
FaceZip: Automatic Texture Compression for Facial Blendshapes
Cai Yiyi*

The University of Tokyo
Shinichi Kinuwaki†

Unaffiliated
Nobuyuki Umetani‡

The University of Tokyo

uncompressed: 63 MB compressed: 17 MB

Figure 1: We present a method to compress the information of the texture that dynamically changes with the underlying blendshape
mesh. Compared to the naı̈ve method of storing all the textures on the blendshape mesh (left), our approach (right) significantly
reduces the size with only a small loss of quality.

ABSTRACT

Recently, numerous cinematic and interactive entertainment produc-
tion companies have adopted advanced capture systems to acquire
faithful facial geometries and corresponding textures. However, it
is difficult to animate these models in a controllable manner for
real-time applications. Although blendshape is typically used for
parameterizing facial geometries, dynamically changing the texture
of the geometry is challenging. Because texture data are significantly
larger than the vertex coordinates of the meshes, storing the texture
of all the blendshape meshes is impractical. We present a method
to compress texture data in a manner compatible with blendshape
for real-time applications such as video games. Our method takes
advantage of the locality of facial texture differences by blending a
few textures with spatially different weights. Our method achieved a
more accurate reconstruction of the original textures compared with
the baseline principal component analysis.

Index Terms: Computing methodologies—Computer graphics—
Image Compression; Computing methodologies—Computer
graphics—Texturing

1 INTRODUCTION

Recently, the demand has significantly increased for realistic digital
human models in various applications such as cinema, interactive
entertainment, and metaverse photogrammetry, which are typically
used to automatically capture the 3D geometries and materials of ac-
tors. However, a wide range of skilled artists in modeling, sculpting,
texture painting, rigging, and animation are still necessary to bring
life to the captured model. This difficulty largely originates from
the parameterization of the acquired model to efficiently represent
the surface material and deformation in an efficient and controllable

*e-mail: caiyiyi1998@gmail.com
†e-mail: shinichikinuwaki@gmail.com
‡e-mail: n.umetani@gmail.com

manner. The overall facial deformation is typically parameterized
using a blendshape model, and the detailed surface appearance is
represented by 2D textures. However, their coupling, which dynami-
cally changes the texture according to the blendshape parameter, has
been challenging. It is difficult to represent details such as wrinkles,
dimples, and furrows, which are dynamically created using various
expressions.

Blendshape is a popular facial animation technique because it can
create complicated deformations using a simple linear combination
of semantically meaningful (typically 50–100) blendshape meshes.
Theoretically, the texture of the blendshape can also be represented
by a linear combination of the textures of the blendshape meshes.
However, storing all textures of the blendshape mesh is not practical,
as the memory requirement of the texture is significantly larger than
that of the vertex coordinates of the blendshape mesh. Particularly in
real-time applications such as games, the current hardware requires
keeping the number of texture accesses at 10 or fewer.

A typical technique used in the gaming industry is to store the tex-
ture of a neutral face and several textures that collect wrinkles from
large expressions (e.g., [26]). These textures are blended nonuni-
formly using the weight map, that is, spatially changing weights.
The advantage of this approach is that the artist has control over
all the textures, thereby allowing exaggerated facial expressions to
be authored. However, this is time-consuming and requires a great
deal of expertise to create such weight maps and wrinkle textures
manually.

We present a technique for automatically generating a compressed
texture for a blendshape model (see Figure 1). Our algorithm lever-
ages the locality of wrinkles by dividing the entire texture into
several fragments. These fragments were seamlessly stitched back
to several textures while avoiding blur using our optimized selection
of fragment combinations. Furthermore, we extend our model to
the blendshape generated from the example-based blendshape tech-
nique [13], which is a popular method for generating blendshape
meshes of Ekman’s Facial Action Coding System (FACS) [6] from
fewer example meshes.

We demonstrate our approach by comparing it against the baseline
of principal component analysis (PCA). The contributions of the
proposed method include the following:

• Automatic compression of textures for the application of facial
blendshape.

• The extension of the texture generation for the blendshape
generated by the example-based blendshape technique [13].

2 RELATED WORK

The generation of facial models has been studied extensively for
several years. We refer the reader to surveys [18, 29] for a com-
prehensive review. This study focuses on texture compression of
blendshape in a real-time environment.

Parametric Facial Deformation Skinning [11] is one of the
simplest methods of animating faces by placing fictitious facial
bones under the skin. Because it is difficult to faithfully reproduce
facial deformation using bones, blendshape deformation [20] is often
used instead of high-quality animation. The blendshape typically
deforms the vertices of the meshes with a linear combination of dif-
ferences from the neutral mesh [12]. Neumann et al. [19] proposed
a method that extracts sparse and localized deformation modes from
an animated mesh sequence, such that the extracted dimensions
often have interpretable meanings. These parameterizations work
well for the vertices of meshes, but often have difficulty handling
textures because the amount of data is large.

Expression Capture High-quality facial capture setups are
becoming increasingly common in industry. These systems typi-
cally use the photometric stereo technique with polarizers to obtain
the albedo, specular, normal, and rough textures from vertical and
parallel polarization images [8]. Riviere et al. [22] avoided sequen-
tial flashing of light when estimating these textures by applying
inverse rendering to cross- and parallel-polarized images. Zhang et
al. [28] modified the Light Stage [4] for high-speed cameras and
developed a mechanism to directly capture the animation sequence
itself at the video rate, instead of discrete expressions. Whereas
expression capture requires multiple separate workflows, such as

difference textures
neutral
texture

...

+
reconstructed

textures

face 1
weight maps

face N
weight maps

Figure 2: Texture-compression approach. For each blendshape mesh,
four corresponding weight maps were obtained. These weight maps
were then applied to the four difference textures. The summation of
all weighted difference and neutral textures reconstruct the texture of
the blendshape mesh.

mesh reconstruction, fitting to a base mesh, and the computation
of each texture, Liu et al. [15] proposed a single end-to-end neural
network acquisition framework.

FACS Blendshape Generation Productions typically use the
meshes of FACS poses to create the blendshapes for facial animation.
Because FACS is typically composed of 50 to over 100 independent
meshes, there is a demand to build all FACS blendshape meshes
from a limited number of captures. Li et al. [13] presented a retarget-
ing technique for synthesizing blendshape meshes of FACS poses
from a small number of expression captures. However, that study
focused on facial geometry rather than texture. Li et al. [14] pro-
posed a neural network for generating FACS expressions and their
corresponding textures from a single neural facial scan. However,
the resulting textures are too expensive to blend directly in real time.

Facial Material Representation Facial animation has been
studied for many years. However, few studies have focused on the
compression of facial textures. The 3D morphable model (3DMM)
represents the detailed 3D model in lower dimensional parameters.
We refer to a recent survey on morphable facial models by Egger
et al. [5]. These parametric models can also decompose animation
data and change facial expressions by changing the parameters.
The pioneering work of Blanz et al. [3] parameterized both vertex
coordinates and RGB texture values using PCA.

Recent studies using neural networks are expensive to evaluate in
real time for high-resolution material generation. Machine learning
approaches use convolutional neural networks (CNN) [21, 24] to
directly output meshes and textures. But they all need a large amount
of training data and cannot be used for real-time purposes. Lombardi
et al. [16] represented facial data as a set of neural radiance field
models, instead of a mesh and texture. The performance of the learn-
ing method can be extremely poor if the real data are significantly
different from the training data in terms of age, skin color, etc.

Garrido1 et al. [7] and Shi et al. [25] presented small surface
details using shape-from-shading techniques that dynamically gener-
ate a highly detailed surface geometry according to the expressions.
However, these approaches have extremely high computational com-
plexities and are unsuitable for real-time applications. Huang et
al. [9] and Ma et al. [17] generated the details of different expressions
using detailed maps while keeping the diffuse texture unchanged.
However, a diffuse map typically changes as wrinkles appear, de-
pending on the expression used.

3 METHODS

Texture Compression Let us assume we have 𝑁 number of
RGB textures I𝑛 where 𝑛 ∈ {1, ..., 𝑁} and one RGB “neutral tex-
ture” I0. Our algorithm computes four RGB “difference textures”
D𝑖 where 𝑖 ∈ {1, ..., 4} and weight maps W𝑖𝑛 ∈ R. With these com-
puted values, we efficiently approximate the 𝑛-th original texture I𝑛
as

I𝑛 ≃ Ī𝑛 = I0 +
4∑︁
𝑖=1

D𝑖 ⊙ W𝑖𝑛, (1)

where the ⊙ symbol stands for the Hadamart product, i.e., pixel-wise
product. Figure 2 visually explains the reconstruction formulation
in (1). Note that we have four source textures because the weight
maps can be efficiently stored in the RGBA texture space. The
weight W is smoothly defined, thus it can be stored in a down-
sampled image without significant loss of quality. In this paper, the
ratio of down-sampling is eight, thus the size of the weight is 64
times smaller than the original one. With input texture size 𝑊 × 𝐻,
the original textures require 𝑁 ×𝑊 ×𝐻 space, while the compressed
model requires (5 + 𝑁/64) × 𝑊 × 𝐻 resulting in a significantly
smaller memory footprint especially when 𝑁 is large.

This paper presents a method to compute the decomposition of
the input textures in (1) for the application of facial blendshape.

...

...

...

...

...

...

...

...

...

clustering
for each mask

index permutation
for cluster centers

...

...

...

textures for
blendshape

...

...

...

...

textures for example
based blendshapemasking difference textures

offline precomputation blend with weight blend with weight

Figure 3: Overview of our method. For each texture, we first compute the difference from the neutral texture and apply a mask to decompose
the texture into localized fragments. Fragments from the same mask were split into four clusters. The fragments from different masks were
reassembled into different textures using a combination that reduced the reconstruction error. In the runtime computation, the weight maps were
blended with the blendshape weights. The weight map was augmented for the blendshape generated by example-based rigging.

Specifically, we generate textures for the example-based facial rig-
ging [13], where the input textures are given in a small number of
example shapes. When the weights of the blendshape change and
thus the expression changes, our method outputs the texture with
corresponding fine detail such as wrinkles.

We present an overview of our method in Figure 3. We first
decompose the textures into fragments. Then, all the fragments
are clustered into four groups. Finally, we find an optimal arrange-
ment to store the fragments in the source textures and generate
weight maps for every blendshape mesh. Section 3.1 explains this
precomputation and Section 3.2 explains the following run-time
computation.

3.1 Compression of Textures
The deformation of the entire face has rich varieties, but if we focus
on a specific location, the deformation can be approximated with
several modes. For example, a forehead exhibits horizontal furrows
when the character raises the eyebrows and vertical furrows when
the character frowns. To take advantage of such a locality, we first
divide the input texture I𝑗 into small fragments. This fragment can
be simply computed by applying the mask M𝑘 in the input texture

D̂𝑛𝑘 = (I𝑛 − I0) ⊙ M𝑘 , (2)

where 𝑘 ∈ {1, ...,#mask} is the index of the mask. Note that
we apply the mask to the difference between the neutral texture(
I𝑗 − I0

)
here.

The mask takes the value between [0, 1] where the value outside
the fragment is zero. To make the seam less visible, the masks need
to smoothly change their value in the 3D space. Moreover, we define
the masks such that they add up to one

∑M = 1.

Mask Computation We compute such smooth masks by solv-
ing the biharmonic equation (see Figure 4) inspired by the computa-
tion of the rigging weights in [10]. For the input mesh of the head,
we first manually extract the set of triangles that corresponds to the
face. Then we randomly sample the vertices of the extracted trian-
gles. To sample uniformly over the 3D mesh, we use the Poisson
disk sampling with the dart-throwing algorithm. Here, we reject
samples within a 3 cm radius. The number of the sampled vertices is
the number of the masks #mask. In total, we sampled 53 vertices.

Let 𝜙 ∈ R are the values defined on the vertices of extracted face
triangles. We solve the biharmonic equation by minimizing | |Δ𝜙 | |2
with the fixed boundary condition where 𝜙 = 1 at one vertex and 𝜙 =

0 at the other vertices. We use combinatorial Laplacian on the 3D
mesh to robustly compute the minimization using an iterative solver
for a sparse linear system. Finally, the 𝑘-th mask is computed by
normalizing the solution in the UV space M𝑘 = 𝜙𝑘/

∑#mask
𝑘′=1 𝜙𝑘′ .

