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Abstract

The concept of probabilistic values, such as Beta Shapley values and weighted
Banzhaf values, has gained recent attention in applications like feature attribution
and data valuation. However, exact computation of these values is often expo-
nentially expensive, necessitating approximation techniques. Prior research has
shown that the choice of probabilistic values significantly impacts downstream
performance, with no universally superior option. Consequently, one may have
to approximate multiple candidates and select the best-performing one. Although
there have been many efforts to develop efficient estimators, none are intended to
approximate all probabilistic values both simultaneously and efficiently. In this
work, we embark on the first exploration of achieving this goal. Adhering to the
principle of maximum sample reuse and avoiding amplifying factors, we propose a
one-sample-fits-all framework parameterized by a sampling vector to approximate
intermediate terms that can be converted to any probabilistic value. Leveraging
the concept of (ϵ, δ)-approximation, we theoretically identify a key formula that
effectively determines the convergence rate of our framework. By optimizing
the sampling vector using this formula, we obtain i) a one-for-all estimator that
achieves the currently best time complexity for all probabilistic values on average,
and ii) a faster generic estimator with the sampling vector optimally tuned for
each probabilistic value. Particularly, our one-for-all estimator achieves the fastest
convergence rate on Beta Shapley values, including the well-known Shapley value,
both theoretically and empirically. Finally, we establish a connection between prob-
abilistic values and the least square regression used in (regularized) datamodels,
showing that our one-for-all estimator can solve a family of datamodels simultane-
ously. Our code is available at https://github.com/watml/one-for-all.

1 Introduction

The problem of attribution is central in many aspects of machine learning (Rozemberczki et al. 2022).
Examples include data valuation (Ghorbani and Zou 2019), feature attribution (Lundberg and Lee
2017), multi-agent reinforcement learning (Wang et al. 2022), data attribution (Ilyas et al. 2022), and
the list goes on. One popular methodology is to leverage the concept of probabilistic values, which is
uniquely characterized by the axioms of linearity, null, monotonicity and symmetry in cooperative
game theory (Weber 1988). Recent studies demonstrate that downstream performance employing
this concept relies on the choice of probabilistic values, and the best one varies (Kwon and Zou
2022b; Li and Yu 2023). Therefore, practitioners may resort to approximating multiple candidates of
probabilistic values and then select the best-performing one (Kwon and Zou 2022b).
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In general, probabilistic values can only be approximated as they require exponentially many utility
evaluations to compute exactly. Thus far, there has been a line of works devoted to designing efficient
estimators for the Shapley value (e.g., Covert and Lee 2021; Jia et al. 2019; Kolpaczki et al. 2024;
Zhang et al. 2023), while Li and Yu (2023) and Wang and Jia (2023b) proposed efficient estimators
specific to weighted Banzhaf values. Despite recent progress in research on generic estimators
for approximating any probabilistic value (Li and Yu 2024; Lin et al. 2022), none of them can
approximate all probabilistic values simultaneously and efficiently. Overall, there is a strong demand
for efficient one-for-all estimators, the possibilities of which will be explored in this work.

To sum up, we propose a One-sample-Fits-All (OFA) framework parameterized by a sampling vector
to approximate intermediate terms that can be converted to any probabilistic value. Particularly, our
framework i) adheres to the principle of maximum sample reuse and ii) does not include amplifying
factors in the conversion. These two properties are considered indispensable as we observe that i) the
empirical fastest estimators designed for the Shapley value or weighted Banzhaf values all follow
she principle of maximum sample reuse and ii) amplifying factors could deteriorate the convergence
rates of estimators. Then, using the concept of (ϵ, δ)-approximation, i.e., P (∥ϕ̂ − ϕ∥2 ≥ ϵ) ≤ δ

where ϕ refers to some probabilistic value and ϕ̂ is its estimate, we theoretically identify a formula
from our framework that effectively determines the corresponding convergence rate, through which
the sampling vector can be optimized. Specifically, we deduce i) an efficient one-for-all estimator
(OFA-A) while optimizing the formula for all probabilistic values on Average and ii) a faster generic
estimator (OFA-S) while the optimization is done for each Specific probabilistic value. The results of
our convergence analysis are summarized as follows:

(i) Our OFA-A achieves the convergence rate O(n log n) for all probabilistic values on average.
Notably, O(n log n) is the currently-known best time complexity for some probabilistic values.

(ii) For Beta Shapley values parameterized by α, β ≥ 1 (Kwon and Zou 2022a), our OFA-A
estimator requires O(n log n) utility evaluations to achieve an (ϵ, δ)-approximation simulta-
neously. Note that α = β = 1 corresponds to the commonly-used Shapley value (Shapley
1953). For the Shapley value, the previous best convergence rate is O(n(log n)2),1 achieved
by the group testing estimator (Wang and Jia 2023a, Theorem 6); however, we note that in our
experiments the previous best-performing estimator is the complement estimator (Zhang et al.
2023), whose convergence rate is unknown. For Beta Shapley values with (α = 1, β > 1) or
(α > 1, β = 1), the previous best estimator requires O(n(log n)3) utility evaluations instead
(Li and Yu 2024, Proposition 4 and Remark 3).

(iii) For weighted Banzhaf values parameterized by 0 < w < 1, the time complexity of our OFA-A
is O(n

3
2 log n), not rivaling the previous best convergence rate O(n log n) achieved by the

estimator exclusive to weighted Banzhaf values (Li and Yu 2023, Proposition 2). Nevertheless,
our OFA-S achieves the convergence rate of O(n log n) for both Beta Shapley values (with
α, β ≥ 1) and weighted Banzhaf values.

In our experiments, the empirical convergence rates align well with the theoretical ones derived using
the concept of (ϵ, δ)-approximation. Additionally, we establish a connection between probabilistic
values and the least square regressions employed in datamodels (Ilyas et al. 2022), demonstrating that
our OFA-A estimator can solve a family of datamodels simultaneously if it is the distances between
feature coordinates that matter. This condition is met while using datamodels to detect similar training
examples to a given target. Furthermore, we also identify a group of regularized datamodels that our
OFA-A estimator can solve simultaneously without this condition.

2 Preliminaries

Let n be the number of players and [n] := {1, 2, . . . , n} be the set of all players. In data valuation
(feature attribution, respectively), n refers to the number of training data (features, respectively). For
simplicity, we write S\i and S∪ i instead of S\{i} and S∪{i}, respectively. Meanwhile, (lowercase)
s denotes the cardinality of the set (uppercase) S. Then, each probabilistic value can be written as

ϕi = ϕi(U) =
∑

S⊆[n]\i

ps+1[U(S ∪ i)− U(S)]

1Using another definition, Musco and Witter (2024) claimed to have an estimator with convergence rate
O(n logn) for the Shapley value after this work was accepted.

2



where U : 2[n] → R is a utility function and p ∈ Rn is a non-negative vector such that∑n
s=1

(
n−1
s−1

)
ps = 1. Take data valuation as an example, U(S) may measure the performance

of models trained on S ⊆ [n], with which ϕi(U) can be interpreted as the contribution of the i-th
data point to the performance of models trained on [n].

If there exists a (Borel) probability measure µ on the closed interval [0, 1] such that ps =
∫ 1

0
ws−1(1−

w)n−sdµ(w), then the resulting probabilistic value is referred to as a semi-value (Dubey et al. 1981).
If µ represents a Dirac delta distribution δa, the corresponding probabilistic value is referred to as
the weighted Banzhaf value parameterized by a, or WB-a. For Beta Shapley values, denoted by
Beta(α, β), µ(A) =

∫
A
wβ−1(1− w)α−1dw. In practice, the considered range of α or β is [1,∞)

(Kwon and Zou 2022a,b). Particularly, Beta(1, 1), whose µ is the uniform distribution (over [0, 1]),
corresponds to the Shapley value.

We will use the standard notion of (ϵ, δ)-approximation to analyze a (randomized) estimate ϕ̂ of
some probabilistic value ϕ.

Definition 1. We say a (randomized) estimate ϕ̂ achieves an (ϵ, δ)-approximation of ϕ if P (∥ϕ̂−
ϕ∥2 ≥ ϵ) ≤ δ.

For instance, Wang and Jia (2023b, Theorem 4.9) proved that their proposed estimator requires
O( n

ϵ2 log
n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation for WB-0.5, provided that

∥U∥∞ ≤ 1. When ϵ and δ are considered fixed constants, we then simply say the estimator
converges at O(n log n) rate.

3 Motivations

One-For-All Estimators In this paper, an estimator is referred to as one-for-all if it is capable of
sampling subsets Once to approximate All probabilistic values.

Though existing estimators are not designed to approximate all probabilistic values simultaneously,
some of them can be easily modified for this end by using the weighted sampling technique. Take the
sampling lift (SL) estimator (Moehle et al. 2022) as an example, its approximation is based on

ϕi = ES⊆[n]\i[U(S ∪ i)− U(S)] where P (S) = ps+1.

If we fix the probability of sampling S to be the one, denoted by q ∈ Rn, for the Shapley value, there
is

ϕi = EShap
S⊆[n]\i

[
ps+1

qs+1
(U(S ∪ i)− U(S))

]
, (1)

which is the weighted sampling lift (WSL) estimator employed by Kwon and Zou (2022a). Therefore,
we can store the accumulated results {U(S ∪ i)− U(S)} separately for each subset size of S so that
they can be reweighted to be any probabilistic value.

The Effect of Amplifying Factors However, the scalars {ps+1

qs+1
} potentially introduce a non-

negligible factor into the theoretical convergence rate. To demonstrate, we take the WSL estimator
as an example. In this case, ϕ̂i =

1
T

∑T
t=1 Xt where {Xt}Tt=1 are i.i.d. random variable such that

P (Xt =
ps+1

qs+1
(U(S ∪ i) − U(S))) = qs+1 and thus E[Xt] = ϕi. Assume that ∥U∥∞ ≤ 1, by the

Hoeffding’s inequality, P (|ϕ̂i − ϕi| ≥ ϵ) ≤ 2 exp
(
− Tϵ2

8C2

)
where C = max1≤k≤n

pk

qk
. By solving

2 exp
(
− Tϵ2

8C2

)
≤ δ, we eventually obtain T ≥ 8C2

ϵ2 log 2
δ and therefore the convergence rate of ϕ̂i

is O(C
2

ϵ2 log 2
δ ). Consequently, if C →∞ as n→∞, this theoretical convergence rate deteriorates

asymptotically. For the Banzhaf value, pk = 1
2n−1 ; since qk = (k−1)!(n−k)!

n! , if k = n+1
2 , there

is pk

qk
∈ Θ(n

1
2 ) by the Stirling’s approximation d! ≃

√
d
(
d
e

)d
. Therefore, C2 introduces a factor

of Θ(n) into the theoretical convergence rate, though the derived formula may not be tight. If we
switch the roles of p and q, the introduced factor C2 is as worst as Θ(22n). To generalize this idea, a
formula is said to contain an amplifying factor if it involves γ · U(S) such that γ →∞ as n→∞.
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Regarding this, we notice that Kwon and Zou (2022b) resort to a one-for-all estimator based on

ϕi =

n∑
s=1

ms · ER⊆[n]\i
r=s−1

[U(R ∪ i)− U(R)] (2)

where ms =
(
n−1
s−1

)
ps and each expectation is taken over the corresponding uniform distribution. We

refer to this estimator as weightedSHAP in this work. As can be verified, Eq. (2) does not contain
any amplifying factors, i.e., each ms does not grow as n→∞.

The Principle of Maximum Sample Reuse However, estimators designed according to Eqs. (1)
and (2) are not expected to be efficient as it does not obey the principle of maximum sample reuse.
Precisely, an estimator adheres to the principle of maximum sample reuse if each sampled subset is
used to update all estimates {ϕ̂i}i∈[n]. As analyzed by Zhang et al. (2023, Section 4.2), estimators
based on sampled marginal contributions {U(S ∪ i)− U(S)} are impossible to meet the principle of
maximum sample reuse. By contrast, we observe that the SHAP-IQ estimator proposed by Fumagalli
et al. (2024) can also be adopted for this end, which employs the formula

ϕi = pn(U([n])− U(∅)) + 2HE∅⊊S⊊[n][((n− s)ms1i∈S − sms+11i ̸∈S)(U(S)− U(∅))] (3)

where ms =
(
n−1
s−1

)
ps, H =

∑n−1
j=1

1
j , and P (S) ∝

(
n−2
s−1

)−1
. In particular, SHAP-IQ is equal to

the unbiased KernelSHAP estimator (Covert and Lee 2021) for the Shapley value; see (Fumagalli
et al. 2024, Theorem 4.5). Although SHAP-IQ follows the principle of maximum sample reuse, it
is apparent that Eq. (3) contains an amplifying factor H ∈ Θ(log n). Meanwhile, there is another
line of research in quest of efficient estimators for the Shapley value by reducing the variance via the
stratified sampling technique (Burgess and Chapman 2021; Castro et al. 2017; Maleki et al. 2013; Wu
et al. 2023). However, such a technique also does not verify the principle of maximum sample reuse.

Empirical Evidence For convenience, we formally define the two aforementioned desirable prop-
erties for estimators to possess as P1: The underlying formula contains no amplifying factors and
P2: Each sampled subset is used to update all the estimates {ϕ̂i}ni=1. In Figure 1, we provide some
experiment results while setting n = 24 to support our aforementioned informal analysis. Precisely,
we implement six one-for-all estimators by combining the weighted sampling technique and the
previous estimators. Some of our observations are:

(i) On WB-0.5, weightedSHAP, which satisfies P1 but not P2, is empirically not comparable to
MSR-Banzhaf that possesses both P1 and P2. This observation supports the necessity of P2.

(ii) On WB-0.5, SHAP-IQ sticks to P2 but not P1. It is clear that SHAP-IQ also performs
significantly worse than MSR-Banzhaf, which highlights the role of P1.

(iii) The sudden rises of relative differences stem from the existence of significantly large amplifying
factors. For WSL-Banzhaf on Beta(1, 1), the scalar for U(i)− U(∅) is as large as 2n

n !

In Table 1, we summarize the previous estimators in terms of P1 and P2, and defer the technical
details to Appendix D. Notably, the complement estimator is empirically the best for the Shapley
value, while it is MSR for weighted Banzhaf values; both of them follow P1 and P2.

Table 1: A scope of “all” indicates that the estimator can approximate any probabilistic value, whereas
“weighted Banzhaf” suggests that the estimator can only approximate weighted Banzhaf values. P1
refers to the property that the underlying formula does not contain any amplifying factors for all
probabilistic values in its scope, while P2 means whether each sampled subset is used to update
all the estimates {ϕ̂i}ni=1. For AME, the range of γ in γ · U(S) could be (0,∞), independent of n.
Originally, AME only applies to a subfamily of semi-values, but we extend it for all semi-values in
Appendix D.

WSL
(Kwon and Zou 2022a)

SL
(Moehle et al. 2022)

GELS
(Li and Yu 2024)

ARM
(Kolpaczki et al. 2024)

MSR
(Wang and Jia 2023b)

SHAP-IQ
(Fumagalli et al. 2024)

weightedSHAP
(Kwon and Zou 2022b)

scope all Shapley all all weighted Banzhaf all all
P1 ✗ ✓ ✗ ✓ ✓ ✗ ✓
P2 ✗ ✗ ✗ ✗ ✓ ✓ ✗

permutation
(Castro et al. 2009)

kernelSHAP
(Lundberg and Lee 2017)

unbiased kernelSHAP
(Covert and Lee 2021)

group testing
(Wang and Jia 2023a)

complement
(Zhang et al. 2023)

AME
(Lin et al. 2022)

OFA (ours)

scope Shapley Shapley Shapley Shapley Shapley semi-values all
P1 ✓ ✗ ✗ ✗ ✓ ⃝✗ ✓
P2 ✗ ✓ ✓ ✗ ✓ ✓ ✓
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Figure 1: Comparison of ten one-for-all estimators. Beta(α, β) denotes Beta Shapley values, whereas
WB-a refers to weighted Banzhaf values. Our OFA-S estimator is equal to the OFA-A estimator for
the Shapley value. The suffix “Shapley” indicates that there is no reweighting for the Shapley value,
while “Banzhaf” stands for the Banzhaf value. The permutation estimator is originally proposed for
the Shapley value. The utility function U is the cross-entropy loss of LeNet trained on 24 data from
FMNIST. All the results are averaged using 30 random seeds.

4 Main Results

The framework we propose is built upon

ϕi =

n∑
s=1

ms ·

 E
i∈R
r=s

[U(R)]− E
i ̸∈R

r=s−1

[U(R)]

 (4)

where ms =
(
n−1
s−1

)
ps and each expectation is taken over the corresponding uniform distribution. For

simplicity, we write ϕ+
i,s = Ei∈R,r=s[U(R)] and ϕ−

i,s−1 = Ei ̸∈R,r=s−1[U(R)]. Clearly, there is no
amplifying factors in Eq. (4). Meanwhile, the structure of Eq. (4) suits the principle of maximum
sample reuse. Since {ϕ+

i,k}k=1,n−1,n and {ϕ−
i,k}k=0,1,n−1 can be calculated exactly using 2n + 2

utility evaluations of U , our focus is to efficiently approximate {ϕ+
i,s, ϕ

−
i,s}2≤s≤n−2. The proposed

framework is presented in Algorithm 1; qj is the probability of drawing a subset of [n] with size j+1.
To facilitate the choice of the sampling vector q ∈ Rn−3 appearing in Algorithm 1, our first step is to
theoretically ascertain a key formula that effectively determines the convergence rate of Algorithm 1.

Theorem 1. Assume i) ∥U∥∞ ≤ u and ii) 0 < ϵ ≤
√
2D(m,q)γ(q)2u2. For ϕ̂ in Algorithm 1, it

requires 4nu2D(m,q)
ϵ2 log 8n2

δ evaluations of U to achieve P (∥ϕ̂− ϕ∥2 ≥ ϵ) ≤ δ where

D(m,q) =

n−2∑
s=2

n

qs−1

(
m2

s

s
+

m2
s+1

n− s

)
and γ(q) = min

2≤s≤n−2
min

(
qs−1 · s

n
,
qs−1 · (n− s)

n

)
.

We remark that D(m,q) is jointly convex in m and q. The second assumption in Theorem 1
can be removed if we pre-allocate the number of sampled subsets for each ϕ+

i,s or ϕ−
i,s and draw

subsets in a predetermined order; see the proof in Appendix A for details. Precisely, let T+
i,s be

the number of subsets for estimating ϕ+
i,s, and define T−

i,s similarly; then the pre-allocated numbers

are T+
i,s ≈

s·qs−1

n T and T−
i,s ≈

(n−s)qs−1

n T , which are the expected values of T+
i,s and T+

i,s while
using Algorithm 1; T refers to the total number of sampled subsets. By Theorem 1, the convergence
rate of Algorithm 1 is O(D(m,q) · n log n), and thus achieving the currently best convergence rate
O(n log n) requires D(m,q) ∈ O(1).
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Algorithm 1: The One-Sample-Fits-All (OFA) Framework

Input: A utility function U : 2[n] → R, a positive probability vector q ∈ Rn−3, and a total
number T of samples

Output: Estimates to ϕ+
i,k+ and ϕ−

i,k− with i, k+ ∈ [n] and 0 ≤ k− ≤ n− 1

1 ϕ̂+
i,k+ ← ϕ+

i,k+ and ϕ̂−
i,k− ← ϕ−

i,k− for i ∈ [n], k+ ∈ {1, n− 1, n} and k− ∈ {0, 1, n− 1}
2 ϕ̂+

i,k ← 0, T+
i,k ← 0, ϕ̂−

i,k ← 0 and T−
i,k ← 0 with i ∈ [n] and 2 ≤ k ≤ n− 2

3 for t = 1, 2, . . . , T do
4 Sample st from {2, 3, . . . , n− 2} according to q
5 Sample St uniformly from {R ⊆ [n] | r = st}
6 v ← U(St)
7 for i = 1, 2, . . . , n do
8 if i ∈ St then

9 ϕ̂+
i,st
← T+

i,st

T+
i,st

+1
ϕ̂+
i,st

+ 1
T+
i,st

+1
v and T+

i,st
← T+

i,st
+ 1

10 else

11 ϕ̂−
i,st
← T−

i,st

T−
i,st

+1
ϕ̂−
i,st

+ 1
T−
i,st

+1
v and T−

i,st
← T−

i,st
+ 1

12 Aggregation Phase: ϕ̂i =
∑n

s=1 ms(ϕ̂
+
i,s − ϕ̂−

i,s−1)

4.1 A One-For-All Estimator

To obtain our one-for-all estimator, our goal is to find a qOFA-A such that D(m,qOFA-A) ∈ O(1) for
as many m as possible. To this end, we define qOFA-A to be the uniquely optimal solution to

argmin
q∈Rn−3

D(q) =

∫
m∈∆

D(m,q)dν(m)

where ∆ = {m ∈ Rn | ms ≥ 0 and
∑n

s=1 ms = 1} and ν is the uniform distribution on ∆. In our
work, our OFA-A estimator refers to the use of qOFA-A in Algorithm 1.

Proposition 1. qOFA-A
s−1 ∝ 1√

(s)(n−s)
and D(qOFA-A) ∈ O(1). In other words, our OFA-A estimator

achieves the convergence rate of O(n log n) simultaneously for all probabilistic values on average.

Our next proposition provides a condition on µ for semi-values such that our OFA-A estimator
achieves the convergence rate of O(n log n). In other words, we explicitly identify a subfamily of
semi-values for which our OFA-A estimator achieves the currently best time complexity simultane-
ously.
Proposition 2. Our OFA-A estimator achieves the convergence rate of O(n log n) simultaneously
for all semi-values whose probability density functions exist and are bounded. Particularly, Beta
Shapley values with α, β ≥ 1 all satisfy this condition.

To our knowledge, the previous theoretically-fastest estimator for the Shapley value is demonstrated
by Wang and Jia (2023a, Theorem 6) as O(n(log n)2). By contrast, our OFA-A estimator achieves the
convergence rate of O(n log n). Meanwhile, it also surpasses the previous best time complexity for
Beta Shapley values with (α = 1, β > 1) or (α > 1, β = 1), which is O(n(log n)3) (Li and Yu 2024,
Proposition 4 and Remark 3). Remarkably, our OFA-A estimator enjoys this fastest convergence rate
simultaneously for a broad subfamily of probabilistic values .
Proposition 3. If ps = as−1(1− a)n−s with 0 < a < 1, which corresponds to the weighted Banzhaf
value parameterized by w, then D(m,qOFA-A) ∈ O(n

1
2 ). In other words, the OFA estimator achieves

the convergence rate of O(n
3
2 log n) simultaneously for all WB-a with 0 < a < 1.

The previous best convergence rate for weighted Banzhaf values is O(n log n) (Li and Yu 2023,
Proposition 2), ours is slower by a factor of n

1
2 . Nevertheless, we will demonstrate that our generic

estimator, which is expected to be faster than our OFA-A estimator, achieves the best convergence
rate for all weighted Banzhaf values.
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4.2 A Faster Generic Estimator

Our faster generic estimator (OFA-S) is obtained via optimizing q for each Specific m. Precisely, for
each m, we have

qOFA-S
s−1 ∝

√
m2

s

s
+

m2
s+1

n− s
where qOFA-S = argmin

q∈Rn−3

D(m,q) s.t.
n−3∑
j=1

qj = 1, (5)

which can be obtained using the Cauchy-Schwarz inequality. For the Shapley value, qOFA-S = qOFA-A.
Our next proposition specifies a sufficient condition for semi-values such that D(m,qOFA-S) ∈ O(1).

Proposition 4. For semi-values, D(m,qOFA-S) ∈ O(1) if i) µ has a bounded probability density
function or ii)

∫
(0,1)

1
w(1−w)dµ(w) <∞. Particularly, this condition covers all weighted Banzhaf

values and Beta Shapley values with α, β ≥ 1.

All in all, we demonstrate that by sticking to the principle of maximum sample reuse and avoiding
any amplifying factors, we are able to establish a generic estimator that achieves the currently best
convergence rate for any previously-studied semi-value.

4.3 A Connection between Probabilistic Values and Datamodels

A datamodel, proposed by Ilyas et al. (2022), is to learn an easy-to-interpret surrogate to represent a
model output distribution related to a specific test example. In this circumstance, the set of players [n]
is identified with all the available training data. Precisely, the feature coordinates θ∗ ∈ Rn imputed
to every data point in [n] is defined to be the uniquely optimal solution (together with a bias b∗ ∈ R)
to the optimization problem

argmin
θ∈Rn,b∈R

∑
S⊆[n]

ηs+1

(
U(S)− b−

∑
i∈S

θi

)2

(6)

where η ∈ Rn+1 is non-negative and
∑n

s=0 ηs+1 > 0. The weight vector η can be scaled such
that the objective in the problem (6) can be treated as an expectation, and thus the objective can be
approximated through sampling a sufficient number of subsets, upon which an estimate of (θ∗, b∗)
can be obtained. We show below that θ∗ to a family of such least square regressions can be cast as
some probabilistic values if it is the pairwise differences θ∗j − θ∗k (for every j, k ∈ [n]) that matter.

Theorem 2. Let (b∗,θ∗) be the uniquely optimal solution to the problem (6) where ηs = ps−1 + ps
for 2 ≤ s ≤ n. Then, there is

θ∗j − θ∗k = ϕj − ϕk for every j, k ∈ [n].

In other words, θ∗ = ϕ + c for some constant c1; 1 ∈ Rn is the all-one vector. When using
datamodels to detect similar training examples to a given target, what matters is the relative order
of components in θ∗. Meanwhile, Ilyas et al. (2022) showed that the corresponding performance
depends on the choice of the weight vector η. Therefore, our OFA-A estimator serves as a sufficient
proxy for a range of {θ∗} and would facilitate the fine-tuning of η when using datamodels to detect
similar training examples.

When θ∗ Can Be Recovered From ϕ Interestingly, for specific choices of p ∈ Rn and η ∈ Rn+1,
it holds that θ = ϕ. Theorem 2 can be seen as an extension to the previous result stated in the below.

Proposition 5 (Marichal and Mathonet 2011, Proposition 4). Suppose 0 < a < 1 is given, if
pj = aj−1(1− a)n−j for 1 ≤ j ≤ n and ηk = ak−2(1− a)n−k for 1 ≤ k ≤ n+ 1, which leads to
ηs = ps−1 + ps for 2 ≤ s ≤ n, there is

θ∗ = ϕ.

It is worth pointing out that ϕ in Proposition 5 is exactly the weighted Banzhaf value parameterized
by a, i.e., WB-a. Even more, under the same setting, we can even solve a group of datamodels with
ℓ1 or ℓ2 regularization simultaneously.
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Corollary 1. Under the setting of Proposition 5, let θ∗ be the uniquely optimal solution to

argmin
θ∈Rn,b∈R

∑
S⊆[n]

ηs+1

(
U(S)− b−

∑
i∈S

θi

)2
+

λ

a(1− a)
R(θ) (7)

where λ > 0, the following are true about the relation between θ∗ and ϕ:

1. IfR(θ) = ∥θ∥22, then

θ∗ =

(
1 +

λ

a(1− a)

)−1

ϕ.

2. IfR(θ) = ∥θ∥1, then

θ∗ = sign(ϕ) ·max

(
0, |ϕ| − λ

2a(1− a)

)
.

All operations are element-wise.

This corollary is immediate by combining Proposition 5, and Theorem 2.2 by Saunshi et al. (2022).
We comment that replacing xi by 2xi − 1, i.e., mapping 0 and 1 into −1 and 1, respectively, in
ϕ{i}(x) used by Saunshi et al. (2022) yields v{i}(x) used by Marichal and Mathonet (2011). A
remarkable implication of the combination of Corollary 1 and our proposed OFA-A estimator is that
we can solve a group of regularized datamodels covered by the problem (7) simultaneously! For
example, the coefficient λ can be finetuned by running Algorithm 1 just once.

5 Experiments

In this section, we are to verify i) the simultaneous efficiency of our OFA-A estimator and ii) the faster
convergence rate of our OFA-S estimator compared with the considered baselines and our OFA-A
estimator. Particularly, if D(m,q) is effective in determining the convergence rate of Algorithm 1,
our OFA-S estimator is expected to be faster than our OFA-A estimator. All the experiments are
conducted using CPUs.

We use two types of utility functions for this end: i) following the experiment settings of (Li
and Yu 2024), U(S) is set to be the cross-entropy of LeNets trained on S on the classification
datasets FMNIST, MNIST and iris; to obtain the exact values, the number of training data n is set
to be 24; ii) U is defined to be the sum of unanimity (SOU) games, i.e., U(S) =

∑d
j=1 αj1Sj⊆S

where each ∅ ⊊ Sj ⊊ [n] is randomly sampled, for which each semi-value can be computed by
ϕi =

∑d
j=1 αj

∫
[0,1]

wsj−1dµ(w); specifically, we set n ∈ {64, 128, 256} with d = n2, which
implies that the implemented SOU games require n2 utility evaluations to compute semi-values
exactly. The random seed inside each utility function is fixed as 2024, and thus each U is deterministic.

For the simplicity of presenting our empirical results, we use the area under the convergence curve
(AUCC) to assess the convergence quality of estimators, and thus the smaller the better. For n = 24,
the value of each player is approximated using 20, 000 utility evaluations, and we compute the
AUCCs as 1

100

∑100
j=1

∥ϕ̂(200j)−ϕ∥2

∥ϕ∥2
where ϕ̂(200j) refers to the estimate using 200j utility evaluations

for each player. For n ∈ {64, 128, 256}, the value of each player is approximated using 2, 000 utility

evaluations, and the corresponding AUCCs are calculated as 1
100

∑100
j=1

∥ϕ̂(20j)−ϕ∥2

∥ϕ∥2
. All the AUCCs

are reported with standard deviation using 30 different random seeds from {0, 1, 2, . . . , 29}.

Verification of Our OFA-A Estimator For our OFA-A estimator where we substitute qOFA-A,
which is defined in Proposition 1, into Algorithm 1, we choose the baselines according to Figure 1.
The selected baselines include WSL-Shapley (Kwon and Zou 2022a), SHAP-IQ (Fumagalli et al.
2024), weightedSHAP (Kwon and Zou 2022b) and permutation-Shapley (Castro et al. 2009). The
corresponding results are reported in Figure 2. Overall, our OFA-A estimator performs the best on
all the employed 18 probabilistic values, which verify the simultaneous efficiency of our OFA-A
estimator.
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Figure 2: Comparison of one-for-all estimators using six utility functions. All the AUCCs are reported
with standard deviation using 30 random seeds. Smaller AUCC indicates faster convergence rate.

Verification of Our OFA-S Estimator Next, we verify the faster convergence rate of our OFA-
S estimator, using qOFA-S as defined in Eq. (5). The baselines we employ include: (unbiased)
kernelSHAP (Covert and Lee 2021; Lundberg and Lee 2017), GELS and GELS-Shapley (Li and
Yu 2024), ARM (Kolpaczki et al. 2024; Li and Yu 2024), complement (Zhang et al. 2023), group
testing (Jia et al. 2019; Wang and Jia 2023a), AME (Lin et al. 2022), MSR (Wang and Jia 2023b) and
sampling lift (Moehle et al. 2022). Note that not all the baselines are designed for all the probabilistic
values we employ. For example, the complement estimator only works for Beta(1, 1), i.e., the Shapley
value. According to (Li and Yu 2024, Remark 9), we implement the paired sampling technique for
(unbiased) kernelSHAP and group testing. The corresponding results are presented in Figure 3.

First, our OFA-S estimator is indeed faster than our OFA-A estimator, which aligns exactly with our
theory; in other words, it implies that our proposed D(m,p) indeed determines the convergence
rate of our Algorithm 1. Second, our OFA-S estimator always performs the best except on the SOU
games which require only n2 utility evaluation to get the exact values; by contrast, the utility function
defined using the classification datasets require 2n utility evaluations instead. Third, our proposed
estimator is consistently the fastest on the commonly-used Beta(1, 1), i.e., the Shapley value; note
that qOFA-A = qOFA-S for the Shapley value; therefore, our proposed estimator achieves the currently
best convergence rate both empirically and theoretically.
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Figure 3: Comparison of twelve estimators using six utility functions. The dashed lines correspond
to the improved AME estimator developed in Appendix D. All the AUCCs are reported with standard
deviation using 30 random seeds. Smaller AUCC indicates faster convergence rate.

6 Conclusion

In this work, we propose a framework, termed OFA, that i) adheres to the principle of maximum
sample reuse and ii) contains no amplifying factors for the goal of optimizing all probabilistic values
simultaneously and efficiently. Particularly, our OFA framework is parameterized by a sampling
vector q ∈ Rn−3. To gain insights, we theoretically develop a key formula D(m,q) concerning
this framework that effectively determines the corresponding convergence rate. By optimizing q
in D(m,q) for all probabilistic values on average, we obtain our one-for-all estimator that can
theoretically approximate all probabilistic values simultaneously with the currently best convergence
rate O(n log n) on average. Meanwhile, we propose a faster generic estimator by optimizing q
for each specific probabilistic value, and we demonstrate that our generic estimate enjoys the best
convergence rate for all previously-studied probabilistic values. All of our theoretical findings are
verified in our experiments. