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ABSTRACT
Language models demonstrate remarkable abilities when pre-trained on large text
corpora and fine-tuned for specific tasks, but how and why pre-training shapes
the success of the final model remains poorly understood. Notably, although pre-
training success is often quantified by cross entropy loss, cross entropy can be
poorly predictive of downstream performance. Instead, we provide a theoretical
perspective on this relationship through the lens of coverage, which quantifies
the probability mass the pre-trained model places on high-quality responses and
which is necessary and sufficient for post-training and test-time scaling methods
like Best-of-N to succeed. Our main results develop an understanding of the cover-
age principle, a phenomenon whereby next-token prediction implicitly optimizes
toward a model with good coverage. In particular, we uncover a mechanism that
explains the power of coverage in predicting downstream performance: coverage
generalizes faster than cross entropy, avoiding spurious dependence on problem
dependent parameters such as the sequence length. We also study practical algo-
rithmic interventions with provable benefits for improving coverage, including (i)
model/checkpoint selection procedures, (ii) gradient normalization schemes, and
(iii) test-time decoding strategies.

1 INTRODUCTION

The remarkable capabilities of language models stem from a two-stage training process: (1) large-
scale pre-training via next-token prediction with the cross-entropy loss (predicting what token should
follow a prefix) and (2) targeted post-training—typically via reinforcement learning—to adapt the
model to specific domains and tasks. Investing more compute and data into pre-training often enables
post-training to produce a stronger model, but theoretical understanding of how these stages interact
is limited. Indeed, despite substantial investment into scaling pre-training (Gadre et al., 2025; Sardana
et al., 2024; Hoffmann et al., 2022), several works have demonstrated that starting post-training from
a better next-token predictor does not ensure stronger performance on downstream tasks (Liu et al.,
2022; Zeng et al., 2025; Chen et al., 2025; Lourie et al., 2025). Motivated by this disconnect, we theo-
retically investigate the connection between pre-training objectives and downstream success, asking:

Can we precisely characterize the relationship between the next-token prediction loss and
downstream performance? What metrics are most predictive of downstream success?

Motivated by the recent interest in test-time scaling, we focus our attention on post-training via Best-of-
N (BoN) sampling or reinforcement learning with verifiable rewards. For a prompt x, Best-of-N draws
n responses y from the model and returns the best response according to a task-specific reward. Sev-
eral prior works have demonstrated that the performance of BoN is strongly indicative of how well the
model will perform after post-training via reinforcement learning (Yue et al., 2025; Wu et al., 2025).

Our starting point is the observation that cross-entropy alone cannot provide meaningful answers
to the questions above; see Figure 1, which illustrates that cross-entropy can be anti-correlated with
BoN performance, echoing Chen et al. (2025). Instead, we show that the missing link is the coverage
profile, a novel refinement of cross-entropy that explicitly quantifies the model’s ability to assign
sufficient probability mass to rare but high-quality responses.

Definition 1.1 (Coverage profile). The coverage profile of a model π̂ for a distribution π is

CovN (π ∥ π̂) := Px∼µ,y∼π(·|x)

[
π(y | x)
π̂(y | x)

≥ N

]
, (1)

where N ≥ 1 is the number of Best-of-N sampling attempts.
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Figure 1: The coverage profile predicts Pass@N better than KL divergence. We train models
in a graph reasoning task and record KL divergence, coverage profile (both measured w.r.t., πD), and
Pass@N performance; see Appendix G for details. Left: Convergence of coverage and KL divergence
over training, showing that KL improves monotonically but coverage can degrade with training.
Right: Scatter plots of KL (top axis), CovN/2 (lower axis) and Pass@N of checkpoints. Although KL
and CovN exhibit comparable predictive power for small N , CovN is a better predictor for large N .
Also visualized are checkpoints selected via the tournament procedure of Eq. (13) (marked ♢) and
by minimizing KL (marked red), demonstrating that the former selects better models for Pass@N .

Here, y is the full response when prompted with x, π represents the pre-training data distribution,
which we presuppose covers downstream tasks of interest, and π̂ is the pre-trained model. We prove
that a good coverage profile is necessary and sufficient for Best-of-N to succeed (see Section 2,
as well as Propositions D.6 and D.7). This is highlighted in Figure 1, where we find that the coverage
profile is correlated with downstream performance for Best-of-N (which is exactly Pass@N ), even
when cross-entropy is not.1 Motivated by this characterization of BoN performance, we ask: When,
and through what mechanism, does next-token prediction produce a model π̂ with good coverage?

1.1 CONTRIBUTIONS

We develop a theoretical understanding of the coverage principle, whereby next-token prediction
implicitly optimizes toward a model with a good coverage profile, inheriting the training corpus’
coverage over tasks of interest.

Cross-entropy: Scaling laws and limitations (Section 3). We begin by deriving provable scaling
laws that link cross-entropy—specifically, a certain sequence-level notion—to coverage and hence
downstream performance, but show that cross-entropy can be sensitive to sequence length and other
problem parameters, leading to vacuous predictions; this motivates our main results.

Next-token prediction implicitly optimizes coverage (Section 4). The first of our main theoretical
results (Theorem 4.1) is a new generalization analysis for next-token prediction (more generally,
maximum likelihood) that exploits the unique structure of the logarithmic loss to show that coverage
can generalize faster than cross entropy; we refer to this as the coverage principle. Concretely,
our analysis shows that the coverage profile for models learned with next-token prediction (i) avoids
spurious dependence on problem-dependent parameters such as sequence length (in contrast to cross-
entropy), and (ii) converges faster still as the tail parameter N is increased. Our analysis—which is
similar in spirit to Mendelson’s small ball method (Mendelson, 2014; 2017)—can be viewed as a
giving a new, fine-grained understanding of maximum likelihood.

Stochastic gradient descent through the lens of coverage (Section 5). The preceding results apply
to general model classes Π, but consider the empirical maximizer of the next-token prediction (maxi-
mum likelihood) objective, in the vein of classical techniques in learning theory. For the second of our
main results, we focus on a specific model class—overparameterized autoregressive linear models (2)—
but take a more realistic approach and analyze stochastic gradient descent (SGD) on the next-token
prediction objective, in the one-pass (“compute-optimal”) regime. We show that while SGD provably
optimizes the coverage profile, it experiences suboptimal dependence on the sequence length H . We
then show that gradient normalization (which is loosely connected to Adam-like updates (Bernstein
& Newhouse, 2024)) provably improves coverage, removing dependence on the sequence length.

1Formally, the coverage profile refines cross-entropy/KL divergence; the former is the cumulative distribution
function (CDF) of the log density ratio log π(y|x)

π̂(y|x) , while KL divergence is the mean; see Remark C.1.
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Interventions for better coverage (Section 6). Finally, we look beyond standard next-token pre-
diction and explore families of new interventions aimed at improving coverage in theory.
(i) Test-time (Section 6.1). We show that for standard token-level SGD, a new test-time decoding strat-
egy inspired by test-time training (Sun et al., 2020; Akyürek et al., 2025) provably improves coverage.
(ii) Model/checkpoint selection (Section 6.2). For selecting the best model (or checkpoint) from
a small number of candidates, we give tournament procedures that enjoy significantly better coverage
profile (particularly with respect to the tail parameter N ) than naïve validation with cross-entropy.

Additional results (Appendix F). Beyond the results above, we show that: (1) MLE can find
models with low coverage even in the presence of severe misspecification; (2) coverage can generalize
better under additional structural properties of the model class such as convexity (Appendix F.2).

In summary, we believe that coverage offers a new perspective on the connection between pre-training
objectives and downstream post-training success. Our results demonstrate that this perspective is
mathematically rich and fundamental, opening the door to a deeper understanding; cf. Appendix A.

2 PROBLEM SETUP

We now introduce the formal problem setup for the remainder of the paper.

Next-token prediction and maximum likelihood. We work in the following setting, which
subsumes next-token prediction: X is the prompt space, Y is the response space, and πD : X →
∆(Y) is the data distribution. We are given a dataset D = {(xi, yi)}ni=1 where xi ∼ µ and
yi ∼ πD(· | xi). We consider the maximum likelihood objective L̂n(π) :=

∑n
i=1 log π(y

i | xi),
and refer to π̂ := argmaxπ∈Π L̂n(π) as the maximum likelihood estimator for a user-specified
model class Π. This is a generalization of the next-token prediction, where Y = VH is a token
sequence and π(y | x) =

∏H
h=1 π(yh | x, y1:h−1) is explicitly autoregressive, so that L̂n(π) =∑n

i=1

∑H
h=1 log π(y

i

h | xi, yi

1:h−1). We specialize to next-token prediction at certain points but
otherwise focus on the general setting. We make the following realizability assumption throughout.

Assumption 2.1 (Realizability). The data distribution πD is realizable by some model π ∈ Π.

This formulation captures pre-training and SFT, with some caveats; see Appendix A.1.

Post-training and the coverage profile. Given a reward function rT(x, y) ∈ {0, 1} represent-
ing success at a downstream task T, the goal is to fine-tune π̂—through reinforcement learning or
test-time scaling—to obtain near-optimal reward. We show (Propositions D.6 and D.7) that for any
task-specific comparator policy πT : X → ∆(Y), Best-of-N sampling with Θ̃(N) samples satisfies
Ex∼µ[rT(x, πT(x))− rT(x, π̂

BoN
N (x))] ≍ CovN (πT ∥ π̂), so a good coverage profile for πT is sufficient

for high reward. Moreover, in a worst-case sense a good coverage profile is necessary for high reward;
see Proposition D.7. Further, while less well understood, some form of coverage is thought to be neces-
sary for the success of reinforcement learning methods like GRPO (Yue et al., 2025; Song et al., 2024).

Returning to pre-training, it is clear that there is little hope that next-token prediction will produce
a model π̂ with good coverage with respect to a downstream task unless the data distribution πD itself
has reasonable coverage with respect to this task. We therefore posit that the data distribution covers
such a downstream task, in the sense that it includes high-reward responses with some bounded-below
probability. Since coverage satisfies a transitivity property, it follows that coverage with respect to πD

implies coverage with respect to the optimal policy for the downstream task. For example, if πD has
a 10% chance of generating a correct response, and CovN/10(πD ∥ π̂) = ε, then we get 10ε error.2
Thus, going forward, we focus on understanding when next-token prediction achieves good
coverage CovN (πD ∥ π̂) relative to the data distribution πD itself, and avoid concerning ourselves
with specific details of the task policy πT or the specific relationship between πT and πD.

Autoregressive linear models. We analyze next-token prediction and maximum likelihood for
general model classes Π, but our running example throughout the paper will be the class Π of
autoregressive linear models, defined by a known feature map ϕ : X ×V⋆ → Rd. For each parameter
θ ∈ Θ ⊂ Rd, the model πθ = (πθ)

H
h=1 is defined by

πθ(yh | x, y1:h−1) ∝ exp(⟨θ, ϕ(x, y1:h)⟩). (2)

2See Proposition D.5 for formal results.
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In practice, autoregressive sequence models—such as those based on transformers—generate each to-
ken by sampling from a softmax distribution whose logits are given by a linear combination of learned
features (Radford et al., 2019). Eq. (2) simplifies this by freezing the feature map, yet remains expres-
sive enough to model complex non-Markovian dependencies, depending on the choice of features.

Assumption 2.2. We assume that Θ ⊆ {θ : ∥θ∥ ≤ 1} is convex, and suph,x,y1:h
∥ϕ(x, y1:h)∥ ≤ B.

3 CROSS-ENTROPY AND COVERAGE: SCALING LAWS AND LIMITATIONS

A natural approach to understanding when next-token prediction achieves good coverage is to appeal
to cross-entropy—perhaps first showing that next-token prediction achieves low cross-entropy (which
is true asymptotically), and then relating cross-entropy to coverage. In this section we motivate
our main results by showing that while this is possible in a weak sense, it does not yield predictive
guarantees for downstream performance in the finite-sample regime.

Define the sequence-level cross-entropy for π̂ as DCE(πD ∥ π̂) := EπD

[∑H
h=1 log

1
π̂(yh|x,y1:h−1)

]
.

Since E
Di.i.d.∼πD

[
L̂n(π)

]
= −n · DCE(πD ∥π), one expects that as we scale up compute, number of

samples n, and model capacity Π, DCE(πD ∥ π̂)→ DCE(πD ∥πD), or equivalently DKL(πD ∥ π̂)→ 0,
where DKL(πD ∥ π̂) := EπD

[∑H
h=1 log

πD(yh|x,y1:h−1)
π̂(yh|x,y1:h−1)

]
is the sequence-level KL divergence.

A simple scaling law for cross-entropy. We show below that if that the model π̂ has reasonable
KL divergence to the data distribution, the coverage profile can be bounded:

Proposition 3.1 (KL-to-coverage; see Proposition D.1). For all N ≥ e, CovN (πD ∥ π̂) ≤ DKL(πD ∥ π̂)
log(N/e) .

Combining Proposition 3.1 with Proposition D.6 and our assumption that πD has good coverage with
respect to the downstream task yields a simple “scaling law” for test-time compute with BoN:

Consider a task of interest with reward rT(x, y), and suppose the data distribution πD itself has
constant probability of success (i.e., sampling y ∼ πD(· | x) with rT(x, y) = 1). To achieve
sub-optimality ε with Best-of-N, it suffices to choose the compute budget N as

N ≈ exp

(
DKL(πD ∥ π̂)

ε

)
. (3)

That is, for a fixed model π̂ and KL-divergence level DKL(πD ∥ π̂) ≤ DCE(πD ∥ π̂), Eq. (3) predicts
that test-time compute should increase exponentially with the desired accuracy ε.3

Insufficiency of cross-entropy. At first glance, this seems to be in line with empirical test-time
scaling laws (OpenAI, 2024), but there is an issue: While token-level cross-entropy has been observed
to be modest in contemporary language models (Kaplan et al., 2020; Hoffmann et al., 2022; Xia et al.,
2022), the sequence-level cross-entropy (and KL-divergence) generally grows with the length H of
the sequence, so that Eq. (3) predicts exponential test-time scaling in the sequence length. Moreover,
such a law cannot hold if we only assume token-level cross-entropy is bounded; see Proposition D.7.

Is this the end of the story? On the one hand, it is simple to show (Proposition D.2) that Proposition 3.1
is tight for a worst-case pair of models. Moreover, even for the autoregressive linear model in Eq. (2),
sequence-level KL divergence scales linearly with the sequence length H , as shown in the next result.

Proposition 3.2. Fix H ∈ N. There exists ϕ : X × V⋆ → B2(1) and induced autoregressive linear
class Π with parameter space Θ = B2(1), distribution µ over X and data distribution πD ∈ Π, such
that for any proper estimator π̂ = π̂(D) ∈ Π, it holds that w.p. at least 0.5, DKL(πD ∥ π̂) ≥ Ω(Hn ).

This behavior is reflected empirically in Figure 2 in a graph reasoning task. Yet, for this task
(Figure 2), we find that, in spite of large cross-entropy/KL, next-token prediction learns a model
π̂ with a good coverage profile across a range of sequence lengths and that downstream Best-of-N
succeeds. Why is this happening? In light of the discussion above, it must be related to specific
inductive bias of the next-token prediction objective itself.

3Neither KL divergence nor the coverage profile are observable quantities (though cross entropy is an
estimable upper bound on KL), so this is a theoretical prediction rather than a practical one as-is; see Remark C.2.
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Figure 2: The coverage profile avoids spurious dependence on sequence length. We train models
in a graph reasoning task and record their KL divergence and coverage profile, measured w.r.t., πD

as we vary the problem horizon (sequence length); see Appendix G for details. Left: Convergence
of KL over training for three horizons H , demonstrating that KL at convergence scales linearly in
the horizon H . Center: Convergence of CovN over training, manifesting no dependence on H at
convergence. Right: Ratio of KL over CovN , showing that Proposition 3.1 can be overly conservative.

A glimmer of hope: Case study in Bernoulli models. To see why large cross-entropy may not
be a barrier to coverage, consider perhaps the simplest setting, Bernoulli models, where X = {⊥},
Y = {0, 1}, Π = {Ber(p)}p∈(0,1/2), and πD = Ber(p⋆) for some small p⋆ ∈ (0, 1/2).

The maximum likelihood model is π̂ = Ber(p̂), where p̂ is the empirical frequency of y = 1 in the
dataset. We observe that with positive probability (and constant probability if n ≤ 1/p⋆), the dataset
D will only contain examples where y = 0, so that the maximum likelihood model is π̂ = Ber(0).
This implies that expected KL divergence is infinite: E[DKL(πD ∥ π̂)] = +∞. However, the coverage
profile turns out to be well-behaved; a direct calculation shows that CovN (πD ∥ π̂) ≲ log(δ−1)

n with
probability at least 1−δ for all N ≥ 2; this gives hope that even though cross-entropy itself is infinite,
maximum likelihood may actually learn a model with good coverage in the background. In what
follows, we will show that this is not a fluke, but a general phenomenon.

Remark 3.1 (Missing mass). The underlying issue is one of missing mass: there are responses
that even a well-generalizing learner will fail to cover, and for these we may incur a large contri-
bution to the KL-divergence. More generally, KL-divergence and cross-entropy are susceptible to
contributions of the scale logWmax where Wmax = maxπ∈Π

∥∥πD

π

∥∥
∞ (which could be as large as H ,

as in Proposition 3.2) when the model does not have enough information to generalize/extrapolate.
This phenomenon is particularly pronounced when the prompt distribution is heterogeneous.

4 NEXT-TOKEN PREDICTION IMPLICITLY OPTIMIZES COVERAGE

We now present our main result, which establishes the coverage principle: due to the unique structure
of the logarithmic loss, maximum likelihood can learn models with good coverage even when
cross-entropy is vacuously large. We make use of the following covering number.

Definition 4.1. For a class Π and α ≥ 0, we let N∞(Π, α) denote the size of the smallest cover Π′

such that for all π ∈ Π, there exists π′ ∈ Π′ such that supx∈X ,y∈Y |log π(y | x)− log π′(y | x)| ≤ α.

Theorem 4.1 (Coverage principle). Let N ≥ 8 be given and c > 0 be an absolute constant. Suppose
Assumption 2.1 holds. With probability at least 1− δ, the maximum likelihood estimator satisfies

CovN (π̂) ≲
1

logN
· inf
ε>0

{
logN∞(Π, ε)

n
+ ε

}
︸ ︷︷ ︸

=: Cfine(Π,n)

+
logN∞ (Π; c logN) + log(δ−1)

n︸ ︷︷ ︸
=: Ccoarse(Π,N,n)

. (4)

Theorem 4.1 has two terms: a coarse-grained term Ccoarse(Π, N, n) and fine-grained term
Cfine(Π, n); we interpret each term below.

Fine-grained term. Cfine(Π, n) evaluates the covering numberN∞(Π, ε) at a small scale ε (typically
ε ≈ poly(1/n)), which matches typical bounds for conditional density estimation (e.g., Bilodeau et al.
(2023)) in KL divergence; however, unlike KL-based bounds this term has no explicit dependence on
sequence length H or density ratios logWmax. The term is further scaled by 1/ logN , which implies
that coverage enjoys faster convergence as we move further into the tail by increasing N ; this reflects
the unique structure of the logarithmic loss, and may be viewed as a new form of implicit bias.
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Summarizing, the fine-grained term witnesses the coverage principle: coverage enjoys faster gener-
alization than cross-entropy; roughly, the rate is what we would expect (via Proposition 3.1) if we
could somehow control KL without paying for the sequence length H or density ratio logWmax. See
Appendix E for a detailed comparison to standard (asymptotic and non-asymptotic) generalization
bounds for maximum likelihood based on Hellinger distance and KL-divergence.

Coarse-grained term. The coarse-grained term Ccoarse(Π, N, n) captures the missing mass phe-
nomenon exemplified by the Bernoulli example in the prequel. This term is not explictly normalized
by 1/ logN (compared to the fine-grained term), but depends on the covering number N∞(Π, α)
only at a very large scale α ≈ logN . This implies that the dependence on the capacity of Π in this
term vanishes as we increase N .

Overall, while the guarantee in Eq. (4) might look surprising at first glance (particularly the coarse
term, as we are not aware of any existing generalization bounds with dependence on covering numbers
at such a large scale), we show in Proposition F.1 (Appendix J) that both terms are tight in general.

Overview of analysis. The proof of Theorem 4.1 is given in Appendix J (with a high-level sketch
in Appendix J.1). The basic idea is to interpret the condition CovN (π) ≥ ε as a small ball-like anti-
concentration condition in the vein of Mendelson (2014; 2017). That is, for models π where coverage
is large, the condition CovN (π) ≥ ε witnesses a one-sided bound which implies that the empirical like-
lihood of π is not too large with high probability, and thus π cannot be a maximum-likelihood solution.

The coarse-grained term Ccoarse(Π, N, n) enters because we only need to show that the coverage
profile concentrates, not the log loss itself. The fine-grained term Cfine(Π, n) enters from one-sided
concentration of the empirical likelihood, with the 1/ logN scaling arising from the following form
of implicit bias: If an example (xi, yi) is such that πD(y

i|xi)/π(yi|xi) ≥ N , this witnesses a negative
contribution of order logN to the difference L̂n(π)− L̂n(πD).

Discussion. We emphasize that while covering numbers are a fundamental and widely used noton of
capacity in statistical learning and estimation (van de Geer, 2000; Zhang, 2002; Rakhlin & Sridharan,
2012; Bilodeau et al., 2023), they are conservative from a modern generalization perspective. Nonethe-
less, Theorem 4.1 shows that they are sufficient to capture rich aspects of generalization for coverage,
and we expect that our core analysis techniques can be combined with contemporary advances in
generalization theory for overparameterized models (Belkin et al., 2019; Bartlett et al., 2020).