(a) (b) (c) (d) 0

1

Figure 4: Mask computation approach. Given the input mesh (a), we
first manually selected a region of interest (b). The vertices are then
uniformly sampled over the selected region (c). Finally, the biharmonic
equation is solved on the mesh while fixing the value at one of the
sampled vertices as one and the others as zero (d).

Clustering The fragment of the input texture has several dom-
inant modes. We extract such modes using K-means clustering
method where the number of the cluster is four. Since the K-means
clustering minimizes the variance inside the cluster, we can best
select the four representative fragments of all fragments with the
same mask. For each mask 𝑘 , we record the four cluster centers of
each cluster D̂′

𝑖𝑘
where 𝑖 ∈ {1, ..., 4}.

Difference Texture Generation We now have four fragments
for every mask, we are stitching these fragments back to four full
textures. Naı̈vely adding up the fragments with the same texture
index 𝑖 will lead to blurring the texture around the border of the
fragments. Hence, we optimize the combination of the fragments
for each texture such that the adjacent fragments match together. Let
𝜎(𝑖, 𝑘) be a permutation of index 𝑖 for each mask 𝑘 . We define the
cost of a certain permutation index 𝜎 as

C(𝜎) =
#mask∑︁

{𝑘1 ,𝑘2 }=1

4∑︁
𝑖=1

D̂′′
𝑖𝑘1𝑘2

(𝜎) − D̂′′
𝑖𝑘2𝑘1

(𝜎)
2 , (3)

where D̂′′
𝑖𝑘1𝑘2

(𝜎) = D̂′
𝜎 (𝑖,𝑘1)𝑘1 ⊙ M𝑘2 . (4)

Note that in (4), we apply the two masks M𝑘1 ⊙ M𝑘2 to the dif-
ference texture (see the definition of the fragment in (2)). The
Hadamard product of the two masks takes non-zero positive value
only around the intersection of the mask 𝑘1 and 𝑘2.

The number of the possible permutation indexes 𝜎 is finite but it is
too large to compute by exhaustive search (i.e., 4!#mask). Thus, we
present a method to iteratively reduce the cost to find an approximate

minimizer. In each iteration, we look at a mask one by one. For
each mask, we compute all the possible 4! index permutations for
the mask and update the index to the minimizer while the indexes
of other masks are fixed. By iterating this procedure 10 times, we
reach convergence (see Figure 7-left). We repeat this procedure 100
times and record the permutation with the smallest cost.

Finally, we compute the four difference texture and the weights
as

D𝑖 =

#mask∑︁
𝑘=1

D̂′
𝜎 (𝑖,𝑘)𝑘 , (5)

W𝑖𝑛 =

#mask∑︁
𝑘=1

𝛼𝑖𝑛𝑘M𝑘 , (6)

where 𝛼𝑖𝑛𝑘 takes the value 1 if the fragmented image D̂𝑛𝑘 belongs
to the 𝜎−1 (𝑖, 𝑘)-th cluster and otherwise it takes the value 0.

3.2 Texture Generation for Blendshapes
In this section, we describe texture generation for blendshape using
our texture compression technique. The blendshape is often used
to make a controllable face. Suppose we have a list of the vertices
for the mesh of neutral face 𝑉0 and the vertices for example face
meshes 𝑉 𝑗 the blendshape computes the vertex from the parameter
𝛽𝑛 ∈ [0, 1] where 𝑛 ∈ {1, ..., 𝑁} as

𝑉 (𝜷) = 𝑉0 +
𝑁∑︁
𝑛=1

𝛽𝑛 (𝑉𝑛 −𝑉0) (7)

Note that the blendshape formulation in (7) is specifically called
delta blendshape [12] (see Figure 5-left).

blendshape texture for blendshape

Figure 5: We blend difference textures with the same weight as the
blendshape weight.

With the textures that correspond neutral mesh I0 and the other
example meshes I𝑛, our compressed texture model compute the
texture for the list of blendshape parameter 𝜷 as

I(𝜷) = I0 +
4∑︁
𝑖=1

D𝑖 ⊙
(
𝑁∑︁
𝑛=1

𝛽𝑛W𝑖𝑛

)
. (8)

Note that in (8), we blend the texture with the ratio 𝜷 in a similar
manner as the blending for the vertex positions in (7) (see Figure 5).
By blending the weight map W, which is actually stored in the
lower resolution, we can reduce the amount of computation.

