires the model to lose coverage over mp in the less-represented
graph class (observed as the increase in Covy in the latter half of training iterations).

Even though the task cannot be learned perfectly from the supervised learning feedback, the model
can still learn a policy that always samples a correct path matching 7p’s with O(1) sampling attempts,
which means that it leads to efficient downstream post-training (e.g., on one of modes or with
reward-based feedback), and also achieve optimal performance with test-time inference methods.

For the experiments in Figure 1, we first pre-train a model on a larger set of graph structure classes so
that it learns a diverse set of behaviors, then finetune its behavior on two. The performance on the
finetuning task is displayed in Figure 1, and we first describe the finetuning dataset, followed by the
pre-training dataset.

G.2.1 TASK DESCRIPTION

The finetuning task is a skewed mixture over two graph disjoint graph classes, G; U G = G, with
i € A({1,2}) denoting the probability of each class in the data. All graphs in G follow the layered
DAG structure described in Appendix G.1, with L = 8 layers that each have 4 nodes. Of the 8 layers,
2 are randomly selected to have 2 passable nodes (meaning that they are connected to the next layer),
while the remaining layers have only 1 passable node. Although there are 4 valid paths from source
to target, the policy 7p is deterministic and chooses 1 based on a rule, which is what distinguishes the
two class types described below.

Class G; with probability 7i(1) = 0.9. For an integer j € 7Z, let the function p(j) = (j mod 2)
denote its parity. In layers with 1 passable node, 7y takes the passable node. For each layer | € [L]
with 2 passable nodes (there is guaranteed to be one even and one odd), 7p chooses the node v such
that p(v) = p(1), that is, the node whose parity is equal to the parity of the layer index.

Class G, with probability /:(2) = 0.1. In this class mp takes the opposite rule from the one in Gs:
for layers [ with 2 passable nodes, it chooses the node v such that p(v) = 1 & p(1).

The class of a graph is technically identifiable from the prompt, but the problem is too difficult for
the model to learn in just the finetuning stge. The class of a graph can be computed from the parity of
a hidden subset of their nodes whose cardinality is half the total number of nodes; letting this hidden
subset be V' € V, all graphs in G, have 1 = €, p(u), while the opposite is true for all graphs in
Go.

Dataset generation. Each sample in the dataset D = {(z,y)} is then generated via the following
procedure.

1. First sample an index i ~ fi.

2. Sample G € G; by randomly drawing V' C [m] without replacement, and instantiate the edges
according to the description for each class above.

3. Format the prompt = per Appendix G.1.
4. Draw y ~ mp(- | =) according to description for each class above.

G.2.2 PRE-TRAINING DESCRIPTION

The graphs in the pre-training task are a superset of the graphs in the finetuning task, that is,
Uig| K]g,» = G with K = 3, and the data distribution is a uniform mixture of these 3 classes,

fi(i) = & for each i € [K]. The first two classes G; and G are defined exactly as they are in the
finetuning dataset. In Gs, two layers have 2 passable nodes, while the rest have 1, and 7, samples one
of the 22 valid paths from source to target at random. The dataset is sampled using the same dataset
generation procedure described for the finetuning task above.

G.2.3 TASK-SPECIFIC IMPLEMENTATION DETAILS

The transformer model is first pre-trained on a fixed dataset drawn from the pre-training distribution,
with 8 x 64, 000 prompts in total, using a learning rate of 1le—4 for 200k iterations, which was chosen
based on a grid search over learning rates {5e—>5, le—4, 5e—4}.

The final checkpoint is then finetuned for 50k iterations in an online fashion, where fresh samples are
drawn for each batch (this is equivalent to offline training with a dataset tha has an equivalent number
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of samples). The learning rate is 5e—6, which was chosen based on a grid search over learning rates
{be—6,1le—5}.

G.3 EXPERIMENT DETAILS FOR FIGURE 2

The graph structures used for Figure 2 to expose the dependence on horizon of KL-divergence but
not Cov  leverages the intuition from Remark 3.1. The training data is homogeneous, and a fraction
consists of difficult graph problems that the learner cannot cover with the given finite samples. The
coverage profile Cov will be the same regardless of [, but KL scales linearly with i due to this
unlearnable subset of the data.

G.3.1 TASK DESCRIPTION

For Figure 2, we devise a family of tasks that is defined per H, which we then instantiate with
H € {8,16, 24} for our results. For a fixed H, the task Gy utilizes the layered DAG graph structure
described in Appendix G.1 with H layers of 4 nodes each, so that )) = V¥ 2 when the source and
target nodes are included.

The task is a heterogeneous mixture over 3 classes of graphs described below that we refer to as
Gr1UGr2UGH 3 = Gy. The classes Gy 2 and Gy 3 are significantly harder to learn and the model
will fail to do so with the given number of training samples, even though G ; is learned quickly (and
also provides useful features for learning the other two tasks). The distribution over these 3 classes is
fixed for all H and specified by o € A({1,2,3}).

Class Gy 1 with probability /(1) = 0.94. All H layers have only 1 passable node, so each
G € G 1 has only one valid path from source to target. For prompts corresponding to graphs in this
class, mp deterministically takes the single valid path.

Class Gy » with probability /i(2) = 0.05. Half of the layers (or H/2, selected randomly) have
2 passable nodes while the rest have 1. While there are 2/2 valid paths from source to target, 7
deterministically selects one of them. For layers with 2 passable nodes, one is guaranteed to be even
and the other odd. In layers with more than one passable node, 7 selects one node by following a
difficult, deterministic rule. This rule requires 7p to select the node v whose parity matches the parity
of the layer index, XOR’ed with the parity of each passable node in the entire graph. More specifically,
recall that p(j) denotes the parity of an integer j € [m], and let V* := {v € V : deg™*(v) > 0} C V
denote the set of all passable nodes (or those with positive out-degree). Then in layer [, mp selects the
node v such that p(v) = p(l) & (B ey p(w)).

Class G 3 with probability /i(3) = 0.01. Regardless of H, 4 of the layers are randomly chosen
to have 2 passable nodes, so that there are 24 = 16 valid paths from source to goal Here, however, mp
samples one of the 2% valid paths uniformly at random.

Note that prompts/graphs from each class are distinguishable from each other (or, identifiable) based
on prompt features alone, so a powerful-enough model can acheve perfect performance across all of
them simultaneously. G, , for example, has more edges and thus a longer prompt than Gy, ; similar
statements apply to Gy, . Dataset generation occurs in the same manner as described in Appendix G.2.

G.3.2 TASK-SPECIFIC IMPLEMENTATION DETAILS

Here, we describe experiment-specific implementation details on top of those previously described in
Appendix G.1 (which apply to all figures).

In addition to a grid search over the parameters in Table 1, we perform a search over learning rates
{5e—>5, le—4, 5e—4}, for which the learning rate of le—4 exhibited the best validation performance.
The model is trained for 40k iterations over a fixed dataset of 8 x 64, 000 samples.

The results in Figure 2 are computed from evaluations of training checkpoints on per-class validation

datasets of 1024 prompts from each G, ; these metrics are then averaged according to the probabilities

in & to obtain the final result. In total we ran 16 seeds, and plot their median. The shaded region in
5

Figure 2 displays the region between the 1173 quantile and }—6 quantile.
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Part 11

Proofs

H TECHNICAL TOOLS
H.1 CONCENTRATION INEQUALITIES

Lemma H.1 (Azuma-Hoeffding). Let (Z?);<, be a sequence of real-valued random variables
adapted to a filtration (F;)i<n. If |Z*| < R almost surely, then with probability at least 1 — 6, for
alln' <n,

> Z'—Eia[Z7]| < R-\/8nlog(26 ).
i=1

Lemma H.2 (Freedman’s inequality). Let (Z*);<,, be a real-valued martingale difference sequence
adapted to a filtration (%;)i<n. If | Z'| < R almost surely, then for any € (0,1/R), with probability
at least 1 — 0, for alln’ < n,

7' <nd Eia[(Z)?] +
i=1 i=1

log(6~")
—

The next result is a standard consequence of Lemma H.2 (e.g., Foster et al. (2021)).

Lemma H.3. Let (Z7);<,, be a sequence of random variables adapted to a filtration (:F;);<n. If
0 < Z' < R almost surely, then with probability at least 1 — 0, for alln’ < n,

Z'< =N E;_1[Z°] + 4Rlog(267 1Y), 39
; <3 ; 1127 g(267") (39)
and
> Ei4[Z]<2) 7' +8Rlog(267"). (40)
=1 =1

Lemma H.4. Suppose that u is a distribution over Z, function class F C (Z — R) is given. We
let N(F, € |||l o) be the e-covering number of F under the norm p(f, ') := sup,cz|f(2) — f'(2)|.
Then, under D = {Z*,--- , Z™} drawn from p i.i.d, the following holds with probability at least
1—4:

n

> f(2') < nlogEufexp(f(2))] + inf {log N(F, € ||[loc) + 2Lne}.
i=1 =
Lemma H.5. For distribution P,Q € A(X), function f : X — [—B, B], it holds that
[Ep[f] — Eqlf)|* < 3Varg[f] - DA(P,Q) + 8B Du(P, Q)"

Therefore, for any f : X — R with || f|| < B, it holds that

[Er[f] - EqlfIll < 2y/Eqllf — EqlfIII* - Du(P,Q) + 3BD{(P, Q) (41)

Epllf —Ep[fllI* < 3Eqllf — Eqlf]II> + 8B*Di(P, Q). (42)

and
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Proof of Lemma H.5. We denote P(z) (Q(z)) to be the density function of P (Q). Then

Eplf] - Eolf)? = ( | (@) = BalfD(Ple) - Q(x))dx) 43)
< [ (@) = Bqln)*(VP@) + V@) e [ (VP(a) - VQw)ds
(44)
<4DA(P.Q) - (Varlf) +Er(f —Eqlf))*) (45)
Further, we know
Ep(f —Eqlf])* < 3Eq(f — Eqlf])* + 8B’ D(P.Q). (46)
This gives the desired upper bound. O

Lemma H.6. Suppose that ¢ : Y — Bo(B) with B > 1, and for any 6 € Bo(1), mp € A(Y) is
defined as 7y (y) < exp({P(y),0)). Then for any 0*,6 € Ba(1), it holds that

Eynrmype (3(y) = En,. [8],0 — 6%)% < 15BDx (mo+ || o).

Proof. Denote ¢(y) := ¢(y) — Er,, [¢]. By definition,

@00

S

Dii(mo || m9) = log Eyrry. [exp((6(y),0 — 60%))] > BlogEyr,. {@m(

Note that for v > —4, we have e > 1 + z + 1—10352. Therefore, we have

1 1 _ _
L D (o 70) = 1og(1 R (B).6 - e*>2) > o (34,0 — 672,

— K
B 10B2 15B2

where we use log(1 + z) > 2x forall z € [0, £]. O

I PROOFS FROM SECTION 3

Proof of Proposition 3.2. Consider the settingd = 1, X = {0,1}, Y = {—B, B}, the distribution
1 be given by p(1) = 1 — p(0) = 5, and the feature map ¢ : X x Y* — [—B, B] be given by
(b(oa ) =0, and (b(l, yl:h) = Yn-
Note that under this construction, P,¢},  r, (2 = 0Vt € [T]) > 1 —npu(l) = 1. We let E be the
event {z* = OVt € [T|}. Then, for any 6* € [—1, 1],

Epry. [Dxi(mox | T) | E] = Epenm, [Dr(mo- || 7) | E].
Furthermore, for any 7 € TI,

D (mo+ | ) = H - p(1) - D (mo- (g1 = - [z = 1) [ (g1 = - | 2 = 1)),

and hence,
Dia(m |17) + D1 |17) 2 5 2D (Ber(ij_BeB> || BerG)) >
Therefore, we can lower bound
Epm, [Dr(m1 | )] + Epar_, [De (71 || 7)]
> B(E) - Ep, [Di(m | 7) + Dl | 7) | B 2 5 5
This gives the desired lower bound. O

Note that in the construction above, the variance o2 (defined in Section 4.1) can be bounded by
2 < H e 2B

* ~S n

g
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J PROOFS FROM SECTION 4

J.1 PROOF SKETCH FOR THEOREM 4.1

Fix N > 8 and let ¢ € [0, 1] be a parameter to be set later. Let ITp,q(¢) := {m € IT | Covy () > €}
be the set of 7 € II that fail to achieve coverage €. The basic idea behind the proof of Theorem 4.1
is to interpret the condition Covy (7) > ¢ as an small-ball like anti-concentration condition in the
vein of Mendelson (2014; 2017). That is, for models 7 € IIy,q4(e) where coverage fails, the condition
Covy(m) > e witnesses a one-sided tail bound which implies that the empirical likelihood of 7 is
not too large with high probability, which means that 7 € IIp,q4(e) cannot be a maximum-likelihood
solution.

Let Sy(m) == L|{i €| T;D((;I’ “lf )) > N'72¢}| denote the empirical probability of  fails to cover

mp. Our ﬁrst step is to show via covering and concentration that with high-probability, all 7 € II
satisfy

Sy(m) > %COVN (m) = Ceoarse(IL, N, n), 47)

Here we only pays the covering number at a coarse scale (leading to the coarse-grained term in
Theorem 4.1) because we only need to show that coverage concentrates, not the log-loss itself.

Eq. (47) implies that for all 7 € ITy,q4(e), we can bound

_ _ n oy |
Tn(m) = Ln(m) = =S |log 2 12 1
(m) = Lu(mo) Z{Og yw } *Zf’gmw ve

=1
< —|Sn(m)]((1 = 2¢) log N — C) —I—Zlogm\/c
g—zlogN Covy(m +Zlog " ) v C,

')

where C' > 0 is any fixed constant. Finally, using a variation of a standard one-sided tail bound
for the logarithmic loss (van de Geer, 2000; Zhang, 2006),” we show that with high probability, all
7 € II satisfy

S log LIVAEIRVCP Ceine(IL, ) - 1

2 oy o)

as long as C' > log 4. Combining these results, we conclude that

Zn(T(D) — Zn(ﬂ') + Cfine(l_L n)
nlog N

Covy(m) < + Ceoarse(II, N, n).

It follows that if ¢ > logN “Crine(I1, 1) +Ceoarse (IT, N, 1), then all w € TTpaq(e) have L(m)— L(mp) <
0, and since 7p € II, this means that no such 7 € IIp,q(2) can be the maximum likelihood solution.

J.2 PROOF OF THEOREM 4.1

Theorem 4.1’ (General version of Theorem 4.1). Let N > 8 be given. With probability at least 1 — 6,
any approximate maximum likelihood estimator T with L, (T) > maxXyer Ly () — neapy satisfies

: —1
log Noo (IT; clog N) + log(671) n 1 <inf{log./\/oo(ﬂ,s) +5} +€apx> ’

C
oV (@) 5 n log N \e>0 n

(43)

where ¢ > 0 is an absolute constant.

"That the bound is one-sided is critical, as this allows us to avoid paying for the range of the density ratios
under consideration. For details, see Proposition J.1.
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In the following, for a fixed threshold C' > 4, we define the clipped log loss as

Zmax{logﬂ_ | )) logC’} (49)

D

ZmaX{O log (( 2 )) 1ogc} (50)

Note that L, () = LE(m) — L (), and hence for approximate maximum likelihood estimator 7

with Zn(%) > maxqem Ly (m) — nespx, we have

Lo (7) < LE(T) + neapx-

In the following, we argue that L (7) upper bound the coverage Covy () for any 7 € II and
M > C, and Lg(ﬂ') can be bounded by the uniform convergence argument.

Proposition J.1. Suppose that C' > 4. Then, with probability at least 1 — 6, it holds that for any
7 ell

Li(m) <2 igg{log/\/'oo(l'[7 €) + ne}.

log(N/C))
2

Proposition J.2. Fix any « € (0, . Then, with probability at least 1 — 0, it holds that

2

) = iogye) - 2a

- Lo () + 21og(Noo (IL, @) /6).

The proof of Theorem 4.1 and Theorem 4.1’ is hence completed by combining the propositions above
and setting o = clog N. O

Proof of Proposition J.1. This is a direct corollary of Lemma H.4. For each 7 € II, we let
frlzyy) = max{log ::D(y‘w) flogC}, and then N(F, ¢ |-|lc) < Nuo(II,€) for any € > 0.

(ylz)’
Applying Lemma H.4 with Lemma J.1 gives the desired upper bound. O

Lemma J.1. As long as C > 4, it holds that

1 ™y | z) })
E(z y)~m €xp| = maxs log ———=, —log C <1. 51
i G e oD
Proof of Lemma J.1. We denote E := {(m,y) : ;(élﬁ)) > %} Then it holds that
1 m(y | ) })
E(z ) om exp | = max{ log 2912 100 0
() p<2 { gWD(yW) s

m(y |z

= lyle) T L T
- E(ﬂ:,l/)"’ﬂ'ol ﬂ_D(y | l’)ﬂ{( 7y) € E} + \/5]1{( ’y) ¢ E}‘|

=En| X VAW D00 [0)| + =l

y:(z,y)EE

By Cauchy inequality, we have

S Vi Tomla< [ Y wwlo- Y mlyle) < ValE).

y:(z,y)EE y:(z,y)EE y:(z,y)EE
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Therefore, as long as C' > 4, it holds that

1
E (2 )~mo exp<2 maX{log(y'|) —logC}) \h+ (1-m(E) <1,

7TD(

)’
where weuse 1 —p = (1 + /p)(1 — /p) < 2(1 — /p) forany p € [0, 1]. O

Proof of Proposition J.2. Fix any N > 1, « > 0. By definition, for any 7 € 1I,

ZmaX{O log (( 2 ))—lgC'}

> (logN—logC)Hi € [n]: logW

=:n(log N —logC) -C/O\VM(WD | 7),

> logNH

where we denote (cf. Lemma J.2)

Covny (|| 7) = ;Hte n] W >NH.

Then, by Lemma J.2, it holds that with probability at least 1 — 9, for any 7 € II,
— 1 -
Covy (mp || m) > §Cov€SQN(7rD | ) — log(Noo (IL, @) /6).

Rescaling N < e~2®N and reorganizing complete the proof. [

Lemma J.2. For any policy &, 7', we consider the quantities

Covw (' || 7) = ;Ht € W > N} . covi(e || m) :PFD(W > M).

Fix a > 0 and policy 7. With probability at least 1 — 6, for any 7 € 11, it holds that

Covn (T || 7) = Scovm. (7| m) — log(Noo (I, @) /5).

2
Similarly, with probability at least 1 — ¢, for any w € 11, it holds that

Covn (|| 7) < 2 CovT™,, (7 || ) + log(Neo (IT, @) /3).
Proof of Lemma J.2. We only prove the first inequality. Let II" C II be an a-covering of II with
[IT'| = N (II, @). Then, by Freedman inequality (Lemma H.3) and union bound, it holds that with
probability at least 1 — 4, for any 7’ € IT/,
— 1
Covean (|| ') > §Cov7;'1N(ﬁ | ) — log(|IT'| /6).

Then, note that for any 7 € II, there exists 7’ € I’ such that |log 7(y | ) —log 7'(y | z)| < « for

Va, y, we know
e SE1L o ot 22023 o)
>

and hence Coveey (7 || 7) < @N(ﬁ || 7). Similarly, Covi2 (7 || 7)
under the above event, it holds that

Cov3, 5 (7 || 7). Hence,

—_— —_ 1
Covn (T [|m) = Covean (T || ') = 5CoVE y (T || ') — log(|11']/6)
1

> SCoVE. (|| ) — log(IT|/3)

Since 7 € 1l is arbitrary, the proof is hence completed. O
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J.3 PROOF OF THEOREM F.1

By definition and concavity of § — 7(y | ), we know 6* is the optimal solution of the following
convex problem

0% = argmin — E(, ) m, [log mo(y | )].
9€o

Hence, the optimality of 8* implies
(0 — 0", —Er[Viogm-(y | )]) >0, Vo € O.

Consider the function F'(0) = E,, [;;i%ﬁg))} — 1, which is also convex by Assumption F.1. Further,
for any 0 € O,
Vre-(y | =)

0 — 6%, —VF(6")) = <o —9 —EWD{ o T ]> - <e — 0, —E[Viog e (y | x)]> > 0.

Therefore, F attains its maximum over © at 6*, i.e., F'(6) < F(9*) for any 6 € ©.

Similarly, under Assumption F.1, it is clear that  — Y " logmy(y’ | ') is concave, and hence
T = w5, where 0 € O satisfies

<e —0,) " ~Viegms(y' | xi)> >0, VOeo.

i=1
mo(y' |2') 1}
m(y' | %)
By definition, Fis concave, and for any 6 € O,

<9712)\,7V13(§)> — <9§’iw> = <9 —g,ifVIngﬂyi x)> > 0.

= mly @)

In particular, we consider the function

5

i=1

~

Therefore, F attains its maximum over © at 6, and in particular, 13(9*) < F( ) = 0. This implies
~[mo (y' | 27) mo-(y' | 2') } s
%flog%fl < logﬂ(y
;{ Ty | 27) m(y' | 7) ;

In the following, we fix any N > 2. Note thatx —logz—1 > O forany x > 0,and x — x—logz —1
is increasing for > 1. Therefore, (52) implies that

(N —logN —1)-n-Covy(mps | 7) < Ln(7) — L (mg+ ). (53)
Then, by Lemma J.2, we have with probability at least 1 — ¢, for all = € I,

Covyy (mps || ™) > ! “Pr, (W > eQaN> - IOg(NOO(H7a)/5), v e 1L

— Zlog o (y' | V). (52)
i=1

2 m(y | x) n
Further, by Lemma H.4, the following holds with probability at least 1 — §: For any 6 € O,
> UL y | z')
L, (m (o) log »
(7o) — 4 Z 71'9* Tor (v | )
mo(y | @)
<nlogE, oy [2) + 1nf{log( (Il €)/8) + 2ne}
ylx

1nf{log( (I, €)/0) + 2ne},

where we use E,, [T:;"*((yylﬁ))} = F(0) +1 <1 forany ¢ € ©. By union bound, we have shown that

with probability at least 1 — 24,
pr (0L 5 o) < BN/, 1y flogNolld)

w(y |x) — n N 20 n
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Note that
COVe2a NN (57\) =P, (W > e2o¢NN/)
m(y | z)
g IP)ﬂ-D (W@*(y | x) 2 eQ(XN) +]P)7‘—D< ﬂ—D(y | :E) 2 N/>.
m(y | ) To+ (y | )

Therefore, the proof is completed by rescaling N <~ Ne 2%/N’ and combining the inequalities
above.

J.4 PROOFS FOR SUPPORTING RESULTS

Proof of Proposition F.1 (a). Assume that B > 1log(4n) and n > d. Consider X =1, Y = [d]
and the feature map be given by ¢(y) = Be,, fory € ), where (e1, - - - , eq) is the coordinate basis
of R. For the simplicity of our argument, we consider © = {# € R : ||0||Oo < 1}, and we set

] d
0* — Og Z e

j=2
Then it holds that
4dn 1
mO = W W

Therefore, under D ~ 7, it holds that

" . n(d—1) d—1 n
Elzﬂ{y 7&1}] Sd-itan - 4 “72

t=1

In particular, with probability at least 0.5, it holds that ZtT:1 Kyt #1} < % i.e., the set
Yp = Y\D has cardinality at least 4.

In the following, we condition on this event and analyze the MLE 9. By the definition of MLE, for
any y € Yp, it must hold that 9y = 1 and we also know 91 = 1. This implies ﬂg(y) < 6213 for

any y € Vp. Therefore, for N < m, we have
d d
C > - >
ovn(mg) 2 mYp) 2 55y < Ton
This is the desired lower bound. O
Proof of Proposition F.1 (b). Let e = co\ﬁ and p = = for a sufficently small absolute

constant ¢ > 0. Let X = {0,1,--- ,d}, Y = {0,1}, and the dlstrlbutlon w be given by p(0) =
p(l) = = p(d) = 2.

Consider (- | i) = Ber(1/2) fori € [d] and mp(1]|0) = 1. Forany 6 € © := {+1, —1}%, we define
Tp as
1 1+ €b; .
me(1]0) = N mo(-|2) = Ber(?), Vi € [d].
Then, we can calculate

Ly(mg) — Ly,
max Ly, (7o) ()

— N(0)log N + % S [N(z', +) = N(i, -)| log 1 -

€ 4 N(@i)log(1 — )
i€[d] €

v

2 € . .
— N(0)log N —ne® + 5 %}|N(z,0) — N(i,1)],
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where we denote N (z,y) = #{t € [n] : (a',y") = (z,y)}, N(z) = N(z,0) + N(z,1). In the
following, we denote A; = N(i,1) — N(3,0). Note that A; is a sum of n i.i.d {—1,0, 1}-valued
random variables with mean zero and variance —*, and hence P, (|A | > c\f ) > 0.99 for an
absolute constant ¢ > 0. Then, it is clear that

d d n 1
]P)‘ITD Z|A7’| S 5 - C E S 1
=1

By Markov inequality, we also know P (N (0) > 4np) < 1. Combining the inequalities above, we
know with probability at least 0.5, we have

max L(mg) — L(mp) > —4nplog N — ne® +
€

> 0.

cevnd
4

This implies that the MLE 7 € {7y }¢co, and hence Covy (7) > p. This is the desired lower
bound. O

K PROOFS FROM SECTION 5

Organization. We begin with the proof of Proposition 5.1 (the upper bound), which is relatively
simple and serves as motivation. We then present the proofs of Theorem 4.2 and Theorem 5.1, which
are more involved. Finally, the proofs of the lower bounds are given in the remaining subsections.

Notation. For notational simplicity, we denote
Go(2,y1:n-1) = Eyp omo (losgron 1) [0(T, y1:0)],
and
O* (2, y1:0) = d(x,y1:n) — Por (T, Yr:n—1),
Va’rTFD (Jf, yl:h—l) = Eyh~7r9(-|m,y1;h_1) ||¢*(1'7 yl:h)”Q'
Then, by definition,

H
Vlog mo(y1.m | 2) Z¢ z,y1:0) + Y (Gor (2, y1:0-1) — Po(, Yrn1)).- (54)
h=1

h=1

We also write

eo(x,y1:n—1) = Dxr(mo(- | @, y1:n-1) || 7o (- | 2, y1:n—1))-
By concavity, we have

o(z,y1.n-1) < (Po(T,y1.n—1) — Do+ (T, y1:1—1),0 — 0*). (55
By Lemma H.5, it holds that

||<59*($7y1:h71) - 59(%%:#1)” < 2\/Var7rg($, Y1:h—1) - €9(x, Y1:n—1) + 3Beg(x, yl:hfl)(~56)

For notational simplicity, for any f : X x A* — R and dataset D = {(2",y}.)}, cln)» W Write

n

Eolf]i= - > 7' vin)

i=1
K.1 PROOF OF PROPOSITION 5.1 (UPPER BOUND)
Because the projection operator Projg is an contraction, we have
t * 12 t+1 * |2
16 — 0" — [0 — 07|
> |6 = 0% — 16" + nV log mae (y' | 2*) — 0*||”
t t t * t £y (]2
= 21(~Vlogmg: (y' | 2'),0° — ") — 21*|[Vlog mo: (y" | ).
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Telescoping and taking expectation, we have

T
. 1
E|Y (~Vliegm(y | z),0" — 0 >1 < %HﬂE

t=1

T
S EyemlViogme(y [ 2))7]. (57
t=1

Note that (z*,y*) | 6* ~ mp, and hence
E[Vilogmoe(y" | 2*) | 0°] = E(4,y)nm [V1og T (y | 2)] = Vo Drr(mo || 79) o=
Further, by convexity, it holds that for any 6 € O,
G(0) :=En,[(Viogma(y | 2),0 — 6%)] = (VoD (70 || m9), 0 — 6") = D (70 || m9).-

Therefore, we have

T
E|> " Dyi(m ||779t)] <E
t=1

On the other hand, using the fact that log 7y (y | ) is concave and (H B?)-smooth (i.e., —H B*I <
V2logmy(y | x) < 0),

IV logmy(y | ) — Vlog mes (y | ac)H2 < HB?. (0 — 0", Viogmg«(y | z) — Vlogmg(y | x))

T

> G

t=1

1
< — E
_2n+n

T
Y EayyomlVIogma (y | )|
t=1

Taking expectation of (x,y) ~ 7p and using the fact that E [V log mg« (y | )] = 0, we have
E., ||VIogmo(y | ) — Viogme-(y | x)||> < HB?- G(6), vl € ©.
Further, note that E, ||V log 7g- (y | #)||> = o2, it holds that
E,,||Viogme-(y | x)||* < 202 +2HB?-G(#), VOcO. (58)

Combining the inequalities above, we can conclude that

+ 2nTo2.

300

ZG 1 <—+217HB2

Therefore, as long as n < it holds

4HBQ’

T
1
—+4nTo? >E|Y G| >E
bt = [y 6o

t=1

T
ZDKL(WD || W@t)‘| .

t=1
This is the desired upper bound. O

K.2 PROOF OF THEOREM 5.1

We denote M := log N, and we analyze the normalized SGD iterates assuming A > 3BM and
2 < 1 and
M >3

Denote
90(D)
A+ 190 (D)l

Then the normalized SGD update can be rewritten as 6*™' = Projg (6 + 1ge:(D)). By the standard
SGD proof, we know that

o 6 — 672 | &
> (=gor(D), 0" —0") < — 1> _lge (D).

t=1 t=1

gg (D) =

Taking expectation on both sides, we have

e~ 9*H2

T
E|Y Epr(-g(0';D),0° - 6%) ZEDWDIIQ (0 D)l -
t=1
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Note that ||gs(D)|| < min{l, w}. In the following, we analyze ||gy(D)| under D =

{(z*, y. H)}Z.E[K] ~ mp. Recall that for notational simplicity, for any f : X x A* — R, we
write

- I,
Eplf] := ?Zf(l‘z,yi:H),
i=1

which is random variable. We denote

H
Z ¢(7' X, Y1:h— 1 &0* (xaylzhl))‘|7
and .

D

H " -
ZV T, Y1k ] = lz T, Y1:n) — Por (xyylzh—l))]-

h=1
Then, by definition, —gy (D) = go (D) — 2(D).
Bounds on gy (D). By (55), we know

(70(D),0 —0%) =E

H
Z bo(, y1:n—1) — P+ (T, y1:n—1),0 — 9*>]

Mu: i

> Ep

(xv yl:h—l)‘| = € (D)

h=1

By (56), we also have

H
150 (D) < En [Z||¢9(Iayl:h—l) - ¢o+ (2, ylzh—1)||‘|

h=1

H
<Ep [Z 2y/Vars, (€, y1:n—1) - €0(, y1.n—1) + 3Beo(x, yl:hl)‘|
h=1

<2v/0?%(D) - € (D) + 3Bey(D

where we denote

UQ(D) = IED

H
Z Varﬂ'o (1'7 yl:hl)‘| .

h=1

Bounds on 2(D). Note that K - 2(D) = K - Ep [Zthl ¢*(x,y1;h)} =K SH Gt y)
is a sum of the martingale difference sequence {¢*(z*, yi.;,)}; €[K],he[H]" Therefore, we can calculate

Eny|2(D)|* = — En, lZIIQ5 (@, yn) | 1

Furthermore, by Freedman’s inequality (Lemma H.2), for any fixed vector v, parameter «y € (0, %)
and § € (0, 1), it holds that

Pr, (ZZ (@', yi0),0) = YE[(&* (@', yi0), 0)? | 2,y 1)) = v‘llog(1/5)> <.

i=1 h=1
Note that for v = § — *, by Lemma H.6, we have

E[(¢* (=", y1.),v)* | @' Yiin—1]
= EthWD('|mivyi:h,—1)<¢*($iayi:h—lﬂyh)vv>2
< 15BDkL (WD(' |2 yin—1) [ ma (- | xi»yi:hq)) = 15Beg(2", y1.p—1)-
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Therefore, setting v = %%, we have shown that for any § € (0, 1), it holds that

H
> 69(ﬂc,y1:h_1)] + W) <.

h=1

IPDT"D <<Z(D)7 0 — 9*> Z %ED

Recall that we denote €y (D) := I@D {Zthl eo(z, ylzh,l)}. Therefore, taking integration gives

E,, <(Z(D),9 —0*) — ;EQ(D)) < % = ag.

+

Upper bounding ||gy (D)|. Using | (D)]| gmm{l 1ge (D >“} we know

llge (D)1

150 (D)II* < e (D) = M} +I{ep(D) < M} - ==

Therefore, for any fixed 6, it holds that
ETI’D ||§9 (D) H2

< Pr,(c9(D) 2 M) + 5 En [I{eo (D) < M} - |30(D)]] + 5 Eny12(D)]

A
1 3B 2 o
< . . 4 p) - *
max{M - } E., min{M, ey (D)} + 3 Er, /02(D) - min{M, €4 (D) Wi
1 O - 1
< — 1 il __
< 17 Em min{M, eg(D)} + \ {2\/1% min{M, eg(D)} + \/E}

where the last inequality follows from A > 3BM, E[0?(D)] = o2, and Cauchy’s inequality.

Lower bounding (—g, (D ) 6 — 6*). By the inequalities above, we know

Ag = Ery(~5 ( ),0 - 0%)
_ { ),0 — 9*)—((7)),9—0*)]
/\+||99( )l
),0 — 0%)
—E“{ A+\|ge D) }
1 1 L1
> 35 oo } 3 [(W’W“) =30®).
]. [677¢
ZzE“D{H ||+||ge< >||]‘A'
Note that
A+ D) + 170 (D)
<A+ [|2(D)|| + 24/02(D) - € (D) + 3Beg (D
max{M,ep(D)} o2(D)

where we use min{M, 2} max{M,x} = Mz, and A > 3BM. Combining these two inequalities,

we have
20471( GO(D)
200+ =3 EEWD[A+||Z(D>||+99<D>|J
min{ M, e (D)} ]
— 22+ [12(D)] + 2M /0% (D) /min{M, ¢ (D)}

(Er, min{M, e5(D)})*
Er, [min{M, €5 (D)}(2A + [|2(D)|)] + 2M \/Ex, 0%(D) - Ex, min{M, ¢y (D)}
. (E,, min{M, e5(D)})?
T 2\E,, min{M, e (D)} + M\/02/K + 2M /02 E,, min{M, eg (D)}’

Y
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where the last two inequalities follow from Cauchy’s inequality.

Putting everything together. Denote Ay := E,, min{M, ¢y (D)}. Note that by Proposition D.10,
we have (recall M := log N)

H
1
Covy(mg) < i En, mln{ Zee T, Y1he 1)}
1 - [& 1
< MEDNﬂD min{M, Ep [Z 66($7y1:h1)1 } = MAH'

h=1
Then, we have shown that for any fixed parameter 6,

]EWD”ge (D)” 7A + — |:2\/7+ :|
and
A ax

A9 = E‘”D<7§9 (D)7 0 — 6*> > - .
20Ny + Mo, [ﬁ + \/Aa} A

DN | =

Finally, note that implies that

T
1
E ZAW] < o +nE
t=1

T
ZEDWHE(@";D)HQ]

1 77 T T
< — 4+ = Age .
TR Z ’ [z: TR
Therefore, we define A = % [ =1 Agt:| , and then by Cauchy inequality,
1 no 1 1 [&
— 4+ —A “12VA+ —| > =E Age
oy T M +A{ +\ﬁK}—T ;9]
T
1 AZ,
2 77 B2 |
t=1 2)\A9t + MO'* |:\/1? + Agti|
1 Az aK

=5 1 )
2/\A+MU*{\/F+\/Z}

Re-organizing, we know as long as %’ < %, it holds that
Mo, 2/3 A 77M02 Mo, 2/3
é < " 2 *
<1n> +Zn+(ng)+ A + AK +

we have

B
=.

In particular, we choose A\ = &~ and require n < 515,

Mo \%? M B
A< * 24—
(Tn> +T2+(170)+K

1/4
Choosing n) = mln{ Z25 ( AJT) }, we have

which implies

T
1 1 1 o2 B2 B
—E E C )| < =E — Age z — 4+ —
2 OO = thlM f’]— T™ T KM
This is the desired upper bound. O
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Remark K.1 (Comparison to standard convex optimization analyses). On a technical level, we find
the proof of Theorem 5.1 to be interesting because it does not pass through KL divergence as an
intermediate quantity. More broadly, we do not know how to derive the result as an application of
standard analysis techniques in optimization (e.g., via a gradient dominance or PL-type condition),
but it would be interesting to see if there is a connection.®

K.3 PROOF OF THEOREM 4.2

We prove the following slightly stronger result. Theorem 4.2 follows immediately by combining
Theorem K.1 and Proposition D.10.

Theorem K.1. Suppose that Assumption 2.2 holds. Then the MLE T achieves

R 2log N B2?log N
ED[Dseq,NmnwﬂsW T

for any parameter N > 1, where the divergence Dseq n (- || -) is defined in Proposition D.10.

