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Abstract

In practical distributed systems, workers are typically not homogeneous, and due
to differences in hardware configurations and network conditions, can have highly
varying processing times. We consider smooth nonconvex finite-sum (empirical
risk minimization) problems in this setup and introduce a new parallel method,
Freya PAGE, designed to handle arbitrarily heterogeneous and asynchronous compu-
tations. By being robust to “stragglers” and adaptively ignoring slow computations,
Freya PAGE offers significantly improved time complexity guarantees compared to
all previous methods, including Asynchronous SGD, Rennala SGD, SPIDER, and
PAGE, while requiring weaker assumptions. The algorithm relies on novel generic
stochastic gradient collection strategies with theoretical guarantees that can be of
interest on their own, and may be used in the design of future optimization meth-
ods. Furthermore, we establish a lower bound for smooth nonconvex finite-sum
problems in the asynchronous setup, providing a fundamental time complexity
limit. This lower bound is tight and demonstrates the optimality of Freya PAGE in
the large-scale regime, i.e., when

√
m ≥ n, where n is # of workers, and m is # of

data samples.

1 Introduction

In real-world distributed systems used for large-scale machine learning tasks, it is common to
encounter device heterogeneity and variations in processing times among different computational
units. These can stem from GPU computation delays, disparities in hardware configurations, network
conditions, and other factors, resulting in different computational capabilities and speeds across
devices [Chen et al., 2016, Tyurin and Richtárik, 2023]. As a result, some clients may execute
computations faster, while others experience delays or even fail to participate in the training altogether.

Due to the above reasons, we aim to address the challenges posed by device heterogeneity in the
context of solving finite-sum nonconvex optimization problems of the form

min
x∈Rd

{
f(x) := 1

m

m∑
i=1

fi(x)

}
, (1)

where fi : Rd → R can be viewed as the loss of a machine learning model x on the ith example in a
training dataset with m samples. Our goal is to find an ε-stationary point, i.e., a (possibly random)
point x̂ such that E[∥∇f(x̂)∥2] ≤ ε. We focus on the homogeneous distributed setup:

• there are n workers/clients/devices able to work in parallel,
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• each worker has access to stochastic gradients∇fj , j ∈ [m],

• worker i calculates∇fj(·) in less or equal to τi ∈ [0,∞] seconds for all i ∈ [n], j ∈ [m].

Without loss of generality, we assume that τ1 ≤ . . . ≤ τn. One can think of τi ∈ [0,∞] as an
upper bound on the computation time rather than a fixed deterministic time. Looking ahead, iteration
complexity can be established even if τi =∞ for all i ∈ [n] (Theorem 4). We also provide results
where the bounds {τki } are dynamic and change with every iteration k (Section 4.4). For simplicity of
presentation, however, we assume that τki = τi for i ∈ [n], k ≥ 0, unless explicitly stated otherwise.

1.1 Assumptions

We adopt two weak assumptions, which are standard for the problem (1) [Fang et al., 2018].

Assumption 1. The function f is L−-smooth and lower-bounded by f∗ ∈ R.

Assumption 2. ∃L+ ≥ 0 such that 1
m

m∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ L2
+ ∥x− y∥2 ∀x, y ∈ Rd.

We also consider Assumption 3. Note that this assumption does not restrict the class of considered
functions {fi}. Indeed, if Assumption 2 holds with L+, then Assumption 3 holds with some L± ≤
L+. If one only wants to rely on Assumptions 1 and 2, it is sufficient to take L± = L+. However,
Assumption 3 enables us to derive sharper rates, since L± can be small or even 0, even if L− and L+

are large [Szlendak et al., 2021, Tyurin et al., 2023, Kovalev et al., 2022].

Assumption 3 (Hessian variance [Szlendak et al., 2021]). There exists L± ≥ 0 such that

1
m

m∑
i=1

∥∇fi(x)−∇fi(y)− (∇f(x)−∇f(y))∥2 ≤ L2
± ∥x− y∥2 ∀x, y ∈ Rd.

1.2 Gradient oracle complexities

Iterative algorithms are traditionally evaluated based on their gradient complexity. Let us present a
brief overview of existing theory. The classical result of Gradient Descent (GD) says that in the smooth
nonconvex regime, the number of oracle calls needed to solve problem (1) is O(mε−1) because
GD converges in O(ε−1) iterations, and calculates the full gradient ∇f = 1/m

∑m
i=1∇fi in each

iteration. This was improved to O(m+m2/3ε−1) by several variance-reduced methods, including
SVRG and SCSG [Allen-Zhu and Hazan, 2016, Reddi et al., 2016, Lei et al., 2017, Horváth and
Richtárik, 2019]. Since then, various other algorithms, such as SNVRG, SARAH, SPIDER, SpiderBoost,
PAGE and their variants, have been developed [Fang et al., 2018, Wang et al., 2019, Nguyen et al.,
2017, Li et al., 2021, Zhou et al., 2020, Horváth et al., 2022]. These methods achieve a gradient
complexity of O(m+

√
mε−1), matching the lower bounds [Fang et al., 2018, Li et al., 2021].

That said, in practical scenarios, what often truly matters is the time complexity rather than the
gradient complexity [Tyurin and Richtárik, 2023]. Although the latter metric serves as a natural
benchmark for sequential methods, it seems ill-suited in the context of parallel methods.

1.3 Some previous time complexities

Let us consider some examples to provide intuition about time complexities for problem (1).

GD with 1 worker (Hero GD). In principle, each worker can solve the problem on their own. Hence,
one approach would be to select the fastest client (assuming it is known) and delegate the task to them
exclusively. A well-known result says that for L−-smooth objective function f (Assumption 1), GD
converges in δ0L−ε

−1 iterations, where δ0 := f(x0)− f∗, and x0 is the starting point. Since at each
iteration the method computes m gradients∇fi(·), i ∈ [m], the time required to find an ε-stationary
point is δ0L−ε

−1 ×mτ1 seconds.

GD with n workers and equal data allocation (Soviet GD). The above strategy leaves the remaining
n− 1 workers idle, and thus potentially useful computing resources are wasted. A common approach
is to instead divide the data into n equal parts and assign one such part to each worker, so that each has
to compute m/n gradients (assuming for simplicity that m is divisible by n). Since at each iteration
the strategy needs to wait for the slowest worker, the total time is δ0L−ε

−1 × mτn/n. Depending
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Table 1: Comparison of the worst-case time complexity guarantees of methods that work with asynchronous
computations in the setup from Section 1 (up to smoothness constants). We assume that τi ∈ [0,∞] is the bound
on the times required to calculate one stochastic gradient ∇fj by worker i, τ1 ≤ . . . ≤ τn, and m ≥ n logn.
Abbr: δ0 := f(x0)− f∗, m = # of data samples, n = # of workers, ε = error tolerance.

Method Worst-Case Time Complexity Comment

Hero GD
(

Soviet GD
)

τ1m
δ0

ε

(
τn

m
n

δ0

ε

)
Suboptimal

Hero PAGE
(

Soviet PAGE
)

[Li et al., 2021] τ1m + τ1
δ0

ε

√
m

(
τn

m
n

+ τn
δ0

ε

√
m
n

)
Suboptimal

SYNTHESIS
[Liu et al., 2022] —

Limitations:
bounded gradient assumption,
calculates the full gradients(a) ,

suboptimal.(b)

Asynchronous SGD
[Koloskova et al., 2022]

[Mishchenko et al., 2022]
δ0

ε

((
n∑

i=1

1
τi

)−1 (
σ2

ε
+ n

)) Limitations:
σ2–bounded variance assumption,

suboptimal when ε is small.

Rennala SGD
[Tyurin and Richtárik, 2023]

δ0

ε
min
j∈[n]

((
j∑

i=1

1
τi

)−1 (
σ2

ε
+ j

)) Limitations:
σ2–bounded variance assumption,

suboptimal when ε is small.

Freya PAGE
(Theorems 7 and 8)

min
j∈[n]

((
j∑

i=1

1
τi

)−1

(m + j)

)

+ δ0

ε
min
j∈[n]

((
j∑

i=1

1
τi

)−1

(
√

m + j)

)
(c)

Optimal in the large-scale regime,
i.e.,

√
m ≥ n (see Section 5)

Lower bound
(Theorem 10)

min
j∈[n]

((
j∑

i=1

1
τi

)−1

(m + j)

)

+ δ0√
mε

min
j∈[n]

((
j∑

i=1

1
τi

)−1

(m + j)

) —

Freya PAGE has universally better guarantees than all previous methods: the dependence on ε is O (1/ε) (unlike Rennala SGD and Asynchronous SGD),
the dependence on {τi} is harmonic-like and robust to slow workers (robust to τn → ∞) (unlike Soviet PAGE and SYNTHESIS),

the assumptions are weak, and the time complexity of Freya PAGE is optimal when
√

m ≥ n.

(a) In Line 3 of their Algorithm 3, they calculate the full gradient, assuming that it can be done for free and not explaining how.
(b) Their convergence rates in Theorems 1 and 3 depend on a bound on the delays ∆, which in turn depends on the performance of the
slowest worker. Our method does not depend on the slowest worker if it is too slow (see Section 4.3), which is required for optimality.
(c) We prove better time complexity in Theorem 6, but this result requires the knowledge of {τi} in advance, unlike Theorems 7 and 8.

on the relationship between τ1 and τn/n, this could be more efficient or less efficient compared to
Hero GD. This shows that the presence of stragglers can eliminate the potential speedup expected
from parallelizing the training [Dutta et al., 2018].

SPIDER/PAGE with 1 worker or n workers and equal data allocation (Hero PAGE and Soviet
PAGE). As mentioned in Section 1.2, SPIDER/PAGE can have better gradient complexity guarantees
than GD. Using the result of Li et al. [2021], the equal data allocation strategy with n workers leads
to the time complexity of

TSoviet PAGE := Θ
(
τn max

{
m
n , 1

}
+ τn

δ0 max{L−,L±}
ε max

{√
m
n , 1

})
(2)

seconds. We refer to this method as Soviet PAGE. In practical regimes, when ε is small and L− ≈ L±,
this complexity can be

√
m better than that of GD. Running PAGE on the fastest worker (which we

will call Hero PAGE), we instead get the time complexity THero PAGE := Θ
(
τ1m+ τ1δ

0
/ε
√
m
)
.

Given these examples, the following question remains unanswered: what is the best possible time
complexity in our setting? This paper aims to answer this question.

2 Contributions

We consider the finite-sum optimization problem (1) under weak assumptions and develop a new
method, Freya PAGE. The method works with arbitrarily heterogeneous and asynchronous computa-
tions on the clients without making any assumptions about the bounds on the processing times τi. We
show that the time complexity of Freya PAGE is provably better than that of all previously proposed
synchronous/asynchronous methods (Table 1). Moreover, we prove a lower bound that guarantees
optimality of Freya PAGE in the large-scale regime (

√
m ≥ n). The algorithm leverages new compu-

tation strategies, ComputeGradient (Alg. 2) and ComputeBatchDifference (Alg. 3), which are generic
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Algorithm 1 Freya PAGE

1: Parameters: starting point x0 ∈ Rd, learning rate γ > 0, minibatch size S ∈ N, probability
p ∈ (0, 1], initialization g0 = ∇f(x0) using ComputeGradient(x0) (Alg. 2)

2: for k = 0, 1, . . . ,K − 1 do
3: xk+1 = xk − γgk

4: Sample ck ∼ Bernoulli(p)
5: if ck = 1 then (with probability p)
6: ∇f(xk+1) = ComputeGradient(xk+1) (Alg. 2)
7: gk+1 = ∇f(xk+1)
8: else (with probability 1− p)
9: 1

S

∑
i∈Sk

(
∇fi(xk+1)−∇fi(xk)

)
= ComputeBatchDifference(S, xk+1, xk) (Alg. 3)

10: gk+1 = gk + 1
S

∑
i∈Sk

(
∇fi(xk+1)−∇fi(xk)

)
11: end if
12: end for

(note): Sk is a set of i.i.d. indices that are sampled from [m], uniformly with replacement,
∣∣Sk
∣∣ = S

and can be used in any other asynchronous method. These strategies enable the development of
our new SGD method (Freya SGD); see Sections 6 and H. Experiments from Section A on synthetic
optimization problems and practical logistic regression tasks support our theoretical results.

3 The Design of the New Algorithm

It is clear that to address the challenges arising in the setup under consideration and achieve optimality,
a distributed algorithm has to adapt to and effectively utilize the heterogeneous nature of the underly-
ing computational infrastructure. With this in mind, we now present a new algorithm, Freya PAGE,
that can efficiently coordinate and synchronize computations across the n devices, accommodating
arbitrarily varying processing speeds, while mitigating the impact of slow devices or processing
delays on the overall performance of the system.

Freya PAGE is formalized in Algorithm 1. The update rule is just the regular PAGE [Li et al.,
2021] update: at each iteration, with some (typically small) probability p, the algorithm computes
the full gradient ∇f(xk+1), and otherwise, it samples a minibatch Sk of size S and reuses the
gradient estimator gk from the previous iteration, updated by the cheaper-to-compute adjustment
1
S

∑
i∈Sk

(
∇fi(xk+1)−∇fi(xk)

)
.

Within Algorithm 1, at each iteration we call one of two subroutines: ComputeGradient (Alg. 2,
performing the low-probability step), and ComputeBatchDifference (Alg. 3, performing the high-
probability step). Let us focus on ComputeGradient, designed to collect the full gradient: it takes a
point x as input and returns∇f(x) = 1

m

∑m
i=1∇fi(x). There exist many strategies for implementing

this calculation, some of which were outlined in Section 1.3. The most naive one is to assign the task
of calculating the whole gradient ∇f to a single worker i, resulting in a worst-case running time of
mτi seconds for ComputeGradient. Another possible strategy is to distribute the functions {fi} evenly
among the workers; in this case, calculating∇f takes τn max{m/n, 1} seconds in the worst case.