Texture for Example-based Facial Rigging We extend our
texture compression for blendshape in (8) to the blendshape in
example-based facial rigging in [13]. The example-based facial
rigging generates blendshape meshes with new vertex positions
𝑉∗
𝑚 where 𝑚 ∈ {1, ..., 𝑀} from the training meshes 𝑉𝑛 where

𝑛 ∈ {1, ..., 𝑁}. We aim to synthesize the texture for the gener-
ated blendshape 𝑉∗

𝑚 when the texture I𝑛 is given for the training
meshes𝑉𝑛. We first compute the weight map W𝑖𝑛 and the difference
texture D𝑖 for the example meshes.

We refer to the original paper [13] for the detail of the example-
based facial rigging. The basic idea of example-based facial rigging
is to optimize the generated blendshape mesh 𝑉∗

𝑚 such that the
training mesh 𝑉𝑛 can be reconstructed as

𝑉𝑛 ≃ 𝑉0 +
𝑀∑︁
𝑚=1

𝛽𝑛𝑚 (𝑉∗
𝑚 −𝑉0), (9)

where 𝛽𝑛𝑚 ∈ R is the blending parameters that are optimized in the
example-based facial rigging algorithm.

We synthesize the texture for generated blendshape such that
it will reproduce the original compressed texture for the training
meshes. This can be done by choosing the weight map for generated
blendshape W∗

𝑖𝑚
to satisfy

W𝑖𝑛 =

𝑀∑︁
𝑚=1

𝛽𝑛𝑚W∗
𝑖𝑚. (10)

Unfortunately, the equation (10) alone cannot specify the weight
map W∗

𝑖𝑚
, since the equations are underdetermined (i.e., 𝑁 < 𝑀).

Our observation is that the weight maps should be sparse to
avoid blending many weights. Hence, we minimize a regularizer
| |∑𝑀

𝑚=1W∗
𝑖𝑚

| |2 to make the weight maps as small as possible while
satisfying the constraint (10). Note that this regularization can result
in negative values in the weight map. Since the weight will be ap-
plied to the difference textures the weight map is not required to be
positive. The resulting weight map becomes

W∗
𝑖𝑚 =

𝑁∑︁
𝑛=1

𝐵+𝑚𝑛W𝑖𝑛, (11)

where 𝐵+ = 𝐵𝑇 (𝐵𝐵𝑇)−1 is the pseudo-inverse of the matrix
𝐵 =

[
𝛽𝑛𝑚

]
𝑁×𝑀 . Finally, the texture for the example-based fa-

cial rigging is synthesized as

I(𝜷∗) = I0 +
4∑︁
𝑖=1

D𝑖 ⊙
(

𝑀∑︁
𝑚=1

𝛽∗𝑚W∗
𝑖𝑚

)
, (12)

where 𝜷∗ is the set of coefficients for example-based blendshape.

4 RESULTS

Evaluation Data We evaluated our algorithm using high-
resolution multi-view photos of 20 expressions purchased from a
website [1]. For each expression model, we reconstructed a 3D mesh
using the multiview stereo software, Metashape [2]. Because these
models are not represented by a consistent mesh, we fit a base mesh
to them using the commercial software Wrap [23]. The resulting
mesh contains approximately 52k triangles.

In the supplementary video, we demonstrate our real-time dynam-
ically changing texture for the blendshape implemented in Unity.
All the weight maps were combined into one large RGBA texture,
and a simple shader program blended these textures on the GPU in
parallel. Hence, the cost of texture synthesis in(8) is negligible. For
the example-based facial rigging [13], we use the implementation in
the FaceScape [27] to generate the blendshape of 52 meshes that is
compatible with Apple’s ARKit.

Performance Table 1 lists the computation times for offline
precomputation and runtime memory consumption. The perfor-
mance values were measured on a machine with Intel 12600 K and
Windows 11 OS. The precomputation was implemented in Python.
Specifically, we used the scikit-learn library for the k-means cluster-
ing.

For the example-based blendshape of 52 meshes, our method
uses a similar amount of memory as the PCA baseline. Note that
our method requires slightly more memory because we need to
store the weight maps. Compared to the naı̈ve approach of storing
all the textures for the blendshape meshes our algorithm works
on approximately 8 times smaller memory, which agrees with the
estimation in Section 3.