The following lemma follows from the optmality of the MLE 7 = 5 ie.,

§ = argmax Ep [log mo(y1.1 | x)].
0cO

Lemma K.1. Denote

E1 = ED

H
Z (, y1:n—1 ] =Ep lz Dy (mo(- | 2, y1:m—1) | 7 | 2, y1:n—1)) | - (59

h=1

Then it holds that E[E;] < %
In the following, we prove concentration bounds on E;. For simplicity, we denote A = log N.

Lemma K.2. Fixany A € (0, o). 0 € (0,1), and let J = exp(zz + 2) log(1/6). Let ©' :=
{01,--+,05}, where 01,--- ,0; ~ N(0,A2I) are sampled i.i.d. Then the following holds with
probability at least 1 — § over the randomness of ©' and D:

(1) For any j € [J], it holds that

n
h=1 h=1

H H
= 8Alog(4.J/6
Er min{A, ZEej (m,yl;hl)} < 2Ep min{A, Zegj (x’y1:h1>} + L/)

(2) There exists j € [J] such that

H H
EﬂDmm{ Z T, Y1h—1 }<2EWDm1n{ (T, y1.h— 1)}+100A2 o2, (60)
h=1 h=1

and

H o
EDmiH{A, Gej(xvyl:h—ﬂ} SQEDmiH{A,ZE T, Y1:h—1 }

h=1 h=1

= (61)
> Varg, (@, y1:n— 1)1
h=1

1+ 100A2Ep

8We further note that the inherent variance o2 corresponds to the gradient variance at the true parameter 6*,
and hence is tighter than typical analyses that depend on global notions of variance.
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Now, we condition on the success event £ of Lemma K.2, and let j € [J] be an index such that (60)
and (61) hold. Then, we can upper bound (recall that A = log V)

H
Dyeq,n (7TD ||770) = ]Em)mm{A,Ze (, y1.h— 1)}
h=1

<2E,, min{A, €o, (z, y1;h—1)} + 100A%02

1

€0, (xaylzh—l)} +

$y1h1}

H
16Alog(4J/o
ZVarWD T, Y1he 1)1 + G#U/) +100A%02.

+100A%02

Mmﬁmm

16 Alog(4.J/0)
n

-
=

< 4@9 min{A,

Mm

< S}ED min{

+ 400A%Ep

where the first inequality uses (60), the second inequality uses Lemma K.2 (1), and the third inequality
uses (61). Therefore, we denote o%(D) := I@D [Zthl Var,, (z, ylzh,l)}, and we have shown that

for any 6 € (0,1), any A(0, 1555 it holds that

Pprm, (Dseq,N (mo | m5) < C<E1 + A%02%(D) + A%02 + ;;1(22 + log(1/5)>>) <6,

where C' > 0 is an absolute constant.

By the arbitrariness of ¢ € (0, 1), taking expectation gives

E [Dseq,n (0 || 75)] < C’<IE[E1] + A?E[o*(D)] + A2 + = A <A12 + 1>>
< 2C<\/f + A%% 4+ ’;)

1/4
Choosing A = mln{ 10%) 5 (U n) } completes the proof. O

K.3.1 PROOFS OF THE SUPPORTING LEMMAS

Proof of Lemma K.1. Recall that T = 75, where 0= arg maXgceo Z(z,yer)eD log mg(y1.1 | x).
Then by the concavity, we know

(Bollogmo(yrin |2),0-8) <0,  Wco

where we recall that I@D is the empirical distribution (z, y1.5) ~ Unif(D). Using the expressing (54)
and 0* € ©, we know

H
Ep

<(¢>(:v, yi:n) — O5(x, y1:n-1)), 0" — 5>] <0.

h=1
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Therefore, combining the inequality above with Eq. (56), we have

H rH
Ep [Z €§(T/;y1:h1)1 =Ep ZDKL(']TD(' |z, y1.0-1) || 7(- | Sﬂ»y1:h1))]

h=1 Lh=
< IED Po+ (x, y1:n—1) — Og(@, y1:n—1), 0" — §>]
Lh=1
<Ep < o+ (T, Y1:n-1) — (2, Y1:1), 0" — §>]
Lh=1
[H
Ep Z¢*($,y1:h)] H =: E,
h=1

where we recall that ¢*(z,y1.n) = ¢(2,y1:n) — Po+ (@, y1.n—1). By definition, it holds that
Er[¢* (2, y1:0) | ©,y1:n—1] = 0, and hence
2

H
E(E})? = E|Ep [Z ¢*(x7y1:h>1
h=1
H 2 H 2
=~ En Y ¢ (@.910)| = En, Z|¢*<x,y1;h>||2] =%
h=1 h=1
This gives the desired upper bound. O

Proof of Lemma K.2. By Freedman inequality (Lemma H.3) and union bound, it is clear that (1)
holds with probability at least 1 — 5. In the following, we prove (2).

Define the following weight functlon a=oa5: X x A = [0,1]:

L ngh—l 6§(x7y1:j) < A,

aa(e 1) = 6 > j<n1 (T Y1) = A,
A_Zj<h—1 e5(z,y1:5)
Eé(m’ylzhfﬂ )

Then, by Lemma K.4, it holds that for any 6 € ©,
H
]Em)min{ 269 T, Y1:h-1 } < Q]Em)mln{A,Zﬁe T, Y1:h— 1)}
h=1 h=1

H
Z a(z,y1:n-1) ( (Iayl:h—1)769($7y1:h—1))]7

h=1

otherwise.

+2E,,

and

H H
Epmln{A,Zeg Ty Y1 he 1)} < QEDmln{A,Ze TyY1:h—1 }
h=1 h=1

H
Z (T, Y1:n-1) (§($7y1:h1)769($7y1:h1))]7

Therefore, it remains to control the error Zh:l a(z, ylzh,l)F(e(;(x, Y1:h—1), €g(x, ylzh,l)) under

both E,,[-] and Ep[-]. We prove the following lemma, which leverages the structure of Gaussian
distribution.

Lemma K.3. Forany K > 1, A € (0, gg). 0 € B2(1), distributions p1,- - , g over Z :=
X x A*, and weight function o : Z — [0, 1], zt holds that

. 1
—IOgPQ/NN(()yAz)(V’L € [K],E.up, a(z)F(ea(2), €00 (2)) < 22K A? E.~,, Vary (2 )) < e + 2.
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In the following, we apply Lemma K.3 with K = 2, parameter § = 0, weight function «, and the
distributions p1, uo defined as follows:

* Let p; be the distribution of ' = (2, y1.,—1) under & ~ p, y1.g ~ mp(- | ) and h ~ Unif ([H]).
* Let po be the distribution of ' = (z*, 4}, ;) under ¢t ~ Unif([n]) and h ~ Unif ([H]).
By definition, it holds that

H
B,y a(2)F(eq(2), €00 (2)) = %EFD lz Oé(xay1:h71)F(€§($»y1:h71), eo(x, y1:h1))1 )

h=1
1 = o2
EZNltl Varﬂ—D(Z) = E EWD };Varm (IE, yl:h,—l)] = ﬁ*’
1. [H
E.mps a(2)F(eg(2), €0 (2)) = EED Z oz, y1.n—1)F (e5(@, y1:n—-1), €o (z, ylzhl))l :
h=1
1. [
EZNHz Vaer (Z) = H]ED Z VarT(D (JZ', yl:h—l)] .
h=1

Then, we consider the following set
@g = {Vi € {1,2},E.,, a(2)F(es(2), €0 (2)) < 100A%E, ., Vary, (2)}.
By Lemma K.3, it holds that

1
45 = Pyruno,021) (0" € OF) > exp <_A2 - 2)

Therefore, we have
P(¥j € [N],0; ¢ ©F |0) =Po, . 0, ~n0,02n) (Vi € [N],0; & ©F)

< (1-gp)" <exp(—Ngz) < 3

and hence P(Hj € [N],0; € 9}) > 1 — 2. The proof of (2) is hence completed. O

Proof of Lemma K.3. By definition, we have my/ (y | 2) o, mo(y | 2) - exp({§' — 0, ¢(z,y))), ie

logmg: (y | 2) —logmg(y | 2) = (0" — 0,6(2,y)) —1ogEyry(.|2) exp((0" — 0, 6(2,9))).
Therefore,

€9(2) — €0 (2) = Diw(mo(- | 2) ||7T9( | 2)) = Dw(mo(- | 2) I mer (- | 2))
= Eny(12)(0' — 10(2,1)) —108Eyry()2) exp((0' — 0, 6(2,1)))
= <9/ - 9 ¢)9*( ) (Z)> 10gEy~ﬂ'e( |2) eXp(<0 -0 ¢(Z y) ¢ (Z)>),
where we recall that ¢g(2) = Eyr, () [6(2,y)].
In the following, we denote ¢g(2,y) := ¢(z,y) — dg(2), and
E(2) = 108 Byory(12) exp((0 — 0, ¢0(2,9))),
Ey(2) = (0" = 0,09+ (2) — dp(2)).
We first bound Ej,(z). By definition, we have Ej,(z) = Dk (mo(- | 2) || 7o/ (- | 2)) > 0. Further,
using Jensen’s inequality, for any z € Z, we have

Eono,02n) [Egr (2)] < 10gBgronro,021) By, (1) lexp((0" — 6, ¢9(2,9)))]
1
108 E ey exp(A2||¢e<z,y>||2)

< A2y, (1)1 00(z, 917,
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where the last inequality follows from et <1+ 2tfort e [0, 1]. Further, using Lemma H.5, we have

Eyro (1) 1602 )II* = Bymmy(1[16(2, ) = do(2)II”
< BBy 1) |6(2:y) — B+ ()| + 4B> Dy (mo(- | 2) || ma(- | 2))
= 3Vary,, (2) + 4B%¢y(2).