4.1 EXAMPLES

To build intuition, we analyze the behavior of Theorem 4.1 under a growth assumption on the
covering number, then discuss how autoregressive linear models exemplify the coverage principle.

Corollary 4.1. (i) Parametric regime: Suppose that there are parameters d ≥ 2 and C ≥ 2 such
that logN∞(Π, α) ≤ d log(C/α) for α ∈ (0, C/2]. Then for any N ≥ 8, with probability at least

1− δ, CovN (π̂) ≲
d[[log(C/ logN)]++

log(Cn)
log N ]+log(1/δ)

n .

(ii) Nonparametric regime: Suppose that there are parameters C ≥ 2 and p > 0 such that
logN∞(Π, α) ≤ (C/α)p for α ∈ (0, C/2]. Then for any N ≥ 8 and n ≥ log1/p N · (C/ logN)p,

with probability at least 1− δ, CovN (π̂) ≲ 1
logN

(
Cp

n

) 1
p+1 + log(1/δ)

n .

This result shows that for sufficiently rich classes (e.g., when p > 0), the fine-grained term dominates
the coarse-grained term for n sufficently large. On the other hand, for simple classes (e.g., when
p = 0), the coarse-grained term can dominate the fine-grained term.

Autoregressive linear models: Low dimension. We now specialize to our running example,
the autoregressive linear model in Eq. (2). This class satisfies logN∞(Π, α) ≍ d log(BH/α)
(corresponding to the parametric regime in Corollary 4.1), and so, coverage generalizes in a (nearly)
horizon-independent fashion, in stark contrast to the cross-entropy lower bound in Proposition 3.2.
The only drawback (which is fundamental) is that since the class has low capacity, the coarse-grained
term dominates for most parameter regimes, and the improvement as N scales is quite modest.

Autoregressive linear models: High dimension. As a more interesting example, we next look
at the behavior of next-token prediction for autoregressive linear models in an “overparameterized”
regime where the dimension d is arbitrarily large (Zhang, 2002; Neyshabur et al., 2015; Bartlett et al.,
2017); here we expect polynomial dependence on the norm parameter B, as it is the only parameter
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that controls the richness of the class Π. In this regime, it turns out that in the worst-case, the capacity
logN∞(Π, α) scales polynomially in H . To address, this we prove a refined version of Theorem 4.1
that adapts to the variance in the data distribution πD, avoiding explicit dependence on sequence length.

Define the inherent variance for the data distribution as

σ2
⋆ := EπD

[∑H
h=1

∥∥ϕ(x, y1:h)− ϕπD(x, y1:h−1)
∥∥2], (5)

where ϕπD(x, y1:h−1) := Eyh∼πD(·|x,y1:h−1)[ϕ(x, y1:h)] is the average feature vector given the prefix
(x, y1:h−1). We can interpret the inherent variance σ2

⋆ as a notion of effective sequence length; it
captures the number tokens that are “pivotal” in the sense that they have high variation conditioned
on the prefix; the name reflects the observed phenomenon that, in language modeling, most tokens
are near-deterministic given their prefix, with only a few having high entropy (Abdin et al., 2024).
Thus, while σ2

⋆ can be as large as B2H in the worst case, we expect it to be smaller in general.

Theorem 4.2 (Overparameterized autoregressive linear models). Consider the autoregressive linear
model (2), and suppose Assumptions 2.1 and 2.2 hold. For any N ≥ 2, next-token prediction achieves

E[CovN (π̂)] ≲
√

σ2
⋆

n·logN + B2

n . (6)

Similar to Theorem 4.1, the first term in Eq. (6) can be viewed as “fine-grained”, but decreases with the
tail parameter N , while the second “coarse-grained” term does not decrease with N but will typically
be smaller to begin with. We prove (details in Proposition K.1) that this result is tight in the sense that
if σ2

⋆ ≍ H , n ≥ H is indeed necessary to achieve good coverage in the high-dimensional regime.

We view the introduction of the inherent variance σ2
⋆ as an instance-dependent notion of complexity

for autoregressive models to be a non-trivial conceptual contribution, which may find broader use.

5 STOCHASTIC GRADIENT DESCENT THROUGH THE LENS OF COVERAGE

The coverage-based generalization guarantees for next-token prediction in the prequel apply to
general model classes Π, but consider the empirical maximizer π̂ = argmaxπ∈Π L̂n(π) of the
next-token prediction (maximum likelihood) objective, in the vein of classical techniques in learning
theory. For our second set of main results, we focus on autoregressive linear models (2) but take a
more realistic approach and analyze stochastic gradient descent (SGD) in the single-pass regime. This
setup is motivated by contemporary (“compute-optimal”) language model training, which typically
uses one or fewer passes over the training corpus (Kaplan et al., 2020; Hoffmann et al., 2022).

5.1 STOCHASTIC GRADIENT DESCENT HAS SUBOPTIMAL COVERAGE

For the next-token prediction objective, single-pass stochastic gradient descent (SGD) takes the form4

θt+1 ← ProjΘ(θ
t + η∇ log πθt(yt | xt)), (7)

for xt ∼ µ and yt ∼ πD(· | xt), where η > 0 is the learning rate. As the next-token prediction
loss L(θ) := EπD [− log πθ(y | x)] is convex under this parameterization, we can show that SGD
converges to πD in KL divergence. This implies a coverage bound, albeit a suboptimal one.

Proposition 5.1 (SGD for autoregressive linear models). Upper bound: Suppose Assumptions 2.1
and 2.2 hold. As long as η ≤ 1

16HB2 , it holds that E
[
1
T

∑T
t=1 DKL(πD ∥πθt)

]
≤ 1

ηT + 4ησ2
⋆.

Choosing η to minimize this bound gives

E
[
1
T

∑T
t=1 CovN (πθt)

]
≲ 1

logN ·
(√σ2

⋆

T + B2H
T

)
. (8)

Lower bound: Suppose that B ≥ c·log2(TH). Then there exists an autoregressive linear class Π such
that for any constant step size η > 0, there exists an instance πD ∈ Π with σ⋆ ≤ 1 such that with prob-
ability at least 0.5, the SGD iterates satisfy CovN (πD ∥πθt) ≥ c ·min

{
H

T logN , 1
}

for any t ∈ [T ].

The coverage bound in Eq. (8) (which follows by passing from KL to coverage through Proposi-
tion 3.1) is similar to Theorem 4.2, except that the second term B2H

T has an unfortunate dependence
on the sequence length H . The lower bound shows that this dependence is tight, and SGD can indeed

4ProjΘ(·) denotes Euclidean projection onto Θ, so this is SGD on the loss L(θ) := E[− log πθ(y | x)].
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experience poor coverage. The failure of SGD in Proposition 5.1 is related to heterogeneity across
prompts: there are some prompts for which the effective scale of the gradient in Eq. (7) grows with H ,
leading to divergence unless we use a small learning rate η ≲ 1

HB . Yet for other prompts, the effective
gradient range is small, leading to slow convergence (on the order of Ω(H) steps) unless η ≫ 1

HB .

Remark 5.1 (Sequence-level SGD). The update in Eq. (7) can be interpreted as a “sequence-
level” form of SGD, since we perform a single gradient step for each full sequence yt (note that
∇ log πθt(yt | xt) =

∑H
h=1∇ log πθt(yt

h | xt, yt

1:h−1)). We view this as a model for what is
done in practice, whereby one performs SGD on sequences of tokens spanning some fixed context
window. While this context window may be shorter than the full training example (e.g., a long article),
understanding the implications of a limited context window is beyond the scope of this work.

5.2 GRADIENT NORMALIZATION IMPROVES COVERAGE

To address the suboptimality of SGD, we consider gradient normalization as a simple intervention.
For a mini-batch D = {(xi, yi)}Ki=1 of K samples from πD, define the batch stochastic gradient as
ĝ(θ;D) = 1

|D|
∑

(x,y)∈D∇ log πθ(y | x). We consider the following normalized SGD update:

θt+1 ← ProjΘ
(
θt + η · ĝ(θt;Dt)

λ+∥ĝ(θt;Dt)∥
)
; (9)

hereDt is a mini-batch with K fresh samples drawn i.i.d. from πD, and λ > 0 is a regularization param-
eter for numerical stability. We show that this update achieves a horizon-independent coverage bound.

Theorem 5.1. Suppose Assumption 2.1 and Assumption 2.2 hold. Let T,K ≥ 1, N ≥ 3 be given.
For an appropriate choice of η, λ > 0, the normalized SGD update (9) achieves the following bound:

E
[
1
T

∑T
t=1 CovN (πθt)

]
≲
√

σ2
⋆

T ·logN + B2

T + B
K·logN . (10)

To achieve E[CovN (π̂)] ≤ ε for a target level ε > 0, it suffices to choose T = O
( σ2

⋆

ε2 logN + B2

ε

)
,

K = O
(

B
ε logN + 1

)
, giving total sample complexity n = TK = O

( σ2
⋆B

ε3 log2 N
+

B3+σ2
⋆

ε2 logN + B2

ε

)
.

Theorem 5.1 shows that gradient normalization achieves horizon-independent coverage with a
qualitatively similar rate to the guarantee for next-token prediction in Theorem 4.2: To achieve
coverage ε, both rates scale as poly

( σ2
⋆

logN , B, ε−1
)
, though the dependence on ε for Theorem 5.1

is worse. We view this as another instance of the coverage principle, as the rate achieved by gradient
normalization goes beyond what can be achieved by passing through KL divergence. We emphasize
that minibatching alone is not enough to achieve this result; rather, minibatching is necessary to
avoid excessive bias once we introduce gradient normalization.

As a remark, the normalized SG update in (9) is closely related to SignSGD (Balles & Hennig, 2018)
and Adam (Kingma & Ba, 2015) as shown by Bernstein & Newhouse (2024). We believe that similar
coverage guarantees could potentially be shown for these methods using our techniques.

Distillation. As an additional result, we show (Theorem F.2 in Appendix F.3) that for a distillation
setting, where πD corresponds to a teacher model and we have access to its per-token logits, we can
derive an improved gradient normalization scheme that fully closes the gap with Theorem 4.2.

6 INTERVENTIONS FOR BETTER COVERAGE

In this section, we develop new interventions that improve coverage (and downstream performance)
beyond the conventional algorithms analyzed in Sections 4 and 5. We view these results as promising
proofs of concept, opening the door for further research into interventions driven by coverage.

6.1 IMPROVING COVERAGE AT TEST TIME

In this section, we show that a new test-time decoding strategy inspired by test-time training (Sun
et al., 2020; Akyürek et al., 2025) leads to improved coverage when combined with token-level SGD.

We begin by departing from Eq. (7) and learning models with a token-level SGD update, defined as

θt,h+1 = ProjΘ
(
θt,h + η∇ log πθt,h(yt

h | xt, yt

1:h−1)
)
, for h = 0, · · · , H − 1, (11)

8
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and θt+1 ≡ θt+1,0 := θt,H for t ∈ [T ], and where (xt, yt

1:H) ∼ πD. Below we show that, when
combined with a test-time training-like update that performs token-level gradient updates during test
time, the updates in Eq. (11) can circumvent the H-dependence in the lower bound of Proposition 5.1.

Concretely, we consider a distribution πTTT
θ : X → ∆(YH) formally introduced in Appendix L.1,

which can be interpreted as an augmented version of the autoregressive linear model πθ that uses
test-time training to sample. Given a prompt x, we first sample y1 ∼ πθ(· | x), then perform a
gradient step θ′ ← ProjΘ(θ + η∇ log πθ(y1 | x)) to increase the probability of the token we just
sampled. We then sample y2 ∼ πθ′(· | x, y1), update θ′′ ← ProjΘ(θ

′ + η∇ log πθ′(y2 | x, y1)), and
so on. Once the full sequence y1:H is sampled, we reset back to θ, to process the next example at
test-time. We show that when augmented with this test-time sampling scheme, token-level SGD
achieves a horizon-independent coverage bound that matches and even slightly improves upon the
bound for next-token prediction in Theorem 4.2.

Theorem 6.1 (Token-level SGD with test-time training). Suppose Assumption 2.1 and As-
sumption 2.2 hold. For a suitably chosen parameter η > 0, token-level SGD (11) achieves

E
[
1
T

∑T
t=1 DKL(πD ∥πTTT

θt )
]
≲
√

σ2
⋆

T + B2

T , and thus E
[
1
T

∑T
t=1 CovN (πTTT

θt )
]
≲ 1

logN

(√σ2
⋆

T + B2

T

)
.

This improves Theorem 4.2 by a factor of 1/
√
logN on the leading term and a factor of 1/ logN

on the second term. Furthermore, the algorithm bypasses the lower bound on KL divergence for
proper methods (Proposition 3.2), demonstrating a provable benefit of being improper.

6.2 SELECTING FOR COVERAGE

We now consider the problem of selecting a model (e.g., checkpoint) from a small number of
candidates to achieve the best coverage. We introduce a tournament-like procedure that improves
upon maximum likelihood in that it removes the requirement that πD ∈ Π; it is guaranteed to find
a model in the class with good coverage if one exists, even if πD itself is not in the class. As an
algorithmic intervention, we envision using this procedure to select a single training checkpoint or
hyperparameter configuration to use for RL fine-tuning or test-time scaling. Indeed, as demonstrated
in Figure 1, using cross-entropy as a selection criterion—as is standard—may result in poor coverage,
and these procedures can be used to select better checkpoints. Our results here concern the general
setting in Section 2, and are not restricted to autoregressive linear models.

A simple tournament estimator for coverage. Given a dataset D = {(xi, yi)}i∈[n], define

ĈovN (π′ ∥π) := 1
n

∣∣{i ∈ [n] : π′(yi|xi)
π(yi|xi) ≥ N

}∣∣, (12)

which can be interpreted as an empirical version of the coverage profile CovN (π′ ∥π) in Eq. (1) when
π′ = πD. For N ≥ 1, we consider the estimator

π̂ := argminπ∈Π maxπ′∈Π ĈovN (π′ ∥π). (13)

Intuitively, this estimator chooses the model π that minimizes the maximum coverage against any other
model π′ in the class Π. When Π is small, we can implement this tournament by simply evaluating
the empirical coverage in Eq. (12) for each pair. The main guarantee for this estimator is as follows.

Theorem 6.2. Let N ≥ 1 be given. Then, for any a ∈ [0, 1], with probability at least 1 − δ, the
tournament estimator (13) achieves

CovN1+a(π̂) ≲ minπ∈Π CovNa(π) + 1
N1−a + log(|Π|/δ)

n . (14)

This shows that the tournament achieves a coverage profile nearly as good as the best-in class, except
for a small polynomial blow up, in that we bound the coverage at level N1+a in terms of the coverage
for the best-in class at level Na.

Infinite class and improving the tournament. Eq. (13) can also be applied to general, infinite
classes Π. In this case, it turns out that it improves upon the coverage achieved by the maximum
likelihood estimator in Theorem 4.1 (see Theorem 6.2′). Furthermore, in Appendix F.4, we describe
an improved tournament estimator that is able to remove the 1/N1−a term from Theorem 6.2, thereby
achieving nontrivial guarantees even when the coverage parameter N is a constant.

DISCUSSION AND FUTURE WORK

See Appendix A for discussion and open problems, and Appendix F for additional results.
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REPRODUCIBILITY STATEMENT

We provide full proofs for all theoretical results in the appendix. Appendix G includes extensive
experiment setup and implementation details for all empirical results. The source code is included
in the supplementary material, along with the plotting scripts and data to reproduce Figure 1 and
Figure 2.
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Part I

Additional Discussion and Results
A DISCUSSION AND FUTURE WORK

Our work, through the lens of coverage, takes a first step toward clarifying the mechanisms through
which pre-training with next-token prediction leads to models for which post-training is effective.

A.1 SIMPLIFICATIONS IN THE PROBLEM FORMULATION

In the course of the paper we have made various simplifying assumptions, some of which can be
relaxed in a straightforward fashion, while others are more fundamental:

• In language model pre-training, the pre-training corpus consists of sequences y with varying lengths
H , and does not typically split examples into prompts and responses. Our formulation in Section 2
is a simplification (one that is closer in spirit to supervised fine-tuning), but we expect that the
insights derived here can extend to the general setting.

• Much of our analysis focuses on the realizable/well-specified setting where πD ∈ Π. We give
evidence in Appendix F that the coverage profile is more tolerant to misspecification than KL-
divergence, but we leave a deeper investigation for future work.

• Our treatment assumes the distribution over prompts µ is the same for pre-training and post-training.
This is straightforward to relax at the cost of introducing an additional coverage or distribution shift
coefficient to handle the mismatch between the two distributions.

• We show that a good coverage profile is necessary for BoN to succeed on downstream tasks. While
there is ample evidence current RL techniques can fail in the absence of coverage (Yue et al., 2025;
Gandhi et al., 2025; Wu et al., 2025), it is not clear what the minimal conditions required for RL
are, and they may be weaker than coverage.

A.2 FUTURE WORK

Our results open several new directions for future research.

• Interventions for coverage. There is much to be done in understanding and improving existing
algorithms such as optimizers through the lens of coverage. Our results in Section 6 show initial
promise for using coverage to guide design of optimizers and model selection schemes, but the
algorithm design space remains opaque, and there may be significant room for futher improvement.
More ambitiously, one could imagine re-structuring the entire language modeling pipeline itself
around coverage.

• Semantic coverage. The notion of coverage we focus on, the coverage profile, is mathematically
convenient but may be conservative in regard to downstream performance, since it only depends
on the model through its predicted probabilities. An important direction for future work is to
understand pre-training and post-training through fine-grained “semantic” notions of coverage
that more explicitly account for the representations learned by next-token prediction.

B ADDITIONAL RELATED WORK

Related empirical observations. On the empirical side, our results are connected to a line of
work that studies to scaling laws for zero-shot downstream performance based on pre-training
metrics such as cross-entropy (Gadre et al., 2024; Huang et al., 2024; Chen et al., 2024; Sardana
et al., 2024). Several empirical works have also investigated how specific capabilities scale with
additional pre-training, including machine translation (Ghorbani et al., 2022), knowledge capacity and
memorization (Allen-Zhu & Li, 2025; Lu et al., 2024), and multi-hop reasoning (Wang et al., 2025).
Our findings are consistent with Liu et al. (2022); Zeng et al. (2025); Lourie et al. (2025); Springer
et al. (2025), who observe that cross-entropy is not always sufficient for predicting downstream
performance, and in some cases can be anti-correlated.
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Perhaps most closely related, Chen et al. (2025) show empirically the decreasing cross-entropy in
pre-training does not necessarily lead to better pass@N performance, and that pass@N can even
degrade as pre-training proceeds—a finding similar to Figure 1.5 Our theoretical results can be
viewed as placing their findings on stronger theoretical footing; conversely, their empirical results
provide strong motivation for our theoretical treatment. Chen et al. (2025) also study a modification to
the maximum likelihood objective aimed at improving coverage (in the spirit of Section 6), but, when
instantiated with chain-of-thought, their approach requires a small space of possible final answers.

We mention in passing a few additional works. Chu et al. (2025) explored the different synergistic
roles that supervised fine-tuning (SFT) and RL play in language model development, and subsequent
work observed that the best checkpoint to start RL from can sometimes be in the middle of SFT (Jin
et al., 2025). Bansal et al. (2025) empirically identified the coverage of teacher-generated synthetic
data as an important indicator of how effective distillation would be for reasoning tasks. Several
papers have also investigated empirical tradeoffs between model size and reasoning performance
under best-of-N sampling (Snell et al., 2025; Brown et al., 2025).

Coverage in post-training. Coverage metrics similar to coverage profile play a central role in
theoretical literature on post-training and test-time algorithms (Huang et al., 2025a;b;c; Foster et al.,
2025; Liu et al., 2024; Song et al., 2024; Gao et al., 2024; Liu et al., 2024; Ji et al., 2024), which
analyze algorithms under the assumption that the base model has good coverage; our work can be
viewed as providing theoretical motivation for this assumption.

Various notions of coverage similar to coverage profile have also appeared in the more classical
literature on offline reinforcement learning (Farahmand et al., 2010; Chen & Jiang, 2019; Xie &
Jiang, 2020; Jin et al., 2021; Foster et al., 2022; Jiang & Xie, 2024); here coverage is typically used
to quantify the quality of an offline dataset rather than a model/policy itself.

Generalization in deep learning. Understanding the generalization behavior of deep learning
models has been a central focus of the theory community for the last decade (Neyshabur et al., 2015;
Zhang et al., 2017; Bartlett et al., 2017; Jacot et al., 2018; Belkin et al., 2019; Nagarajan & Kolter,
2019; Bartlett et al., 2020; Bartlett & Montanari, 2021). Our approach is somewhat complementary,
in the sense that it focuses on the specific objective of next-token prediction with the logarithmic loss,
and aims to understand when minimizing this loss leads to generalization for an alternative objective,
coverage profile. We expect that our techniques can be combined with these more general results to
provide more refined understanding of generalization for coverage profile with deep models.

From this line of work, perhaps most closely related are Lotfi et al. (2023; 2024); Finzi et al.
(2025), which aim to provide non-vacuous generalization bounds for the cross-entropy loss itself for
autoregressive models.

Analysis of maximum likelihood. On the theoretical side, our results are most closely related to a
classical line of work in statistics (Wong & Shen, 1995; van de Geer, 2000; Zhang, 2006), which
shows that maximum likelihood can converge to the true model in Hellinger distance (or other Renyi
divergences) under minimal assumptions, even when KL divergence is poorly behaved (large or
infinite). Our results in Section 4 are similar in spirit, but provide a more fine-grained perspective,
showing that coverage profile can converge even faster than these results might suggest, particularly
as one ventures further into the tail. Our analysis has some conceptual similarity to the small ball
method of Mendelson (2014; 2017), which we elaborate on in Appendix J.1.

Our techniques are also related to recent work of Foster et al. (2024); Rohatgi et al. (2025), which
specialize the general techniques above to autoregressive models (e.g., under Hellinger distance).

C PROPERTIES OF THE COVERAGE PROFILE

Before proceeding, we briefly discuss some conceptual properties of the coverage profile that will be
helpful to keep in mind.

Remark C.1 (Coverage profile as a refinement of cross-entropy). While we position the coverage
profile as a new quantity of interest, it can also be viewed as a fine-grained, inference budget-sensitive

5While Chen et al. (2025) use the term “coverage”, it is used as a synonym for pass@N, and is not specifically
related to the notion of the coverage profile we consider here.
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refinement of cross-entropy. Concretely, if we write

CovN (πD ∥ π̂) = PπD

[
log

πD(y | x)
π̂(y | x)

≥ logN

]
, (15)

it becomes clear that the coverage profile is simply the cumulative distribution function (CDF) of
the log density ratio X := log πD(y|x)

π̂(y|x) , while KL-divergence corresponds to the mean: EπD [X]. It is
well known that the CDF of a random variable is a more informative statistic than its mean (Durrett,
2019); the former can be much more sensitive to the model’s behavior at the tail than the latter.
Indeed, the coverage profile can behave very differently across scales, as shown by Figure 1.6

Remark C.2 (KL divergence and coverage profile are not estimable). We emphasize that KL-
divergence and the coverage profile are not estimable quantities in general, due to the fact both
depend on the unknown density πD(y | x) for the data distribution. This motivates the use of cross-
entropy in practice, as the former is an estimable upper bound on DKL(πD ∥ π̂). Analogously, we
show in Section 6.2 that various estimable proxies for the coverage profile can be used to select
models with good coverage.

An exception is the expert distillation setting (see Section 6.1), where πD is a teacher network for
which the log-probabilities log πD(y | x) are available.

Remark C.3 (Sequence-level versus answer-level coverage). Our discussion so far has focused
on coverage at the sequence level. For reasoning tasks, it is natural to explicitly factorize the
response y = (ycot, yans) into a chain-of-thought (reasoning trajectory) component ycot and an
answer component yans. For this setting, a weaker notion coverage is the following answer-level
coverage profile:

CovansN (πD ∥ π̂) := PπD

[
πD(yans | x)
π̂(yans | x)

≥ N

]
.

Informally, the answer-level coverage profile is sufficient for downstream BoN success for tasks
where it is only important to produce the right answer, not a correct reasoning trace. We have
CovansN (πD ∥ π̂) ≤ CovN (πD ∥ π̂), but the former can be strictly smaller in general.

We hope that by providing a comprehensive understanding of sequence-level coverage, our work
can set the stage for future research on answer-level coverage and other finer-grained notions of
coverage; we give some initial results along these lines in Appendix F.

6Interestingly, we show (Proposition D.1) that if the coverage profile satisfies a certain growth condition
uniformly for all scales M , then it implies a bound on KL-divergence—a weak converse to Proposition 3.1.
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D SUPPORTING RESULTS

D.1 PROPERTIES OF THE COVERAGE PROFILE

Proposition D.1 (KL-to-coverage conversion). For all models πD and π and M ≥ 2, we have

CovN (π) ≤ DKL(πD ∥π)
logN − 1 + 1

N

.

Proof of Proposition D.1. Lemma 27 of Block & Polyanskiy (2023) states that for any N > 1 and
any convex f : [0,∞]→ [0,∞] with f(1) = f ′(1) = 0,

CovN (π) = PπD

[
πD(y | x)
π(y | x)

> N

]
≤ NDf (πD ∥ π)

f(N)
, (16)

where Df (πD ∥ π) := Eπ

[
f
(
dπD

dπ

)]
. Applying this with KL-divergence, which corresponds to

f(x) = x log x− x+ 1 with f ′(x) = log x, we have that

N

f(N)
=

1

logN − 1 + 1/N
, (17)

which gives the result.

Proposition D.2 (Tightness of KL-to-coverage conversion). For any N ≥ 2, there exist models πD

and π̂ such that

CovN (π̂) ≥ DKL(πD ∥ π̂)
logN − 1

2 + 1
2N

.

Proof of Proposition D.2. Consider πD = Ber(p) and π̂ = Ber(p/N) with p ≤ 1
2 . Then

CovN (π̂) = p and

DKL(πD ∥ π̂) = p logN + (1− p) log
1− p

1− p
N

≤ p logN + (1− p)

(
1− p

1− p
N

− 1

)
= p

(
logN − (1− p)

1− 1
N

1− p
N

)
≤ p ·

(
logN − 1

2
+

1

2N

)
.

This is the desired result.

Proposition D.3 (Uniform coverage decay implies bounded KL). Given π, πD : X → ∆(Y), define
Wmax := supx,y

πD(y|x)
π(y|x) and

C := sup
N≥1
{CovN (π) · logN},

where we note that C ≤ logWmax. It holds that

DKL(πD ∥π) ≤ C · (1 + log(log(Wmax)/C)). (18)

Proof of Proposition D.3. Let δ > 0 a fixed parameter, and define X := πD/π. Then we have

DKL(πD ∥π) = EπD [log(X)] ≤ EπD [log(X)I{log(X) > δ}] + δ. (19)
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Since X ≤Wmax almost surely, we can write

EπD [log(X)I{log(X) > δ}] =
∫ log(Wmax)

δ

PπD [log(X) > t]dt (20)

=

∫ log(Wmax)

δ

PπD

[
X > et

]
dt (21)

≤ C

∫ log(Wmax)

δ

1

t
dt (22)

= C log

(
log(Wmax)

δ

)
. (23)

The result now follows by setting δ = C.

Proposition D.4 (Hellinger-to-coverage conversion). For all models πD and π and N > 1, we have

CovN (πD ∥π) ≤
2N

(
√
N − 1)2

·D2
H(πD, π).

Proof of Proposition D.4. Without loss of generality, we assume Y is discrete in the following proof.
By definition,

D2
H(πD, π) =

1

2
Ex∼πD

[∑
y

(√
πD(y | x)−

√
π(y | x)

)2]

≥ 1

2
Ex∼πD

[∑
y

πD(y | x)
(
1− 1√

N

)2

I
{
π(y | x) ≤ 1

N
πD(y | x)

}]

=
1

2

(
1− 1√

N

)2

PπD

[
πD(y | x)
π(y | x)

> N

]
,

where the inequality follows from the fact that
√
πD(y | x)−

√
π(y | x) ≥

(
1− 1√

N

)√
πD(y | x)

is implied by π(y | x) ≤ 1
N πD(y | x). Re-organizing completes the proof.

Proposition D.5 (Chain rule for coverage profile). For any models πD, πT, and π̂, and any M1,M2 ≥
2, we have

CovM1
(πT ∥ π̂) ≤M2 · CovM1/M2

(πD ∥ π̂) + CovM2
(πT ∥ πD). (24)

Proof of Proposition D.5. We can write

CovM1
(πT ∥ π̂) = PπT

[
πT(y | x)
π̂(y | x)

> M1

]
= PπT

[
πT(y | x)
π̂(y | x)

> M1,
πT(y | x)
πD(y | x)

≤M2

]
+ PπT

[
πT(y | x)
π̂(y | x)

> M1,
πT(y | x)
πD(y | x)

> M2

]
≤M2PπD

[
πD(y | x)
π̂(y | x)

> M1/M2

]
+ PπT

[
πT(y | x)
πD(y | x)

> M2

]
= M2CovM1/M2

(πD ∥ π̂) + CovM2
(πT ∥ πD).

D.2 ANALYSIS OF BEST-OF-N SAMPLING UNDER A GOOD COVERAGE PROFILE

In this section we analyze the performance of the Best-of-N algorithm under a good coverage profile.
Let a base model π̂ be given, and let a reward function rT(x, y) ∈ [0, 1] be given. Let πT : X → ∆(Y)
denote an arbitrary task-specific comparator policy.

We let π̂BoN
N (x) denote the distribution of the Best-of-N algorithm with parameter N , which draws N

responses y1, . . . , yN i.i.d.∼ π̂(· | x) and returns y = argmaxyi
rT(x, yi).
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Proposition D.6 (Coverage implies success for BoN). Let M ≥ 1 be given. For any ε > 0, if
N ≥ 2M log(ε−1) and CovM (πT ∥ π̂) ≤ 1

2 , then we are guaranteed that

Ex∼µ

[
rT(x, πT(x))− rT(x, π̂

BoN
N (x))

]
≤ CovM (πT ∥ π̂) + ε. (25)

Proof of Proposition D.6. This is an immediate consequence of Lemma F.1 in Huang et al. (2025b),
noting that we can bound EM (πT ∥ π̂) ≤ CovM (πT ∥ π̂).

Proposition D.7 (Coverage is necessary for BoN). For any model π̂ and reference πT, and for any
N ≥ 2, there exists a reward function rT(x, y) ∈ {0, 1} such that

Ex∼µ

[
rT(x, πT(x))− rT(x, π̂

BoN
N (x))

]
≥ 1

2
Cov2N (πT ∥ π̂). (26)

Proof of Proposition D.7. For any x ∈ X , we define Sx :=
{
y ∈ Y : πT(y|x)

π̂(y|x) ≥ 2N
}

and let
rT(x, y) = I{y ∈ Sx}.
By definition, for any fixed x ∈ X , it holds that

rT(x, π̂
BoN
N (x)) = Py∼π̂BoN

N (x)(y ∈ Sx) = P
y1,...,yN i.i.d.∼ π̂(·|x)

(∃i ∈ [N ], yi ∈ Sx)

= 1−
(
1− Py∼π̂(·|x)(y ∈ Sx)

)N ≤ N · Py∼π̂(·|x)(y ∈ Sx)

= N ·
∑
y∈Sx

π̂(y | x) ≤ N ·
∑
y∈Sx

1

2N
πT(y | x) =

1

2
Py∼πT(·|x)(Sx),

where we use the fact that π̂(y | x) ≤ 1
2N πT(y | x) for any y ∈ Sx. We also note that

Px∼µ,y∼πT(·|x)(y ∈ Sx) = Cov2N (πT ∥ π̂). Therefore,

Ex∼µ

[
rT(x, πT(x))− rT(x, π̂

BoN
N (x))

]
≥ 1

2
Cov2N (πT ∥ π̂).

D.3 PROPERTIES OF MAXIMUM LIKELIHOOD

Proposition D.8 (Convergence of maximum likelihood in Hellinger distance). Assume that πD ∈ Π.
With probability at least 1− δ, the maximum likelihood estimator π̂ := argmaxπ∈Π L̂n(π) satisfies,

D2
H(πD, π̂) ≲ inf

ε>0

{
logN∞(Π, ε)

n
+ ε

}
, (27)

and consequently

CovM (π̂) ≲ inf
ε>0

{
logN∞(Π, ε)

n
+ ε

}
. (28)

for all M ≥ 2.

Proof of Proposition D.8. The first bound follows from Proposition B.2 of Foster et al. (2024). The
second bound follows from applying Proposition D.4.

Proposition D.9 (Convergence of maximum likelihood in KL). Assume that πD ∈ Π, and that all
π ∈ Π satisfy

∥∥πD

π

∥∥
∞ ≤ Wmax. With probability at least 1 − δ, the maximum likelihood estimator

π̂ := argmaxπ∈Π L̂n(π) satisfies,

DKL(πD ∥ π̂) ≲ logWmax · inf
ε>0

{
logN∞(Π, ε)

n
+ ε

}
, (29)

and consequently

CovM (π̂) ≲
logWmax

logM
· inf
ε>0

{
logN∞(Π, ε)

n
+ ε

}
, (30)

for all M ≥ 2.
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We remark that the log(Wmax)-factor in Eq. (29) can be tight in general. For example, for the class Π
considered in Proposition 3.2, it holds that logN∞(Π, ε) ≲ log(1/ε) ∨ 1 and

∥∥πD

π

∥∥
∞ ≤ e2H .

Proof of Proposition D.9. By Lemma 4 of Yang & Barron (1998), it holds that

DKL(πD ∥ π̂) ≤ (2 + log(Wmax))D
2
H(πD, π̂).

Therefore, the first bound then follows from Eq. (27). The second bound follows from applying
Proposition D.1.

D.4 AUTOREGRESSIVE MODELS: COVERAGE AND STOPPED KL-DIVERGENCE

Proposition D.10. Define

Dseq,N (πD ∥π) = E(x,y1:H)∼πD
min

{
logN,

H∑
h=1

DKL(πD(· | x, y1:h−1) ∥π(· | x, y1:h−1))

}
. (31)

Then for N > e, it holds that

CovN (πD ∥π) ≤
2

logN − 1
Dseq,N (πD ∥π). (32)

Proof of Proposition D.10. Consider the stopping time

τ := min

h : h = H or
∑
j≤h

DKL(πD(yj+1 = · | x, y1:j) ∥π(yj+1 = · | x, y1:j)) > logN

.

Then, for the process Y τ = (x, y1:τ ), we have the chain rule:

DKL(πD(Y
τ = ·) ∥π(Y τ = ·))

= EπD

[
τ∑

h=1

DKL(πD(yh = · | x, y1:h−1) ∥π(yh = · | x, y1:h−1))

]

≤ EπD min

{
logN,

H∑
h=1

DKL(πD(yh = · | x, y1:h−1) ∥π(yh = · | x, y1:h−1))

}
,

where the inequality uses
∑

j<τ DKL(πD(yj+1 = · | x, y1:j) ∥π(yj+1 = · | x, y1:j)) ≤ logN , which
follows from the definition of τ . Therefore, by Proposition D.1, we have

PπD

(
πD(Y

τ )

π(Y τ )
≥ logN

)
≤ DKL(πD(Y

τ = ·) ∥π(Y τ = ·))
logN − 1 + 1/N

.

Finally, we bound

PπD

(
πD(y1:H | x)
π(y1:H | x)

≥ N

)
≤ PπD(τ < H) + PπD

(
πD(Y

τ )

π(Y τ )
≥ logN

)
.

By Markov’s inequality,

PπD(τ < H) ≤ PπD

(
H∑

h=1

DKL(πD(· | x, y1:h−1) ∥π(· | x, y1:h−1)) > logN

)

≤ 1

logN
EπD min

{
logN,

H∑
h=1

DKL(πD(· | x, y1:h−1) ∥π(· | x, y1:h−1))

}
.

Combining the inequalities above completes the proof.

Proposition D.11. For any N ≥ 1, δ ∈ (0, 1), it holds that

CovN (πD ∥π) ≥ PπD

(
H∑

h=1

D2
H(πD(· | x, y1:h−1), π(· | x, y1:h−1)) ≥ log(N/δ)

)
− δ.
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Proof of Proposition D.11. By definition,

Eyh∼πD(·|x,y1:h−1) exp

(
−1

2
log

πD(yh | x, y1:h−1)

π(y | x, y1:h−1)

)
=
∑
yh∈Y

√
πD(yh | x, y1:h−1) · π(y | x, y1:h−1)

= 1−D2
H(πD(· | x, y1:h−1), π(· | x, y1:h−1)) ≤ exp

(
−D2

H(πD(· | x, y1:h−1), π(· | x, y1:h−1))
)
.

Therefore, it holds that

EπD exp

(
H∑

h=1

D2
H(πD(· | x, y1:h−1), π(· | x, y1:h−1))−

1

2
log

πD(yh | x, y1:h−1)

π(y | x, y1:h−1)

)
≤ 1.

By Markov inequality, this implies

PπD

(
1

2
log

πD(y1:H | x)
π(y1:H | x)

≤
H∑

h=1

D2
H(πD(· | x, y1:h−1), π(· | x, y1:h−1))− log(1/δ)

)
≤ δ.

To conclude, we note that

PπD

(
H∑

h=1

D2
H(πD(· | x, y1:h−1), π(· | x, y1:h−1)) ≥ log(N/δ)

)

≤ PπD

(
H∑

h=1

D2
H(πD(· | x, y1:h−1), π(· | x, y1:h−1)) ≥

1

2
log

πD(y1:H | x)
π(y1:H | x)

+ log(1/δ)

)

+ PπD

(
1

2
log

πD(y1:H | x)
π(y1:H | x)

+ log(1/δ) ≥ log(N/δ)

)
≤ δ + CovN (πD ∥π).

Re-organizing gives the desired result.

E COMPARISON TO CLASSICAL GENERALIZATION BOUNDS FOR MAXIMUM
LIKELIHOOD

In this section we briefly compare our main coverage-based generalization bound for maximum
likelihood to classical generalization bounds for maximum likelihood based on Hellinger distance
and KL-divergence.

Comparison to KL concentration. For general model classes Π, the best KL generalization bound
we are aware of is Proposition D.9 (Appendix D), which scales as roughly

DKL(πD ∥ π̂) ≲ logWmax · Cfine(Π, n)
under the assumption that all π ∈ Π obey a sequence-level density ratio bound

∥∥πD

π

∥∥
∞ ≤Wmax, where

logN is an apropriate notion of covering number; note that for the autoregressive linear class, we
have logWmax = BH , matching Proposition 3.2. Combining such a guarantee with Proposition 3.1
gives a coverage bound of roughly

CovN (π̂) ≲
logWmax

logN
· Cfine(Π, n);

this is rather uninteresting since CovN (π̂) = 0 for N ≥ Wmax; in other words, we do not get a
meaningful improvement as we scale N .

Asymptotic bounds for maximum likelihood. We also note that the classical theory of maximum
likelihood (e.g., Van der Vaart (2000)) provides the following asymptotic convergence rate for
d-dimensional parametric classes Π:

DKL(πD ∥ π̂) ≲
d

n
≲ Cfine(Π, n), n→ +∞.

While this upper bound does not scale with logWmax, it can only be attained with n ≥ n0 for a
sufficiently large burn-in cost n0 (typically scaling with logWmax itself or similar problem-dependent
parameters; see, e.g., Spokoiny (2012) for non-asymptotic bounds of this type).
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Comparison to Hellinger concentration. For general model classes Π, the best Hellinger general-
ization bound we are aware of is Proposition D.8 (Appendix D), which scales as roughly

D2
H(πD, π̂) ≲ Cfine(Π, n)

Combining such a guarantee with Proposition 3.1 gives a coverage bound of roughly

CovN (π̂) ≲ Cfine(Π, n)

for all N ≥ 2. Compare to the KL-based result above, this result gives a non-trivial bound on
coverage when N is constant (comparable to Theorem 4.1), but the issue is that it gives no further
improvement as we scale N .
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F ADDITIONAL RESULTS

F.1 TIGHTNESS OF THEOREM 4.1
To conclude, we show that the coarse and fine-grained terms in Theorem 4.1 are both tight in general.

Proposition F.1. The following lower bounds on coverage hold for the maximum likelihood estimator.

(a) Coarse rate: For any n, d ≥ 1 and B ≥ log(5n), there exists a class Π with logN∞(Π, α) ≲
d log(B/α) ∨ 1 and πD ∈ Π such that with probability at least 0.5, it holds that for any N ≤ eB ,

CovN (π̂) ≥ c · d
n
.

(b) Fine rate: For any n ≥ d ≥ 1, N ≥ 1, there exists a class Π and πD ∈ Π such that |Π| = 2d + 1

and N∞(Π, α) ≤ 2 for any α ≥
√

d
n , and with probability at least 0.5, it holds that

CovN (π̂) ≥ c · d

n · logN
.

Informally, case (a) shows that for the class Π under consideration, the coverage does not decrease
with logN until N is trivially large such that logN∞(Π, logN) = 0; this is precisely the behavior
of the coarse term in Theorem 4.1, so this implies there is no hope of removing this term. Meanwhile,
case (b) can be interpreted as showing that there is no hope of replacing the high-precision covering
number found in the fine-grained term in Theorem 4.1 with a coarser notion (e.g, at the scale in the
coarse-grained term), since the rate grows with d ≈ log|Π| even though logN (Π, α) is constant for

α ≥
√

d
n . We note that Proposition F.1 is an algorithm-specific lower bound, not an information-

theoretic lower bound; we show in Section 6.2 is that it is possible to improve over Theorem 4.1 with
algorithms explicitly designed to optimize for coverage.

F.2 MAXIMUM LIKELIHOOD: TIGHTER RATES FOR CONVEX CLASSES

In the following, we analyze the MLE for convex model class.

Assumption F.1 (Convex model class). The class Π satisfies Π = {πθ : θ ∈ Θ} for a convex,
compact parameter space Θ, and the mapping θ 7→ πθ(y | x) is concave for all x ∈ X , y ∈ Y .

Theorem F.1 (Fast convergence of coverage for convex classes). Let α ≥ 0, N ′ ≥ 1, N ≥ 2e2αN ′

be given, and suppose that Assumption F.1 holds. Define

θ⋆ = argmin
θ∈Θ

DKL(πD ∥πθ).

With probability at least 1− δ, the maximum likelihood estimator π̂ := argmaxπ∈Π L̂n(π) satisfies

CovN (π̂) ≤ CovN ′(πθ⋆) + C
logN∞ (Π;α) + log(δ−1)

n
+

Ce2αN ′

N
· inf
ε>0

{
logN∞(Π, ε)

n
+ ε

}
,

(33)

where C > 0 is an absolute constant.

In words, we show that for convex class, the coverage of MLE π̂ can be upper bounded by the
coverage of πθ⋆ , the best-in-class approximate of πD. In particular, when πD ∈ Π, we get the
following bound for convex class Π:

CovN (π̂) ≲
1

N
· inf
ε>0

{
logN∞(Π, ε)

n
+ ε

}
+

logN∞ (Π, c logN) + log(δ−1)

n

=
Cfine(Π, n)
N1−2c

+ Ccoarse(Π, N, n),

which improves upon the bound CovN (π̂) ≲ Cfine(Π,n)
logN + Ccoarse(Π, N, n) shown in Theorem 4.1 for

general class Π. The proof is presented in Appendix J.3.
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F.3 STOCHASTIC GRADIENT DESCENT: IMPROVED GRADIENT NORMALIZATION FOR
DISTILLATION

In this section, we focus on autoregressive linear models (2), and consider a variant of our setting
inspired by distillation . We assume that for each example (xi, yi

1:H), for each h = 1, . . . ,H , we have
access to the true next-token probabilities πD(yh | xi, yi

1:h−1) for all yh ∈ V . This is an unrealistic
assumption for general pre-training, but it is natural for distillation, where πD corresponds to a teacher
model (in particular, the next-token probabilities are already computed as part of a standard forward
pass through the teacher model).

For the distillation setting, we give an improved gradient normalization scheme that improves upon the
rate achieved by Theorem 5.1, closing the gap between SGD and maximum likelihood by matching
the guarantee for Theorem 4.2.

Define ϵθ(x, y1:h−1) := DKL(πD(· | x, y1:h−1) ∥πθ(· | x, y1:h−1)); note that for the distillation set-
ting, we can compute this quantity in closed form for any prefix x, y1:h−1 in the training corpus. We
consider the following (single-sample) truncated/normalized stochastic gradient estimator:

ĝθ(y | x) =
H∑

h=1

αθ(x, y1:h−1)∇ log πθ(yh | x, y1:h−1), (34)

where A := logN , and where

αθ(x, y1:h−1) =


1,

∑
j≤h−1 ϵθ(x, y1:j) ≤ A,

0,
∑

j<h−1 ϵθ(x, y1:j) > A,
A−

∑
j<h−1 ϵθ(x,y1:j)

ϵθ(x,y1:h−1)
, otherwise.

(35)

With this definition, we define the following normalized SGD update:

θt+1 = ProjΘ(θ
t + ηĝθt(yt | xt)). (36)

Intuitively, the idea behind the update in Eq. (34) is to truncate the gradient at the point where the
KL divergence between the teacher and student model is too large, and then normalize the gradient
by the KL divergence; this is inspired by the structural result Proposition D.10 in Appendix D.4,
where we show a close connection between the coverage profile and a certain “stopped” variant of
KL divergence.

Theorem F.2. Let T,N ≥ 1 be given. With a suitably chosen stepsize η > 0, the normalized SGD
update (9) achieves the following coverage bound:

E

[
1

T

T∑
t=1

CovN (πθt)

]
≲

√
σ2
⋆

T logN
+

B2

T
. (37)

This guarantee matches the rate of Theorem 4.2 for the maximum likelihood estimator. The proof is
presented in Appendix L.2.

F.4 AN IMPROVED TOURNAMENT VIA ON-POLICY GENERATION

We describe an improved tournament estimator that is able to remove that 1/N1−a term from
Theorem 6.2, meaning it achieves nontrivial guarantees even when the coverage parameter N is a
constant.

Note that the term 1/N1−a of Eq. (14) comes from the fact that PπD(
π(y|x)
πD(y|x) ≥ N) can be as large as

1/N in the worst case, implying that the π̂ produced by Eq. (13) may at best achieve a coverage of
1/N . To overcome this, we introduce an offset term:

π̂ := argminπ∈Π maxπ′∈Π {ĈovN (π′ ∥π)− 2Na · ĈovπN (π′ ∥π)} , (38)

where we define ĈovπN (π′ ∥π) := 1
n

∑n
i=1 Py∼π(·|xi)

(
π′(y|xi)
π(y|xi) ≥ N

)
for models π, π′, π. This

estimator augments the simple tournament in Eq. (13) with an “offset” term that accounts for the fact
that some of the models might be quite far from πD. The main guarantee is as follows.
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Theorem F.3. Fix N ≥ 1, a > 0 such that N1−2a ≥ 4. Suppose that there exists π ∈ Π such that
|log πD(y | x) − log π(y | x)| ≤ a logN for any x ∈ X , y ∈ Y . Then with probability 1 − δ, the
tournament estimator (38) achieves Cov2N1+a(π̂) ≲ log(|Π|/δ)

n .

Compared to Theorem 6.2, this tournament eliminates the additive 1/N1−a term. It does, however,
require a stronger condition on the best-in-class model π that |log πD(y | x)−log π(y | x)| ≤ a logN ,
which implies in particular that CovNa(π) = 0.

Infinite classes: Beating maximum likelihood. While we motivated the tournament estimators
through model/checkpoint selection with a finite class Π, both estimators can also be applied to
general, infinite classes Π. In this case, it turns out that they both improve upon the coverage achieved
by the maximum likelihood estimator in Theorem 4.1, even in the well-specified case where πD ∈ Π;
informally, the tournament estimators allow us to remove the fine-grained term in Theorem 4.1,
leaving only a coarse-grained term. See Theorem 6.2′ and Theorem F.3′ for the formal statements.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G EXPERIMENTS

We describe the general graph search task used throughout our experiments in Appendix G.1, then
detail the specific setups used for Figure 1 in Appendix G.2, and for Figure 2 in Appendix G.3.

G.1 GRAPH REASONING TASK

We evaluate our theoretical predictions using experiments in graph reasoning tasks, in which trans-
former models are trained to find paths between source and target nodes in graphs. Both graph
reasoning benchmarks and synthetic datasets have seen increasing use as abstractions for reasoning
problems and for probing language modeling phenomena (Sanford et al., 2024; Nagarajan et al.,
2025; Saparov et al., 2025; Bachmann & Nagarajan, 2024; Yehudai et al., 2025; Taylor et al., 2024;
Wang et al., 2023; Fatemi et al., 2024; Tang et al., 2025).

These tasks provide minimal abstractions of core reasoning problems, yet are expressive enough
to capture pre-training and fine-tuning phenomena. They also offer flexibility in problem structure
and difficulty: by specifying different graph topologies and path depths, we can modulate difficulty
and expose sources of hardness. At the same time, the simplicity of the setup enables training in
controlled settings with interpretable results with which to ground our theoretical predictions.

G.1.1 GRAPH SEARCH TASK DESCRIPTION

The graph search tasks in Appendix G.2 and Appendix G.3 share the same high-level structure, and
are comprised of

• A set of graph structures G that map bijectively to a set of prompts X , and induce the response
space Y

• A distribution over the prompts µ ∈ ∆(X )

• A data collection policy πD : X → ∆(Y)

Next, we describe the general details of the graph search task common to all experiments, and leave
the task details for each figure in the proceeding sections.

Graph Search. The nodes of all graphs in a given task G are drawn from the set [m], for some
integer m ∈ N. Each graph structure G = (V,E) ∈ G is comprised of a set of vertices (“nodes”)
V ⊆ [m] and edges E = {(u, v) : u, v ∈ V, u ̸= v}. It also contains one source node s ∈ V and one
target node t ∈ V , so that (G, s, t) specifies one search problem instance within the class. The search
task can be translated into an autoregressive sequence modeling problem using the below prompt and
response specifications.

Layered Graph Structure. For all experiments, we utilize a layered directed acyclic graph (layered
DAG) with a rectangular structure. Following the source node, the graph has L layers each with a
fixed number of nodes. In each layer, only a subset of its nodes has edges connecting to the next layer,
and we refer to these nodes as passable nodes, or the set

{
v ∈ V : deg+(v) > 0

}
that has non-zero

out-degree. In a given layer each passable node has edges to all nodes in the next layer, while the
remaining (non-passable) nodes in the layer cannot be used to traverse to the target, so that as soon as
the model outputs one such node its path cannot be valid.

In order to output a valid path from source to target, it is sufficient to keep outputting the passable
nodes in the next layer. In general a graph may have many valid paths, and in each experiment, πD

always samples valid paths. However, as will describe shortly, πD may use complex functions to
sample from only a subset of the valid paths, and π̂ must learn to cover such behavior.

The layered DAG offers a natural interpretation as an abstraction for reasoning problems. Following
passable nodes in valid paths corresponds to taking reasoning steps that make progress towards the
solution, and selecting paths via more complex functions maps to learning high-quality solutions that
accurately reflect desired properties for the problem’s solution.

Graphs to Prompts. Given a graph structure G = (V,E) ∈ G and a source node s ∈ V and target
node t ∈ V , the prompt x encodes the search problem as the adjacency list of G with the source and
target nodes appended to the end. The prompt is formatted as a string of the form

x : u_1 v_1 | u_2 v_2 | . . . | u_k v_k / s t =
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where (ui, vi) ∈ [m]2 are the vertices of the i-th edge in the adjacency list. For example, with edges
E = {(10, 23), (86, 47), . . . , (45, 32)}, the prompt is formatted as

x : 10 23 | 86 47 | . . . | 45 32 / 10 45 =

where | and / are special characters that separate two edges and the adjacency list from the source
and target nodes, respectively. The special character = is indicates the end of the prompt.

Graphs to Responses. Given a graph structure G = (V,E) ∈ G and a source node s ∈ V and
target node t ∈ V , the response y encodes the path from the source to the target node in G. In general
a graph may have multiple paths from source to target. The horizon H corresponds to the longest
path length in G, and a response takes the form of a string

y : s v_1 v_2 v_3 . . . v_H t

where vi ∈ [m] are the vertices of the i-th edge in the path.

Sequence Modeling Problem. In summary, a graph search task with set of graphs G induces an
autoregressive sequence modeling problem with a vocabulary space V = [m] ∪ {|, /, =}, prompts
X ⊆ V∗ corresponding to graph structures, and responses Y ⊆ VH corresponding to paths with
length at most H . In addition, the task is equipped with µ ∈ ∆(X ) and πD : X → ∆(Y) that is used
to collect the training dataset D = {(x, y)}, where x ∼ µ and y ∼ πD(x).

G.1.2 GENERAL IMPLEMENTATION DETAILS

Next, we describe the common implementation details of the graph search task.

Tokenizer. The tokenizer is a numeral tokenizer standard for graph reasoning tasks. Each node
v ∈ [m] is tokenized as its integer node value, and the special characters |, /, and = are tokenized as
m+ 1,m+ 2,m+ 3, respectively.

Transformer model. Throughout our experiments, we train causally-masked GPT2 transformer
models to minimize the cross-entropy loss using the Adam optimizer with fixed learning rate, and
perform a grid search over the parameters displayed in Table 1. Parameters with fixed values were
chosen based on related papers such as Bachmann & Nagarajan (2024). In both experiments, the
model architecture with 4 heads, 6 hidden layers, and 384 hidden dimensions worked best. We use
absolute positional encodings. Training iterations and grid search values for the learning rate are
different for each experiment, and discussed further below.

Hyperparameter Values
Number of heads {4, 6, 8}
Number of layers {3, 4, 6, 8}
Hidden dimensions 384
Activation function GeLU
Batch size 128
Weight decay 0.01

Table 1: Hyperparameter grid search values for transformer models in graph search.

G.2 EXPERIMENT DETAILS FOR FIGURE 1
The graph search task for Figure 1 exposes natural properties of pre-training data where cross-entropy
reduction comes at the cost of a worse coverage profile. In particular, because pre-training data is
diverse, the model in practice is generally unable to perfectly fit the distribution. When one mode of
behavior is better-represented than another, cross-entropy minimization, which is an average-case
distribution-matching metric, can sacrifice coverage over the different modes in order to increase
performance on one.

Correspondingly, our graph search task for Figure 1 is a mixture of two classes of graph structures.
Due to representational and finite-sample constraints, the model is unable to fit both perfectly during
training, and, in particular, fitting one class well (in the sense of cross-entropy loss) comes at the cost
of worse performance on the other. The checkpoint with the best coverage arises at some middle point
in training when the model learns both classes of graphs equally well, and has good coverage over
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both classes (the dip CovN in the leftmost subplot of Figure 1). Further reduction of cross-entropy
loss over the latter half of training requires the model to lose coverage over πD in the less-represented
graph class (observed as the increase in CovN in the latter half of training iterations).

Even though the task cannot be learned perfectly from the supervised learning feedback, the model
can still learn a policy that always samples a correct path matching πD’s with O(1) sampling attempts,
which means that it leads to efficient downstream post-training (e.g., on one of modes or with
reward-based feedback), and also achieve optimal performance with test-time inference methods.

For the experiments in Figure 1, we first pre-train a model on a larger set of graph structure classes so
that it learns a diverse set of behaviors, then finetune its behavior on two. The performance on the
finetuning task is displayed in Figure 1, and we first describe the finetuning dataset, followed by the
pre-training dataset.

G.2.1 TASK DESCRIPTION

The finetuning task is a skewed mixture over two graph disjoint graph classes, G1 ∪ G2 = G, with
µ̃ ∈ ∆({1, 2}) denoting the probability of each class in the data. All graphs in G follow the layered
DAG structure described in Appendix G.1, with L = 8 layers that each have 4 nodes. Of the 8 layers,
2 are randomly selected to have 2 passable nodes (meaning that they are connected to the next layer),
while the remaining layers have only 1 passable node. Although there are 4 valid paths from source
to target, the policy πD is deterministic and chooses 1 based on a rule, which is what distinguishes the
two class types described below.

Class G1 with probability µ̃(1) = 0.9. For an integer j ∈ Z, let the function p(j) = (j mod 2)
denote its parity. In layers with 1 passable node, πD takes the passable node. For each layer l ∈ [L]
with 2 passable nodes (there is guaranteed to be one even and one odd), πD chooses the node v such
that p(v) = p(l), that is, the node whose parity is equal to the parity of the layer index.

Class G2 with probability µ̃(2) = 0.1. In this class πD takes the opposite rule from the one in G2:
for layers l with 2 passable nodes, it chooses the node v such that p(v) = 1⊕ p(l).

The class of a graph is technically identifiable from the prompt, but the problem is too difficult for
the model to learn in just the finetuning stge. The class of a graph can be computed from the parity of
a hidden subset of their nodes whose cardinality is half the total number of nodes; letting this hidden
subset be V ′ ∈ V , all graphs in G1 have 1 =

⊕
u∈V ′ p(u), while the opposite is true for all graphs in

G2.

Dataset generation. Each sample in the dataset D = {(x, y)} is then generated via the following
procedure.

1. First sample an index i ∼ µ̃.

2. Sample G ∈ Gi by randomly drawing V ⊂ [m] without replacement, and instantiate the edges
according to the description for each class above.

3. Format the prompt x per Appendix G.1.

4. Draw y ∼ πD(· | x) according to description for each class above.

G.2.2 PRE-TRAINING DESCRIPTION

The graphs in the pre-training task are a superset of the graphs in the finetuning task, that is,
∪i∈[K]Gi = G with K = 3, and the data distribution is a uniform mixture of these 3 classes,
µ̃(i) = 1

K for each i ∈ [K]. The first two classes G1 and G2 are defined exactly as they are in the
finetuning dataset. In G3, two layers have 2 passable nodes, while the rest have 1, and πD samples one
of the 22 valid paths from source to target at random. The dataset is sampled using the same dataset
generation procedure described for the finetuning task above.

G.2.3 TASK-SPECIFIC IMPLEMENTATION DETAILS

The transformer model is first pre-trained on a fixed dataset drawn from the pre-training distribution,
with 8×64, 000 prompts in total, using a learning rate of 1e−4 for 200k iterations, which was chosen
based on a grid search over learning rates {5e−5, 1e−4, 5e−4}.

The final checkpoint is then finetuned for 50k iterations in an online fashion, where fresh samples are
drawn for each batch (this is equivalent to offline training with a dataset tha has an equivalent number
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of samples). The learning rate is 5e−6, which was chosen based on a grid search over learning rates
{5e−6, 1e−5}.

G.3 EXPERIMENT DETAILS FOR FIGURE 2
The graph structures used for Figure 2 to expose the dependence on horizon of KL-divergence but
not CovN leverages the intuition from Remark 3.1. The training data is homogeneous, and a fraction
consists of difficult graph problems that the learner cannot cover with the given finite samples. The
coverage profile CovN will be the same regardless of H , but KL scales linearly with H due to this
unlearnable subset of the data.

G.3.1 TASK DESCRIPTION

For Figure 2, we devise a family of tasks that is defined per H , which we then instantiate with
H ∈ {8, 16, 24} for our results. For a fixed H , the task GH utilizes the layered DAG graph structure
described in Appendix G.1 with H layers of 4 nodes each, so that Y = VH+2 when the source and
target nodes are included.

The task is a heterogeneous mixture over 3 classes of graphs described below that we refer to as
GH,1 ∪GH,2 ∪GH,3 = GH . The classes GH,2 and GH,3 are significantly harder to learn and the model
will fail to do so with the given number of training samples, even though GH,1 is learned quickly (and
also provides useful features for learning the other two tasks). The distribution over these 3 classes is
fixed for all H and specified by µ̃ ∈ ∆({1, 2, 3}).

Class GH,1 with probability µ̃(1) = 0.94. All H layers have only 1 passable node, so each
G ∈ GH,1 has only one valid path from source to target. For prompts corresponding to graphs in this
class, πD deterministically takes the single valid path.

Class GH,2 with probability µ̃(2) = 0.05. Half of the layers (or H/2, selected randomly) have
2 passable nodes while the rest have 1. While there are 2H/2 valid paths from source to target, πD

deterministically selects one of them. For layers with 2 passable nodes, one is guaranteed to be even
and the other odd. In layers with more than one passable node, πD selects one node by following a
difficult, deterministic rule. This rule requires πD to select the node v whose parity matches the parity
of the layer index, XOR’ed with the parity of each passable node in the entire graph. More specifically,
recall that p(j) denotes the parity of an integer j ∈ [m], and let V ⋆ := {v ∈ V : deg+(v) > 0} ⊂ V
denote the set of all passable nodes (or those with positive out-degree). Then in layer l, πD selects the
node v such that p(v) = p(l)⊕

(⊕
u∈V ⋆ p(u)

)
.

Class GH,3 with probability µ̃(3) = 0.01. Regardless of H , 4 of the layers are randomly chosen
to have 2 passable nodes, so that there are 24 = 16 valid paths from source to goal Here, however, πD

samples one of the 2
H
2 valid paths uniformly at random.

Note that prompts/graphs from each class are distinguishable from each other (or, identifiable) based
on prompt features alone, so a powerful-enough model can acheve perfect performance across all of
them simultaneously. GH2 , for example, has more edges and thus a longer prompt than GH1 ; similar
statements apply to GH3

. Dataset generation occurs in the same manner as described in Appendix G.2.

G.3.2 TASK-SPECIFIC IMPLEMENTATION DETAILS

Here, we describe experiment-specific implementation details on top of those previously described in
Appendix G.1 (which apply to all figures).

In addition to a grid search over the parameters in Table 1, we perform a search over learning rates
{5e−5, 1e−4, 5e−4}, for which the learning rate of 1e−4 exhibited the best validation performance.
The model is trained for 40k iterations over a fixed dataset of 8× 64, 000 samples.

The results in Figure 2 are computed from evaluations of training checkpoints on per-class validation
datasets of 1024 prompts from each GHi

; these metrics are then averaged according to the probabilities
in µ̃ to obtain the final result. In total we ran 16 seeds, and plot their median. The shaded region in
Figure 2 displays the region between the 1

16 quantile and 15
16 quantile.
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Part II

Proofs

H TECHNICAL TOOLS

H.1 CONCENTRATION INEQUALITIES

Lemma H.1 (Azuma-Hoeffding). Let (Zi)i≤n be a sequence of real-valued random variables
adapted to a filtration (Fi)i≤n. If |Zi| ≤ R almost surely, then with probability at least 1− δ, for
all n′ ≤ n, ∣∣∣∣∣∣

n′∑
i=1

Zi − Ei−1[Z
i]

∣∣∣∣∣∣ ≤ R ·
√
8n log(2δ−1).

Lemma H.2 (Freedman’s inequality). Let (Zi)i≤n be a real-valued martingale difference sequence
adapted to a filtration (Fi)i≤n. If |Zi| ≤ R almost surely, then for any η ∈ (0, 1/R), with probability
at least 1− δ, for all n′ ≤ n,

n′∑
i=1

Zi ≤ η

n′∑
i=1

Ei−1

[
(Zi)2

]
+

log(δ−1)

η
.

The next result is a standard consequence of Lemma H.2 (e.g., Foster et al. (2021)).

Lemma H.3. Let (Zi)i≤n be a sequence of random variables adapted to a filtration (Fi)i≤n. If
0 ≤ Zi ≤ R almost surely, then with probability at least 1− δ, for all n′ ≤ n,

n′∑
i=1

Zi ≤ 3

2

n′∑
i=1

Ei−1[Z
i] + 4R log(2δ−1), (39)

and

n′∑
i=1

Ei−1[Z
i] ≤ 2

n′∑
i=1

Zi + 8R log(2δ−1). (40)

Lemma H.4. Suppose that µ is a distribution over Z , function class F ⊆ (Z → R) is given. We
let N(F , ϵ; ∥·∥∞) be the ϵ-covering number of F under the norm ρ(f, f ′) := supz∈Z |f(z)− f ′(z)|.
Then, under D = {Z1, · · · , Zn} drawn from µ i.i.d, the following holds with probability at least
1− δ:

n∑
i=1

f(Zi) ≤ n logEµ[exp(f(Z))] + inf
ϵ≥0
{logN(F , ϵ; ∥·∥∞) + 2Lnϵ}.

Lemma H.5. For distribution P,Q ∈ ∆(X ), function f : X → [−B,B], it holds that

|EP [f ]− EQ[f ]|2 ≤ 3VarQ[f ] ·D2
H(P,Q) + 8B2DH(P,Q)

4
.

Therefore, for any f : X → Rd with ∥f∥ ≤ B, it holds that

∥EP [f ]− EQ[f ]∥ ≤ 2
√
EQ∥f − EQ[f ]∥2 ·DH(P,Q) + 3BD2

H(P,Q), (41)

and

EP ∥f − EP [f ]∥2 ≤ 3EQ∥f − EQ[f ]∥2 + 8B2D2
H(P,Q). (42)
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Proof of Lemma H.5. We denote P (x) (Q(x)) to be the density function of P (Q). Then

|EP [f ]− EQ[f ]|2 =

(∫
X
(f(x)− EQ[f ])(P (x)−Q(x))dx

)2

(43)

≤
∫
X
(f(x)− EQ[f ])

2(
√

P (x) +
√

Q(x))2dx ·
∫
X
(
√
P (x)−

√
Q(x))2dx

(44)

≤ 4D2
H(P,Q) ·

(
VarQ[f ] + EP (f − EQ[f ])

2
)

(45)

Further, we know

EP (f − EQ[f ])
2 ≤ 3EQ(f − EQ[f ])

2
+ 8B2D2

H(P,Q). (46)

This gives the desired upper bound.

Lemma H.6. Suppose that ϕ : Y → B2(B) with B ≥ 1, and for any θ ∈ B2(1), πθ ∈ ∆(Y) is
defined as πθ(y) ∝ exp(⟨ϕ(y), θ⟩). Then for any θ⋆, θ ∈ B2(1), it holds that

Ey∼πθ⋆
⟨ϕ(y)− Eπθ⋆

[ϕ], θ − θ⋆⟩2 ≤ 15BDKL(πθ⋆ ∥πθ).

Proof. Denote ϕ(y) := ϕ(y)− Eπθ⋆
[ϕ]. By definition,

DKL(πθ⋆ ∥πθ) = logEy∼πθ⋆

[
exp
(
⟨ϕ(y), θ − θ⋆⟩

)]
≥ B logEy∼πθ⋆

[
exp

(
1

B
⟨ϕ(y), θ − θ⋆⟩

)]
Note that for x ≥ −4, we have ex ≥ 1 + x+ 1

10x
2. Therefore, we have

1

B
DKL(πθ⋆ ∥πθ) ≥ log

(
1 +

1

10B2
Ey∼πθ⋆

⟨ϕ(y), θ − θ⋆⟩2
)
≥ 1

15B2
Ey∼πθ⋆

⟨ϕ(y), θ − θ⋆⟩2,

where we use log(1 + x) ≥ 3
4x for all x ∈ [0, 8

5 ].

I PROOFS FROM SECTION 3
Proof of Proposition 3.2. Consider the setting d = 1, X = {0, 1}, Y = {−B,B}, the distribution
µ be given by µ(1) = 1 − µ(0) = 1

2n , and the feature map ϕ : X × Y⋆ → [−B,B] be given by
ϕ(0, ·) = 0, and ϕ(1, y1:h) = yh.

Note that under this construction, P{xt}t∈[n]∼πD
(xt = 0∀t ∈ [T ]) ≥ 1− nµ(1) = 1

2 . We let E be the
event {xt = 0∀t ∈ [T ]}. Then, for any θ⋆ ∈ [−1, 1],

ED∼πθ⋆
[DKL(πθ⋆ ∥ π̂) | E] = ED∼π0

[DKL(πθ⋆ ∥ π̂) | E].

Furthermore, for any π̂ ∈ Π,

DKL(πθ⋆ ∥ π̂) = H · µ(1) ·DKL(πθ⋆(y1 = · | x = 1) ∥ π̂(y1 = · | x = 1)),

and hence,

DKL(π1 ∥ π̂) +DKL(π−1 ∥ π̂) ≥
H

2n
· 2DKL

(
Ber

(
eB

eB + e−B

)
∥Ber

(
1

2

))
≥ H

2n
.

Therefore, we can lower bound

ED∼π1
[DKL(π1 ∥ π̂)] + ED∼π−1

[DKL(π−1 ∥ π̂)]

≥ P(E) · ED∼π0 [DKL(π1 ∥ π̂) +DKL(π−1 ∥ π̂) | E] ≥ 1

2
· H
2n

.

This gives the desired lower bound.

Note that in the construction above, the variance σ2
⋆ (defined in Section 4.1) can be bounded by

σ2
⋆ ≲ He−2B

n .
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J PROOFS FROM SECTION 4

J.1 PROOF SKETCH FOR THEOREM 4.1

Fix N ≥ 8 and let ε ∈ [0, 1] be a parameter to be set later. Let Πbad(ε) := {π ∈ Π | CovN (π) ≥ ε}
be the set of π ∈ Π that fail to achieve coverage ε. The basic idea behind the proof of Theorem 4.1
is to interpret the condition CovN (π) ≥ ε as an small-ball like anti-concentration condition in the
vein of Mendelson (2014; 2017). That is, for models π ∈ Πbad(ε) where coverage fails, the condition
CovN (π) ≥ ε witnesses a one-sided tail bound which implies that the empirical likelihood of π is
not too large with high probability, which means that π ∈ Πbad(ε) cannot be a maximum-likelihood
solution.

Let SN (π) := 1
n |
{
i ∈ [n] | πD(y

i|xi)
π(yi|xi) ≥ N1−2c

}
| denote the empirical probability of π fails to cover

πD. Our first step is to show via covering and concentration that with high-probability, all π ∈ Π
satisfy

SN (π) ≥ 1

2
CovN (π)− Ccoarse(Π, N, n), (47)

Here we only pays the covering number at a coarse scale (leading to the coarse-grained term in
Theorem 4.1) because we only need to show that coverage concentrates, not the log-loss itself.

Eq. (47) implies that for all π ∈ Πbad(ε), we can bound

L̂n(π)− L̂n(πD) = −
n∑

i=1

[
log

πD(y
i | xi)

π(yi | xi)
− C

]
+

+

n∑
i=1

log
π(yi | xi)

πD(yi | xi)
∨ C

≤ −|SN (π)|((1− 2c) logN − C) +

n∑
i=1

log
π(yi | xi)

πD(yi | xi)
∨ C

≤ −n

4
logN · CovN (π) +

n∑
i=1

log
π(yi | xi)

πD(yi | xi)
∨ C,

where C > 0 is any fixed constant. Finally, using a variation of a standard one-sided tail bound
for the logarithmic loss (van de Geer, 2000; Zhang, 2006),7 we show that with high probability, all
π ∈ Π satisfy

n∑
i=1

log
π(yi | xi)

πD(yi | xi)
∨ C ≤ Cfine(Π, n) · n,

as long as C ≥ log 4. Combining these results, we conclude that

CovN (π) ≲
L̂n(πD)− L̂n(π) + Cfine(Π, n)

n logN
+ Ccoarse(Π, N, n).

It follows that if ε ≳ 1
logN ·Cfine(Π, n)+Ccoarse(Π, N, n), then all π ∈ Πbad(ε) have L(π)−L(πD) <

0, and since πD ∈ Π, this means that no such π ∈ Πbad(ε) can be the maximum likelihood solution.

J.2 PROOF OF THEOREM 4.1

Theorem 4.1′ (General version of Theorem 4.1). Let N ≥ 8 be given. With probability at least 1− δ,
any approximate maximum likelihood estimator π̂ with L̂n(π̂) ≥ maxπ∈Π L̂n(π)− nεapx satisfies

CovN (π̂) ≲
logN∞ (Π; c logN) + log(δ−1)

n
+

1

logN

(
inf
ε>0

{
logN∞(Π, ε)

n
+ ε

}
+ εapx

)
,

(48)

where c > 0 is an absolute constant.

7That the bound is one-sided is critical, as this allows us to avoid paying for the range of the density ratios
under consideration. For details, see Proposition J.1.
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In the following, for a fixed threshold C ≥ 4, we define the clipped log loss as

L+
C(π) :=

n∑
i=1

max

{
log

π(yi | xi)

πD(yi | xi)
,− logC

}
, (49)

L−
C(π) :=

n∑
i=1

max

{
0, log

πD(y
i | xi)

π(yi | xi)
− logC

}
. (50)

Note that L̂n(π) = L+
C(π)− L−

C(π), and hence for approximate maximum likelihood estimator π̂
with L̂n(π̂) ≥ maxπ∈Π L̂n(π)− nεapx, we have

L−
C(π̂) ≤ L+

C(π̂) + nεapx.

In the following, we argue that L−
C(π) upper bound the coverage CovN (π) for any π ∈ Π and

M > C, and L+
C(π) can be bounded by the uniform convergence argument.

Proposition J.1. Suppose that C ≥ 4. Then, with probability at least 1 − δ, it holds that for any
π ∈ Π,

L+
C(π) ≤ 2 inf

ϵ≥0
{logN∞(Π, ϵ) + nϵ}.

Proposition J.2. Fix any α ∈ (0, log(N/C)
2 ). Then, with probability at least 1− δ, it holds that

CovN (π) ≤ 2

log(N/C)− 2α
· L−

C(π) + 2 log(N∞(Π, α)/δ).

The proof of Theorem 4.1 and Theorem 4.1′ is hence completed by combining the propositions above
and setting α = c logN .

Proof of Proposition J.1. This is a direct corollary of Lemma H.4. For each π ∈ Π, we let
fπ(x, y) := max

{
log π(y |x)

πD(y |x) ,− logC
}

, and then N(F , ϵ; ∥·∥∞) ≤ N∞(Π, ϵ) for any ϵ ≥ 0.
Applying Lemma H.4 with Lemma J.1 gives the desired upper bound.

Lemma J.1. As long as C ≥ 4, it holds that

E(x,y)∼πD
exp

(
1

2
max

{
log

π(y | x)
πD(y | x)

,− logC

})
≤ 1. (51)

Proof of Lemma J.1. We denote E :=
{
(x, y) : π(y |x)

πD(y |x) ≥
1
C

}
. Then it holds that

E(x,y)∼πD
exp

(
1

2
max

{
log

π(y | x)
πD(y | x)

,− logC

})
= E(x,y)∼πD

[√
π(y | x)
πD(y | x)

I{(x, y) ∈ E}+ 1√
C
I{(x, y) ̸∈ E}

]

= Ex∼πD

 ∑
y:(x,y)∈E

√
π(y | x)πD(y | x)

+
1√
C
πD(E

c)

By Cauchy inequality, we have∑
y:(x,y)∈E

√
π(y | x)πD(y | x) ≤

√ ∑
y:(x,y)∈E

π(y | x) ·
∑

y:(x,y)∈E

πD(y | x) ≤
√

πD(E).
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Therefore, as long as C ≥ 4, it holds that

E(x,y)∼πD
exp

(
1

2
max

{
log

π(y | x)
πD(y | x)

,− logC

})
≤
√

πD(E) +
1

2
(1− πD(E)) ≤ 1,

where we use 1− p = (1 +
√
p)(1−√p) ≤ 2(1−√p) for any p ∈ [0, 1].

Proof of Proposition J.2. Fix any N ≥ 1, α ≥ 0. By definition, for any π ∈ Π,

L−
C(π) =

n∑
i=1

max

{
0, log

πD(y
i | xi)

π(yi | xi)
− logC

}
≥ (logN − logC)

∣∣∣∣{i ∈ [n] : log
πD(y

i | xi)

π(yi | xi)
≥ logN

}∣∣∣∣
=: n(logN − logC) · ĈovM (πD ∥π),

where we denote (cf. Lemma J.2)

ĈovN (πD ∥π) =
1

n

∣∣∣∣{t ∈ [n] :
πD(y

t | xt)

π(yt | xt)
≥ N

}∣∣∣∣.
Then, by Lemma J.2, it holds that with probability at least 1− δ, for any π ∈ Π,

ĈovN (πD ∥π) ≥
1

2
CovπD

e2αN (πD ∥π)− log(N∞(Π, α)/δ).

Rescaling N ← e−2αN and reorganizing complete the proof.

Lemma J.2. For any policy π, π′, we consider the quantities

ĈovN (π′ ∥π) = 1

n

∣∣∣∣{t ∈ [n] :
π′(yt | xt)

π(yt | xt)
≥ N

}∣∣∣∣, CovπD

N (π′ ∥π) = PπD

(
π′(y | x)
π(y | x)

≥M

)
.

Fix α ≥ 0 and policy π. With probability at least 1− δ, for any π ∈ Π, it holds that

ĈovN (π ∥π) ≥ 1

2
CovπD

e2αN (π ∥π)− log(N∞(Π, α)/δ).

Similarly, with probability at least 1− δ, for any π ∈ Π, it holds that

ĈovN (π ∥π) ≤ 2 CovπD

e−2αN (π ∥π) + log(N∞(Π, α)/δ).

Proof of Lemma J.2. We only prove the first inequality. Let Π′ ⊆ Π be an α-covering of Π with
|Π′| = N∞(Π, α). Then, by Freedman inequality (Lemma H.3) and union bound, it holds that with
probability at least 1− δ, for any π′ ∈ Π′,

ĈoveαN (π ∥π′) ≥ 1

2
CovπD

eαN (π ∥π′)− log(|Π′|/δ).

Then, note that for any π ∈ Π, there exists π′ ∈ Π′ such that | log π(y | x)− log π′(y | x)| ≤ α for
∀x, y, we know {

t ∈ [n] :
π(yt | xt)

π′(yt | xt)
≥ eαN

}
⊆
{
t ∈ [n] :

π(yt | xt)

π(yt | xt)
≥ N

}
and hence ĈoveαN (π ∥π′) ≤ ĈovN (π ∥π). Similarly, CovπD

eαN (π ∥π′) ≥ CovπD

e2αN (π ∥π). Hence,
under the above event, it holds that

ĈovN (π ∥π) ≥ ĈoveαN (π ∥π′) ≥ 1

2
CovπD

eαN (π ∥π′)− log(|Π′|/δ)

≥ 1

2
CovπD

e2αN (π ∥π)− log(|Π′|/δ).

Since π ∈ Π is arbitrary, the proof is hence completed.
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J.3 PROOF OF THEOREM F.1
By definition and concavity of θ 7→ π(y | x), we know θ⋆ is the optimal solution of the following
convex problem

θ⋆ = argmin
θ∈Θ

−E(x,y)∼πD
[log πθ(y | x)].

Hence, the optimality of θ⋆ implies

⟨θ − θ⋆,−EπD [∇ log πθ⋆(y | x)]⟩ ≥ 0, ∀θ ∈ Θ.

Consider the function F (θ) = EπD

[
πθ(y |x)
πθ⋆ (y |x)

]
− 1, which is also convex by Assumption F.1. Further,

for any θ ∈ Θ,

⟨θ − θ⋆,−∇F (θ⋆)⟩ =
〈
θ − θ̂,−EπD

[
∇πθ⋆(y | x)
πθ⋆(y | x)

]〉
=
〈
θ − θ̂,−EπD [∇ log πθ⋆(y | x)]

〉
≥ 0.

Therefore, F attains its maximum over Θ at θ⋆, i.e., F (θ) ≤ F (θ⋆) for any θ ∈ Θ.

Similarly, under Assumption F.1, it is clear that θ 7→
∑n

i=1 log πθ(y
i | xi) is concave, and hence

π̂ = πθ̂, where θ̂ ∈ Θ satisfies〈
θ − θ̂,

n∑
i=1

−∇ log πθ̂(y
i | xi)

〉
≥ 0, ∀θ ∈ Θ.

In particular, we consider the function

F̂ (θ) :=

n∑
i=1

[
πθ(y

i | xi)

πθ̂(y
i | xi)

− 1

]
.

By definition, F̂ is concave, and for any θ ∈ Θ,〈
θ − θ̂,−∇F̂ (θ̂)

〉
=

〈
θ − θ̂,−

n∑
i=1

∇πθ̂(y
i | xi)

πθ̂(y
i | xi)

〉
=

〈
θ − θ̂,

n∑
i=1

−∇ log πθ̂(y
i | xi)

〉
≥ 0.

Therefore, F̂ attains its maximum over Θ at θ̂, and in particular, F̂ (θ⋆) ≤ F̂ (θ̂) = 0. This implies
n∑

i=1

[
πθ⋆(yi | xi)

π̂(yi | xi)
− log

πθ⋆(yi | xi)

π̂(yi | xi)
− 1

]
≤

n∑
i=1

log π̂(yi | xi)−
n∑

i=1

log πθ⋆(yi | xi). (52)

In the following, we fix any N ≥ 2. Note that x− log x−1 ≥ 0 for any x > 0, and x 7→ x− log x−1
is increasing for x ≥ 1. Therefore, (52) implies that

(N − logN − 1) · n · ĈovN (πθ⋆ ∥ π̂) ≤ L̂n(π̂)− L̂n(πθ⋆). (53)

Then, by Lemma J.2, we have with probability at least 1− δ, for all π ∈ Π,

ĈovN (πθ⋆ ∥π) ≥ 1

2
· PπD

(
πθ⋆(y | x)
π(y | x)

≥ e2αN

)
− log(N∞(Π, α)/δ)

n
, ∀π ∈ Π.

Further, by Lemma H.4, the following holds with probability at least 1− δ: For any θ ∈ Θ,

L̂n(πθ)− L̂n(πθ⋆) =

n∑
i=1

log
πθ(y

i | xi)

πθ⋆(yi | xi)

≤ n logEπD

[
πθ(y | x)
πθ⋆(y | x)

]
+ inf

ϵ≥0
{log(N∞(Π, ϵ)/δ) + 2nϵ}

≤ inf
ϵ≥0
{log(N∞(Π, ϵ)/δ) + 2nϵ},

where we use EπD

[
πθ(y |x)
πθ⋆ (y |x)

]
= F (θ) + 1 ≤ 1 for any θ ∈ Θ. By union bound, we have shown that

with probability at least 1− 2δ,

PπD

(
πθ⋆(y | x)
π̂(y | x)

≥ e2αN

)
≲

log(N∞(Π, α)/δ)

n
+

1

N
inf
ϵ≥0

{
logN∞(Π, ϵ)

n
+ ϵ

}
.
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Note that

Cove2αNN ′(π̂) = PπD

(
πD(y | x)
π̂(y | x)

≥ e2αNN ′
)

≤ PπD

(
πθ⋆(y | x)
π(y | x)

≥ e2αN

)
+ PπD

(
πD(y | x)
πθ⋆(y | x)

≥ N ′
)
.

Therefore, the proof is completed by rescaling N ← Ne−2α/N ′ and combining the inequalities
above.

J.4 PROOFS FOR SUPPORTING RESULTS

Proof of Proposition F.1 (a). Assume that B ≥ 1
2 log(4n) and n ≥ d. Consider X =⊥, Y = [d]

and the feature map be given by ϕ(y) = Bey for y ∈ Y , where (e1, · · · , ed) is the coordinate basis
of Rd. For the simplicity of our argument, we consider Θ =

{
θ ∈ Rd : ∥θ∥∞ ≤ 1

}
, and we set

θ⋆ =
log(4n)

2B
·

e1 −
d∑

j=2

ej


Then it holds that

πD(1) =
4n

d− 1 + 4n
, πD(y) =

1

d− 1 + 4n
, ∀y > 1.

Therefore, under D ∼ πD, it holds that

E

[
n∑

t=1

I{yt ̸= 1}

]
≤ n(d− 1)

d− 1 + 4n
≤ d− 1

4
≤ n

2
.

In particular, with probability at least 0.5, it holds that
∑T

t=1 I{yt ̸= 1} ≤ d−1
2 . i.e., the set

YD = Y\D has cardinality at least d
2 .

In the following, we condition on this event and analyze the MLE θ̂. By the definition of MLE, for
any y ∈ YD, it must hold that θ̂y = −1, and we also know θ̂1 = 1. This implies πθ̂(y) ≤

1
e2B

for
any y ∈ YD. Therefore, for N ≤ eB

4n+d−1 , we have

CovN (πθ̂) ≥ πD(YD) ≥
d

2(d− 1 + 4n)
≥ d

10n
.

This is the desired lower bound.

Proof of Proposition F.1 (b). Let ϵ = c0

√
d
n and p = ϵ2

logN for a sufficently small absolute
constant c0 > 0. Let X = {0, 1, · · · , d}, Y = {0, 1}, and the distribution µ be given by µ(0) = p,
µ(1) = · · · = µ(d) = 1−p

d .

Consider πD(· | i) = Ber(1/2) for i ∈ [d] and πD(1|0) = 1. For any θ ∈ Θ := {+1,−1}d, we define
πθ as

πθ(1|0) =
1

N
, πθ(·|i) = Ber

(
1 + ϵθi

2

)
, ∀i ∈ [d].

Then, we can calculate

max
θ∈Θ

L̂n(πθ)− L̂n(πD)

= −N(0) logN +
1

2

∑
i∈[d]

[
|N(i,+)−N(i,−)| log 1 + ϵ

1− ϵ
+N(i) log(1− ϵ2)

]
≥ −N(0) logN − nϵ2 +

ϵ

2

∑
i∈[d]

|N(i, 0)−N(i, 1)|,
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where we denote N(x, y) = #{t ∈ [n] : (xt, yt) = (x, y)}, N(x) = N(x, 0) + N(x, 1). In the
following, we denote ∆i = N(i, 1) − N(i, 0). Note that ∆i is a sum of n i.i.d {−1, 0, 1}-valued
random variables with mean zero and variance 1−p

d , and hence PπD

(
|∆i| ≥ c

√
n
d

)
≥ 0.99 for an

absolute constant c > 0. Then, it is clear that

PπD

(
d∑

i=1

|∆i| ≤
d

2
· c
√

n

d

)
≤ 1

4
.

By Markov inequality, we also know PπD(N(0) ≥ 4np) ≤ 1
4 . Combining the inequalities above, we

know with probability at least 0.5, we have

max
θ∈Θ

L(πθ)− L(πD) ≥ −4np logN − nϵ2 +
cϵ
√
nd

4
> 0.

This implies that the MLE π̂ ∈ {πθ}θ∈Θ, and hence CovN (π̂) ≥ p. This is the desired lower
bound.

K PROOFS FROM SECTION 5
Organization. We begin with the proof of Proposition 5.1 (the upper bound), which is relatively
simple and serves as motivation. We then present the proofs of Theorem 4.2 and Theorem 5.1, which
are more involved. Finally, the proofs of the lower bounds are given in the remaining subsections.

Notation. For notational simplicity, we denote

ϕθ(x, y1:h−1) = Eyh∼πθ(·|x,y1:h−1)[ϕ(x, y1:h)],

and

ϕ⋆(x, y1:h) := ϕ(x, y1:h)− ϕθ⋆(x, y1:h−1),

VarπD(x, y1:h−1) := Eyh∼πθ(·|x,y1:h−1)∥ϕ
⋆(x, y1:h)∥2.

Then, by definition,

∇ log πθ(y1:H | x) =
H∑

h=1

ϕ⋆(x, y1:h) +

H∑
h=1

(
ϕθ⋆(x, y1:h−1)− ϕθ(x, y1:h−1)

)
. (54)

We also write

ϵθ(x, y1:h−1) = DKL(πD(· | x, y1:h−1) ∥πθ(· | x, y1:h−1)).

By concavity, we have

ϵθ(x, y1:h−1) ≤ ⟨ϕθ(x, y1:h−1)− ϕθ⋆(x, y1:h−1), θ − θ⋆⟩. (55)

By Lemma H.5, it holds that

∥ϕθ⋆(x, y1:h−1)− ϕθ(x, y1:h−1)∥ ≤ 2
√
VarπD(x, y1:h−1) · ϵθ(x, y1:h−1) + 3Bϵθ(x, y1:h−1).

(56)

For notational simplicity, for any f : X ×A⋆ → R and dataset D = {(xi, yi

1:H)}i∈[n], we write

ÊD[f ] :=
1

n

n∑
i=1

f(xi, yi

1:H),

K.1 PROOF OF PROPOSITION 5.1 (UPPER BOUND)
Because the projection operator ProjΘ is an contraction, we have

∥θt − θ⋆∥2 − ∥θt+1 − θ⋆∥2

≥ ∥θt − θ⋆∥2 − ∥θt + η∇ log πθt(yt | xt)− θ⋆∥2

= 2η⟨−∇ log πθt(yt | xt), θt − θ⋆⟩ − 2η2∥∇ log πθt(yt | xt)∥2.
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Telescoping and taking expectation, we have

E

[
T∑

t=1

⟨−∇ log πθt(y | x), θt − θ⋆⟩

]
≤ 1

2η
+ η E

[
T∑

t=1

E(x,y)∼πD
∥∇ log πθt(y | x)∥2

]
. (57)

Note that (xt, yt) | θt ∼ πD, and hence

E[∇ log πθt(yt | xt) | θt] = E(x,y)∼πD
[∇ log πθt(y | x)] = ∇θDKL(πD ∥πθ)|θ=θt .

Further, by convexity, it holds that for any θ ∈ Θ,

G(θ) := EπD [⟨∇ log πθ (y | x), θ − θ⋆⟩] = ⟨∇θDKL(πD ∥πθ), θ − θ⋆⟩ ≥ DKL(πD ∥πθ).

Therefore, we have

E

[
T∑

t=1

DKL(πD ∥πθt)

]
≤ E

[
T∑

t=1

G(θt)

]
≤ 1

2η
+ η E

[
T∑

t=1

E(x,y)∼πD
∥∇ log πθt(y | x)∥2

]
.

On the other hand, using the fact that log πθ(y | x) is concave and (HB2)-smooth (i.e., −HB2I ⪯
∇2 log πθ(y | x) ⪯ 0),

∥∇ log πθ(y | x)−∇ log πθ⋆(y | x)∥2 ≤ HB2 · ⟨θ − θ⋆,∇ log πθ⋆(y | x)−∇ log πθ(y | x)⟩

Taking expectation of (x, y) ∼ πD and using the fact that EπD [∇ log πθ⋆(y | x)] = 0, we have

EπD∥∇ log πθ(y | x)−∇ log πθ⋆(y | x)∥2 ≤ HB2 ·G(θ), ∀θ ∈ Θ.

Further, note that EπD∥∇ log πθ⋆(y | x)∥2 = σ2
⋆, it holds that

EπD∥∇ log πθ⋆(y | x)∥2 ≤ 2σ2
⋆ + 2HB2 ·G(θ), ∀θ ∈ Θ. (58)

Combining the inequalities above, we can conclude that

E

[
T∑

t=1

G(θt)

]
≤ 1

2η
+ 2ηHB2 E

[
T∑

t=1

G(θt)

]
+ 2ηTσ2

⋆.

Therefore, as long as η ≤ 1
4HB2 , it holds

1

η
+ 4ηTσ2

⋆ ≥ E

[
T∑

t=1

G(θt)

]
≥ E

[
T∑

t=1

DKL(πD ∥πθt)

]
.

This is the desired upper bound.

K.2 PROOF OF THEOREM 5.1
We denote M := logN , and we analyze the normalized SGD iterates assuming λ ≥ 3BM and
λη
M ≤

1
8 . and

Denote

g̃θ (D) :=
ĝθ (D)

λ+ ∥ĝθ (D)∥
.

Then the normalized SGD update can be rewritten as θt+1 = ProjΘ(θ + ηg̃θt(D)). By the standard
SGD proof, we know that

T∑
t=1

⟨−g̃θt(D), θt − θ⋆⟩ ≤ ∥θ
0 − θ⋆∥2

2η
+ η

T∑
t=1

∥g̃θt(D)∥2.

Taking expectation on both sides, we have

E

[
T∑

t=1

ED∼πD⟨−g̃(θt;D), θt − θ⋆⟩

]
≤ ∥θ

0 − θ⋆∥2

2η
+ η E

[
T∑

t=1

ED∼πD∥g̃(θt;D)∥2
]
.
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Note that ∥g̃θ (D)∥ ≤ min
{
1, ∥ĝθ (D)∥

λ

}
. In the following, we analyze ∥ĝθ (D)∥ under D =

{(xi, yi

1:H)}i∈[K] ∼ πD. Recall that for notational simplicity, for any f : X × A⋆ → R, we
write

ÊD[f ] :=
1

K

K∑
i=1

f(xi, yi

1:H),

which is random variable. We denote

gθ (D) := ÊD

[
H∑

h=1

(
ϕθ(x, y1:h−1)− ϕθ⋆(x, y1:h−1)

)]
,

and

z(D) := ÊD

[
H∑

h=1

ϕ⋆(x, y1:h)

]
= ÊD

[
H∑

h=1

(
ϕ(x, y1:h)− ϕθ⋆(x, y1:h−1)

)]
.

Then, by definition, −ĝθ (D) = gθ (D)− z(D).

Bounds on ḡθ (D). By (55), we know

⟨gθ (D), θ − θ⋆⟩ = ÊD

[
H∑

h=1

〈
ϕθ(x, y1:h−1)− ϕθ⋆(x, y1:h−1), θ − θ⋆

〉]

≥ ÊD

[
H∑

h=1

ϵθ(x, y1:h−1)

]
=: ϵθ (D).

By (56), we also have

∥gθ (D)∥ ≤ ÊD

[
H∑

h=1

∥ϕθ(x, y1:h−1)− ϕθ⋆(x, y1:h−1)∥

]

≤ ÊD

[
H∑

h=1

2
√
VarπD(x, y1:h−1) · ϵθ(x, y1:h−1) + 3Bϵθ(x, y1:h−1)

]
≤ 2
√

σ2(D) · ϵθ (D) + 3Bϵθ (D),
where we denote

σ2(D) := ÊD

[
H∑

h=1

VarπD(x, y1:h−1)

]
.

Bounds on z(D). Note that K · z(D) = K · ÊD

[∑H
h=1 ϕ

⋆(x, y1:h)
]
=
∑K

i=1

∑H
h=1 ϕ

⋆(xi, yi

1:h)

is a sum of the martingale difference sequence {ϕ⋆(xi, yi

1:h)}i∈[K],h∈[H]. Therefore, we can calculate

EπD∥z(D)∥2 =
1

K
EπD

[
H∑

h=1

∥ϕ⋆(x, y1:h)∥2
]
=

σ2
⋆

K
.

Furthermore, by Freedman’s inequality (Lemma H.2), for any fixed vector v, parameter γ ∈ (0, 1
B )

and δ ∈ (0, 1), it holds that

PπD

(
K∑
i=1

H∑
h=1

(
⟨ϕ⋆(xi, yi

1:h), v⟩ − γ E
[
⟨ϕ⋆(xi, yi

1:h), v⟩2 | xi, yi

1:h−1

])
≥ γ−1 log(1/δ)

)
≤ δ.

Note that for v = θ − θ⋆, by Lemma H.6, we have

E
[
⟨ϕ⋆(xi, yi

1:h), v⟩2 | xi, yi

1:h−1

]
= Eyh∼πD(·|xi,yi

1:h−1)
⟨ϕ⋆(xi, yi

1:h−1, yh), v⟩2

≤ 15BDKL

(
πD(· | xi, yi

1:h−1) ∥πθ(· | xi, yi

1:h−1)
)
= 15Bϵθ(x

i, yi

1:h−1).
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Therefore, setting γ = 1
30B , we have shown that for any δ ∈ (0, 1), it holds that

PπD

(
⟨z(D), θ − θ⋆⟩ ≥ 1

2
ÊD

[
H∑

h=1

ϵθ(x, y1:h−1)

]
+

30B log(1/δ)

K

)
≤ δ.

Recall that we denote ϵθ (D) := ÊD

[∑H
h=1 ϵθ(x, y1:h−1)

]
. Therefore, taking integration gives

EπD

(
⟨z(D), θ − θ⋆⟩ − 1

2
ϵθ (D)

)
+

≤ 30B

K
=: αK .

Upper bounding ∥g̃θ (D)∥. Using ∥g̃θ (D)∥ ≤ min
{
1, ∥ĝθ (D)∥

λ

}
, we know

∥g̃θ (D)∥2 ≤ I{ϵθ (D) ≥M}+ I{ϵθ (D) ≤M} · ∥ĝθ (D)∥
λ

.

Therefore, for any fixed θ, it holds that
EπD∥g̃θ (D)∥2

≤ PπD(ϵθ (D) ≥M) +
1

λ
EπD [I{ϵθ (D) ≤M} · ∥gθ (D)∥] +

1

λ
EπD∥z(D)∥

≤ max

{
1

M
,
3B

λ

}
· EπD min{M, ϵθ (D)}+

2

λ
EπD

√
σ2(D) ·min{M, ϵθ (D)}+

σ⋆

λ
√
K

≤ 1

M
EπD min{M, ϵθ (D)}+

σ⋆

λ

[
2
√
EπD min{M, ϵθ (D)}+

1√
K

]
,

where the last inequality follows from λ ≥ 3BM , E[σ2(D)] = σ2
⋆, and Cauchy’s inequality.

Lower bounding ⟨−g̃θ (D), θ − θ⋆⟩. By the inequalities above, we know
Λθ := EπD⟨−g̃θ (D), θ − θ⋆⟩

= EπD

[
⟨gθ (D), θ − θ⋆⟩ − ⟨z(D), θ − θ⋆⟩

λ+ ∥ĝθ (D)∥

]
≥ EπD

[
ϵθ (D)− ⟨z(D), θ − θ⋆⟩

λ+ ∥ĝθ (D)∥

]
≥ 1

2
EπD

[
ϵθ (D)

λ+ ∥ĝθ (D)∥

]
− 1

λ
EπD

[(
⟨z(D), θ − θ⋆⟩ − 1

2
ϵθ (D)

)
+

]

≥ 1

2
EπD

[
ϵθ (D)

λ+ ∥z(D)∥+ ∥gθ (D)∥

]
− αK

λ
.

Note that
λ+ ∥z(D)∥+ ∥gθ (D)∥

≤ λ+ ∥z(D)∥+ 2
√

σ2(D) · ϵθ (D) + 3Bϵθ (D)

≤ max{M, ϵθ (D)}
M

·

[
2λ+ ∥z(D)∥+ 2M

√
σ2(D)

min{M, ϵθ (D)}

]
,

where we use min{M,x}max{M,x} = Mx, and λ ≥ 3BM . Combining these two inequalities,
we have

2Λθ +
2αK

λ
≥ EπD

[
ϵθ (D)

λ+ ∥z(D)∥+ ∥gθ (D)∥

]
≥ EπD

[
min{M, ϵθ (D)}

2λ+ ∥z(D)∥+ 2M
√
σ2(D)/min{M, ϵθ (D)}

]

≥ (EπD min{M, ϵθ (D)})2

EπD [min{M, ϵθ (D)}(2λ+ ∥z(D)∥)] + 2M
√
EπD σ

2(D) · EπD min{M, ϵθ (D)}

≥ (EπD min{M, ϵθ (D)})2

2λEπD min{M, ϵθ (D)}+M
√

σ2
⋆/K + 2M

√
σ2
⋆ EπD min{M, ϵθ (D)}

,
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where the last two inequalities follow from Cauchy’s inequality.

Putting everything together. Denote ∆θ := EπD min{M, ϵθ (D)}. Note that by Proposition D.10,
we have (recall M := logN )

CovN (πθ) ≤
1

M
EπD min

{
M,

H∑
h=1

ϵθ(x, y1:h−1)

}

≤ 1

M
ED∼πD min

{
M, ÊD

[
H∑

h=1

ϵθ(x, y1:h−1)

]}
=

1

M
∆θ.

Then, we have shown that for any fixed parameter θ,

EπD∥g̃θ (D)∥2 ≤
1

M
∆θ +

σ⋆

λ

[
2
√

∆θ +
1√
K

]
,

and

Λθ = EπD⟨−g̃θ (D), θ − θ⋆⟩ ≥ 1

2

∆2
θ

2λ∆θ +Mσ⋆

[
1√
K

+
√
∆θ

] − αK

λ
.

Finally, note that implies that

E

[
T∑

t=1

Λθt

]
≤ 1

2η
+ η E

[
T∑

t=1

ED∼πD∥g̃(θt;D)∥2
]

≤ 1

2η
+

η

M
E

[
T∑

t=1

∆θt

]
+

σ⋆

λ

[
2E

[
T∑

t=1

√
∆θ

]
+

T√
K

]
.

Therefore, we define ∆ = 1
T E
[∑T

t=1 ∆θt

]
, and then by Cauchy inequality,

1

2Tη
+

η

M
∆+

ησ⋆

λ

[
2
√
∆+

1√
K

]
≥ 1

T
E

[
T∑

t=1

Λθt

]

≥ 1

2T
E

 T∑
t=1

∆2
θt

2λ∆θt +Mσ⋆

[
1√
K

+
√
∆θt

]
− αK

λ

≥ 1

2

∆2

2λ∆+Mσ⋆

[
1√
K

+
√
∆
] − αK

λ
.

Re-organizing, we know as long as λη
M ≤

1
8 , it holds that

∆ ≲

(
Mσ⋆

Tη

)2/3

+
λ

Tη
+ (ησ⋆)

2 +
ηMσ2

⋆

λ
+

(
Mσ⋆

λK

)2/3

+
B

K
.

In particular, we choose λ = M
8η and require η ≤ 1

24B , we have

∆ ≲

(
Mσ⋆

Tη

)2/3

+
M

Tη2
+ (ησ⋆)

2 +
B

K
.

Choosing η = min

{
1

24B ,
(

M
σ2
⋆T

)1/4}
, we have

∆ ≲

√
σ2
⋆M

T
+

B2M

T
+

B

K
,

which implies

1

T
E

[
T∑

t=1

CovN (πθt)

]
≤ 1

T
E

[
T∑

t=1

1

M
∆θt

]
≤
√

σ2
⋆

TM
+

B2

T
+

B

KM
.

This is the desired upper bound.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Remark K.1 (Comparison to standard convex optimization analyses). On a technical level, we find
the proof of Theorem 5.1 to be interesting because it does not pass through KL divergence as an
intermediate quantity. More broadly, we do not know how to derive the result as an application of
standard analysis techniques in optimization (e.g., via a gradient dominance or PL-type condition),
but it would be interesting to see if there is a connection.8

K.3 PROOF OF THEOREM 4.2

We prove the following slightly stronger result. Theorem 4.2 follows immediately by combining
Theorem K.1 and Proposition D.10.

Theorem K.1. Suppose that Assumption 2.2 holds. Then the MLE π̂ achieves

ED[Dseq,N (πD ∥ π̂)] ≲
√

σ2
⋆ logN

n
+

B2 logN

n
,

for any parameter N ≥ 1, where the divergence Dseq,N (· ∥ ·) is defined in Proposition D.10.

The following lemma follows from the optmality of the MLE π̂ = πθ̂, i.e.,

θ̂ = argmax
θ∈Θ

ÊD[log πθ(y1:H | x)].

Lemma K.1. Denote

E1 := ÊD

[
H∑

h=1

ϵθ̂(x, y1:h−1)

]
= ÊD

[
H∑

h=1

DKL(πD(· | x, y1:h−1) ∥ π̂(· | x, y1:h−1))

]
. (59)

Then it holds that E[E1] ≤ 2σ⋆√
n

.

In the following, we prove concentration bounds on E1. For simplicity, we denote A = logN .

Lemma K.2. Fix any ∆ ∈ (0, 1
100B ], δ ∈ (0, 1), and let J = exp

(
1
∆2 + 2

)
log(1/δ). Let Θ′ :=

{θ1, · · · , θJ}, where θ1, · · · , θJ ∼ N (0,∆2I) are sampled i.i.d. Then the following holds with
probability at least 1− δ over the randomness of Θ′ and D:

(1) For any j ∈ [J ], it holds that

EπD min

{
A,

H∑
h=1

ϵθj (x, y1:h−1)

}
≤ 2ÊD min

{
A,

H∑
h=1

ϵθj (x, y1:h−1)

}
+

8A log(4J/δ)

n
.

(2) There exists j ∈ [J ] such that

EπD min

{
A,

H∑
h=1

ϵθ̂(x, y1:h−1)

}
≤ 2EπD min

{
A,

H∑
h=1

ϵθj (x, y1:h−1)

}
+ 100∆2σ2

⋆, (60)

and

ÊD min

{
A,

H∑
h=1

ϵθj (x, y1:h−1)

}
≤ 2ÊD min

{
A,

H∑
h=1

ϵθ̂(x, y1:h−1)

}

+ 100∆2ÊD

[
H∑

h=1

VarπD(x, y1:h−1)

]
.

(61)

8We further note that the inherent variance σ2
⋆ corresponds to the gradient variance at the true parameter θ⋆,

and hence is tighter than typical analyses that depend on global notions of variance.
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Now, we condition on the success event E of Lemma K.2, and let j ∈ [J ] be an index such that (60)
and (61) hold. Then, we can upper bound (recall that A = logN )

Dseq,N

(
πD ∥πθ̂

)
= EπD min

{
A,

H∑
h=1

ϵθ̂(x, y1:h−1)

}

≤ 2EπD min

{
A,

H∑
h=1

ϵθj (x, y1:h−1)

}
+ 100∆2σ2

⋆

≤ 4ÊD min

{
A,

H∑
h=1

ϵθj (x, y1:h−1)

}
+

16A log(4J/δ)

n
+ 100∆2σ2

⋆

≤ 8ÊD min

{
A,

H∑
h=1

ϵθ̂(x, y1:h−1)

}

+ 400∆2ÊD

[
H∑

h=1

VarπD(x, y1:h−1)

]
+

16A log(4J/δ)

n
+ 100∆2σ2

⋆.

where the first inequality uses (60), the second inequality uses Lemma K.2 (1), and the third inequality
uses (61). Therefore, we denote σ2(D) := ÊD

[∑H
h=1 VarπD(x, y1:h−1)

]
, and we have shown that

for any δ ∈ (0, 1), any ∆(0, 1
100B ], it holds that

PD∼πD

(
Dseq,N

(
πD ∥πθ̂

)
≤ C

(
E1 +∆2σ2(D) + ∆2σ2

⋆ +
A

n

(
1

∆2
+ log(1/δ)

)))
≤ δ,

where C > 0 is an absolute constant.

By the arbitrariness of δ ∈ (0, 1), taking expectation gives

E
[
Dseq,N

(
πD ∥πθ̂

)]
≤ C

(
E[E1] + ∆2 E[σ2(D)] + ∆2σ2

⋆ +
A

n

(
1

∆2
+ 1

))
≤ 2C

(√
σ2
⋆

n
+∆2σ2

⋆ +
A

n∆2

)
.

Choosing ∆ = min

{
1

100B ,
(

A
σ2
⋆n

)1/4}
completes the proof.

K.3.1 PROOFS OF THE SUPPORTING LEMMAS

Proof of Lemma K.1. Recall that π̂ = πθ̂, where θ̂ = argmaxθ∈Θ

∑
(x,y1:H)∈D log πθ(y1:H | x).

Then by the concavity, we know

〈
ÊD[log πθ(y1:H | x)], θ − θ̂

〉
≤ 0, ∀θ ∈ Θ

where we recall that ÊD is the empirical distribution (x, y1:H) ∼ Unif(D). Using the expressing (54)
and θ⋆ ∈ Θ, we know

ÊD

[
H∑

h=1

〈(
ϕ(x, y1:h)− ϕθ̂(x, y1:h−1)

)
, θ⋆ − θ̂

〉]
≤ 0.
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Therefore, combining the inequality above with Eq. (56), we have

ÊD

[
H∑

h=1

ϵθ̂(x, y1:h−1)

]
= ÊD

[
H∑

h=1

DKL(πD(· | x, y1:h−1) ∥ π̂(· | x, y1:h−1))

]

≤ ÊD

[
H∑

h=1

〈
ϕθ⋆(x, y1:h−1)− ϕθ̂(x, y1:h−1), θ

⋆ − θ̂
〉]

≤ ÊD

[
H∑

h=1

〈
ϕθ⋆(x, y1:h−1)− ϕ(x, y1:h), θ

⋆ − θ̂
〉]

≤ 2

∥∥∥∥∥ÊD

[
H∑

h=1

ϕ⋆(x, y1:h)

]∥∥∥∥∥ =: E′
1,

where we recall that ϕ⋆(x, y1:h) := ϕ(x, y1:h) − ϕθ⋆(x, y1:h−1). By definition, it holds that
EπD [ϕ

⋆(x, y1:h) | x, y1:h−1] = 0, and hence

E(E′
1)

2 = E

∥∥∥∥∥ÊD

[
H∑

h=1

ϕ⋆(x, y1:h)

]∥∥∥∥∥
2

=
1

n
EπD

∥∥∥∥∥
H∑

h=1

ϕ⋆(x, y1:h)

∥∥∥∥∥
2

=
1

n
EπD

[
H∑

h=1

∥ϕ⋆(x, y1:h)∥2
]
=

σ2
⋆

n
.