Clearly, we could do better if we knew {τi} in advance. Indeed, let us allocate to each worker j a
number of functions {fi} inversely proportional to τj . This strategy is reasonable – the faster the
worker, the more gradients it can compute. We can show that such a strategy finds∇f in

Θ

(
min
j∈[n]

((
j∑

i=1

1
τi

)−1

(m+ j)

))
(3)

seconds in the worst case (see the proof of Theorem 2). This complexity is better than mτ1 and
τn max{m/n, 1} (Theorem 31). However, this approach comes with two major limitations: i) it
requires knowledge of the upper bounds {τi}, ii) even if we have access to {τi}, the computation
environment can be adversarial: theoretically and practically, it is possible that at the beginning the
first worker is the fastest and the last worker is the slowest, but after some time, their performances
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Algorithm 2 ComputeGradient(x)

1: Input: point x ∈ Rd

2: Init g = 0 ∈ Rd, setM = ∅
3: Broadcast x to all workers
4: For each worker i ∈ [n], sample j from [m]

uniformly and ask it to calculate∇fj(x)
5: whileM ≠ [m] do
6: Wait for ∇fp(x) from a worker
7: if p ∈ [m]\M then
8: g ← g + 1

m∇fp(x)
9: UpdateM←M∪ {p}

10: end if
11: Sample j from [m]\M uniformly and ask

this worker to calculate∇fj(x)
12: end while
13: Return g = 1

m

m∑
i=1

∇fi(x)

Algorithm 3 ComputeBatchDifference(S, x, y)

1: Input: batch size S ∈ N, points x, y ∈ Rd

2: Init g = 0 ∈ Rd

3: Broadcast x, y to all workers
4: For each worker, sample j from [m] uniformly

and ask it to calculate∇fj(x)−∇fj(y)
5: for i = 1, 2, . . . , S do
6: Wait for∇fp(x)−∇fp(y) from a worker
7: g ← g + 1

S (∇fp(x)−∇fp(y))
8: Sample j from [m] uniformly and ask

this worker to calculate∇fj(x)−∇fj(y)
9: end for

10: Return g

Notes: i) the workers can aggregate ∇fp locally, and the algorithm can

call AllReduce once to collect all calculated gradients. ii) By splitting

[m] into blocks, instead of one ∇fp, we can ask the workers to calculate

the sum of one block in Alg. 2 (and use a similar idea in Alg. 3).

swap. Consequently, the first worker might end up being assigned the largest batch, despite now
having the lowest performance. Thus, this strategy is not robust to time-varying speeds.

New gradient computation strategy. The key innovation of this work lies in the introduction
of new computation strategies: Algorithms 2 and 3. We start by examining Algorithm 2. It first
broadcasts the input x ∈ Rd to all workers. Then, for each worker, it samples j uniformly from [m]
and asks it to calculate ∇fj(x) (with a non-zero probability, two workers can be assigned the same
computation). Then, the algorithm enters the loop and waits for any worker to finish their calculations.
Once this happens, it asks this worker to compute a stochastic gradient with a new index sampled
uniformly from the set [m]\M of indices that have not yet been processed (again, it is possible to
resample an index previously assigned to another worker). This continues until all indices i ∈ [m]
have been processed and the full gradient 1

m

∑m
i=1∇fi has been collected. Unlike the previous

strategies, our Algorithm 2 does not use {τi}, thus being robust and adaptive to the changing compute
times. Furthermore, we can prove that its time complexity (almost) equals (3):

Theorem 1. The expected time needed by Algorithm 2 to calculate g = 1
m

m∑
i=1

∇fi is at most

12 min
j∈[n]

((
j∑

i=1

1
τi

)−1

(m+min{m,n} log (min{m,n}) + j)

)
(4)

seconds.

The result (4) (the proof of which can be found in Section C) is slightly worse than (3) due to
the extra min{m,n} log (min{m,n}) term. This term arises because a worker may be assigned a
gradient∇fj(x) that was previously assigned to another worker (in Line 11 of Algorithm 2). Hence,
with a small (but non-zero) probability, two workers can perform the same calculations. However,
typically the number of samples m is much larger than the number of workers n. If we assume that
m ≥ n log n, which is satisfied in many practical scenarios, then the time complexity (4) equals

Θ

(
min
j∈[n]

((
j∑

i=1

1
τi

)−1

(m+ j)

))
and the term min{m,n} log (min{m,n}) never dominates. Since this complexity is not worse
than (3), our strategy behaves as if it knew {τi} in advance! To simplify formulas and avoid the
logarithmic term, we use the following assumption throughout the main part of this paper:
Assumption 4. m ≥ n log n, where m is the # of data samples and n is the # of workers.

We now proceed to discuss ComputeBatchDifference (Algorithm 3), designed to compute a minibatch
of stochastic gradient differences. Both Algorithms 2 and 3 calculate sums. However the latter only
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waits until there are S samples in the sum, where some indices in the batch may not be unique. On the
other hand, Algorithm 2 must ensure the collection of a full batch of m unique stochastic gradients.
As a result, Algorithm 3 offers better complexity results and, unlike ComputeGradient, does not suffer
from suboptimal guarantees and logarithmic terms, as demonstrated in the theorem below.
Theorem 2. The time needed by Algorithm 3 to calculate g is at most

4 min
j∈[n]

((
j∑

i=1

1
τi

)−1

(S + j)

)
(5)

seconds.

Algorithm 1 uses uniform sampling with replacement, implemented in Algorithm 3. However, one
can modify the two algorithms slightly to support virtually any unbiased sampling (see Section E).

Note on asynchronicity. It is clear that to eliminate the need of waiting for very slow machines,
some level of asynchronicity has to be injected into an algorithm for it to be efficient. Asynchronous
SGD [Recht et al., 2011, Nguyen et al., 2018, Koloskova et al., 2022, Mishchenko et al., 2022]
takes this concept to the extreme by never synchronizing and continually overwriting the updates.
Consequently, the algorithm’s time complexity is suboptimal. Conversely, imposing limitations on
asynchronicity leads to optimal methods, both in our context (in the large-scale regime) and in the
scenario examined by Tyurin and Richtárik [2023]. Freya PAGE seamlessly combines synchrony and
asynchrony, getting the best out of the two worlds.

4 Time Complexities and Convergence Rates

Formulas (3) and (4) will be used frequently throughout the paper. To lighten up the heavy notation,
let us define the following mapping.
Definition 3 (Equilibrium time). A mapping t∗ : R≥0 × Rn

≥0 → R≥0 defined by

t∗(S, [τ̄i]
n
i=1) := min

j∈[n]

((
j∑

i=1

1
τ̄i

)−1

(S + j)

)
∈ [0,∞] (6)

is called the equilibrium time. We let t∗(S) ≡ t∗(S, [τi]
n
i=1) when considering {τi} from Section 1.

Returning to the algorithm, we guarantee the following iteration complexity.
Theorem 4 (Iteration complexity). Let Assumptions 1, 2 and 3 hold. Consider any minibatch size

S ∈ N := {1, 2, . . .}, any probability p ∈ (0, 1], and let the stepsize be γ =
(
L− + L±

√
1−p
pS

)−1

.
Then, after

K ≥ KPAGE := 2δ0

ε

(
L− + L±

√
1−p
pS

)
(7)

iterations of Algorithm 1, we have E
[∥∥∇f(x̂K)

∥∥2] ≤ ε, where x̂K is sampled uniformly at random

from the iterates {x0, . . . , xK−1}.

Theorem 4 states that the iteration complexity is the same as in the optimal PAGE method [Li et al.,
2021]. Note that we can guarantee convergence even if the upper bounds {τi} are unknown or infinite
(as long as there exists some worker that can complete computations within a finite time).

We now derive time complexity guarantees. With probability p, the workers need to supply to the
algorithm m stochastic gradients at each of the m data samples, which by Theorem 1 can be done
in at most t∗(m) seconds (up to a log factor). Otherwise, they compute S differences of stochastic
gradients, which by Theorem 2 takes at most t∗(S) seconds (up to a constant factor). The resulting
time complexity is given in the theorem below.
Theorem 5 (Time complexity with free parameters p and S). Consider the assumptions and the
parameters from Theorem 4, plus Assumption 4. The expected time complexity of Algorithm 1 is at
most

T (p, S, [τi]
n
i=1) := 12 · t∗(m, [τi]

n
i=1)

+ 48δ0

ε

(
L− + L±

√
1−p
pS

)
× {p · t∗(m, [τi]

n
i=1) + (1− p) · t∗(S, [τi]ni=1)} .

(8)
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The first term comes from the preprocessing step, where the full gradient is calculated to obtain
g0 = ∇f(x0). Here, we use Assumption 4 that m ≥ n log n. The result (8) is valid even without this
assumption, but at the cost of extra logarithmic factors.

4.1 Optimal parameters S and p

The time complexity (8) depends on two free parameters, S ∈ N and p ∈ (0, 1]. The result below
(following from Theorems 13 and 14) determines their optimal choice.
Theorem 6 (Main result). Consider the assumptions and parameters from Theorem 4, plus Assump-
tion 4. Up to a constant factor, the time complexity (8) is at least T ([τi]ni=1) := t∗(m, [τi]

n
i=1)

+ δ0

ε min

{
L−t

∗(m, [τi]
n
i=1),min

S∈N

[
L−t

∗(S, [τi]
n
i=1) + L±

√
t∗(m,[τi]ni=1)t

∗(S,[τi]ni=1)√
S

]
︸ ︷︷ ︸

F (S):=

}
, (9)

and this lower bound is achieved with S∗ = argmin
S∈N

F (S) and p∗ = p∗(S∗), where

p∗(S) =

1, if L−t
∗(m, [τi]

n
i=1) ≤ L−t

∗(S, [τi]
n
i=1) + L±

√
t∗(m,[τi]ni=1)t

∗(S,[τi]ni=1)√
S

,
t∗(S,[τi]

n
i=1)

t∗(m,[τi]ni=1)
, otherwise.

Result (9) is the best possible time complexity that can be achieved with the Freya PAGE method.
Unfortunately, the final time complexity has non-trivial structure, and the optimal parameters depend
on {τi} in the general case. If we have access to all parameters and times {τi}, then (9), S∗, and
p∗ can be computed efficiently. Indeed, the main problem is to find minS∈N F (S), which can be
solved, for instance, by using the bisection method, because L−t

∗(S, [τi]
n
i=1) is non-decreasing and

L±
√

t∗(m, [τi]ni=1)t
∗(S, [τi]ni=1)/

√
S is non-increasing in S.

4.2 Optimal parameters S and p in the large-scale regime

Surprisingly, we can significantly simplify the choice of the optimal parameters S and p in the
large-scale regime, when

√
m ≥ n. This is a weak assumption, since typically the number of data

samples is much larger than the number of workers.
Theorem 7 (Main result in the large-scale regime). Consider the assumptions and parameters from
Theorem 4, plus Assumption 4. Up to a constant factor and smoothness constants, if

√
m ≥ n, then

the optimal choice of parameters in (8) is S∗ = ⌈
√
m⌉ and p∗ = 1/

√
m. For this choice, the expected

time complexity of Algorithm 1 is at most

T (1/
√
m,
√
m, [τi]

n
i=1) = 12t∗(m, [τi]

n
i=1) +

192δ0 max{L−,L±}
ε t∗(

√
m, [τi]

n
i=1) (10)

seconds. The iteration complexity with S = ⌈
√
m⌉ and p = 1/

√
m is KPAGE ≤ 4δ0 max{L−,L±}/ε.

We cannot guarantee that S = ⌈
√
m⌉ and p = 1/

√
m is the optimal pair when

√
m < n, but it is a

valid choice for all m ≥ 1. Note that (10) is true if m ≥ n log n, and it is true up to a log factor if
m < n log n. In light of Theorem 15, we can further refine Theorem 7 if the ratio L±/L is known:
Theorem 8 (Main result in the large-scale regime using the ratio L±/L). Consider the assumptions
and parameters from Theorem 4, plus Assumption 4. The expected time complexity of Algorithm 1
is at most Θ(t∗(m, [τi]

n
i=1) + δ0L−/ε× t∗(min{max{⌈L±

√
m/L−⌉ , 1},m}, [τi]ni=1)) seconds, where

S = min{max{⌈L±
√
m/L−⌉ , 1},m} and p = S/m.

For brevity reasons, we will continue working with the result from Theorem 7 in the main part of this
paper. Note that the optimal parameters do not depend on {τi}, and can be easily calculated since the
number of functions m is known in advance. Hence, our method is fully adaptive to changing and
heterogeneous compute times of the workers.

Even if the bounds are unknown and τi = ∞ for all i ∈ [n], our method converges after
4δ0 max{L−, L±}/ε iterations, and calculates the optimal number of stochastic gradients equal
to O(m+

√
mδ0 max{L−, L±}/ε).
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4.3 Discussion of the time complexity

Let us use Definition 3 and unpack the second term in the complexity (10), namely,

δ0 max{L−,L±}
ε min

j∈[n]

((
j∑

i=1

1
τi

)−1

(
√
m+ j)

)
.

A somewhat similar expression involving minj∈[n] and harmonic means was obtained by Tyurin
and Richtárik [2023], Tyurin et al. [2024] for minimizing expectation under the bounded vari-
ance assumption. The term δ0 max{L−, L±}/ε is standard in optimization [Nesterov, 2018, Lan,
2020] and describes the difficulty of the problem (1). The term minj∈[n]((

∑j
i=1

1/τi)−1(
√
m+ j))

represents the average time of one iteration and has some nice properties. For instance, if
the last worker is slow and τn ≈ ∞, then minj∈[n](· · · ) = minj∈[n−1](· · · ), so the com-
plexity effectively ignores it. Moreover, if j∗ is an index that minimizes minj∈[n](· · · ), then
minj∈[n]((

∑j
i=1

1/τi)−1(
√
m + j)) = ((

∑j∗

i=1
1/τi)−1(

√
m + j∗)). The last formula, again, does

not depend on the slowest workers {j∗ + 1, . . . , n}, which are automatically excluded from the time
complexity expression. The same reasoning applies to the term t∗(m, [τi]

n
i=1). Let us now consider

some extreme examples which are meant to shed some light on our time complexity result (10):
Example 1. [Equally Fast Workers] Suppose that the upper bounds on the processing times are
equal, i.e., τj = τ for all j ∈ [n]. Then

T (1/
√
m,
√
m, [τi]

n
i=1) = Θ

(
τ max

{
m
n , 1

}
+ τ δ0 max{L−,L±}

ε max
{√

m
n , 1

})
.

The complexity in Example 1 matches that in (2), which makes sense since Soviet PAGE is a reasonable
method when {τi} are equal. Note that the reduction happens without prior knowledge of {τi}.
Example 2. [Infinitely Fast Worker] If τ1 = 0, then T (1/

√
m,
√
m, [τi]

n
i=1) = 0.

Example 3. [Infinitely Slow Workers] If τj =∞∀j ∈ [n], then T (1/
√
m,
√
m, [τi]

n
i=1) =∞.

Example 4. [Extremely Slow Workers] Suppose that the times τj < ∞ are fixed ∀j ≤ jB and
τj ≥ B ∀j > jB for some B large enough. Then T (1/

√
m,
√
m, [τi]

n
i=1) = T (1/

√
m,
√
m, [τi]

jB
i=1).

Example 4 says that the workers whose processing time is too large are ignored, which supports the
discussion preceding the examples.

4.4 Dynamic bounds

It turns out that the guarantees from Theorem 7 can be generalized to the situation where the compute
times {τi} are allowed to dynamically change throughout the iterations. Consider the kth iteration
of Algorithm 1 and assume that worker i calculates one ∇fj in at most τki ∈ [0,∞] seconds
∀i ∈ [n], j ∈ [m]. Clearly, maxk≥−1 τ

k
i ≤ τi ∀i ∈ [n] (where {τ−1

i } are upper bounds from the
preprocessing step), but τki can be arbitrarily smaller than τi (possibly τki = 0 and τi =∞).
Theorem 9. Consider the assumptions and parameters from Theorem 4, plus Assumption 4. Up to a
constant factor, the expected time complexity of Algorithm 1 with S = ⌈

√
m⌉ and p = 1/

√
m is at

most

t∗(m, [τ−1
π−1,i

]ni=1) +
⌈4δ0 max{L−,L±}/ε⌉∑

k=0

t∗(
√
m, [τkπk,i

]ni=1), (11)

where πk,· is a permutation such that τkπk,1
≤ · · · ≤ τkπk,n

for all k ≥ −1. (This theorem follows from
Theorem 22 with the chosen parameters).

Hence, our algorithm is adaptive to the dynamic compute times {τki }. Let us consider an example
with 2 workers. Assume that the first worker is stable: τk1 = τ for all k ≥ 0, and the second worker
is unstable: τ02 = τ is small in the first iteration, and τ12 ≈ ∞ in the second iteration. For explanation
purposes, we ignore the preprocessing term t∗(m, ·), which is not a factor if ε is small. Then,

(11) = t∗(
√
m, [τ0π0,1

, τ0π0,2
]) + t∗(

√
m, [τ1π1,1

, τ1π1,2
]) + ... = t∗(

√
m, [τ, τ ]) + t∗(

√
m, [τ ]) + ...
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because t∗(
√
m, [τ1π1,1

, τ1π1,2
]) = t∗(

√
m, [τ ]) when τ12 ≈ ∞. The time complexity in the second

iteration depends on the first (stable) worker only, which is reasonable since τ12 ≈ ∞, and this
happens automatically. At the same time, the first term t∗(

√
m, [τ, τ ]) depends on both workers, and

this iteration will be faster because t∗(
√
m, [τ, τ ]) ≤ t∗(

√
m, [τ ]).

4.5 Comparison with previous strategies from Section 1.3

Our time complexities (9) and (10) are better than all known previous guarantees if m ≥ n log n.
In particular, T (1/√m,

√
m, [τi]

n
i=1) ≤ TSoviet PAGE (from (2)), because t∗(

√
m, [τi]

n
i=1) ≲

√
mτn/n

(Theorem 31). In fact, since limτn→∞ t∗(
√
m, [τi]

n
i=1) = t∗(

√
m, [τi]

n−1
i=1 ) < ∞ and limτn→∞ =√

mτn/n =∞, TSoviet PAGE can be arbitrarily larger. We also improve on Hero PAGE (see Remark 32).

4.6 Comparison with existing asynchronous variance reduced methods

Several studies have explored asynchronous variance reduced algorithms. Essentially all of them are
variants of the existing synchronous methods discussed in Section 1.2 and depend on the slowest
worker in every iteration. There have been several attempts to combine variance reduction techniques
with asynchronous computations. Perhaps the most relevant baseline is SYNTHESIS, an asynchronous
variant of SPIDER [Fang et al., 2018] introduced by Liu et al. [2022]. The obtained gradient complexity
matches that of SPIDER in terms of dependence on m, but scales linearly with the bound on the
time performance of the slowest worker, making it non-adaptive to slow computations. Moreover,
in Line 3 of their Algorithm 3, the full gradient is calculated, assuming that it can be done for free.
Lastly, the analysis assumes the gradients to be bounded.

5 Lower Bound

In previous sections, we showed that Freya PAGE converges in at most (9) or (10) seconds, providing
better time complexity guarantees compared to all previous methods. The natural question is: how
good are these time complexities, and can they be improved? In Section J, we formalize our setup
and prove Theorems 29 and 30, which collectively yield the following lower bound.
Theorem 10 (Less formal version of Theorems 29 and 30). Assume that 0 < τ1 ≤ · · · ≤ τn and
take any L+, δ

0, ε > 0 and m ∈ N such that ε < c1L+δ
0. Then, for any (zero-respecting) algorithm,

there exists a function f that satisfies f(0)− f∗ ≤ δ0 and Assumption 2, such that it is impossible to
find an ε–stationary point faster than in

Ω
(
t∗(m, [τi]

n
i=1) +

δ0L+√
mε

t∗(m, [τi]
n
i=1)

)
(12)

seconds using uniform sampling with replacement.

Comparing (10) and (12), we see that Freya PAGE is optimal under Assumptions 1 and 2 in
the large-scale regime (

√
m ≥ n). Indeed, without Assumption 3, we have max{L−, L±} =

max{L−, L+} = L+. Up to constant factor, (10) is less or equal to (12) since

t∗(
√
m, [τi]

n
i=1) = min

j∈[n]

((
j∑

i=1

1
τi

)−1

(
√
m+ j)

)
= 1√

m
min
j∈[n]

((
j∑

i=1

1
τi

)−1

(m+
√
mj)

)
√
m≥n

≤ 2√
m

min
j∈[n]

((
j∑

i=1

1
τi

)−1

(m+ j)

)
= 2√

m
t∗(m, [τi]

n
i=1).

This is the first optimal method for the problem we consider, and Theorem 10 gives the first lower
bound.

6 Using the Developed Strategies in Other Methods

ComputeBatchDifference (Algorithm 3) is a generic subroutine and can be used in other meth-
ods. In Section H, we introduce Freya SGD, a simple algorithm with update rule xk+1 =
xk − γ × ComputeBatch(S, xk), where S is a batch size and ComputeBatch (Algorithm 4) is a

9



minor modification of ComputeBatchDifference. Theorem 25 establishes that Freya SGD converges in
O (1/ε× t∗ (1/ε, [τi]

n
i=1)) seconds (where we only keep the dependence on ε and {τi}). For small ε,

this complexity is worse than (10), but it can be better, for instance, in the interpolation regime
[Schmidt and Roux, 2013, Ma et al., 2018]. Freya SGD resembles Rennala SGD [Tyurin and Richtárik,
2023], but unlike the latter, it is specialized to work with finite-sum problems (1) and does not require
the σ2–bounded variance assumption on stochastic gradients (which is not satisfied in our setting).
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A Experiments

We compare Freya PAGE with Rennala SGD, Asynchronous SGD, and Soviet PAGE on nonconvex
quadratic optimization tasks and practical machine learning problems. The experiments were con-
ducted in Python 3.8 with Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz. We developed a library
that emulates the working behavior of thousands of nodes.

A.1 Experiments with nonconvex quadratic optimization

0 100000 200000 300000 400000 500000
times (seconds)

10 2

10 1

f(x
t )

f(x
* )

Asynchronous SGD: Step size: 3.0517578125e-05
Asynchronous SGD: Step size: 6.103515625e-05
Soviet PAGE: Step size: 1.0
Soviet PAGE: Step size: 0.5
Rennala SGD: BS: 120 Step size: 0.0078125
Rennala SGD: BS: 120 Step size: 0.015625
Freya PAGE: Step size: 1.0
Freya PAGE: Step size: 0.5

(a) n = 1000

0 100000 200000 300000 400000 500000
times (seconds)

10 2

10 1

f(x
t )

f(x
* )

Asynchronous SGD: Step size: 3.0517578125e-05
Asynchronous SGD: Step size: 1.52587890625e-05
Soviet PAGE: Step size: 1.0
Soviet PAGE: Step size: 0.5
Rennala SGD: BS: 80 Step size: 0.0078125
Rennala SGD: BS: 120 Step size: 0.015625
Freya PAGE: Step size: 0.5
Freya PAGE: Step size: 0.25

(b) n = 10000

Figure 1: Experiments with nonconvex quadratic optimization tasks. We plot function suboptimality
against elapsed time.

In the first set of experiments, we compare the algorithms on a synthetic quadratic optimization
task generated using the procedure from Section I. To ensure robust and fair comparison, we fix
the performance of each worker and emulate our setup by assuming that the ith worker requires

√
i

seconds to calculate a stochastic gradient. For each algorithm, we fine-tune the step size from the set
{2i | i ∈ [−20, 20]}. Uniform sampling with replacement is used across all methods. In Freya PAGE,
we set S = ⌈

√
m⌉ according to Theorem 7. We consider n ∈ {1000, 10000} and in each case plot

the best run of each method.

The results are presented in Figure 1. It is evident that our new method, Freya PAGE, has the
best convergence performance among all algorithms considered. The convergence behavior of
Rennala SGD and Asynchronous SGD is very noisy, and both achieve lower accuracy than Freya PAGE.
Furthermore, the gap between Freya PAGE and Soviet PAGE widens with increasing n because Soviet
PAGE is not robust to the presence of slow workers.

A.2 Experiments with logistic regression

Table 2: Mean and variance of algorithm accuracies on the MNIST test set during the final 100K
seconds of the experiments from Figure 2b.

Method Accuracy Variance of Accuracy
Asynchronous SGD

[Koloskova et al., 2022]
[Mishchenko et al., 2022]

92.60 5.85e-07

Soviet PAGE
[Li et al., 2021] 92.31 1.62e-07

Rennala SGD
[Tyurin and Richtárik, 2023] 92.37 3.12e-06

Freya PAGE 92.66 1.01e-07
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Freya PAGE: Step size: 0.5

(a) n = 100

0 100000 200000 300000 400000 500000 600000
times (seconds)

2.2 × 10 1

2.4 × 10 1

2.6 × 10 1

2.8 × 10 1

3 × 10 1

f(x
t )

f(x
* )

Asynchronous SGD: Step size: 0.00048828125
Asynchronous SGD: Step size: 0.000244140625
Soviet PAGE: Step size: 0.5
Soviet PAGE: Step size: 0.25
Rennala SGD: BS: 120 Step size: 0.5
Rennala SGD: BS: 120 Step size: 0.25
Freya PAGE: Step size: 2.0
Freya PAGE: Step size: 1.0

(b) n = 10000

Figure 2: Experiments with the logistic regression problem on the MNIST dataset.

We now consider the logistic regression problem on the MNIST dataset [LeCun et al., 2010], where
each algorithm samples one data point at a time. The results of the experiments are presented
in Figure 2. The difference between Freya PAGE and Rennala SGD/Asynchronous SGD is not as
pronounced as in Section A.1: the methods have almost the same performance for this particular
problem. However, our method still outperforms its competitors in the low accuracy regime, and is
significantly better than Soviet PAGE.

A critical disadvantage of Rennala SGD and Asynchronous SGD is their noisy behavior, evident in
both the plots and reflected in higher variance of the accuracy (see Table 2). In contrast, the iterations
of Freya PAGE in Figure 2 are smooth, and its accuracy exhibits the lowest variance, as shown in
Table 2. This stability can be attributed to the variance-reduction nature of Freya PAGE.
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B The Time Complexity Guarantees of Algorithms 3 and 4

In addition to ComputeBatchDifference (Algorithm 3) introduced in the main part, we also analyze
ComputeBatch (Algorithm 4) that is similar to ComputeBatchDifference, but calculates a minibatch of
stochastic gradients∇fi(x) instead of stochastic gradient differences∇fi(x)−∇fi(y).

Algorithm 4 ComputeBatch(S, x)

1: Input: batch size S ∈ N, point x ∈ Rd

2: Init g = 0 ∈ Rd

3: Broadcast x to all workers
4: For each worker, sample j from [m] (uniformly) and ask it to calculate∇fj(x)
5: for i = 1, 2, . . . , S do
6: Wait for ∇fp(x) from a worker
7: g ← g + 1

S∇fp(x)
8: Sample j from [m] (uniformly) and ask this worker to calculate∇fj(x)
9: end for

10: Return g

Theorem 2. The time needed by Algorithm 3 to calculate g is at most

4 min
j∈[n]

((
j∑

i=1

1
τi

)−1

(S + j)

)
(5)

seconds.

Proof. Let

t = 4 min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)

 .

As soon as some worker finishes calculating the stochastic gradient difference, it immediately starts
computing the difference of the next pair. Hence, by the time t, all workers will have processed at
least

n∑
i=1

⌊
t

2τi

⌋
pairs. Assume that

j∗ = arg min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)

 .

Using Lemma 4, we have t ≥ 4τi for all i ≤ j∗. Thus, we get t
2τi
≥ 1 for all i ≤ j∗ and

n∑
i=1

⌊
t

2τi

⌋
≥

j∗∑
i=1

⌊
t

2τi

⌋
≥

j∗∑
i=1

t

4τi

=
1

4

 j∗∑
i=1

1

τi


4

 j∗∑
i=1

1

τi

−1

(S + j∗)

 = S + j∗ ≥ S.

We can conclude that by the time (5), the algorithm will have calculated S pairs of stochastic gradients
and exited the loop.

Theorem 11. The time needed by Algorithm 4 to calculate g is at most

2 min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)

 (13)

seconds.
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Proof. The proof of this theorem is essentially the same as the proof of Theorem 2. The only
difference is that Algorithm 4 calculates∇fi(x) instead of∇fi(x)−∇fi(y).

C The Time Complexity Guarantees of Algorithms 2 and 5

Instead of Algorithm 2, we analyze a more general Algorithm 5 that reduces to Algorithm 2 when
S = [m].

Algorithm 5 ComputeBatchAnySampling(S, x)

1: Input: multiset S, point x ∈ Rd

2: Init g = 0 ∈ Rd, multisetM = ∅
3: Broadcast x to all workers
4: For each worker, sample j from S (uniformly) and ask it to calculate∇fj(x)
5: whileM ≠ S do
6: Wait for ∇fp(x) from a worker
7: if p ∈ S\M then
8: g ← g + 1

|S|∇fp(x)
9: UpdateM←M∪ {p}

10: end if
11: Sample j from S\M (uniformly) and ask this worker to calculate∇fj(x)
12: end while
13: Return g = 1

|S|
∑
i∈S
∇fi(x)

Theorem 12. The expected time needed by Algorithm 5 to calculate g = 1
|S|
∑
i∈S
∇fi is at most

12 min
j∈[n]

( j∑
i=1

1

τi

)−1

(|S|+min{|S| , n} log (min{|S| , n}) + j)

 (14)

seconds.

Proof Sketch: While the following proof is technical, the intuition and idea behind it and the algorithm
are relatively simple. For simplicity, assume that n ≥ |S| . The set S\M includes all indices that
have not yet been calculated. Each worker is assigned a new random index from S\M and starts
the calculation of the gradient. At the beginning of the algorithm, when the set S\M is large, the
probability that two workers are assigned the same index is very small. Hence, using the same idea as
in the proof of Theorem 2, the workers will calculate ≈ |S| − n stochastic gradients after

≈ min
j∈[n]

( j∑
i=1

1

τi

)−1

(|S| − n+ j)


seconds. However, once the size of S\M becomes roughly equal to n, the probability that two
workers sample the same index increases. In the final steps of the algorithm, we encounter the same
issue as in the famous coupon collector’s problem, resulting in an additional factor of n log n because
some stochastic gradients will be calculated multiple times.

Proof. Let us define S = |S| and take any k ∈ [n]. We refer to the workers with the upper bounds τi
such that τi ≤ τk as “fast”, and the others will be termed “slow”.

Consider the moment when the algorithm samples j from the set S\M to allocate it to one of the
“fast” workers (Line 4 or 11). The probability of sampling j such that ∇fj(x) is currently being
calculated by another “fast” worker is

|{indices from S\M taken by “fast” workers}|
|{indices from S\M taken by “fast” workers}|+ |{indices from S\M not taken by “fast” workers}|
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≤ min{k, S}
min{k, S}+ |{indices from S\M not taken by “fast” workers}|

because there are at most k “fast” workers and at most S distinct stochastic gradients. Let us define
the set

U := {indices from S\M not taken by “fast” workers}.
A “fast” worker can be “unlucky” and start calculating a stochastic gradient that is being computed
by another “fast” worker. However, with probability at least

≥ |U|
min{k, S}+ |U|

,

it will take a new index j that was not previously taken by another “fast” worker.

Thus, the while loop of the algorithm defines a Markov process that begins with some U ⊆ S. The
size of U decreases by one with probability at least |U|

min{k,S}+|U| in iterations where the algorithm
samples j from U and asks a “fast” worker to calculate the stochastic gradient. Additionally, the size
of U can decrease by one when a “slow” worker finishes calculating a stochastic gradient from U .

Let t̄ be the time required for the Markov process to reach the state U = ∅. Then, the while loop in
Algorithm 2 will finish after at most

T̄ := t̄+ τk (15)

seconds because once U = ∅, all non-processed indices from S\M are assigned to the “fast” workers,
so calculating the remaining stochastic gradients will take at most τk seconds.

It remains to estimate t̄. Let ηp be the number of iterations of the while loop where the algorithm
samples j from S\M and asks a “fast” worker to calculate the stochastic gradient when |U| = p. By
the definition of the Markov chain, we have

E [ηp] ≤
(

p

min{k, S}+ p

)−1

= 1 +
min{k, S}

p
(16)

because with probability at least p
min{k,S}+p , one of the (“lucky”) “fast” workers receives j from U

and decreases the size of U by 1 (ηp has a geometric-like distribution).

Since |U| ≤ S at the beginning of the while loop, it is sufficient for the “fast” workers to calculate at
most

S∑
p=1

(ηp + 1)

stochastic gradients to ensure that U = ∅ (it is possible that some stochastic gradients will be
calculated many times). Indeed, if |U| = p for the first moment, then after ηp + 1 calculations of
stochastic gradients by the “fast” workers, the size of set will be at most p− 1. The last “plus one”
calculation can only happen when |U| = p− 1.

The time required for the “fast” workers to process this number of stochastic gradients is at most

t′ = 2

(
k∑

i=1

1

τi

)−1( S∑
p=1

(ηp + 1)

)
+ τk,

because for this choice of t′, we have
k∑

i=1

⌊
t′

τi

⌋
≥ 1

2

k∑
i=1

t′

τi
≥

S∑
p=1

(ηp + 1),

where
⌊

t′

τi

⌋
is the number of stochastic gradients that worker i can calculate in t′ seconds. Taking

expectation gives

E [t′] = 2

(
k∑

i=1

1

τi

)−1( S∑
p=1

E [ηp + 1]

)
+ τk
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(16)
≤ 2

(
k∑

i=1

1

τi

)−1(
2S +

S∑
p=1

min{k, S}
p

)
+ τk

≤ 2

(
k∑

i=1

1

τi

)−1(
2S +

S∑
p=1

min{n, S}
p

)
+ τk

= 2

(
k∑

i=1

1

τi

)−1
2S +

S∑
p=min{n,S}+1

min{n, S}
p

+min{n, S}
min{n,S}∑

p=1

1

p

+ τk

≤ 2

(
k∑

i=1

1

τi

)−1
3S +min{n, S}

min{n,S}∑
p=1

1

p

+ τk

≤ 2

(
k∑

i=1

1

τi

)−1

(3S +min{n, S} (2 + log (min{n, S}))) + τk

≤ 10

(
k∑

i=1

1

τi

)−1

(S +min{n, S} log (min{n, S})) + τk,

where we use the standard bound on the harmonic series. Thus, the expectation of the total time (15)
can be bounded by

E
[
T̄
]
≤ 10

(
k∑

i=1

1

τi

)−1

(S +min{n, S} log (min{n, S})) + 2τk

≤ 10

(
k∑

i=1

1

τi

)−1

(S +min{n, S} log (min{n, S}) + k) + 2τk,

where in the last line we add k ≥ 0. Recall that k is a parameter we can choose. Let us take

k = arg min
j∈[n]

(
j∑

i=1

1

τi

)−1

(S +min{n, S} log (min{n, S}) + j) .

Using Lemma 4, we have

τk ≤ min
j∈[n]

(
j∑

i=1

1

τi

)−1

(S +min{n, S} log (min{n, S}) + j)

and hence

E
[
T̄
]
≤ 12 min

j∈[n]

( j∑
i=1

1

τi

)−1

(S +min{n, S} log (min{n, S}) + j)

 .
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D Proofs for Algorithm 1 (Freya PAGE)

The proofs use the simplified notation t∗(S) := t∗(S, [τi]
n
i=1) from Definition 3.

Since the update rule of PAGE coincides with that of Freya PAGE, one can directly apply the iteration
complexity results established in Tyurin et al. [2023].

Theorem 4 (Iteration complexity). Let Assumptions 1, 2 and 3 hold. Consider any minibatch size

S ∈ N := {1, 2, . . .}, any probability p ∈ (0, 1], and let the stepsize be γ =
(
L− + L±

√
1−p
pS

)−1

.
Then, after

K ≥ KPAGE := 2δ0

ε

(
L− + L±

√
1−p
pS

)
(7)

iterations of Algorithm 1, we have E
[∥∥∇f(x̂K)

∥∥2] ≤ ε, where x̂K is sampled uniformly at random

from the iterates {x0, . . . , xK−1}.

Proof. The result follows from Theorem 6 of Tyurin et al. [2023], using the parameters from the
“Uniform With Replacement” line in Table 1 of the same work.

Theorem 5 (Time complexity with free parameters p and S). Consider the assumptions and the
parameters from Theorem 4, plus Assumption 4. The expected time complexity of Algorithm 1 is at
most

T (p, S, [τi]
n
i=1) := 12 · t∗(m, [τi]

n
i=1)

+ 48δ0

ε

(
L− + L±

√
1−p
pS

)
× {p · t∗(m, [τi]

n
i=1) + (1− p) · t∗(S, [τi]ni=1)} .

(8)

Proof. The result established in Theorem 4 says that the iteration complexity of the algorithm is

KPAGE :=
2δ0

ε

(
L− + L±

√
1− p

pS

)
.

At each iteration, with probability 1− p, the workers compute S differences of stochastic gradients,
which by Theorem 2 takes

4 min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)


seconds. Otherwise, they collect the full gradient, which can be done (Theorem 1) in

12 min
j∈[n]

( j∑
i=1

1

τi

)−1

(m+min{m,n} log (min{m,n}) + j)


≤ 24 min

j∈[n]

( j∑
i=1

1

τi

)−1

(m+ j)


seconds, where the inequality uses Assumption 4. Hence, recalling the notation

t∗(S) := min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)

 ,

the (expected) time complexity of the method is

T (p, S, [τi]
n
i=1) = 24t∗(m) + 24KPAGE × (pt∗(m) + (1− p)t∗(S)) ,

where the term t∗(m) corresponds to the preprocessing step, when the algorithm needs to calculate
g0 = ∇f(x0) = 1/m

∑m
i=1∇fi(x0).
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Theorem 13. Up to a constant factor, the time complexity T (p, S, [τi]
n
i=1) from (8) is at least

t∗(m) +
δ0

ε
min

{
L−t

∗(m), L−t
∗(S) + L±

√
t∗(m)t∗(S)

S

}
, (17)

and attains this value with

p∗(S) =

1, L−t
∗(m) ≤ L−t

∗(S) + L±

√
t∗(m)t∗(S)

S
t∗(S)
t∗(m) , otherwise.

(18)

Proof. Up to a constant factor, by Theorem 5, the time complexity of Freya PAGE is

T (p, S, [τi]
n
i=1) := t∗(m) +

δ0

ε

(
L− + L±

√
1− p

pS

)
(pt∗(m) + (1− p)t∗(S)) .

Let us denote the second term in the above equation as Tp,S . Then for all p ≥ 1
2 , we have

Tp,S ∝
δ0

ε

(
L− + L±

√
1− p

pS

)
(pt∗(m) + (1− p)t∗(S)) ≥ δ0

2ε
L−t

∗(m), (19)

and for all S ≥ m
2

Tp,S ≥
δ0

ε
L−

pt∗(m) + (1− p) min
j∈[n]

( j∑
i=1

1

τi

)−1 (m
2

+ j
) ≥ δ0

2ε
L−t

∗(m).

Otherwise, when p < 1
2 and S < m

2 , we have

Tp,S ≥
δ0

2ε

(
L− + L±

√
1

pS

)
(pt∗(m) + t∗(S))

≥ δ0

2ε
L−t

∗(S) +
δ0

2ε

(
L±

√
1

pS

)
(pt∗(m) + t∗(S))

≥ δ0

2ε
L−t

∗(S) +
δ0

ε

(
L±

√
1

pS

)√
pt∗(m)t∗(S)

=
δ0

2ε
L−t

∗(S) +
δ0

ε
L±

√
t∗(m)t∗(S)

S
.

Hence, up to a constant factor,

T (p, S, [τi]
n
i=1) = t∗(m) + Tp,S ≥ t∗(m) +

δ0

ε
min

{
L−t

∗(m), L−t
∗(S) + L±

√
t∗(m)t∗(S)√

S

}
.

It can be easily verified that this bound can be attained (up to a constant factor) using the parameter p
as defined in (18).

Theorem 14. Up to a constant factor, the minimum of the time complexities (8) and (17) is

t∗(m) +
δ0

ε
min

{
L−t

∗(m), min
S∈[m]

[
L−t

∗(S) + L±

√
t∗(m)t∗(S)√

S

]}
and is achieved for

S∗ = arg min
S∈[m]

min

{
L−t

∗(m), L−t
∗(S) + L±

√
t∗(m)t∗(S)√

S

}
and p∗ = p∗(S∗), where p∗(S) is defined in (18).

Proof. This is a simple corollary of Theorem 13: we take S that minimizes (17).
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In certain scenarios, we can derive the optimal parameter values explicitly.

Theorem 15.

1. If n ≤ L±
√
m

L−
≤ m, then (up to constants) S∗ = L±

√
m

L−
and p∗ = L±

L−
√
m

are optimal
parameters and

T (p∗, S∗, [τi]
n
i=1) = t∗(m) +

δ0L−

ε
t∗
(
L±
√
m

L−

)
.

2. If L±
√
m

L−
≤ 1, then (up to constants) S∗ = 1 and p∗ = 1/m are optimal parameters and

T (p∗, S∗, [τi]
n
i=1) = t∗(m) +

δ0L−

ε
t∗(1).

3. If L±
√
m

L−
≥ m, then (up to constants) p∗ = 1 is an optimal parameter and

T (p∗, S, [τi]
n
i=1) =

δ0L−

ε
t∗(m)

for any S ∈ [m].

Proof. We fist consider the case when n ≤ L±
√
m

L−
≤ m. Since j ≤ n ≤ L±

√
m

L−
, we have

L±
√
m

L−
+

L±

L−
√
m
j ≥ 1

2

(
L±
√
m

L−
+ j

)
, (20)

and from the assumption that L− ≥ L±√
m

it follows that

L±
√
m

L−
+ j ≥ L±

√
m

L−
+

L±

L−
√
m
j (21)

for all j ∈ [n]. Thus,

L±

L−
√
m
t∗(m) = min

j∈[n]

( j∑
i=1

1

τi

)−1(
L±
√
m

L−
+

L±

L−
√
m
j

) (20)
≥ 1

2
t∗
(
L±
√
m

L−

)
,

and

L±

L−
√
m
t∗(m) = min

j∈[n]

( j∑
i=1

1

τi

)−1(
L±
√
m

L−
+

L±

L−
√
m
j

) (21)
≤ t∗

(
L±
√
m

L−

)
.

It follows that

1

2
t∗
(
L±
√
m

L−

)
≤ L±

L−
√
m
t∗(m) ≤ t∗

(
L±
√
m

L−

)
. (22)

Since L±
√
m

L−
≤ m, we have

min
S∈[m]

{
L−t

∗(S) + L±

√
t∗(m)t∗(S)√

S

}
≤ L− min

S∈[m]

{
t∗(S) +

√
m

√
t∗(m)t∗(S)√

S

}
≤ 2L−t

∗(m), (23)

and thus, according to the result from Theorem 14, it is sufficient to minimize

t′(S) := L−t
∗(S) + L±

√
t∗(m)t∗(S)√

S
.
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First, let us note that

t′
(
L±
√
m

L−

)
= L−t

∗
(
L±
√
m

L−

)
+ L±

√
L−

L±
√
m
t∗(m)t∗

(
L±
√
m

L−

)
(22)
≤ L−t

∗
(
L±
√
m

L−

)
+ L±

√
L−

L±
√
m

L−
√
m

L±
t∗
(
L±
√
m

L−

)
t∗
(
L±
√
m

L−

)
= 2L−t

∗
(
L±
√
m

L−

)
.

If S ≥ L±
√
m

L−
, then

t′(S) = L−t
∗(S) + L±

√
t∗(m)t∗(S)

S
≥ L−t

∗
(
L±
√
m

L−

)
.

Otherwise, if S < L±
√
m

L−
, then

t′(S) = L−t
∗(S) + L±

√
t∗(m)

√√√√√min
j∈[n]

( j∑
i=1

1

τi

)−1(
1 +

j

S

)

≥ L±
√
t∗(m)

√√√√√min
j∈[n]

( j∑
i=1

1

τi

)−1(
1 +

L−j

L±
√
m

)

= L±
√
t∗(m)

√√√√√ L−

L±
√
m

min
j∈[n]

( j∑
i=1

1

τi

)−1(
L±
√
m

L−
+ j

)
= L±

√
t∗(m)

L−

L±
√
m
t∗
(
L±
√
m

L−

)
(22)
≥ L±

√
1

2
t∗
(
L±
√
m

L−

)
L−
√
m

L±

L−

L±
√
m
t∗
(
L±
√
m

L−

)
=

L−√
2
t∗
(
L±
√
m

L−

)
.

Therefore, the optimal choice is S∗ = L±
√
m

L−
, and by Theorem 13 and inequality (23), p should

chosen to be

t∗
(

L±
√
m

L−

)
t∗(m)

.

Using (22), we can conclude that p∗ = L±
L−

√
m

is optimal, proving the first part of the Theorem.

Next, consider the case when L±
√
m

L−
≤ 1. By the reasoning above, it is sufficient to minimize

t′(S) := L−t
∗(S) + L±

√
t∗(m)t∗(S)√

S
.

First, let us note that

t′(1) = L−t
∗(1) + L±

√
t∗(m)t∗(1) ≤ L−t

∗(1) + L−

√
t∗(m)t∗(1)

m
≤ 2L−t

∗(1),

where the last inequality follows from the fact that for any S ∈ [m], t∗(S)/S ≤ t∗(1). On the other
hand, if S ≥ 1, then

t′(S) = L−t
∗(S) + L±

√
t∗(m)t∗(S)√

S
≥ L−t

∗(S) ≥ L−t
∗(1).
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Therefore, the optimal choice is S∗ = 1. Then

δ0

ε

(
L− + L±

√
m− 1

)( t∗(m)

m
+

(
1− 1

m

)
t∗(1)

)
≤ 2δ0

ε

(
L− +

L−√
m

√
m− 1

)
t∗(1)

≤ 4δ0L−

ε
t∗(1),

while for any p

δ0

ε

(
L− + L±

√
1− p

p

)
(pt∗(m) + (1− p)t∗(1))

≥ δ0L−

ε
(pt∗(m) + (1− p)t∗(1))

≥ δ0L−

ε
(pt∗(1) + (1− p)t∗(1))

=
δ0L−

ε
t∗(1).

Hence p∗ = 1/m.

It remains to prove the third result. Suppose that L− < L±√
m

. Then, the last part of the theorem
follows from the fact that

min
S∈[m]

{
L−t

∗(S) + L±

√
t∗(m)t∗(S)√

S

}
≥ L± min

S∈[m]

{√
t∗(m)t∗(S)√

S

}

= L±

{√
t∗(m)t∗(m)√

m

}
≥ L−t

∗(m).

In practice, the values of smoothness constants are often unknown. However, the algorithm can still
be run with close to optimal parameters.
Theorem 7 (Main result in the large-scale regime). Consider the assumptions and parameters from
Theorem 4, plus Assumption 4. Up to a constant factor and smoothness constants, if

√
m ≥ n, then

the optimal choice of parameters in (8) is S∗ = ⌈
√
m⌉ and p∗ = 1/

√
m. For this choice, the expected

time complexity of Algorithm 1 is at most

T (1/
√
m,
√
m, [τi]

n
i=1) = 12t∗(m, [τi]

n
i=1) +

192δ0 max{L−,L±}
ε t∗(

√
m, [τi]

n
i=1) (10)

seconds. The iteration complexity with S = ⌈
√
m⌉ and p = 1/

√
m is KPAGE ≤ 4δ0 max{L−,L±}/ε.

Proof. The proof is the same as in Theorem 15. Indeed, up to a constant factor, the time complexity (8)
can be bounded as

T (p, S, [τi]
n
i=1) = t∗(m) +

δ0

ε

(
L− + L±

√
1− p

pS

)
(pt∗(m) + (1− p)t∗(S))

≤ t∗(m) +
2δ0 max{L−, L±}

ε

(
1 +

√
1− p

pS

)
(pt∗(m) + (1− p)t∗(S)) .

Therefore, by setting L± = L− in Theorem 15, one can easily derive the parameters p and S that
are optimal up to the smoothness constants. The time complexity (10) can be obtained by applying
S = ⌈

√
m⌉ and p = 1/

√
m to (8).
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E Freya PAGE with Other Samplings

Algorithm 1 can be adapted to accommodate other sampling methods. This brings us to the intro-
duction of Algorithm 6, which supports virtually any sampling strategy, formalized by the following
mapping:
Definition 16 (Sampling). A sampling is a random mapping SS , which takes as an input a set of
indices I := {a1, . . . , am} and returns a (multi)set {ai1 , . . . , aiS}, where aij ∈ I for all j ∈ [S].

Algorithm 6 Freya PAGE (with virtually any sampling)

1: Parameters: starting point x0 ∈ Rd, learning rate γ > 0, minibatch size S, sampling SS ,
probability p ∈ (0, 1], initialization g0 = ∇f(x0) using ComputeGradient([m], x0) (Alg. 2)

2: for k = 0, 1, . . . ,K − 1 do
3: xk+1 = xk − γgk

4: Sample ck ∼ Bernoulli(p)
5: if ck = 1 then
6: ∇f(xk+1) = ComputeGradient(xk+1) (Alg. 2)
7: gk+1 = ∇f(xk+1)
8: else
9: Sample indices Sk = SS([m])

10: 1
S

∑
i∈Sk

(
∇fi(xk+1)−∇fi(xk)

)
= ComputeBatchDifferenceAnySampling(Sk, xk+1, xk) (Alg. 7)

11: gk+1 = gk + 1
S

∑
i∈Sk

(
∇fi(xk+1)−∇fi(xk)

)
12: end if
13: end for

Algorithm 7 ComputeBatchDifferenceAnySampling(S, x, y)

1: Input: multiset S, points x, y ∈ Rd

2: Init g = 0 ∈ Rd, multisetM = ∅
3: Broadcast x to all workers
4: For each worker, sample j from S (uniformly) and ask it to calculate∇fj(x)−∇fj(y)
5: whileM ≠ S do
6: Wait for ∇fp(x)−∇fp(y) from a worker
7: if p ∈ S\M then
8: g ← g + 1

|S| (∇fp(x)−∇fp(y))
9: UpdateM←M∪ {p}

10: end if
11: Sample j from S\M (uniformly) and ask this worker to calculate∇fj(x)−∇fj(y)
12: end while
13: Return g = 1

|S|
∑
i∈S

(∇fi(x)−∇fi(y))

The only difference is that instead of ComputeBatchDifference (Algorithm 5), Algorithm 6 uses a new
subroutine, called ComputeBatchDifferenceAnySampling (Algorithm 3).

For this algorithm, we can prove the following time complexity guarantees.
Theorem 17. The expected time needed by Algorithm 7 to calculate g = 1

|S|
∑
i∈S

(∇fi(x)−∇fi(y))

is at most

24 min
j∈[n]

( j∑
i=1

1

τi

)−1

(|S|+min{|S| , n} log (min{|S| , n}) + j)

 (24)

seconds.
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Proof. The proof of this theorem is the same as the proof of Theorem 12. We only have to multi-
ply (14) by 2 because Algorithm 3 calculates∇fi(x)−∇fi(y) instead of∇fi(x).

While changing the sampling strategy might affect the iteration complexity of the method, for a
fixed minibatch size S, the time complexity of a single iteration remains unchanged. Thus, having
established the expected time needed by the algorithm to perform a single iteration (i.e., to collect a
minibatch of stochastic gradients of the required size), one can simply multiply it by the iteration
complexity of the method determined for any supported sampling technique to obtain the resulting
time complexity.

With this in mind, we now analyse the time complexity of Algorithm 6 with 2 different sampling
techniques: nice sampling and importance sampling. However, it can be analyzed with virtually any
other unbiased sampling [Tyurin et al., 2023].

E.1 Nice sampling

Nice sampling returns a random subset of fixed cardinality S chosen uniformly from [m]. Unlike
uniform sampling with replacement used in Algorithm 5, which returns a random multiset (that can
include repetitions), the samples obtained by nice sampling are distinct. The iteration complexity of
Algorithm 6 with nice sampling is given by the following theorem.

Theorem 18 (Tyurin et al. [2023], Section 3). Let Assumptions 1, 2 and 3 hold. Choose a minibatch
size S ∈ [m], a probability p ∈ (0, 1] and the stepsize

γ =
1

L− + L±

√
(1−p)(m−S)
p(m−1)S

.

Then, the number of iteration needed by Algorithm 6 with nice sampling to reach an ε-stationary
point is

K =
2δ0

ε

(
L− + L±

√
(1− p)(m− S)

p(m− 1)S

)
. (25)

Proof. The result follows from Theorem 6 and Table 1 from [Tyurin et al., 2023].

Theorem 19. Consider the assumptions and parameters from Theorem 18 and Assumption 4. Up to
a constant factor, the time complexity of Algorithm 6 is

T (p, S, [τi]
n
i=1) = t∗(m, [τi]

n
i=1) +

δ0

ε

(
L− + L±

√
(1− p)(m− S)

p(m− 1)S

)
×

× {p× t∗(m, [τi]
n
i=1) + (1− p)× t∗(S +min{S, n} log (min{S, n}) , [τi]ni=1)} , (26)

where t∗ is defined from Definition 3.

Remark 20. Compared to Theorem 5, which uses uniform sampling with replacement, the guarantees
for nice sampling are slightly worse: the term t∗(S, [τi]

n
i=1) from Theorem 5 here is replaced with

t∗(S + min{S, n} log (min{S, n}) , [τi]ni=1). Ignoring the logarithmic term log (min{S, n}) (≤
log (min{m,n})), the result from Theorem 19 is equivalent to that in Theorem 5. Thus, Theorems 6
and 7 hold also for the nice sampling (up to logarithmic factors).