Next, we bound |E,, (z)|. Under ¢’ ~ N (6, A%I), it is clear that (6 — 0, gp+(2) — dg(2)) ~
N (0, A2%||gg+(2) — ¢o(2)]|?) for any fixed 2. Therefore, it holds that

Egno,021) | Eg (2)] = \/zA lgox (2) — da(2)]
A- (2\/Varm)(z) ~€p(2) + 3369(2’))

<(— 2 :
< (8K +3BA) o(2) + 8K A*Var,, (2)

where the second line uses (56).

Combining the inequalities above, we know that for ¢ € [K], it holds that
Eo (0,021 [Bamp, [(2) B (2)]] < A% By, [3Vars, (z) + 4B%a(z)e 0(2)],

Eorno,021) [z [a(z)‘E;(z)m <E..p. [SKAQVarm(z) + <8K + 3BA) (z )69(2):|,

and hence by Markov’s inequality, it holds that p := Py ar(g,a21) (0" € ©7) > 5, where we denote

0" = Uie[K]@iv and

1
2

0, = {9' ERY:E,p, a(2)]en(2) — o (2)] > Eomps {(6[( +16K?)A*Var,, (2) + 104(2)69(2):| }

2
Note that Dy (N (0, A2T) || A°(0, A21)) = L < we
can bound ¢ := Py pr(0,a21)(0' € ©7) as
1
sxz 2 DL (N8, A71) | N (0, A%1) > Dy (Ber(p) | Ber(q))
1
=plog=+ (1 —p)log 2 5log(1/q) —log2,

impling that — log g < é + 2. This is the desired result. O
Lemma K.4. Suppose that ay,--- ,ap,b1, -+ ,bg > 0. Let

1, ZjSh aj S A,

ap =140, Dljen i > A
%ﬁh%, otherwise.

Then clearly oy, € [0,1] Yh € [H), and it holds that Zthl apap = min{A, Zthl ah}, and

H H
mm{A Zah} < me{ Z }—FQZahF(ah,bh),

h=1

H ; H
min{A,th} < Qmm{ Z } + ZahF(ah,bh),

h=1 h=1

where we recall that F(a,b) = |a — b] — 3a.
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Proof of Lemma K.4. Fix the sequence ay,--- ,az.
We first prove 31, apan = mim{A7 S ah}.
Case 1: Zthl ap < A. In this case, ap, = 1Vh € [H], and the equation holds trivially.

Case 2: Zthl ap > A. In this case, we let £ € [H] be the maximal index such that a;; > 0. Then,

by definition, >~ ._,a; < A and qu a; > A, and oy = m Hence,

ag

H 14
E apap = E apap = E a; + ogay = A.
h=1 h=1

j<t

j<t

We note that from the proof above, we also know that for any sequence (cy, -« ,cy) such that
¢p, > ay, for h € [H], we have rnin{A7 2}1;1:1 ch} < ZhH:1 OnLCh.

Next, we prove the inequalities. We note that

H H L H
ZahF(ahabh) = Zoéh|ah —bn| — 5 Zaham
h=1 h=1 h=1

or equivalently,

H H 1 H
Zah\ah —bp| = };ahF(ahabh) t3 miﬂ{Ahz:lah}-

h=1
Therefore,

H H H H
min{A, Zah} = Zahah < min{A, Z bh} + Zah|ah — by

h=1 h=1 h=1 h=1

H H 1 H
min{A, th} + ZahF(ah,bh) + 3 min{A, Zah}.

h=1 h=1 h=1

Re-organizing yields the first inequality. Similarly, we have

H H H
min{A,th} < min{A,Z(ah + |an — bh)} < Zah(ah + |an — brl)
h=1

h=1 h=1

3 H H
= 5 min{A,;ah} + ;ahF(ah7bh).

The proof is hence completed. O

K.4 PROOF OF PROPOSITION 5.1 (LOWER BOUND)

In the following, we construct ¥ = RU{—,+}, Y = {—1,0,1} and © = By(1) with d = 2. The
feature map ¢ satisfies ¢(x, y1.1) = ¢(x,yn), i.e., y1.0 ~ 7o (- | ) are i.i.d. We fix B > cglog H
for a sufficiently large constant cp > 0.

Casel: n> 2=, Wedefinej:=n- HB and o = 2(77’7_1) < 5. Let

vo = [1;0], v = [os V1 —a?], vog = [a; —v1—a?].

For yy., € A", we define (1, y1.1) = Bwv,, , and we consider the problem instance with u supported
onz =7 (i.e., u(n) = 1) and 0* = vy.
In the following, we omit the dependence on x = 7. Then, under this construction, we have

exp(B(0, vy,))
exp(B(0, v,

mo(yn | y1:n) = 5 W 7o (Yn)-

y'ey
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We study the SGD update starting from 6° = v;. By definition,

H

Viog i) = 3 (6m) — £ o))

h=1
In the following, we denote F(y1.ir) := 4 Y1, ¥y, and

exp(B(0, vy
F(0) := y59[¢(y)] = ?:yfyyyexprz(Bé,Uy’;))

Then, the SGD update can be written as
9 = Projo (0 + (P~ F0))-

We make the following claims.

Claim 1. For y € Y and |6 — v,|| < %, it holds that 1 — my(y) < 2¢~B/4 =: ¢, and hence
IF () — v, < 261.

Claim 2. Suppose that ¢; < min{ e 5H32 } Then it holds that Var,, [¢(y1)] < and o, < 1,
and Covy (mp || mg) > 1— 5= forlog N < 2B and € © such that min{[|§ — v1 |, ||0 v} < £

Further, with probability at least 0.5, it holds that F (yi.z) = e forall t € [n].
In the following, we condition on this event.

il
7-71 Y0-

Claim 3. By definition, for y € {—1, 1}, we have ||v, +7i(vo —vy)|| = T—land v_1 +v1 = =

Claim 4. Let ¢ = 16€; + 4eo. Suppose that € < ;. Then if ||§' — v,|| < e, then it holds that
107 — vy <.

Combining the above claims, we know that there is a constant C such that as long as B > C'log(nH),
itholds that o, < —V4( mod 2)|| < 15 forall ¢ € [n]. Therefore,

by Claim 2, this gives Cov (my:) > 5 as long as log N < HB O

Proof of the claims. To prove Claim 1, we note that (6, v,) > 1 — || — v, || > 15 and for y/’ # v,
(0,vy) < (vy,vy) + 110 —vy|| <+ 1 < 1L Therefore,

Z , eB(G,vy/> 2
_ < &Y'FY < — .
1 —mo(y) < oB0,0,) =,B/a - @

In particular, we know 1 — 7(0) < €1, and hence Var,, [¢(y1)] < 5B%¢;. Further, we also know
P, (yn = OVh € [H]) > (1 — ;) > 1 — Hey. Therefore, taking the union bound, we know
P(y;, =O0Vh € [H|,t € [n]) > 1 —nHe; > 1.

Furthermore, for any 6 such that min{[|§ — v1][,[|6 — v_1 |} < 75, as long as log N < H (log(1 —
€1) — log(e1)), we have

1
Covn(mp || mg) > (1 - )H{Hlong(O) — Hlogmp(0) >logN} >1— "

In particular, this is ensured when log N < %. This completes the proof of Claim 2.

Claim 3 follows immediately from the definition of «, vg, vy and v_;. Finally, we prove claim 4. We
define u* == 0" + ﬁ(ﬁ(y;: ) — F(at)). Then it holds that

[ = (71 = Doy || = [lu* = 7o + (71 = Doy || <110° = vy [l + 7 F (y1.5) — voll + 7 F(0°) — vyl
<e+17(26 +€) =€
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In particular, it holds that |||u*|| — (7—1)| < € and hence ||u'|| > 7—1—¢ > 1—2 > 1. Therefore,
6! = Projg(u') = Tury» @nd we can bound

u' — (7 — vy n—-1
0 —v_y|| = || ————— vy | —— — 1
Y '] N
lut = (7 = Doy || |7 =1 = [lu]l
- [[u]] [[ut]
2¢ 4 4
< ] < — =—-€e+4+8c +4¢y <e.
u* n n

O

Case2: < 75=. Let B < B be a parameter such that B > cp log(cgnH ) for a sufficiently large
constant cg, and we again denote 7 = H Bn.

. . . . _ _ _ _ . i
In this case, we choose the distribution x to be u(+) = 1 — p(—) = mln{l, e oa N }, the

feature map be specified as ¢(—, -) = 0 and ¢(+, y1.n) = [ynB; 0] for y € V. We choose 0* = [1;0].
oF

Note that 7TD(1 | +) = m,

Case 1, we have the following claims.

Claim 1. It holds that o, < 1, and with probability at least 0.5, it holds that " I{z* = +} <
41(1)n, and for any ¢ such that 2* = +, we have y;, = 1 forall h € [H].

and hence 1 — mp(yy = 1 | +) < 2¢~B. Therefore, similar to

In the following, we condition on this event.

Claim 2. For any 6 € ©, it holds that 1 — 7(1 | +) < —A5, and hence when 2* = +, we have
Lot o3 = 4HB
IVlogma(y* | @) = 1H(B = Byynm() (60Dl < 2HBIL = mo(1 | )| < Zo.
Note that when z* = —, we have V log my(y* | ') = 0. Therefore, it holds that
t t t 477E
Claim 3. Suppose that e (mg) > 1.
To complete the proof, we now choose 6’ € [—1,1] such that e 0B _ ﬁ, and we let §° =
0" — %; 0]. Then, using Claim 2, we know that for any ¢ € [n], it holds that
477HB 16enB 512eBnlog N 1
0°[1] — 6°[1] < {z' = . —— < 2T <
Z {z' =+}- n- () g < B(+) BH <3

Therefore, we have §[1] < 6’ and hence Covy (mgt) > @ for any t € [n].

It remains to prove Claim 3. We note that similar to Claim 2, P, (y, = 1IVh € [H] |z = +) >
and hence

N[—=

Coviv (7o) = @ -I{H(logm(y1 = 1] +) —logmg(yr = 1| +)) = log N} > @

where we use logmp(y; = 1 | +) > log(l —2e7B) > —3¢78 and logme(yy = 1 | +) <
1

— e O

369[113

K.5 PROOF OF THE SUPPORTING RESULTS

We generalize Proposition 3.2 to show that in the worst case (where o2 < H B?), the scaling
Covy(T) = Q(nli ) can be unavoidable for autoregressive linear model. This implies that the

dependence on o2 is generally necessary to achieve upper bounds that do not explicitly scale with H.
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Proposition K.1. Let H, B, N,n > 1, and assume log N < cmin{H, B?} for a sufficiently small
constant ¢ > 0. There exists an instance of H-dimensional autoregressive linear model class 11 with
¢ X x A* — By(B) and © = By (1), such that for any proper algorithm Alg with output @ = 7,
there exists Ty € 11, such that under mp, it holds that

~ . H
E™*#[Covy (mp || )] > ¢~ mln{l, n-logN}'

Proof. We consider X’ = {+, —}, A = {0, 1}, and the distribution y be given by u(+) = 1—pu(—) =
p, where p € [0, 1] is a pre-specified parameter. Let the feature map ¢ be given by ¢(y1., | —) =0,

é(y1.n | +) = Bynen, where (eq,- -+, ep) is a fixed orthonormal basis of R*. Note that with this
construction, we have mg(yn, = - | —, y1.n—1) = Ber(1/2), and
eBeh
wo(yn = | +,Y1:n—1) = Ber<1+639h> =:Tg h-

Note that for any h € [H], we can bound

CoB|0p, — 05,| < Dn(mgp,mor ) < C1 B0k — 04,1,

aslongas 0, € [— 5, &].

We fix e € [0, ] to be determined later, and for any v € {—1,1}, we let 0, :=

1
max{+vH,B}
€ Zthl vpep, and

O = {HU cv € {-1, 1}H} C Ba(1), Iy :={mp : 6 € Op}.
Then a direct argument shows that when pn < 5% for a sufficiently small constant cg, there exists
0* € © such that under 7y = my~, it holds that
H

};P”D*“g(@ s e) > cH.

Therefore, with probability at least £, it holds that ZhH:1 H{ |§h - 05| > e} > %, and this in turn

implies

T

Z DE' <7T9*,h771—§h) Z ClHB262.
h=1

.. 2 2
Then, by Proposition D.11, we know that under the above event, as long as log N < %,
we have Covy (7) > £. Choosing € = 311;53]! and p = min{l, ﬁ} gives the desired lower

bound. O

L PROOFS FROM SECTION 6
L.1 PROOF OF THEOREM 6.1
Recall (from Eq. (11)) that we consider the token-level SGD iterates defined as
0" = Proje (0"" + nVlog mgen (y}, | @', yip_1)), forh=0,---  H—1, (62)
and 0*1' = 0710 := 6" for t € [T}, where (z*, y}.;;) ~ mp.

To define the guarantee on 6" which we are able to derive, we next define the following fest-time
parameter update V""" (z,y1.5; 0), for a parameter 6 and prompt x. It is defined recursively for
h=0,1,--- H—-1:

19TTT($a Y1:hs 9) = PI‘Oj@ (’lgTTT (.’13, Y1:h—1; 6) + 77V IOg WﬁTTT(x,yl:h_l;G) (yh ‘ x, yl:h71>) . (63)
We then define a distribution 7" : X — A(YH) as

ﬂ-gTT(' | xaylzhfl) = 7r19TTT(;c,y1;h,1;9)(‘ ‘ »T,y1:h71)~ (64)

The distribution 7}"" can be interpreted as an augmented version of the autoregressive linear model
mp that performs test-time training during sampling.
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Proof. We closely follow the proof of Proposition 5.1 (cf. Appendix K.1).
We first note that by the proof of Eq. (57), we have

T 1 T
Z —Vlogmgen (yy, | 2, y5.n_1),0°" — 9*>] < % +nE ZHVlong,h(y;’L | x",y’i:h_l)Hz
— t—1

Further, by the proof of Eq. (58), we have

IV log e (g | 2, yin_1)||”
< 2||V1ogm- (g}, | 2, vt
+2B2(Vlog m- (yh | &', yhp_1) — V1og mgen (Wh | 2, y%_1), 0" — 6%)

Note that the conditional distribution of y}, | (z',y1.,_1,0"") is given by y;, ~ mo(- | ', yi._1)-
Hence, taking expectation, we have

. 2
E ||V logmarn (wh | 2, i)’ ] < 2|V Iog - (un | 2, y10-1)
+ 2B2 EK_V IOg ﬁ@"h(y;L | xtv yi:h—1)7 et,h - 0*>]7
and we also have (cf. Eq. (55))

E[(=Vlogmoen (yp, | 2 y1.n-1), 0" = 0%)] = EDi(mo(- | 2°, 91 1) | moen (- | 2°, 41 1))

Combining the inequalities above, as long as n < 1 32 , it holds that

H H
ZZDKL mo( | @ Yin—1) | moen (- [ 2, Y1 1)) <n+47ITUE- (65)

Finally, we note that
0" =9 (2", yj,_1;0"),
and z*,y;,_, | 6" ~ mp. Therefore,

EI:DKL(WD(' | xtayi:h—l) || T(@”*h(' | xt7yi:h—1)) | 9’5]

= E(m,y)NﬂD DKL(WD(' | € yl‘h*l) H WﬁTTT(z,yhh,l;et)(' | $7y1:h71))

= E(w7y)~7rg DKL(T"D( | T, Y1:h— 1) H ﬂ-TTT(' - ))
This implies
1 rT H
H+477T022EZZ ku(mo(- | 2 yn_1) [ moen (- | 2, Yl 1))]
Lt=1 h=1
T H
=E Z ZDKL(WD(' | ‘rtayi:hfl) || 7T9t,h(' | xtayi:hfl)) ‘ HT]]
Lt=1 h=1
rT H
2|3 503 Dalrt |- )
Lt=1 h=1
T
= E ZDKL(WD || W;IT)] 5
Lt=1
where the last equality uses the chain rule of KL divergence. L
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L.2 PROOF OF THEOREM F.2

We first note that by the proof of Eq. (57), we have
T

~ + “ 1
E|> (Eymor (v | 2,0~ 0 >] < 5o HUE
t=1

T
~ 2
Y Eyymmllfo (y | 2)] ]

t=1
In the following, we analyze (E(, y)r,[Go(y | 2)],0" — 6*) and E(, ) lGo: (y | )| for any
0 € 0O, following the proof of Proposition 5.1 (cf. Appendix K.1).
We adopt the notation of Appendix K: For any @ and any pair (z, 1., 1), we denote ¢g(x, y1._1) =
E'n'g [QS((E, yl:h) | x, yl:hfl] and

Gg(x, yl:h—l) = DKL(TrD(' | xayl:h—l) H 7Tt9(' | xuylzh—l))'
By definition, we have (cf. Lemma K.4)

H H
> (@, yin—1)es (T, yrn—1) = miH{A, > ez, y1;h1)}7 (66)

h=1 h=1

and hence
H H
E(aj,y)Nﬂ'D [Z Qg (1‘7 y1:h-1)€9 (I, yl:h—l)] = IE‘(av,y)fvTrD min{A, Z €9 ('Tv ylih—l)} 67
h=1 h=1 ( )
= Dseq,n (70 || 0),

where we recall that Dgeq v (75 || mg) is defined in Proposition D.10 and we denote A = log N.
Hence, by convexity (Eq. (55)),

(Ee)~m(G0(y | 2)],0 — 67)

H
= E(z,y)~m [Z (2, y1:n—1){Po+ (T, y1:n—1) — do(2, y1.n—1),0 — 9*>1
h=1
H
> Ee,y)nm [Z (T, y1.n—1)€0(T, Y1:n—1) | = Dseq,n (0 || 7).
h=1
Further, by Eq. (56), it holds that
1Go(y | ©) — Go= (y | @)
H

Z (T, Y1:n—1) H&e* (z,y1:n) — (Ee(l‘, Y1:h—1) H

INA
=
’&

M=

S Olg(SC, yl:h—l) (2\/Varﬂg (:L'a yl:h—l) : 60('1:7 yl:h—l) + SBEG(‘T7 yl:h—l)) .