This gives the desired upper bound.

Proof of Lemma K.2. By Freedman inequality (Lemma H.3) and union bound, it is clear that (1)
holds with probability at least 1− δ

2 . In the following, we prove (2).

Define the following weight function α = αθ̂ : X ×A⋆ → [0, 1]:

αθ̂(x, y1:h−1) =


1,

∑
j≤h−1 ϵθ̂(x, y1:j) ≤ A,

0,
∑

j<h−1 ϵθ̂(x, y1:j) ≥ A,
A−

∑
j<h−1 ϵ

θ̂
(x,y1:j)

ϵ
θ̂
(x,y1:h−1)

, otherwise.

Then, by Lemma K.4, it holds that for any θ ∈ Θ,

EπD min

{
A,

H∑
h=1

ϵθ̂(x, y1:h−1)

}
≤ 2EπD min

{
A,

H∑
h=1

ϵθ(x, y1:h−1)

}

+ 2EπD

[
H∑

h=1

α(x, y1:h−1)F
(
ϵθ̂(x, y1:h−1), ϵθ(x, y1:h−1)

)]
,

and

ÊD min

{
A,

H∑
h=1

ϵθ(x, y1:h−1)

}
≤ 2ÊD min

{
A,

H∑
h=1

ϵθ̂(x, y1:h−1)

}

+ ÊD

[
H∑

h=1

α(x, y1:h−1)F
(
ϵθ̂(x, y1:h−1), ϵθ(x, y1:h−1)

)]
,

Therefore, it remains to control the error
∑H

h=1 α(x, y1:h−1)F
(
ϵθ̂(x, y1:h−1), ϵθ(x, y1:h−1)

)
under

both EπD [·] and ÊD[·]. We prove the following lemma, which leverages the structure of Gaussian
distribution.

Lemma K.3. For any K ≥ 1, ∆ ∈ (0, 1
40KB ], θ ∈ B2(1), distributions µ1, · · · , µK over Z :=

X ×A⋆, and weight function α : Z → [0, 1], it holds that

− logPθ′∼N (0,∆2)

(
∀i ∈ [K],Ez∼µi

α(z)F(ϵθ(z), ϵθ′(z)) ≤ 22K2∆2 Ez∼µi
VarπD(z)

)
≤ 1

∆2
+ 2.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

In the following, we apply Lemma K.3 with K = 2, parameter θ = θ̂, weight function α, and the
distributions µ1, µ2 defined as follows:

• Let µ1 be the distribution of x′ = (x, y1:h−1) under x ∼ µ, y1:H ∼ πD(· | x) and h ∼ Unif([H]).

• Let µ2 be the distribution of x′ = (xt, yt

1:h−1) under t ∼ Unif([n]) and h ∼ Unif([H]).

By definition, it holds that

Ez∼µ1
α(z)F(ϵθ(z), ϵθ′(z)) =

1

H
EπD

[
H∑

h=1

α(x, y1:h−1)F
(
ϵθ̂(x, y1:h−1), ϵθ(x, y1:h−1)

)]
,

Ez∼µ1
VarπD(z) =

1

H
EπD

[
H∑

h=1

VarπD(x, y1:h−1)

]
=

σ2
⋆

H
,

Ez∼µ2 α(z)F(ϵθ(z), ϵθ′(z)) =
1

H
ÊD

[
H∑

h=1

α(x, y1:h−1)F
(
ϵθ̂(x, y1:h−1), ϵθ(x, y1:h−1)

)]
,

Ez∼µ2
VarπD(z) =

1

H
ÊD

[
H∑

h=1

VarπD(x, y1:h−1)

]
.

Then, we consider the following set

Θ+

θ̂
:=
{
∀i ∈ {1, 2},Ez∼µi

α(z)F(ϵθ(z), ϵθ′(z)) ≤ 100∆2 Ez∼µi
VarπD(z)

}
.

By Lemma K.3, it holds that

qθ̂ := Pθ′∼N (0,∆2I)(θ
′ ∈ Θ+

θ̂
) ≥ exp

(
− 1

∆2
− 2

)
.

Therefore, we have

P
(
∀j ∈ [N ], θj ̸∈ Θ+

θ̂
| θ̂
)
= Pθ1,··· ,θJ∼N (0,∆2I)

(
∀j ∈ [N ], θj ̸∈ Θ+

θ̂

)
≤ (1− qθ̂)

N ≤ exp
(
−Nqθ̂

)
≤ δ

2
,

and hence P
(
∃j ∈ [N ], θj ∈ Θ+

θ̂

)
≥ 1− δ

2 . The proof of (2) is hence completed.

Proof of Lemma K.3. By definition, we have πθ′(y | z) ∝y πθ(y | z) · exp(⟨θ′ − θ, ϕ(z, y)⟩), i.e.,

log πθ′(y | z)− log πθ(y | z) = ⟨θ′ − θ, ϕ(z, y)⟩ − logEy∼πθ(·|z) exp(⟨θ
′ − θ, ϕ(z, y)⟩).

Therefore,

ϵθ(z)− ϵθ′(z) = DKL(πD(· | z) ∥πθ(· | z))−DKL(πD(· | z) ∥πθ′(· | z))
= EπD(·|z)⟨θ

′ − θ, ϕ(z, y)⟩ − logEy∼πθ(·|z) exp(⟨θ
′ − θ, ϕ(z, y)⟩)

= ⟨θ′ − θ, ϕθ⋆(z)− ϕθ(z)⟩ − logEy∼πθ(·|z) exp
(
⟨θ′ − θ, ϕ(z, y)− ϕθ(z)⟩

)
,

where we recall that ϕθ(z) = Ey∼πθ(·|z)[ϕ(z, y)].

In the following, we denote ϕθ(z, y) := ϕ(z, y)− ϕθ(z), and

E+
θ′(z) := logEy∼πθ(·|z) exp(⟨θ

′ − θ, ϕθ(z, y)⟩),
E−

θ′(z) := ⟨θ′ − θ, ϕθ⋆(z)− ϕθ(z)⟩.

We first bound E+
θ′(z). By definition, we have E+

θ′(z) = DKL(πθ(· | z) ∥πθ′(· | z)) ≥ 0. Further,
using Jensen’s inequality, for any z ∈ Z , we have

Eθ′∼N (θ,∆2I)

[
E+

θ′(z)
]
≤ logEθ′∼N (θ,∆2I) Ey∼πθ(·|z)[exp(⟨θ

′ − θ, ϕθ(z, y)⟩)]

= logEy∼πθ(·|z) exp

(
1

2
∆2∥ϕθ(z, y)∥2

)
≤ ∆2 Ey∼πθ(·|z)∥ϕθ(z, y)∥2,
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where the last inequality follows from et ≤ 1 + 2t for t ∈ [0, 1]. Further, using Lemma H.5, we have

Ey∼πθ(·|z)∥ϕθ(z, y)∥2 = Ey∼πθ(·|z)∥ϕ(z, y)− ϕθ(z)∥2

≤ 3Ey∼πD(·|z)∥ϕ(z, y)− ϕθ⋆(z)∥2 + 4B2DKL(πD(· | z) ∥πθ(· | z))
= 3VarπD(z) + 4B2ϵθ(z).

Next, we bound |E−
θ′(z)|. Under θ′ ∼ N (θ,∆2I), it is clear that ⟨θ′ − θ, ϕθ⋆(z) − ϕθ(z)⟩ ∼

N (0,∆2∥ϕθ⋆(z)− ϕθ(z)∥2) for any fixed z. Therefore, it holds that

Eθ′∼N (θ,∆2I)

∣∣E−
θ′(z)

∣∣ =√ 2

π
∆ · ∥ϕθ⋆(z)− ϕθ(z)∥

≤∆ ·
(
2
√
VarπD(z) · ϵθ(z) + 3Bϵθ(z)

)
≤
(

1

8K
+ 3B∆

)
ϵθ(z) + 8K∆2VarπD(z).

where the second line uses (56).

Combining the inequalities above, we know that for i ∈ [K], it holds that

Eθ′∼N (θ,∆2I)

[
Ez∼µi

[
α(z)E+

θ′(z)
]]
≤ ∆2 Ez∼µi

[
3VarπD(z) + 4B2α(z)ϵθ(z)

]
,

Eθ′∼N (θ,∆2I)

[
Ez∼µi

[
α(z)

∣∣E−
θ′(z)

∣∣]] ≤ Ez∼µi

[
8K∆2VarπD(z) +

(
1

8K
+ 3B∆

)
α(z)ϵθ(z)

]
,

and hence by Markov’s inequality, it holds that p := Pθ′∼N (θ,∆2I)(θ
′ ̸∈ Θ−) ≥ 1

2 , where we denote
Θ− = ∪i∈[K]Θi, and

Θi :=

{
θ′ ∈ Rd : Ez∼µi α(z)|ϵθ(z)− ϵθ′(z)| ≥ Ez∼µi

[
(6K + 16K2)∆2VarπD(z) +

1

2
α(z)ϵθ(z)

]}
.

Note that DKL

(
N (θ,∆2I) ∥N (0,∆2I)

)
= ∥θ∥2

2∆2 ≤ 1
2∆2 . Hence, by data-processing inequality, we

can bound q := Pθ′∼N (0,∆2I)(θ
′ ̸∈ Θ−) as

1

2∆2
≥ DKL

(
N (θ,∆2I) ∥N (0,∆2I)

)
≥ DKL(Ber(p) ∥Ber(q))

= p log
p

q
+ (1− p) log

1− p

1− q
≥ 1

2
log(1/q)− log 2,

impling that − log q ≤ 1
∆2 + 2. This is the desired result.

Lemma K.4. Suppose that a1, · · · , aH , b1, · · · , bH ≥ 0. Let

αh =


1,

∑
j≤h aj ≤ A,

0,
∑

j<h aj > A,
A−

∑
j<h aj

ah
, otherwise.

Then clearly αh ∈ [0, 1] ∀h ∈ [H], and it holds that
∑H

h=1 αhah = min
{
A,
∑H

h=1 ah

}
, and

min

{
A,

H∑
h=1

ah

}
≤ 2min

{
A,

H∑
h=1

bh

}
+ 2

H∑
h=1

αhF(ah, bh),

min

{
A,

H∑
h=1

bh

}
≤ 2min

{
A,

H∑
h=1

ah

}
+

H∑
h=1

αhF(ah, bh),

where we recall that F(a, b) = |a− b| − 1
2a.
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Proof of Lemma K.4. Fix the sequence a1, · · · , aH .

We first prove
∑H

h=1 αhah = min
{
A,
∑H

h=1 ah

}
.

Case 1:
∑H

h=1 ah ≤ A. In this case, αh = 1∀h ∈ [H], and the equation holds trivially.

Case 2:
∑H

h=1 ah > A. In this case, we let ℓ ∈ [H] be the maximal index such that αℓ > 0. Then,

by definition,
∑

j<ℓ aj ≤ A and
∑

j≤ℓ aj > A, and αℓ =
A−

∑
j<ℓ aj

aℓ
. Hence,

H∑
h=1

αhah =

ℓ∑
h=1

αhah =
∑
j<ℓ

aj + αℓaℓ = A.

We note that from the proof above, we also know that for any sequence (c1, · · · , cH) such that
ch ≥ ah for h ∈ [H], we have min

{
A,
∑H

h=1 ch

}
≤
∑H

h=1 αhch.

Next, we prove the inequalities. We note that
H∑

h=1

αhF(ah, bh) =
H∑

h=1

αh|ah − bh| −
1

2

H∑
h=1

αhah,

or equivalently,
H∑

h=1

αh|ah − bh| =
H∑

h=1

αhF(ah, bh) +
1

2
min

{
A,

H∑
h=1

ah

}
.

Therefore,

min

{
A,

H∑
h=1

ah

}
=

H∑
h=1

αhah ≤ min

{
A,

H∑
h=1

bh

}
+

H∑
h=1

αh|ah − bh|

= min

{
A,

H∑
h=1

bh

}
+

H∑
h=1

αhF(ah, bh) +
1

2
min

{
A,

H∑
h=1

ah

}
.

Re-organizing yields the first inequality. Similarly, we have

min

{
A,

H∑
h=1

bh

}
≤ min

{
A,

H∑
h=1

(ah + |ah − bh|)

}
≤

H∑
h=1

αh(ah + |ah − bh|)

=
3

2
min

{
A,

H∑
h=1

ah

}
+

H∑
h=1

αhF(ah, bh).

The proof is hence completed.

K.4 PROOF OF PROPOSITION 5.1 (LOWER BOUND)
In the following, we construct X = R ⊔ {−,+}, Y = {−1, 0, 1} and Θ = B2(1) with d = 2. The
feature map ϕ satisfies ϕ(x, y1:h) = ϕ(x, yh), i.e., y1:H ∼ πθ(· | x) are i.i.d. We fix B ≥ cB logH
for a sufficiently large constant cB > 0.

Case 1: η ≥ 8
HB . We define η := η ·HB and α = η

2(η−1) ≤
5
8 . Let

v0 = [1; 0], v1 = [α;
√

1− α2], v−1 = [α;−
√
1− α2].

For y1:h ∈ Ah, we define ϕ(η, y1:h) = Bvyh
, and we consider the problem instance with µ supported

on x = η (i.e., µ(η) = 1) and θ⋆ = v0.

In the following, we omit the dependence on x = η. Then, under this construction, we have

πθ(yh | y1:h) =
exp(B⟨θ, vyh

⟩)∑
y′∈Y exp(B⟨θ, vy′⟩)

= πθ(yh).
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We study the SGD update starting from θ0 = v1. By definition,

∇ log πθ(y1:H) =

H∑
h=1

(
ϕ(yh)− E

y∼πθ

[ϕ(y)]

)
.

In the following, we denote F̂ (y1:H) := 1
H

∑H
h=1 vyh

, and

F (θ) := E
y∼πθ

[ϕ(y)] =

∑
y∈Y y exp(B⟨θ, vy⟩)∑
y′∈Y exp(B⟨θ, vy′⟩)

Then, the SGD update can be written as

θt+1 = ProjΘ

(
θt + η

(
F̂ (yt

1:H)− F (θt)
))

.

We make the following claims.

Claim 1. For y ∈ Y and ∥θ − vy∥ ≤ 1
16 , it holds that 1 − πθ(y) ≤ 2e−B/4 =: ϵ1 and hence

∥F (θ)− vy∥ ≤ 2ϵ1.

Claim 2. Suppose that ϵ1 ≤ min
{

1
4nH , 1

5HB2

}
. Then it holds that VarπD [ϕ(y1)] ≤ 1

H and σ⋆ ≤ 1,
and CovN (πD ∥πθ) ≥ 1− 1

2n for logN ≤ HB
8 and θ ∈ Θ such that min{∥θ−v1∥, ∥θ−v−1∥} ≤ 1

16 .
Further, with probability at least 0.5, it holds that F̂ (yt

1:H) = e0 for all t ∈ [n].

In the following, we condition on this event.

Claim 3. By definition, for y ∈ {−1, 1}, we have ∥vy+η(v0−vy)∥ = η−1 and v−1+v1 = η
η−1v0.

Claim 4. Let ϵ = 16ϵ1 + 4ϵ0. Suppose that ϵ ≤ 1
16 . Then if ∥θt − vy∥ ≤ ϵ, then it holds that

∥θt+1 − v−y∥ ≤ ϵ.

Combining the above claims, we know that there is a constant C such that as long as B ≥ C log(nH),
it holds that σ⋆ ≤ 1 and with probability at least 0.5, ∥θt−vt( mod 2)∥ ≤ 1

16 for all t ∈ [n]. Therefore,
by Claim 2, this gives CovN (πθt) ≥ 1

2 as long as logN ≤ HB
8 .

Proof of the claims. To prove Claim 1, we note that ⟨θ, vy⟩ ≥ 1− ∥θ − vy∥ ≥ 15
16 and for y′ ̸= y,

⟨θ, vy′⟩ ≤ ⟨vy, vy′⟩+ ∥θ − vy∥ ≤ α+ 1
16 ≤

11
16 . Therefore,

1− πθ(y) ≤
∑

y′ ̸=y e
B⟨θ,vy′ ⟩

eB⟨θ,vy⟩
≤ 2

eB/4
= ϵ1.

In particular, we know 1 − πD(0) ≤ ϵ1, and hence VarπD [ϕ(y1)] ≤ 5B2ϵ1. Further, we also know
PπD(yh = 0∀h ∈ [H]) ≥ (1 − ϵ1)

H ≥ 1 − Hϵ1. Therefore, taking the union bound, we know
P(yt

h = 0∀h ∈ [H], t ∈ [n]) ≥ 1− nHϵ1 ≥ 1
2 .

Furthermore, for any θ such that min{∥θ − v1∥, ∥θ − v−1∥} ≤ 1
16 , as long as logN ≤ H(log(1−

ϵ1)− log(ϵ1)), we have

CovN (πD ∥πθ) ≥
(
1− 1

2n

)
I{H log πD(0)−H log πθ(0) ≥ logN} ≥ 1− 1

2n
.

In particular, this is ensured when logN ≤ HB
8 . This completes the proof of Claim 2.

Claim 3 follows immediately from the definition of α, v0, v1 and v−1. Finally, we prove claim 4. We
define ut := θt + η

(
F̂ (yt

1:H)− F (θt)
)

. Then it holds that

∥ut − (η − 1)v−y∥ = ∥ut − ηv0 + (η − 1)vy∥ ≤ ∥θt − vy∥+ η∥F̂ (yt

1:H)− v0∥+ η∥F (θt)− vy∥
≤ ϵ+ η(2ϵ1 + ϵ0) =: ϵ′.
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In particular, it holds that |∥ut∥− (η−1)| ≤ ϵ′ and hence ∥ut∥ ≥ η−1− ϵ′ ≥ η−2 ≥ 1. Therefore,
θt+1 = ProjΘ(u

t) = ut

∥ut∥ , and we can bound

∥θt+1 − v−y∥ =
∥∥∥∥ut − (η − 1)v−y

∥ut∥
+ v−y

(
η − 1

∥ut∥
− 1

)∥∥∥∥
≤ ∥u

t − (η − 1)v−y∥
∥ut∥

+
|η − 1− ∥ut∥|

∥ut∥

≤ 2ϵ′

∥ut∥
≤ 4ϵ′

η
=

4

η
ϵ+ 8ϵ1 + 4ϵ0 ≤ ϵ.

Case 2: η ≤ 8
HB . Let B ≤ B be a parameter such that B ≥ cB log(cBnH) for a sufficiently large

constant cB , and we again denote η = HBη.

In this case, we choose the distribution µ to be µ(+) = 1 − µ(−) = min
{
1, BH

512enB
2
logN

}
, the

feature map be specified as ϕ(−, ·) = 0 and ϕ(+, y1:h) = [yhB; 0] for y ∈ Y . We choose θ⋆ = [1; 0].

Note that πD(1 | +) = eB

e−B+1+eB
, and hence 1 − πD(y1 = 1 | +) ≤ 2e−B . Therefore, similar to

Case 1, we have the following claims.

Claim 1. It holds that σ⋆ ≤ 1, and with probability at least 0.5, it holds that
∑n

t=1 I{xt = +} ≤
4µ(1)n, and for any t such that xt = +, we have yt

h = 1 for all h ∈ [H].

In the following, we condition on this event.

Claim 2. For any θ ∈ Θ, it holds that 1− πθ(1 | +) ≤ 2
eθ[1]B

, and hence when xt = +, we have

∥∇ log πθ(y
t | xt)∥ = ∥H(B − Ey1∼πθ(·|+)[ϕ(y1)])∥ ≤ 2HB|1− πθ(1 | +)| ≤ 4HB

eθ[1]B
.

Note that when xt = −, we have ∇ log πθ(y
t | xt) = 0. Therefore, it holds that

0 ≤ θt+1[1]− θt[1] ≤ I{xt = +} · 4ηB

Beθt[1]B
.

Claim 3. Suppose that eθ[1]B ≤ H
4 logN . Then it holds that CovN (πθ) ≥ 1

2 .

To complete the proof, we now choose θ′ ∈ [−1, 1] such that eθ
′B = H

4 logN , and we let θ0 =

[θ′ − 1
B
; 0]. Then, using Claim 2, we know that for any t ∈ [n], it holds that

θt[1]− θ0[1] ≤
n∑

t=1

I{xt = +} · 4ηHB

eθ0[1]B
≤ n · µ(+)

16eηB

Beθ′B
≤ µ(+) · 512eBn logN

BH
≤ 1

B
.

Therefore, we have θt[1] ≤ θ′ and hence CovN (πθt) ≥ µ(+)
2 for any t ∈ [n].

It remains to prove Claim 3. We note that similar to Claim 2, PπD(yh = 1∀h ∈ [H] | x = +) ≥ 1
2 ,

and hence

CovN (πθ) ≥
µ(+)

2
· I{H(log πD(y1 = 1 | +)− log πθ(y1 = 1 | +)) ≥ logN} ≥ µ(+)

2
,

where we use log πD(y1 = 1 | +) ≥ log(1 − 2e−B) ≥ −3e−B and log πθ(y1 = 1 | +) ≤
− 1

3eθ[1]B
.

K.5 PROOF OF THE SUPPORTING RESULTS

We generalize Proposition 3.2 to show that in the worst case (where σ2
⋆ ≍ HB2), the scaling

CovN (π̂) = Ω( H
n logN ) can be unavoidable for autoregressive linear model. This implies that the

dependence on σ2
⋆ is generally necessary to achieve upper bounds that do not explicitly scale with H .
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Proposition K.1. Let H,B,N, n ≥ 1, and assume logN ≤ cmin{H,B2} for a sufficiently small
constant c > 0. There exists an instance of H-dimensional autoregressive linear model class Π with
ϕ : X ×A⋆ → B2(B) and Θ = B2(1), such that for any proper algorithm Alg with output π̂ = πθ̂,
there exists πD ∈ Π, such that under πD, it holds that

EπD,Alg[CovN (πD ∥ π̂)] ≥ c ·min

{
1,

H

n · logN

}
.

Proof. We considerX = {+,−},A = {0, 1}, and the distribution µ be given by µ(+) = 1−µ(−) =
p, where p ∈ [0, 1] is a pre-specified parameter. Let the feature map ϕ be given by ϕ(y1:h | −) = 0,
ϕ(y1:h | +) = Byheh, where (e1, · · · , eH) is a fixed orthonormal basis of RH . Note that with this
construction, we have πθ(yh = · | −, y1:h−1) = Ber(1/2), and

πθ(yh = · | +, y1:h−1) = Ber

(
eBθh

1 + eBθh

)
=: πθ,h.

Note that for any h ∈ [H], we can bound

C0B|θh − θ′h| ≤ DH(πθ,h, πθ′,h) ≤ C1B|θh − θ′h|,
as long as θh ∈ [− 1

B , 1
B ].

We fix ϵ ∈ [0, 1
max{

√
H,B} ] to be determined later, and for any v ∈ {−1, 1}H , we let θv :=

ϵ
∑H

h=1 vheh, and

Θ0 :=
{
θv : v ∈ {−1, 1}H

}
⊂ B2(1), Π0 := {πθ : θ ∈ Θ0}.

Then a direct argument shows that when pn ≤ c0
B2ϵ2 for a sufficiently small constant c0, there exists

θ⋆ ∈ Θ0 such that under πD = πθ⋆ , it holds that
H∑

h=1

PπD,Alg

(
|θ̂h − θ⋆h| ≥ ϵ

)
≥ cH.

Therefore, with probability at least c
2 , it holds that

∑H
h=1 I

{
|θ̂h − θ⋆h| ≥ ϵ

}
≥ cH

2 , and this in turn
implies

H∑
h=1

D2
H

(
πθ⋆,h, πθ̂,h

)
≥ c1HB2ϵ2.

Then, by Proposition D.11, we know that under the above event, as long as logN ≤ c1HB2ϵ2

2 ,

we have CovN (π̂) ≥ p
2 . Choosing ϵ =

√
4 logN
c1HB2 and p = min

{
1, c0

nB2ϵ2

}
gives the desired lower

bound.

L PROOFS FROM SECTION 6
L.1 PROOF OF THEOREM 6.1
Recall (from Eq. (11)) that we consider the token-level SGD iterates defined as

θt,h+1 = ProjΘ
(
θt,h + η∇ log πθt,h(yt

h | xt, yt

1:h−1)
)
, for h = 0, · · · , H − 1, (62)

and θt+1 ≡ θt+1,0 := θt,H for t ∈ [T ], where (xt, yt

1:H) ∼ πD.

To define the guarantee on θt which we are able to derive, we next define the following test-time
parameter update ϑTTT(x, y1:h; θ), for a parameter θ and prompt x. It is defined recursively for
h = 0, 1, · · · , H − 1:

ϑTTT(x, y1:h; θ) := ProjΘ
(
ϑTTT(x, y1:h−1; θ) + η∇ log πϑTTT(x,y1:h−1;θ)(yh | x, y1:h−1)

)
. (63)

We then define a distribution πTTT
θ : X → ∆(YH) as

πTTT
θ (· | x, y1:h−1) := πϑTTT(x,y1:h−1;θ)(· | x, y1:h−1). (64)

The distribution πTTT
θ can be interpreted as an augmented version of the autoregressive linear model

πθ that performs test-time training during sampling.
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Proof. We closely follow the proof of Proposition 5.1 (cf. Appendix K.1).

We first note that by the proof of Eq. (57), we have

E

[
T∑

t=1

〈
−∇ log πθt,h(yt

h | xt, yt

1:h−1), θ
t,h − θ⋆

〉]
≤ 1

2η
+ η E

[
T∑

t=1

∥∥∇ log πθt,h(yt

h | xt, yt

1:h−1)
∥∥2].

Further, by the proof of Eq. (58), we have∥∥∇ log πθt,h(yt

h | xt, yt

1:h−1)
∥∥2

≤ 2
∥∥∇ log πθ⋆(yt

h | xt, yt

1:h−1)
∥∥2

+ 2B2
〈
∇ log πθ⋆(yt

h | xt, yt

1:h−1)−∇ log πθt,h(yt

h | xt, yt

1:h−1), θ
t,h − θ⋆

〉
Note that the conditional distribution of yt

h | (xt, yt

1:h−1, θ
t,h) is given by yt

h ∼ πD(· | xt, yt

1:h−1).
Hence, taking expectation, we have

E
[∥∥∇ log πθt,h(yt

h | xt, yt

1:h−1)
∥∥2] ≤ 2EπD∥∇ log πθ⋆(yh | x, y1:h−1)∥2

+ 2B2 E
[〈
−∇ log πθt,h(yt

h | xt, yt

1:h−1), θ
t,h − θ⋆

〉]
,

and we also have (cf. Eq. (55))

E
[〈
−∇ log πθt,h(yt

h | xt, yt

1:h−1), θ
t,h − θ⋆

〉]
≥ EDKL

(
πD(· | xt, yt

1:h−1) ∥πθt,h(· | xt, yt

1:h−1)
)
.

Combining the inequalities above, as long as η ≤ 1
4B2 , it holds that

E

[
H∑
t=1

H∑
h=1

DKL

(
πD(· | xt, yt

1:h−1) ∥πθt,h(· | xt, yt

1:h−1)
)]
≤ 1

η
+ 4ηTσ2

⋆. (65)

Finally, we note that

θt,h = ϑTTT(xt, yt

h−1; θ
t),

and xt, yt

h−1 | θt ∼ πD. Therefore,

E
[
DKL

(
πD(· | xt, yt

1:h−1) ∥πθt,h(· | xt, yt

1:h−1)
)
| θt
]

= E(x,y)∼πD
DKL

(
πD(· | x, y1:h−1) ∥πϑTTT(x,y1:h−1;θt)(· | x, y1:h−1)

)
= E(x,y)∼πD

DKL

(
πD(· | x, y1:h−1) ∥πTTT

θt (· | x, y1:h−1)
)
.

This implies

1

η
+ 4ηTσ2

⋆ ≥ E

[
T∑

t=1

H∑
h=1

DKL

(
πD(· | xt, yt

1:h−1) ∥πθt,h(· | xt, yt

1:h−1)
)]

= E

[
T∑

t=1

E

[
H∑

h=1

DKL

(
πD(· | xt, yt

1:h−1) ∥πθt,h(· | xt, yt

1:h−1)
) ∣∣∣ θt

]]

= E

[
T∑

t=1

EπD

[
H∑

h=1

DKL

(
πD(· | x, y1:h−1) ∥πTTT

θt (· | x, y1:h−1)
)]]

= E

[
T∑

t=1

DKL

(
πD ∥πTTT

θt

)]
,

where the last equality uses the chain rule of KL divergence.
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L.2 PROOF OF THEOREM F.2
We first note that by the proof of Eq. (57), we have

E

[
T∑

t=1

〈
E(x,y)∼πD

[ĝθt(y | x)], θt − θ⋆
〉]
≤ 1

2η
+ η E

[
T∑

t=1

E(x,y)∼πD
∥ĝθt(y | x)∥2

]
.

In the following, we analyze
〈
E(x,y)∼πD

[ĝθ(y | x)], θt − θ⋆
〉

and E(x,y)∼πD
∥ĝθt(y | x)∥2 for any

θ ∈ Θ, following the proof of Proposition 5.1 (cf. Appendix K.1).

We adopt the notation of Appendix K: For any θ and any pair (x, y1:h−1), we denote ϕθ(x, y1:h−1) =
Eπθ

[ϕ(x, y1:h) | x, y1:h−1] and
ϵθ(x, y1:h−1) = DKL(πD(· | x, y1:h−1) ∥πθ(· | x, y1:h−1)).

By definition, we have (cf. Lemma K.4)
H∑

h=1

αθ(x, y1:h−1)ϵθ(x, y1:h−1) = min

{
A,

H∑
h=1

ϵθ(x, y1:h−1)

}
, (66)

and hence

E(x,y)∼πD

[
H∑

h=1

αθ(x, y1:h−1)ϵθ(x, y1:h−1)

]
= E(x,y)∼πD

min

{
A,

H∑
h=1

ϵθ(x, y1:h−1)

}
= Dseq,N (πD ∥πθ),

(67)

where we recall that Dseq,N (πD ∥πθ) is defined in Proposition D.10 and we denote A = logN .
Hence, by convexity (Eq. (55)),〈

E(x,y)∼πD
[ĝθ(y | x)], θ − θ⋆

〉
= E(x,y)∼πD

[
H∑

h=1

αθ(x, y1:h−1)
〈
ϕθ⋆(x, y1:h−1)− ϕθ(x, y1:h−1), θ − θ⋆

〉]

≥ E(x,y)∼πD

[
H∑

h=1

αθ(x, y1:h−1)ϵθ(x, y1:h−1)

]
= Dseq,N (πD ∥πθ).

Further, by Eq. (56), it holds that
∥ĝθ(y | x)− ĝθ⋆(y | x)∥

≤
H∑

h=1

αθ(x, y1:h−1)
∥∥ϕθ⋆(x, y1:h)− ϕθ(x, y1:h−1)

∥∥
≤

H∑
h=1

αθ(x, y1:h−1)
(
2
√
VarπD(x, y1:h−1) · ϵθ(x, y1:h−1) + 3Bϵθ(x, y1:h−1)

)
.

Hence, using Eq. (66), we have
∥ĝθ(y | x)− ĝθ⋆(y | x)∥2

≤ 8

(
H∑

h=1

αθ(x, y1:h−1)
√

VarπD(x, y1:h−1) · ϵθ(x, y1:h−1)

)2

+ 18B2

(
H∑

h=1

αθ(x, y1:h−1)ϵθ(x, y1:h−1)

)2

≤ 8

(
H∑

h=1

αθ(x, y1:h−1)VarπD(x, y1:h−1)

)(
H∑

h=1

αθ(x, y1:h−1)ϵθ(x, y1:h−1)

)

+ 18AB2

(
H∑

h=1

αθ(x, y1:h−1)ϵθ(x, y1:h−1)

)

≤ 8A

(
H∑

h=1

VarπD(x, y1:h−1)

)
+ 18AB2

(
H∑

h=1

αθ(x, y1:h−1)ϵθ(x, y1:h−1)

)
.
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Therefore, taking expectation of (x, y) ∼ πD and using EπD∥ĝθ⋆(y | x)∥2 ≤ σ2
⋆ and Eq. (67), it holds

that
E(x,y)∼πD

∥ĝθ(y | x)∥2 ≤ (16A+ 1)σ2
⋆ + 36AB2Dseq,N (πD ∥πθ), ∀θ.

Finally, combining the inequalities above, we know that

E

[
T∑

t=1

Dseq,N (πD ∥πθt)

]
≤ E

[
T∑

t=1

〈
E(x,y)∼πD

[ĝθt(y | x)], θt − θ⋆
〉]

≤ 1

2η
+ η E

[
T∑

t=1

E(x,y)∼πD
∥ĝθt(y | x)∥2

]

≤ 1

2η
+ ηT (16A+ 1)σ2

⋆ + 36AB2 E

[
T∑

t=1

Dseq,N (πD ∥πθt)

]
.

Therefore, as long as η ≤ 1
72AB2 , it holds that

E

[
T∑

t=1

Dseq,N (πD ∥πθt)

]
≤ 1

η
+ 36ηTAσ2

⋆.

Optimally choosing η gives

E

[
1

T

T∑
t=1

Dseq,N (πD ∥πθt)

]
≲

√
σ2
⋆ logN

T
+

B2 logN

T
.

By Proposition D.10, this implies

E

[
1

T

T∑
t=1

CovN (πθt)

]
≲

√
σ2
⋆

T logN
+

B2

T
.

L.3 PROOFS FROM SECTION 6.2 (SELECTION)
Below we state and prove a generalization of Theorem 6.2 which holds when the data distribution πD

is not necessarily in the model class Π.

Theorem 6.2′ (General version of Theorem 6.2). Fix N ≥ 1, and consider the estimator π̂ from
Eq. (13):

π̂ := argmin
π∈Π

max
π′∈Π

ĈovN (π′ ∥π). (68)

For any δ ∈ (0, 1), parameter a, c ≥ 0, with probability at least 1− δ, it holds that

CovN1+a+2c(π̂) ≲ min
π∈Π

CovNa(π) +
1

N1−a−2c
+

logN∞(Π; c logN) + log δ−1

n
. (69)

Proof of Theorem 6.2′. Fix any π ∈ Π and M,α > 0, and we study the estimator
π̂ := argmin

π∈Π
max
π′∈Π

ĈovM (π′ ∥π). (70)

By Lemma J.2, with probability at least 1− δ, it holds that for ∀π ∈ Π,

ĈovN (π ∥π) ≥ 1

2
CovπD

e2αN (π ∥π)− εstat,

where εstat = log(N∞(Π;α)/δ). Next, again by Lemma J.2, with probability at least 1− δ, it holds
that for ∀π ∈ Π,

ĈovN (π ∥π) ≤ 2CovπD

e−2αN (π ∥π) + εstat.

Therefore, we have with probability at least 1− 2δ,
1

2
CovπD

e2αN (π ∥ π̂)− εstat ≤ ĈovN (π ∥ π̂) ≤ max
π′∈Π

ĈovN (π′ ∥ π̂)

= min
π∈Π

max
π′∈Π

ĈovN (π′ ∥π) ≤ max
π′∈Π

ĈovN (π′ ∥π)

≤2max
π′∈Π

CovπD

e−2αN (π ∥π) + εstat.
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Reorganizing yields

CovπD

e2αN (π ∥ π̂) ≤ 4max
π∈Π

CovπD

e−2αN (π ∥π) + 4εstat.

Note that for any N ′, N ′′ and policy π, π′, π′′,

CovπD

N ′N ′′(π
′ ∥π) ≤ CovπD

N ′(π
′ ∥π′′) + CovπD

N ′′(π
′′ ∥π). (71)

Hence, for all π,

CovπD

e2αNN ′(πD ∥π) ≤ CovπD

N ′(πD ∥π) + CovπD

e2αN (π ∥ pi),
CovπD

e−2αN (π ∥π) ≤ CovπD

N ′(π ∥πD) + CovπD

e−2αN/N ′(πD ∥π)

Therefore, using the fact that CovπD

A (π ∥πD) ≤ 1
A and the inequalities above, we see that

Cove2αNN ′(π̂) = CovπD

e2αNN ′(πD ∥ π̂)
≤ CovπD

N ′(πD ∥π) + CovπD

e2αN (π ∥ π̂)
≤ CovπD

N ′(πD ∥π) + 4max
π∈Π

CovπD

e−2αN (π ∥π) + 4εstat

≤ 5CovπD

N ′(πD ∥π) + 4max
π∈Π

CovπD

e−2αN/N ′(π∥πD) + 4εstat

≤ 5CovπD

N ′(πD ∥π) +
e2αN ′

N
+ 4εstat.

The claimed bound follows by setting π = argminπ∈Π CovπD

N ′(πD ∥π), α = c logN , and
N ′ = Na.

L.4 PROOF OF THEOREM F.3
Divergence. For any distribution P,Q ∈ ∆(Y), we define the following divergence for M ≥ 1:

EM (P ∥Q) := max

{
Ey∼P

(
dQ

dP
−M

)
+

,Ey∼Q

(
dP

dQ
−M

)
+

}
.

Then, for policies π, π′ : X → ∆(Y), we further define

EM,µ(π ∥π′) := Ex∼µ EM (π(· | x) ∥π′(· | x)).
Under this divergence, it holds that for any event E,

Pµ,π(E) ≤M · Pµ,π′(E) + EM,µ(π ∥π′), (72)

Pµ,π′(E) ≤M · Pµ,π(E) + EM,µ(π ∥π′), (73)

where Pµ,π is the probability under x ∼ µ and y ∼ π(· | x). Furthermore, we can bound

Cov2M (π) = Pµ,πD

(
πD(y | x)
π(y | x)

≥ 2M

)
≤ EM,µ(πD ∥π). (74)

Theorem F.3′ (General version of Theorem F.3). Fix N, γ ≥ 1 such that N ≥ 4γ2. Consider the
estimator

π̂ := argmin
π∈Π

max
π′∈Π

{ĈovN (π′ ∥π)− 2γ · ĈovπN (π′ ∥π)} . (75)

Then with probability 1− δ, it holds that

Cov2Nγ(π̂) ≲ min
π∈Π
Eγ(πD ∥π) +

log(|Π|/δ)
n

.

Theorem F.3 is an immediate corollary by setting γ = N c.

Proof of Theorem F.3′. For π, π′ ∈ Π, we define the set

CN (π, π′) =

{
(x, y) | π(y | x)

π′(y | x)
≥ N

}
.
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Suppose an i.i.d. dataset D = {(xi, yi)}i∈[n] ∼ πD is drawn. We write µn = 1
n

∑n
i=1 δ(xi,yi) to

denote the empirical measure (i.e., µn is the uniform distribution over D). Note that

ĈovN (π′ ∥π) = µn(CN (π′, π)). (76)

We also recall that

ĈovπN (π′ ∥π) := 1

n

n∑
i=1

Py∼π(·|xi)

(
π′(y | xi)

π(y | xi)
≥ N

)
.

Therefore, we write ĈovπN (π′ ∥π) = Pn,π(CN (π′, π)), where Pn,π is the probability under the
distribution x ∼ µn, y ∼ π(· | x).
Thus, the tournament estimator in Eq. (38) can be expressed as

π̂ := argmin
π∈Π

max
π′∈Π

L(π, π′), (77)

where

L(π, π′) := µn(CN (π′, π))− 2γ · Pn,π(CN (π′, π)), (78)

and γ = 2N c.

As an immediate consequence of Lemma H.3 and union bound, we have the following:

Lemma L.1. Fix δ ∈ (0, 1), and define εstat =
16 log(4|Π|/δ)

n . With probability 1− δ, the following
holds simultaneously:

(1) For all π, π′ ∈ Π, it holds that

2Pµ,πD(CN (π′, π)) + εstat ≥ µn(CN (π′, π)) ≥1

2
Pµ,πD(CN (π′, π))− εstat,

2Pn,πD(CN (π′, π)) + εstat ≥ µn(CN (π′, π)) ≥1

2
Pn,πD(CN (π′, π))− εstat.

(2) For any π ∈ Π, it holds that Eγ,µn
(πD ∥π) ≤ 2Eγ,µ(πD ∥π) + εstat.

In the following, we fix δ ∈ (0, 1) and condition on the success event of Lemma L.1. Let π ∈ Π denote
some policy for which εapx = Eγ,µ(πD ∥π). We denote ε′apx = Eγ,µn(πD ∥π), and by Lemma L.1, we
have ε′apx ≤ 2εapx + εstat.

Then, for any π′ ∈ Π,

L(π, π′) ≤ 2Pn,πD(CN (π′, π))− 2γPn,π(CN (π′, π)) + εstat

≤ 2Eγ,µn
(πD ∥π) + εstat = ε′apx + εstat.

where the first inequality uses Lemma L.1, and the second inequality uses Eq. (72).

Therefore, we have

max
π′∈Π

L(π̂, π′) = min
π∈Π

max
π′∈Π

L(π, π′) ≤ max
π′∈Π

L(π, π′) ≤ εstat + ε′apx.

In particular, we know L(π̂, π) ≤ εstat + ε′apx. Then, we can bound

µn(CN (π, π̂))− L(π̂, π) = 2γPn,π̂(CN (π, π̂))

≤ 2γ

N
Pn,π(CN (π, π̂))

≤ 2γ

N

[γ
2
Pn,πD(CN (π, π̂)) + ε′apx

]
≤ 2γ

N

[
γ(µn(CN (π, π̂)) + εstat) + ε′apx

]
,

where the second inequality uses Eq. (73): Pn,π(E) − γ
2Pn,πD(E) ≤ EM,µn(πD ∥π) = ε′apx for

any event E, and the thrid inequality uses Lemma L.1. Therefore, using N ≥ 4γ2, we know
µn(CN (π, π̂)) ≤ 5εstat + 2ε′apx. Using Lemma L.1 again, we have

CovπD

N (π ∥ π̂) = Pµ,πD(CN (π, π̂)) ≤ 2µn(CN (π, π̂)) + 2εstat ≤ 12εstat + 4ε′apx.
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By Eq. (71), it holds that

Cov2Nγ(π) = CovπD

2Nγ(πD ∥π) ≤ CovπD
2γ(πD ∥π) + CovπD

N (π ∥π),

and we also have CovπD
2γ(πD ∥π) ≤ εapx by Eq. (74). Combining the inequalities above, we can

conclude that

Cov2Nγ(π̂) ≤ CovπD

N (π ∥π) + εapx ≤ 12εstat + 4ε′apx + εapx.

Finally, using Lemma H.3, we have ε′apx ≤ 2εapx + εstat. This is the desired upper bound.
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