Texture Quality To evaluate our texture compression perfor-
mance, we compared the root mean square error(RMSE) reconstruc-
tion errors against compression using PCA, which is often used in
the texture compression of a blendshape [3]. For PCA, we choose
the number of principal components to be four and eight with the
mean texture to be the neutral texture. The four principal compo-
nents take up roughly the same space as our methods. The RMSE
error is computed as the average pixel difference in the RGB color
values ranging from 0 to 255. The results of the comparison are illus-
trated in Figure 6. The error in the PCA is very large in areas such
as the eyebrows and lips, where there are many fine details. For the
ablation study, we also performed a comparison with compression
without permutation optimization. We observed that our approach
without permutation is generally better than the naı̈ve approach of
PCA. Our approach with weight maps and permutation optimiza-
tion constantly produced the smallest errors compared to the other
approaches.

Figure 6: Reconstruction error of 19 blendshape textures computed
by three different methods. Our method achieves the lowest error of
three in all the texture reconstructions.

Choice of the Number of the Masks As we mentioned in
Section 3, we choose four difference textures because the weight
maps can be efficiently stored in the RGBA texture space, which is a
popular texture format. The mask is used only in the precomputation,
i.e., the run-time performance is not affected by the number of masks.
Figure 7 shows the error statistics for different numbers of masks.
We recorded the distribution of the RMSE reconstruction error for
1000 different random initializations. We observed that the global
minimum decreased as #mask increased, However, if #mask is
excessively large, it becomes difficult to reach the global minimum.
For example, the maximum error increases and minimum error does
not decrease in the case of for the #mask = 63. This is simply
because finding the good permutation in the random search becomes
more difficult compared to the case of the smaller number of masks.
Generally, the global minimum can be reached within 20 tries when
#mask = 5 but 1000 tries are not sufficient when #mask = 63.
We chose 53 as the final choice of #mask because it maintains a
good balance between reconstruction accuracy and complexity to
find the overall minimum. Although our permutation optimization
significantly reduces the error, proposing an efficient algorithm to
find a near-optimal permutation will be one of our future works.

11.4
11.6

11.8

12

12.2

12.4

12.6

12.8 Reconstraction Errors

5 10 16 33 53 63

RMSE

#mask
1 105

#itaration0
5

10
15
20
25
Cost Convergence

Figure 7: Left: Convergence of cost function for permutation optimiza-
tion for 100 different initializations. Right: Box-and-whisker plots of
the sum of the reconstruction errors when we change the number
of masks and run permutation optimization with random initialization
1000 times.

Textures for Example-based Blendshapes In Figure 8, we
compare the quality of textures generated for the example-based
blendshape (blending 52 meshes). For the baseline, we compute
the texture for one of the example-based meshes using the weighted
sum of the difference textures Ī𝑚 = I0 +

∑𝑁
𝑛=1 𝐵

+
𝑚𝑛 (I𝑛 −I0). Here,

we chose 6th blendshape (i.e., 𝑚 = 6) of ARKit. Because the pixels
were synthesized independently, the texture of the baseline model
was full of noise. Moreover, unnatural wrinkles appeared because
the baseline model did not use smooth weight maps. Our method
achieves better results with significantly lower memory consumption,
as shown in Table 1.

5 CONCLUSIONS AND FUTURE WORK

Conclusion We present a method that can automatically com-
press the blendshape textures into one neutral texture and four dif-
ference textures. The different textures can then be summed up by
spatially non-uniform weight maps that are smooth and stored at a
low resolution. Thus, our method can significantly reduce memory
consumption.

By combining high-resolution difference textures and low-
resolution weight maps, the result of our method provides better
localized details than global compression methods such as PCA.
The smoothness of the weight maps also prevented artifacts from ex-
treme values and noise when blending the weights in the blendshape
model. Our method does not require any prior knowledge about the
texture image, which is often required in data-driven methods, and
is fully compatible with the blendshape for real-time applications.

Resolution Computation Time (s) Memory Consumption (MB)
Clustering Permutation Ours PCA(4) PCA(8) Raw data

512 × 512 113 989 4.77 3.93 7.07 40.89
1024 × 1024 347 3447 19.07 15.72 28.30 163.58
2048 × 2048 1714 14502 76.28 62.91 113.24 654.31

Table 1: Timing of offline computation and the comparison of memory consumption for different methods measured for different texture resolutions
for example-based blendshape (blending 53 meshes). The “Clustering” stands for time for K-means clustering for all the fragments, “Permutation”
stands for time to find the permutation with a small cost value.

NaïveOurs

Figure 8: Reconstruction of texture on an example-based blendshape
mesh. The naı̈ve approach blends the example textures while our
approach blends the weight maps. The naı̈ve approach results in
high-frequency noise and false wrinkles in white color.

Limitation The quality of our compression depends heavily on
the alignments of the textures for all the example meshes. The com-
pressed result will be blurry when blending miss-aligned textures.
Besides, some artists would be more familiar with the traditional
workflow where wrinkle textures are painted manually. Our current
fully automatic workflow is not controllable by the users.

Future Work Currently, our work only compresses albedo tex-
tures, ignoring other textures such as normal, specular, and rough-
ness maps. Although extending our compression method to other
textures is straightforward, there is the potential to further compress
the set of textures by leveraging the correlation between them. An-
other practical extension of this work is integrating the algorithm
into the Unreal MetaHuman. We also intend to apply our method
to facial textures. In particular, we were interested in efficiently
representing wrinkles in garments in the texture space.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their suggestions and com-
ments. This work is supported by JSPS KAKENHI Grant Number
21K11910.

REFERENCES

[1] Triplegangers. https://triplegangers.com/. Accessed: March
30th, 2023.

[2] Agisoft. Metashape. https://www.agisoft.com/. Accessed:
March 30th, 2023.

[3] V. Blanz and T. Vetter. A morphable model for the synthesis of 3D
faces. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’99, p. 187–194.
ACM Press/Addison-Wesley Publishing Co., USA, 1999.

[4] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and
M. Sagar. Acquiring the reflectance field of a human face. In Proceed-
ings of the 27th Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’00, p. 145–156. ACM Press/Addison-
Wesley Publishing Co., USA, 2000. doi: 10.1145/344779.344855

[5] B. Egger, W. A. P. Smith, A. Tewari, S. Wuhrer, M. Zollhoefer,
T. Beeler, F. Bernard, T. Bolkart, A. Kortylewski, S. Romdhani,
C. Theobalt, V. Blanz, and T. Vetter. 3D morphable face models—past,
present, and future. ACM Trans. Graph., 39(5), jun 2020.

[6] P. Ekman and W. V. Friesen. Facial action coding system. Environmen-
tal Psychology & Nonverbal Behavior, 1978.

[7] P. Garrido, L. Valgaert, C. Wu, and C. Theobalt. Reconstructing
detailed dynamic face geometry from monocular video. ACM Trans.
Graph., 32(6), nov 2013. doi: 10.1145/2508363.2508380

[8] A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. De-
bevec. Multiview face capture using polarized spherical gradient illu-
mination. In Proceedings of the 2011 SIGGRAPH Asia Conference,
SA ’11. Association for Computing Machinery, New York, NY, USA,
2011.

[9] H. Huang, K. Yin, L. Zhao, Y. Qi, Y. Yu, and X. Tong. Detail-preserving
controllable deformation from sparse examples. IEEE Transactions on
Visualization and Computer Graphics, 18(8):1215–1227, 2012. doi: 10
.1109/TVCG.2012.88

[10] A. Jacobson, I. Baran, J. Popović, and O. Sorkine. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph., 30(4), jul 2011.
doi: 10.1145/2010324.1964973

[11] A. Jacobson, Z. Deng, L. Kavan, and J. P. Lewis. Skinning: Real-time
shape deformation (full text not available). In ACM SIGGRAPH 2014
Courses, SIGGRAPH ’14. Association for Computing Machinery, New
York, NY, USA, 2014.

[12] J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin, and Z. Deng.
Practice and Theory of Blendshape Facial Models. In S. Lefebvre and
M. Spagnuolo, eds., Eurographics 2014 - State of the Art Reports. The
Eurographics Association, 2014. doi: 10.2312/egst.20141042

[13] H. Li, T. Weise, and M. Pauly. Example-based facial rigging. In ACM
SIGGRAPH 2010 Papers, SIGGRAPH ’10. Association for Computing
Machinery, New York, NY, USA, 2010.

[14] J. Li, Z. Kuang, Y. Zhao, M. He, K. Bladin, and H. Li. Dynamic facial
asset and rig generation from a single scan. ACM Trans. Graph., 39(6),
nov 2020. doi: 10.1145/3414685.3417817

[15] S. Liu, Y. Cai, H. Chen, Y. Zhou, and Y. Zhao. Rapid face asset
acquisition with recurrent feature alignment. ACM Trans. Graph.,
41(6), nov 2022. doi: 10.1145/3550454.3555509

[16] S. Lombardi, T. Simon, G. Schwartz, M. Zollhoefer, Y. Sheikh, and
J. Saragih. Mixture of volumetric primitives for efficient neural render-
ing. ACM Trans. Graph., 40(4), jul 2021.

[17] W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P. Peers,
M. Vukovic, M. Ouhyoung, and P. Debevec. Facial performance
synthesis using deformation-driven polynomial displacement maps. In
ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08. Association
for Computing Machinery, New York, NY, USA, 2008. doi: 10.1145/
1457515.1409074

[18] A. Morales, G. Piella, and F. M. Sukno. Survey on 3D face reconstruc-

https://triplegangers.com/
https://www.agisoft.com/

tion from uncalibrated images. Computer Science Review, 40:100400,
2021. doi: 10.1016/j.cosrev.2021.100400

[19] T. Neumann, K. Varanasi, S. Wenger, M. Wacker, M. Magnor, and
C. Theobalt. Sparse localized deformation components. ACM Trans.
Graph., 32(6), nov 2013.

[20] F. I. Parke and K. Waters. Computer Facial Animation. A K Peters/CRC
Press, hardcover ed., 9 2008.

[21] E. Richardson, M. Sela, and R. Kimmel. 3D face reconstruction by
learning from synthetic data. 09 2016.

[22] J. Riviere, P. Gotardo, D. Bradley, A. Ghosh, and T. Beeler. Single-shot
high-quality facial geometry and skin appearance capture. ACM Trans.
Graph., 39(4), aug 2020.

[23] Russian3DScanner. Wrap. https://www.russian3dscanner.

com/. Accessed: March 30th, 2023.
[24] M. Sela, E. Richardson, and R. Kimmel. Unrestricted facial geometry

reconstruction using image-to-image translation. pp. 1585–1594, 10
2017. doi: 10.1109/ICCV.2017.175

[25] F. Shi, H.-T. Wu, X. Tong, and J. Chai. Automatic acquisition of
high-fidelity facial performances using monocular videos. ACM Trans.
Graph., 33(6), nov 2014. doi: 10.1145/2661229.2661290

[26] A. Spring. Facs rigging & texture blending,
2020. https://adamspring.co.uk/2020/05/25/

facs-rigging-texture-blending-digital-humans/ [Ac-
cessed: (March 30th, 2023)].

[27] H. Yang, H. Zhu, Y. Wang, M. Huang, Q. Shen, R. Yang, and X. Cao.
Facescape: a large-scale high quality 3d face dataset and detailed
riggable 3d face prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[28] L. Zhang, C. Zeng, Q. Zhang, H. Lin, R. Cao, W. Yang, L. Xu, and
J. Yu. Video-driven neural physically-based facial asset for production,
2022.

[29] M. Zollhöfer, J. Thies, P. Garrido, D. Bradley, T. Beeler, P. Pérez,
M. Stamminger, M. Nießner, and C. Theobalt. State of the art on
monocular 3D face reconstruction, tracking, and applications. Com-
puter Graphics Forum, 37(2):523–550, 2018. doi: 10.1111/cgf.13382

https://www.russian3dscanner.com/
https://www.russian3dscanner.com/
https://adamspring.co.uk/2020/05/25/facs-rigging-texture-blending-digital-humans/
https://adamspring.co.uk/2020/05/25/facs-rigging-texture-blending-digital-humans/

	Introduction
	Related Work
	Methods
	Compression of Textures
	Texture Generation for Blendshapes

	Results
	Conclusions and Future Work