=

=1
Hence, using Eq. (66), we have

—~ ~ 2
9o (y | ) —Go- (y | )|l

" 2
< 8(2 g (2, y1:n-1)V/ Vare, (€, y1:n 1) - 69($7y1:h—1)>

h=1

" 2
+18B? (Z oy (@, y1:n—1)eo(w, y1:h—1)>

h=1
" H
<8 (Z g (, y1:n—1) Varg, (z, yl:h—l)) (Z oy (@, y1:n—1)€o(w, ylzh—1)>
h=1 h=1
H
+ 18AB? <Z ag(z,y1:n—1)eo(z, y1;h1)>
h=1
H H
<84 (Z Vary, (z, yl:h—1)> + 184B? <Z g (T, y1.n—1)€p (7, yl:h—l)) :
h=1 h=1
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Therefore, taking expectation of (z, y) ~ mp and using E, ||+ (v | 2)||> < 02 and Eq. (67), it holds
that

E(oy)om 136 (0 | )] < (164 +1)02 + 36 AB2Deeq v (mp || 79), V.

Finally, combining the inequalities above, we know that

T T
E[Z Deeq.n (10 ||7r9,,)] < ED (BlayymmGor (v | 1)), 0" — 9*>]

t=1 t=1

1
— E
27)+n

IN

T
~ 2
ZE(m,y)wDngt (y | =) ]

t=1
T
Z Dseq,N(TrD ” WHt)] .

t=1

IN

1
% +nT(16A + 1)o? + 36AB*E

Therefore, as long as n < ﬁ, it holds that

T
1
E lz Deeq.n (10 || W)] < pl 36nT Ac?.

t=1
Optimally choosing 1 gives

T
1 o2log N B?logN
T;Dseq,fvwwret)]s\/ e

By Proposition D.10, this implies

T
1 o2 B?
— C O < s —.
T; ovw(ms )] S\ TlogN T T

L.3 PROOFS FROM SECTION 6.2 (SELECTION)

Below we state and prove a generalization of Theorem 6.2 which holds when the data distribution 7y
is not necessarily in the model class II.

E

E

Theorem 6.2’ (General version of Theorem 6.2). Fix N > 1, and consider the estimator T from
Eq.(13):

7 := arg min max Cov y (' || 7). (68)
rern  wel

Forany 6 € (0,1), parameter a, c > 0, with probability at least 1 — 0, it holds that

N . _ 1 log Noo (IT; clog N) + log 51
Cov yita+t2e (7T) 5 {?nelll‘ll Covpa (71') + N1—a—2c " . (69)
Proof of Theorem 6.2'. Fix any 7 € II and M, « > 0, and we study the estimator
7 := arg min max Cov (7' || 7). (70)
e el

By Lemma J.2, with probability at least 1 — 4, it holds that for V7 € II,
— 1 x .
Covy (7| ) > iCovegaN(w || 7) — €stat,
where gat = log(Noo (IT; ) /8). Next, again by Lemma J.2, with probability at least 1 — 4, it holds
that for V7 € 11, -
Covn (7 [| ) < 2CovI® oy 5 (7 || T) + Estat-
Therefore, we have with probability at least 1 — 26,
1 - R — — -
§Cove§aN(7r | 7) — estat < Covy (7| 7) < max Covn (m' || 7T)

_ . == / < == /|| =
HEE?SECOVN(F [|7) < E}gﬁ(CovN(ﬂ | 7)

<2 ;I/lgﬁ COV;TEQQN(W || ﬁ) + Estat-
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Reorganizing yields

Covila v (T 7) <4 max CoviP o N (]| T) + destat.

Note that for any N, N and policy 7, 7/, 7,
CovRl o (' || ) < Covil, (o' || ") + Covil, (" || ). (71)
Hence, for all 7,
Covi. yav (M || ™) < Covig (mp || T) + Covis, y (T || pi),
Cov%sa n (T[] T) < Coviy, (|| M) + CoszZ(,N/N, (mp || 7)
Therefore, using the fact that Cov’y (7 || mp) < < and the inequalities above, we see that
CoVeza NN/ () = CoVIS, o (70 || )

< Coviys (mp || ) + Covisa 5 (T || )

< Coviy (mp || ™) + 4 max CovI%oo n (]| T) + 4éestat

< 5CovRy (mp || ) + 4 max Cov®,, N/N (m||mp) + 4estat

2a0 £/

< 5C0V71§?/ (7TD || %) + + 4éstat-

The claimed bound follows by setting 7 = argmin_cCovy(m | 7), o = clogN, and

N' = N@, O

L.4 PROOF OF THEOREM F.3
Divergence. For any distribution P, Q) € A()), we define the following divergence for M > 1:

5]\4(P H Q) = maX{EyNP (;lg — M>+,EyNQ <Zg - M>+}

Then, for policies 7, 7" : X — A(Y), we further define
Enu(m || 7) = Eonp En (7w (- | @) [ 7' (- | ).
Under this divergence, it holds that for any event F,

PHJ"(E) <M- P;MT’ (E) + 5M,u(7r || 77/)7 (72)
Py (E) < M- Py r(E) + Eppu(m | 1), (73)
where P, - is the probability under & ~ p and y ~ 7 (- | z). Furthermore, we can bound
m(y | )
COV2M m) =P T ( > 2M) < gM, T ). (74)
( ) H 7r(y | x) M( D || )

Theorem F.3’ (General version of Theorem F.3). Fix N,~v > 1 such that N > 4~2. Consider the
estimator

7 := arg min max {Covy (' || 7) — 2v - Coviy (x| )} . (75)
mell el

Then with probability 1 — ¢, it holds that
log(|I1|/6
) og(|11]/4) _

Covann (T) < Ernellr_ll Ey(mp || -

Theorem F.3 is an immediate corollary by setting v = N°.

Proof of Theorem F.3'. For 7,7’ € II, we define the set

extrn) = { ) | ZED > v},

m(y | )
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Suppose an ii.d. dataset D = {(z*,y')};c(, ~ mo is drawn. We write 1, = L Oz yi) tO
denote the empirical measure (i.e., t,, is the uniform distribution over D). Note that

Covn (7' || ) = pn (Civ (', 7). (76)
We also recall that
. 1 w(y o) )
Coviy(r' || m) :== = Pz <A>N .
K[| m) n; vrtle) )

Therefore, we write C/oT/ﬁN (" ||m) = Pp#(Cn (7', 7)), where P, = is the probability under the
distribution « ~ p,,,y ~ 7(- | x).

Thus, the tournament estimator in Eq. (38) can be expressed as

T = argergin max L(m, '), 77)
where
L(m,7") = pn(Cn (', 7)) = 27 - P z(Cn (7, 7)), (78)
and v = 2N°.

As an immediate consequence of Lemma H.3 and union bound, we have the following:

Lemma L.1. Fix § € (0, 1), and define esar = w. With probability 1 — 6, the following
holds simultaneously:

(1) For all m,n' € 11, it holds that

2]P/L,TI'D (CN (7r’, W)) + Estat = Un (CN (77/» W)) > P,unrn (CN(”lv 7T)) — Estat,

2Py 7y (CN(W/a 7)) + Estat > NH(CN(W/, m)) > P (CN(WIa 7)) — Estat-

(2) For any m € 11, it holds that &, ,,, (mp || ) < 2&,, (T || ™) + Estat-

In the following, we fix § € (0, 1) and condition on the success event of LemmaL.1. Let 7 € II denote
some policy for which e,pc = &5, (0 || 7). We denote €, ), = &, ., (7p || 7), and by Lemma L.1, we

apx
/
have Ehpx < 2€apx + Estat-

Then, for any 7’ € II,
L7, 7)) < 2Py (Cn (7', 7)) — 29Pp z(CN (7', 7)) + Estat
<28 4, (Mo [| T) + Estar = E;px + Estat-
where the first inequality uses Lemma L.1, and the second inequality uses Eq. (72).
Therefore, we have
max L£(7, ') = min max £(m, 7') < max L(T,7") < €stat + Eqpy-

w/€ll mell n’ €Il ' ell

!/
apx*

O (7, 7)) = LR, ) = 2P 2(Cov (7, 7)
T x(Cn(, 7))

2y [ — ~ /
N |:2]P)n7770 (CN(T‘—7 7'(')) + Eapxj|

2 o~

< T 0 (O (7, 7)) + tat) + ],

where the second inequality uses Eq.(73): Py, z(E) — 3Py 5, (E) < Enp, (M0 || T) = ehyy for
any event F, and the thrid inequality uses Lemma L.1. Therefore, using N > 4v2, we know

pn(CN (T, 7)) < Sestar + 265, Using Lemma L.1 again, we have

In particular, we know L(7,T) < €gtat + €4y Then, we can bound

IA

N

Covy (T || ) = Py (Cn (7, 7)) < 20 (CN (T, 7)) + 2651t < 126410t + 4e!

apx*
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By Eq. (71), it holds that
Covan, () = Covair. (mp || m) < Cova? (mp || ) + Covip (T || ),

and we also have Covy? (m || 7) < eapx by Eq.(74). Combining the inequalities above, we can
conclude that

Covan~(T) < CoViR(T || ) + €apx < 1265tat + 45;px + Eapx-
!

Finally, using Lemma H.3, we have £,

< 2€,px + Estat. This is the desired upper bound. O]
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