Proof. We use the same reasoning as in the proof of Theorem 5. With probability p, the algorithm
calculates the full gradients, which by Theorem 1 requires

Θ

min
j∈[n]

( j∑
i=1

1

τi

)−1

(m+min{m,n} log (min{m,n}) + j)


= Θ

min
j∈[n]

( j∑
i=1

1

τi

)−1

(m+ j)
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seconds, where we use Assumption 4. With probability 1− p, the algorithm calls ComputeBatchDif-
ferenceAnySampling, which by Theorem 17 requires

Θ

min
j∈[n]

( j∑
i=1

1

τi

)−1

(S +min{S, n} log (min{S, n}) + j)


seconds. One can obtain the result by multiplying the iteration complexity (25) by the expected
time needed to collect the required number of stochastic gradients per iteration and adding the
preprocessing time.

E.2 Importance sampling

Here we additionally assume Li-smoothness of the local objective functions fi.

Assumption 5. The functions fi are Li-smooth. We denote L̄ := 1
m

∑m
j=1 Lj and Lmax :=

maxi∈[n] Li.

Importance sampling is a sampling technique that returns a multiset of indices with repetitions. Index
j is included in the multiset with probability Lj∑n

i=1 Lj
.

Theorem 21 (Tyurin et al. [2023], Section 3). Let Assumptions 1 and 5 hold. Choose a minibatch
size S ∈ [m], probability p ∈ (0, 1] and the stepsize

γ =
1

L− + L̄
√

1−p
pS

.

Then, the number of iteration needed by Algorithm 1 with importance sampling to reach an ε-
stationary point is

K =
2δ0

ε

(
L− + L̄

√
1− p

pS

)
. (27)

The complexity (27) is nearly identical to (7) and (25), with the only difference being the dependence
on L̄ rather than L±. Thus, all the results up to constant and logarithmic factors can be derived using
the same methodology as that outlined in Section 4, with the simple substitution of L± with L̄.

F Dynamic Bounds

As noted in Section 4.4, the results from Section D can be easily generalized to iteration-dependent
processing times.
Theorem 22. Consider the assumptions and the parameters from Theorem 4 and Assumption 4.
Up to a constant factor, the time complexity of Freya PAGE (Algorithm 1) with iteration-dependent
processing times {τki }, which are defined in Section 4.4, is at most

min
j∈[n]

( j∑
i=1

1

τ−1
π−1,i

)−1

(m+ j)


+

⌈KPAGE⌉∑
k=0

p min
j∈[n]

( j∑
i=1

1

τk
πk,i

)−1

(m+ j)

+ (1− p) min
j∈[n]

( j∑
i=1

1

τk
πk,i

)−1

(S + j)

 ,

(28)

to find an ε-stationary point, where p ∈ (0, 1] and S ∈ N are free parameters, and πk,· is a
permutation such that τkπk,1

≤ · · · ≤ τkπk,n
for all k ≥ −1.

Remark 23. The theorem can be trivially extended to other samplings by changing KPAGE to the
iteration complexities from Theorems 18 and 21.
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Proof. The reasoning behind this result is exactly the same as in the proof of Theorem 5. The only
difference is that in this more general setting, the expected time per iteration varies across iterations.
Therefore, instead of simply multiplying, one needs to sum over the iterations to obtain the total time
complexity.

We introduce the permutations to ensure that {τkπk,i
}ni=1 are sorted. When τki = τi, there is no need

to introduce them because, throughout the paper, it is assumed τ1 ≤ . . . ≤ τn (see Section 1).
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G Examples

Here we provide the proofs for the examples from Section 4.3. We will use the notation

t(S, j) :=

(
j∑

i=1

1

τi

)−1

(S + j)

for a fixed S ∈ [m] and all j ∈ [n].
Example 1. [Equally Fast Workers] Suppose that the upper bounds on the processing times are
equal, i.e., τj = τ for all j ∈ [n]. Then

T (1/
√
m,
√
m, [τi]

n
i=1) = Θ

(
τ max

{
m
n , 1

}
+ τ δ0 max{L−,L±}

ε max
{√

m
n , 1

})
.

Proof. First, when τj = τ for all j ∈ [n], then for any S ∈ [m], t(S, j) is minimized by taking
j = n:

t∗(S) := min
j∈[n]

t(S, j) = min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)


= min

j∈[n]

(
τ

j
(S + j)

)
= Θ

(
τ max

{
S

n
, 1

})
.

It remains to substitute this equality in (10).

Example 2. [Infinitely Fast Worker] If τ1 = 0, then T (1/
√
m,
√
m, [τi]

n
i=1) = 0.

Proof. The statement follows easily from the fact that for any S ∈ [m] we have

t∗(S) := min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)

 ≤ ( 1

τ1

)−1

(S + j) = 0.

Example 3. [Infinitely Slow Workers] If τj =∞∀j ∈ [n], then T (1/
√
m,
√
m, [τi]

n
i=1) =∞.

Proof. This follows from the fact that for any S ∈ [m] and any j ∈ [n] we have

t(S, j) :=

(
j∑

i=1

1

τi

)−1

(S + j) =∞.

Example 4. [Extremely Slow Workers] Suppose that the times τj < ∞ are fixed ∀j ≤ jB and
τj ≥ B ∀j > jB for some B large enough. Then T (1/

√
m,
√
m, [τi]

n
i=1) = T (1/

√
m,
√
m, [τi]

jB
i=1).

Proof. Suppose that B ≥ m+jB∑jB
i=1

1
τi

and fix any k > jB . Then, since τj ≥ B for all j > jB , we have

k − jB∑k
i=jB+1

1
τi

≥ k − jB∑k
i=jB+1

1
B

= B ≥ m+ jB∑jB
i=1

1
τi

≥ S + jB∑jB
i=1

1
τi

= t(S, jB)

for any S ∈ [m]. Rearranging and adding (S + jB)
∑jB

i=1
1
τi

to both sides of the inequality, we
obtain

(S + jB)

(
jB∑
i=1

1

τi

)
+ (S + jB)

 k∑
i=jB+1

1

τi

 ≤ (S + jB)

(
jB∑
i=1

1

τi

)
+ (k − jB)

(
jB∑
i=1

1

τi

)
,
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meaning that

t(S, jB) =
S + jB∑jB

i=1
1
τi

≤ S + k∑k
i=1

1
τi

= t(S, k)

for any k > jB and any S ∈ [m]. Therefore,

min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)

 = min
j∈[jB ]

( j∑
i=1

1

τi

)−1

(S + j)


for any S ∈ [m], which proves the claim.
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H A New Stochastic Gradient Method: Freya SGD

In this section, we introduce a new a non-variance reduced SGD method that we call Freya SGD.
Freya SGD is closely aligned with Rennala SGD [Tyurin and Richtárik, 2023], but Freya SGD does not
require the σ2–bounded variance assumption on stochastic gradients.

Algorithm 8 Freya SGD

1: Parameters: starting point x0 ∈ Rd, learning rate γ > 0, minibatch size S
2: for k = 0, 1, . . . ,K − 1 do
3: 1

S

∑
i∈Sk

∇fi(xk) = ComputeBatch(S, xk) (Alg. 4)

4: xk+1 = xk − γ 1
S

∑
i∈Sk

∇fi(xk)

5: end for
(note): Sk is a set of size

∣∣Sk
∣∣ = S of i.i.d. indices sampled from [m] uniformly with replacement

Assumption 6. For all i ∈ [n], there exists f∗
i such that fi(x) ≥ f∗

i for all x ∈ Rd.

We define

∆∗ :=
1

n

n∑
i=1

(f∗ − f∗
i ) .

Theorem 24. Let Assumptions 1, 5 and 6 hold. Choose minibatch size S ∈ [m] and stepsize

γ = min

{ √
S√

LLmaxKSGD
,

1

L
(
1− 1

S

) , Sε

4LLmax∆∗

}
,

where

KSGD :=
12δ0L

ε
max

{
1− 1

S
,
12Lmaxδ

0

Sε
,
4Lmax∆

∗

Sε

}
.

Then, the number of iterations needed by Algorithm 8 to reach an ε-stationary point is ⌈KSGD⌉ .

Proof. The iteration complexity can be proved using Corollary 1 and Proposition 3 (i) of Khaled and
Richtárik [2022] (with qi = 1/n).

Theorem 25. Consider the assumptions and the parameters from Theorem 24. Up to a constant
factor, the time complexity of Freya SGD (Algorithm 8) is at most

TSGD(S, [τi]
n
i=1) :=

δ0L−

ε

(
1− 1

S
+

Lmax

εS

(
δ0 +∆∗))× min

j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)


and is minimized by choosing

S∗ =
Lmax

ε

(
δ0 +∆∗) .

Up to a constant factor, we get

TSGD(S
∗, [τi]

n
i=1) =

δ0L−

ε
min
j∈[n]

( j∑
i=1

1

τi

)−1(
Lmax

ε

(
δ0 +∆∗)+ j

) .

Proof. At each iteration, the algorithm needs to collect a minibatch of stochastic gradients of size S.
Multiplying the iteration complexity of Theorem 24 by the time needed to gather such a minibatch
(Theorem 11), the resulting time complexity is

TSGD(S, [τi]
n
i=1) =

δ0L−

ε

(
1− 1

S
+

Lmax

εS

(
δ0 +∆∗))× min

j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)

 .
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We now find the optimal S. Assume first that Lmax

ε

(
δ0 +∆∗) ≤ 1

2 . Assumption 5 ensures that the
function f is Lmax-smooth. Thus, we have

∥∥∇f(x0)
∥∥2 ≤ 2Lmaxδ

0 ≤ ε, and x0 is an ε-solution.
Therefore, we can take any S ≥ 1.

Now, suppose that Lmax

ε

(
δ0 +∆∗) > 1

2 . Then we have

TSGD(Lmax/ε
(
δ0 +∆∗) , [τi]ni=1) =

δ0L−

ε

(
2− 1

S

)
min
j∈[n]

( j∑
i=1

1

τi

)−1(
Lmax

ε

(
δ0 +∆∗)+ j

)
≤ 2δ0L−

ε
min
j∈[n]

( j∑
i=1

1

τi

)−1(
Lmax

ε

(
δ0 +∆∗)+ j

) .

For all S > max
{

Lmax

ε

(
δ0 +∆∗) , 1} , we get S ≥ 2 and hence

TSGD(S, [τi]
n
i=1) =

δ0L−

ε

(
1− 1

S
+

Lmax

εS

(
δ0 +∆∗)) min

j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)


≥ δ0L−

2ε
min
j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)


≥ δ0L−

2ε
min
j∈[n]

( j∑
i=1

1

τi

)−1(
Lmax

ε

(
δ0 +∆∗)+ j

) .

Let us now consider the case 1 < S ≤ max
{

Lmax

ε

(
δ0 +∆∗) , 1} . We can additionally assume

that Lmax

ε

(
δ0 +∆∗) > 1 and S ≤ Lmax

ε

(
δ0 +∆∗) (otherwise, the set S that satisfies the condition

1 < S ≤ max
{

Lmax

ε

(
δ0 +∆∗) , 1} is empty). We get

TSGD(S, [τi]
n
i=1) =

δ0L−

ε

(
1− 1

S
+

Lmax

εS

(
δ0 +∆∗)) min

j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)


≥ δ0L−

ε

(
Lmax

εS

(
δ0 +∆∗)) min

j∈[n]

( j∑
i=1

1

τi

)−1

(S + j)


=

δ0L−

ε
min
j∈[n]

( j∑
i=1

1

τi

)−1(
Lmax

ε

(
δ0 +∆∗)+ j

Lmax

εS

(
δ0 +∆∗))

≥ δ0L−

ε
min
j∈[n]

( j∑
i=1

1

τi

)−1(
Lmax

ε

(
δ0 +∆∗)+ j

) .

Finally, for S = 1, we have

TSGD(S, [τi]
n
i=1) =

δ0L−Lmax

ε2
(
δ0 +∆∗) min

j∈[n]

( j∑
i=1

1

τi

)−1

(1 + j)


=

δ0L−

ε
min
j∈[n]

( j∑
i=1

1

τi

)−1(
Lmax

ε

(
δ0 +∆∗)+ Lmax

ε

(
δ0 +∆∗) j)


≥ δ0L−

2ε
min
j∈[n]

( j∑
i=1

1

τi

)−1(
Lmax

ε

(
δ0 +∆∗)+ j

)
because we assume Lmax

ε

(
δ0 +∆∗) > 1

2 . Therefore, an optimal choice is S∗ = Lmax

ε

(
δ0 +∆∗).
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I Setup of the Experiments from Section A.1

We consider the optimization problem (1) with nonconvex quadratic functions. The matrices and
vectors defining the objective functions fi are generated using Algorithm 9 with m = 10000,
d = 1000, λ = 1e−6, and s = 10. The output is used to construct

fi(x) =
1

2
x⊤Aix− b⊤i x ∀x ∈ Rd, ∀i ∈ [m].

Algorithm 9 Quadratic optimization task generation

1: Parameters: number of functions m, dimension d, regularizer λ, noise scale s
2: for i = 1, . . . ,m do
3: Generate random noises νsi = 1 + sξsi and νbi = sξbi , i.i.d. ξsi , ξ

b
i ∼ N (0, 1)

4: Let bi =
νs
i

4 (−1 + νbi , 0, · · · , 0) ∈ Rd

5: Take the initial tridiagonal matrix

Ai =
νsi
4


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ Rd×d

6: end for
7: Take the mean of matrices A = 1

m

∑m
i=1 Ai

8: Find the minimum eigenvalue λmin(A)
9: for i = 1, . . . ,m do

10: Update matrix Ai = Ai + (λ− λmin(A))I
11: end for
12: Take starting point x0 = (

√
d, 0, · · · , 0)

13: Output: matrices A1, · · · ,Am, vectors b1, · · · , bm, starting point x0
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J Lower bound

J.1 Time multiple oracles protocol

The classical lower bound frameworks [Nemirovskij and Yudin, 1983, Carmon et al., 2020, Arjevani
et al., 2022, Nesterov, 2018] are not convenient in the analysis of parallel algorithms since they are
designed to estimate lower bounds on iteration complexities. In order to obtain time complexity lower
bounds, we use the framework by Tyurin and Richtárik [2023]. Let us briefly explain the main idea.
A more detailed explanation can be found in [Tyurin and Richtárik, 2023][Sections 3-6].

We start by introducing an appropriate oracle for our setup:

Oτ : R≥0︸︷︷︸
time

× Rd︸︷︷︸
point

× (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
input state

→ (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
output state

×Rd

such that Oτ (t, x, (st, sx, sq)) =


((t, x, 1), 0), sq = 0,

((st, sx, 1), 0), sq = 1, t < st + τ,

((0, 0, 0), ∇fj(sx)), sq = 1, t ≥ st + τ,

(29)

where j ∼ Uniform([m]), i.e., j is a random index sampled uniformly from the set [m]. We assume
that all draws from Uniform([m]) are i.i.d..

Next, we define the time multiple oracles protocol, first introduced in [Tyurin and Richtárik, 2023].

Protocol 10 Time Multiple Oracles Protocol

1: Input: function f = 1
m

∑m
i=1 fi, oracles and distributions (O1, ..., On) ∈ O(f), algorithm

A ∈ A
2: s0i = 0 for all i ∈ [n]
3: for k = 0, . . . ,∞ do
4: (tk+1, ik+1, xk) = Ak(g1, . . . , gk), ▷ tk+1 ≥ tk

5: (sk+1
ik+1 , g

k+1) = Oik+1(tk+1, xk, skik+1) ▷ sk+1
j = skj ∀j ̸= ik+1

6: end for

Let us explain the behavior of the protocol. At each iteration, the algorithm A returns three outputs,
based on the available information/gradients: time tk+1, the index of a worker ik+1, and a new
point xk. Depending on the current time tk+1 and the state of the worker, three options are possible
(see (29)). If sq = 0, then the worker is idle. It then starts calculations at the point xk, changes
the state sq from 0 to 1, stores the point xk in sx (at which a new stochastic gradient should be
calculated), and returns a zero vector. If sq = 0 and tk+1 < st+ τ, then the worker is still calculating
a stochastic gradient. It does not change the state and returns a zero vector because the computation
has not finished yet. If sq = 0 and tk+1 ≥ st + τ, the worker can finally return a stochastic gradient
at sx because sufficient time has passed since the worker was idle (sq = 0). Note that with this oracle,
the algorithm will never receive the first stochastic gradient before time τ (assuming that all oracles
have the same processing time τ ; in general, we will assume that the processing times are different).

In the setting considered in this work, there are n oracles that can do calculations in parallel, and an
algorithm orchestrates their work. Let the processing times of the oracles be equal to τ1, . . . , τn. A
reasonable strategy would be to call each oracle with tk = 0, then to call the fastest worker with
tk = mini∈[n] τi to get the first stochastic gradients as soon as possible, then to call this worker again
with tk = mini∈[n] τi to request calculation of the next stochastic gradient, and so on. One unusual
thing about this protocol is that the algorithm controls the time. The oracle is designed to force the
algorithm to increase the time; otherwise, the algorithm would not receive new information about the
function.

Our goal will be to bound the complexity measure mtime (A,F), defined as

mtime (A,F) := inf
A∈A

sup
f∈F

sup
{Oi}∈O(f)

inf

{
t ≥ 0

∣∣∣∣E [ infk∈St

∥∥∇f(xk)
∥∥2] ≤ ε

}
,

St :=
{
k ∈ N0

∣∣tk ≤ t
}
,

(30)
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where the sequences tk and xk are generated by Protocol 10. Hence, unlike the classical approach,
where the lower bounds are obtained for the minimum number of iterations required to find an
ε–stationary point, we seek to find the minimum time needed to get an ε–stationary point.

We consider a standard for our setup class of functions [Fang et al., 2018]:
Definition 26 (Function Class Fm

δ0,L+
). We say that f ∈ Fm

δ0,L+
if it is δ0-bounded, i.e., f(0) −

infx∈Rd f(x) ≤ δ0, and

f(x) =
1

m

m∑
i=1

fi(x),

where the functions fi : Rd → R are differentiable and satisfy

1

m

m∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ L2
+ ∥x− y∥2 ∀x, y ∈ Rd.

Next, we define the class of algorithms we will analyze.
Definition 27 (Algorithm Class Azr). Let us consider Protocol 10. We say that a sequence of
mappings A = {Ak}∞k=0 is a zero-respecting algorithm, if

1. Ak : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R≥0 × N× Rd for all k ≥ 1 and A0 ∈ R≥0 × N× Rd.

2. For all k ≥ 1 and g1, . . . , gk ∈ Rd, tk+1 ≥ tk, where tk+1 and tk are defined as
(tk+1, . . . ) = Ak(g1, . . . , gk) and (tk, . . . ) = Ak−1(g1, . . . , gk−1).

3. supp
(
xk
)
⊆
⋃k

j=1 supp
(
gj
)

for all k ∈ N0, where supp(x) := {i ∈ [d] |xi ̸= 0}.

We denote the set of all algorithms with these properties as Azr.

In the above definition, property 1 defines the domain of the mappings Ak, and property 2 ensures
that our algorithm does not “cheat” and does not “travel into the past”: the time can only go forward
(see [Tyurin and Richtárik, 2023][Section 4, Definition 4.1]). Property 3 is a standard assumption
for zero-respecting algorithms [Arjevani et al., 2022] that is satisfied by virtually all algorithms,
including Adam [Kingma and Ba, 2015], SGD, PAGE [Li et al., 2021] and Asynchronous SGD.

It remains to define an oracle class for our problem that employs oracles from (29). We design oracles
that emulate the real behavior of the workers.
Definition 28 (Computation Oracle Class Oτ1,...,τn ). For any f ∈ Fm

δ0,L+
, the oracle class Oτ1,...,τn

returns oracles Oi = Oτi , i ∈ [n], where the mappings Oτi are defined in (29).

J.2 The “worst case” function in the nonconvex world

The analysis uses a standard function, commonly employed to derive lower bounds in the nonconvex
regime. First, let us define

prog(x) := max{i ≥ 0 |xi ̸= 0} (x0 ≡ 1).

Our choice of the underlying function F follows the construction introduced in Carmon et al. [2020],
Arjevani et al. [2022]: for any T ∈ N, define

FT (x) := −Ψ(1)Φ(x1) +

T∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] , (31)

where

Ψ(x) =

{
0, x ≤ 1/2,

exp
(
1− 1

(2x−1)2

)
, x ≥ 1/2,

and Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt.

Throughout the proof, we only rely on the following properties of the function:
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Lemma 1 (Carmon et al. [2020], Arjevani et al. [2022]). The function FT satisfies:

1. FT (0)− infx∈RT FT (x) ≤ ∆0T, where ∆0 = 12.

2. The function FT is l1–smooth, where l1 = 152.

3. For all x ∈ RT , ∥∇FT (x)∥∞ ≤ γ∞, where γ∞ = 23.

4. For all x ∈ RT , prog(∇FT (x)) ≤ prog(x) + 1.

5. For all x ∈ RT , if prog(x) < T, then ∥∇FT (x)∥ > 1.

J.3 The first lower bound

We are ready to present the main results of this section.

Theorem 29. Let us consider Protocol 10. Without loss of generality, assume that 0 < τ1 ≤ · · · ≤ τn

and take any L+, δ
0, ε > 0, and m ∈ N such that ε < c1L+δ

0 and δ0L+

ε > c2
√
m. Then, for any

algorithm A ∈ Azr, there exists a function f ∈ Fm
δ0,L+

and computation oracles (O1, . . . , On) ∈

Oτ1,...,τn(f) such that E
[
infk∈St

∥∥∇f(xk)
∥∥2] > ε, where St :=

{
k ∈ N0 | tk ≤ t

}
and

t = c3 ×
δ0L+√
mε

min
j∈[n]

( j∑
i=1

1

τi

)−1

(m+ j)

 .

The quantities c1,c2, and c3 are universal constants. The sequences xk and tk are defined in
Protocol 10.

Proof. (Step 1: Construction of a hard problem)
We start our proof by constructing an appropriate function f ∈ Fm

δ0,L+
. Let us fix any T ≥ N and

define fi : RT → R such that

f1 :=

√
mL+λ

2

l1
FT

(x
λ

)
for all x ∈ RT , and fi(x) = 0 for all i ∈ {2, . . . ,m} and x ∈ RT . Essentially, all information about
the function f = 1

m

∑m
i=1 fi is in the first function. Note that

1

m

m∑
i=1

∥∇fi(x)−∇fi(y)∥2 =
1

m
∥∇f1(x)−∇f1(y)∥2

=
1

m

∥∥∥∥√mL+λ

l1
∇FT

(x
λ

)
−
√
mL+λ

l1
∇FT

( y
λ

)∥∥∥∥2
=

L2
+λ

2

l21

∥∥∥∇FT

(x
λ

)
−∇FT

( y
λ

)∥∥∥2 .
Then, using Lemma 1, we have

1

m

m∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ L2
+λ

2
∥∥∥x
λ
− y

λ

∥∥∥2 = L2
+ ∥x− y∥2 . (32)

Taking

T =

⌊ √
mδ0l1

L+λ2∆0

⌋
,

we ensure that

f(0)− inf
x∈RT

f(x) =
1

m

(√
mL+λ

2

l1
FT (0)− inf

x∈RT

√
mL+λ

2

l1
FT (x)

)
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=
L+λ

2

√
ml1

(
FT (0)− inf

x∈RT
FT (x)

)
≤ L+λ

2∆0T√
ml1

≤ δ0, (33)

where in the inequalities we use Lemma 1 and the choice of T. Now, inequalities (32) and (33) imply
that f = 1

m

∑m
i=1 fi ∈ Fm

δ0,L+
, and hence, using Lemma 1 again, we get

inf
k∈St

∥∥∇f(xk)
∥∥2 = inf

k∈St

∥∥∥∥ 1

m
×
√
mL+λ

l1
∇FT

(
xk

λ

)∥∥∥∥2
=

L2
+λ

2

ml21
inf
k∈St

∥∥∥∇FT

(x
λ

)∥∥∥2 >
L2
+λ

2

ml21
inf
k∈St

1
[
prog(xk) < T

]
.

Let us take

λ =
2l1
√
m
√
ε

L+
.

Then

inf
k∈St

∥∥∇f(xk)
∥∥2 > 4ε inf

k∈St
1
[
prog(xk) < T

]
(34)

and

T =

⌊
δ0L+

4l1∆0
√
mε

⌋
.

The last inequality means that while prog(xk) < T for all k ∈ St, all gradients are large. The
function FT is a zero-chain: due to Lemma 1, we know that prog(∇FT (x)) ≤ prog(x) + 1 for all
x ∈ RT . This implies that we can discover at most one new non-zero coordinate by calculating the
gradient of the function ∇f1. Since the algorithm A ∈ Azr is zero-respecting, by definition it cannot
return a point xk with progress greater than that of the vectors returned by the oracles. In view of
this, it is necessary to calculate the gradient of f1 at least T times to get prog(xk) ≥ T.

The gradient of f1 can be calculated if and only if j = 1, where j ∼ Uniform([m]) (see (29)).
Consider worker i and define η1i to be the number of draws from Uniform([m]) until the index j = 1
is sampled. Clearly, η1i is a Geometric random variable with parameter P (j = 1) = 1

m . Recall that
the workers can do the computations in parallel, and by the design of the oracles, worker i needs
at least τiη1i seconds to calculate η1i stochastic gradients. Hence, it is impossible to calculate ∇f1
before the time

min
i∈[n]

τiη
1
i .

Once the algorithm calculates∇f1 for the first time, it needs to do so at least T − 1 times more to
achieve prog(xk) ≥ T. Thus, one should wait at least

T∑
k=1

min
i∈[n]

τiη
k
i

seconds, where ηki
i.i.d.∼ Geometric(1/m). We can conclude that

P
(

inf
k∈St

1
[
prog(xk) < T

]
= 0

)
≤ P

(
T∑

k=1

min
i∈[n]

τiη
k
i ≤ t

)
. (35)

(Step 2: The Chernoff Method)
The theorem’s proof is now reduced to the analysis of the concentration of

∑T
k=1 mini∈[n] τiη

k
i .

Using the Chernoff method, for all s > 0, we have

P

(
T∑

k=1

min
i∈[n]

τiη
k
i ≤ t

)
= P

(
−s

T∑
k=1

min
i∈[n]

τiη
k
i ≥ −st

)
= P

(
e−s

∑T
k=1 mini∈[n] τiη

k
i ≥ e−st

)
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≤ estE

[
exp

(
−s

T∑
k=1

min
i∈[n]

τiη
k
i

)]
.

Independence gives

P

(
T∑

k=1

min
i∈[n]

τiη
k
i ≤ t

)
≤ est

T∏
k=1

E
[
exp

(
−smin

i∈[n]
τiη

k
i

)]
i.i.d.
= est

(
E
[
exp

(
−smin

i∈[n]
τiη

1
i

)])T

. (36)

Let us consider the term in the last bracket separately. For a fixed t′ > 0, we have

E
[
exp

(
−smin

i∈[n]
τiη

1
i

)]
(37)

= E
[
max
i∈[n]

exp
(
−sτiη1i

)]
= E

[
max
i∈[n]

(
1
[
τiη

1
i ≤ t′

]
exp

(
−sτiη1i

)
+
(
1− 1

[
τiη

1
i ≤ t′

])
exp

(
−sτiη1i

))]
≤ E

[
max
i∈[n]

(
1
[
τiη

1
i ≤ t′

]
+
(
1− 1

[
τiη

1
i ≤ t′

])
exp (−st′)

)]
= exp (−st′) + (1− exp (−st′))E

[
max
i∈[n]

(
1
[
τiη

1
i ≤ t′

])]
. (38)

We now consider the last term. Due to the independence, we have

E
[
max
i∈[n]

(
1
[
τiη

1
i ≤ t′

])]
= 1−

n∏
i=1

P
(
τiη

1
i > t′

)
= 1−

n∏
i=1

(1− p)

⌊
t′
τi

⌋
,

where we use the cumulative distribution function of a geometric random variable and temporarily
define p := 1

m . Using Lemma 3, we get

E
[
max
i∈[n]

(
1
[
τiη

1
i ≤ t′

])]
≤ p

n∑
i=1

⌊
t′

τi

⌋
. (39)

Let us take

t′ =
1

8
× min

j∈[n]

(
j∑

i=1

1

τi

)−1(
1

p
+ j

)
=

1

8
× min

j∈[n]
g(j),

where g(j) :=
(∑j

i=1
1
τi

)−1 (
1
p + j

)
for all j ∈ [n] and assume that j∗ is the largest index such

that minj∈[n] g(j) = g(j∗). Then, Lemma 4 gives

τj∗ ≤ min
j∈[n]

g(j) < τj∗+1, (40)

where we let τn+1 ≡ ∞. Therefore, t′ < τj∗+1 and (39) gives

E
[
max
i∈[n]

(
1
[
τiη

1
i ≤ t′

])]
≤ p

n∑
i=1

⌊
t′

τi

⌋
= p

j∗∑
i=1

⌊
t′

τi

⌋
.

Using (40), we get t′

τi
=

minj∈[n] g(j)

8τi
≥ 1

8 for all i ≤ j∗. Since ⌊x⌋ ≤ 2x − 1
4 for all x ≥ 1

8 , we
obtain

E
[
max
i∈[n]

(
1
[
τiη

1
i ≤ t′

])]
≤ p

j∗∑
i=1

(
2t′

τi
− 1

4

)
= 2pt′

 j∗∑
i=1

1

τi

− pj∗

4
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= 2p× 1

8

 j∗∑
i=1

1

τi

−1(
1

p
+ j∗

)
×

 j∗∑
i=1

1

τi

− pj∗

4

=
p

4

(
1

p
+ j∗

)
− pj∗

4
=

1

4
.

Substituting the last inequality to (38) gives

E
[
exp

(
−smin

i∈[n]
τiη

1
i

)]
≤ exp (−st′) + 1

4
(1− exp (−st′)).

We now take s = 1/t′ to obtain

E
[
exp

(
−smin

i∈[n]
τiη

1
i

)]
≤ e−1 +

1

4
(1− e−1) ≤ e−

1
2 .

Substituting this inequality in (35) and (36) gives

P
(

inf
k∈St

1
[
prog(xk) < T

]
= 0

)
≤ P

(
T∑

k=1

min
i∈[n]

τiη
k
i ≤ t

)
≤ e

t
t′ −

T
2 .

Therefore,

P
(

inf
k∈St

1
[
prog(xk) < T

]
= 0

)
≤ ρ

for all

t ≤ 1

8
min
j∈[n]

( j∑
i=1

1

τi

)−1(
1

p
+ j

)(T

2
+ log ρ

)
and ρ > 0. Using the bound on the probability with ρ = 1

2 and (34), we finally conclude

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > 4εP

(
inf
k∈St

1
[
prog(xk) < T

]
= 1

)
≥ 2ε

for all

t ≤ 1

8
min
j∈[n]

( j∑
i=1

1

τi

)−1(
1

p
+ j

)(T

2
+ log

1

2

)

=
1

8
min
j∈[n]

( j∑
i=1

1

τi

)−1

(m+ j)

(1

2

⌊
δ0L+

4l1∆0
√
mε

⌋
+ log

1

2

)
.

It remains to use the conditions ε < c1Lδ
0 and δ0L+

ε > c2
√
m from the theorem to finish the

proof.

J.4 The second lower bound

Theorem 30. Let us consider Protocol 10. Without loss of generality, assume that 0 < τ1 ≤ · · · ≤ τn
and take any L+, δ

0, ε > 0, and m ∈ N such that ε < c1L+δ
0. Then, for any algorithm A ∈ Azr,

there exists a function f ∈ Fm
δ0,L+

and computation oracles (O1, . . . , On) ∈ Oτ1,...,τn(f) such that

E
[
infk∈St

∥∥∇f(xk)
∥∥2] > ε, where St :=

{
k ∈ N0 | tk ≤ t

}
and

t = c2 × min
j∈[n]

(
j∑

i=1

1

τi

)−1

(m+ j) .

The quantities c1 and c2 are universal constants. The sequences xk and tk are defined in Protocol 10.
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Proof. We use the same construction as in the proof of Theorem 2 of Li et al. [2021]. Let us consider

fi(x) := c ⟨vi, x⟩+
L+

2
∥x∥2 (41)

for all x ∈ RT , where c ∈ R and vi ∈ RT , i ∈ [n] are parameters that we define later. Then

1

m

m∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ L2
+ ∥x− y∥2

for all x, y ∈ Rd and

f(0)− inf
x∈RT

f(x) = − inf
x∈RT

[
c

〈
1

m

m∑
i=1

vi, x

〉
+

L+

2
∥x∥2

]
=

c2

2L+m2

∥∥∥∥∥
m∑
i=1

vi

∥∥∥∥∥
2

= δ0,

where we take

c :=

√
2L+m2δ0

∥
∑m

i=1 vi∥
2 .

Thus, we have f = 1
m

∑m
i=1 fi ∈ Fm

δ0,L+
. Now, let

v1 = (1, . . . , 1︸ ︷︷ ︸
T
m

, 0, . . . , 0)⊤ ∈ RT ,

v2 = (0, . . . , 0︸ ︷︷ ︸
T
m

, 1, . . . , 1︸ ︷︷ ︸
T
m

, 0, . . . , 0)⊤ ∈ RT ,

v3 = (0, . . . , 0︸ ︷︷ ︸
T
m

, 0, . . . , 0︸ ︷︷ ︸
T
m

, 1, . . . , 1︸ ︷︷ ︸
T
m

, 0, . . . , 0)⊤ ∈ RT

. . .

vn = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
T
m

)⊤ ∈ RT .

and choose any T ∈ {sm | s ∈ N} (one can always take T = m). Then

c =

√
2L+m2δ0

T
.

Let us fix some time t > 0 to be determined later and recall that the workers can calculate the
stochastic gradients ∇fi(x) = cvi + L+x in parallel. Suppose that up to time t, fewer than m

2
stochastic gradients have been computed. Then, since the algorithm is a zero-respecting algorithm, it
cannot have discovered more than m

2 ×
T
m = T

2 coordinates. Thus, at least T
2 coordinates are equal

to 0 and

∥∥∇f(xk)
∥∥2 =

∥∥∥∥∥ c

m

m∑
i=1

vi + L+x
k

∥∥∥∥∥
2

≥ c2

m2
× T

2
.

for all k ∈
{
k ∈ N0 | tk ≤ t

}
. Therefore, substituting our choice of c and using the assumptions

from the theorem, we get ∥∥∇f(xk)
∥∥2 ≥ L+δ

0 > 2ε. (42)

It remains to find the time t > 0. The workers work in parallel, so in t seconds they calculate at most
n∑

i=1

⌊
t

τi

⌋
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stochastic gradients. Now, let

t =
1

8
min
j∈[n]

(
j∑

i=1

1

τi

)−1

(m+ j) , (43)

and define g(j) :=
(∑j

i=1
1
τi

)−1

(m+ j) for all j ∈ [n]. Assume that j∗ is the largest index such
that minj∈[n] g(j) = g(j∗). Using Lemma 4, we have

n∑
i=1

⌊
t

τi

⌋
=

j∗∑
i=1

⌊
t

τi

⌋
.

Since t
τi
≥ 1

8 for all i ≤ j∗ and ⌊x⌋ ≤ 2x− 1
4 for all x ≥ 1

8 , we obtain

n∑
i=1

⌊
t

τi

⌋
≤

j∗∑
i=1

2t

τi
− j∗

4
=

1

4

 j∗∑
i=1

1

τi

−1

(m+ j∗)

j∗∑
i=1

1

τi
− j∗

4
=

m

4
.

Therefore, it is possible to calculate at most m
4 stochastic gradient in time (43) and we can finally

conclude that inequality (42) holds for any time that is less than or equal (43).
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K Useful Identities and Inequalities

Lemma 2 ([Szlendak et al., 2021]). It holds that L− ≤ L+, L− ≤ 1
m

∑m
i=1 Li and L2

+ − L2
− ≤

L2
± ≤ L2

+ ≤ 1
m

∑m
i=1 L

2
i .

Lemma 3. Consider a sequence q1, . . . , qn ∈ [0, 1]. Then

1−
n∑

m=1

qm ≤
n∏

m=1

(1− qm) .

Proof. We prove the result by induction. It is clearly true for n = 1: 1 −
∑1

m=1 qm =∏1
m=1 (1− qm) . Now, assume that that it holds for n− 1, meaning that

1−
n−1∑
m=1

qm ≤
n−1∏
m=1

(1− qm) .

Multiplying both sides of the inequality by 1− qn ∈ [0, 1] gives

n∏
m=1

(1− qm) ≥ (1− qn)

(
1−

n−1∑
m=1

qm

)
= 1−

n−1∑
m=1

qm − qn + qn

(
n−1∑
m=1

qm

)
≥ 1−

n∑
m=1

qm

since qm ∈ [0, 1] for all m ∈ [n].

Theorem 31. Let us consider the equilibrium time mapping from Definition 3. Then

1. t∗(S, [τi]
n
i=1) ≤ 2τn max

{
S
n , 1
}
.

2. t∗(S, [τi]
n
i=1) ≤ 2τ1 max {S, 1}

for all S ≥ 0, τi ∈ [0,∞] for all i ∈ [n], and τ1 ≤ · · · ≤ τn.

Remark 32. Assume that τ1 = · · · = τn−1 = τ and τn →∞, then

lim
τn→∞

t∗(S, [τi]
n
i=1) = t∗(S, [τi]

n−1
i=1 ) = τ

(
S

n− 1
+ 1

)
≤ 2τ max

{
S

n− 1
, 1

}
,

lim
τn→∞

2τn max

{
S

n
, 1

}
=∞,

and

lim
τn→∞

2τ1 max {S, 1} = 2τ max {S, 1} .

Thus, t∗(S, [τi]ni=1) can be arbitrarily smaller than 2τn max
{

S
n , 1
}

and 2τ1 max {S, 1} . This im-
plies that our new complexities (9) and (10) can be arbitrarily better than TSoviet PAGE and THero PAGE.

Lemma 4. Consider a sequence 0 < τ1 ≤ . . . ≤ τn and fix some S > 0. For all j ∈ [n], define

g(j) :=

(
j∑

i=1

1

τi

)−1

(S + j) .

1. Let j∗max be the largest index such that min
j∈[n]

g(j) = g(j∗max). For j∗max < n, we have

min
j∈[n]

g(j) < τ(j∗max+1).

2. Let j∗ be any index such that min
j∈[n]

g(j) = g(j∗). For j∗ < n, we have

min
j∈[n]

g(j) ≤ τ(j∗+1).
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3. Let j∗min be the smallest index such that min
j∈[n]

g(j) = g(j∗min). Then

τj∗min
< min

j∈[n]
g(j).

4. Let j∗ be any index such that min
j∈[n]

g(j) = g(j∗). Then

τj∗ ≤ min
j∈[n]

g(j).

Proof. We first prove the first inequality. Suppose that j∗max < n. Then g(j∗max) < g(j∗max + 1),
meaning that j∗max∑

i=1

1

τi

−1

(S + j∗max) <

j∗max+1∑
i=1

1

τi

−1

(S + j∗max + 1) .

This implies the following series of inequalities:j∗max+1∑
i=1

1

τi

 (S + j∗max) <

j∗max∑
i=1

1

τi

 (S + j∗max + 1)

⇔ 1

τ(j∗max+1)
(S + j∗max) <

j∗max∑
i=1

1

τi

⇔ τ(j∗max+1) >

j∗max∑
i=1

1

τi

−1

(S + j∗max) = g(j∗max) = min
j∈[n]

g(j).

The proof of the second inequality is the same, but with non-strict inequalities. To prove the third
inequality, first suppose that j∗min = 1. Then g(j∗min) = τj∗min

(S + 1) > τj∗min
as needed. On the

other hand, j∗min > 1 implies

g(j∗min) < g(j∗min − 1)

⇔

j∗min∑
i=1

1

τi

−1

(S + j∗min) <

j∗min−1∑
i=1

1

τi

−1

(S + j∗min − 1)

⇔

j∗min−1∑
i=1

1

τi

 (S + j∗min) <

j∗min∑
i=1

1

τi

 (S + j∗min − 1)

⇔
j∗min∑
i=1

1

τi
<

1

τj∗min

(S + j∗min)

⇔ τj∗min
<

j∗min∑
i=1

1

τi

−1

(S + j∗min) = min
j∈[n]

g(j).

The proof of the fourth inequality is the same, but with non-strict inequalities.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Sections 4 and 5, Table 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Sections 3, 4.1, and 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Sections 1.1, 4, and the appendix
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section A
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: In the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide two plots for each algorithm to ensure the soundness of our
experiments. We also calculate the variance of accuracies in Table 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the code of ethics and we can confidently state
that our paper is fully compliant with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper considers a mathematical topic.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Section A

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: In the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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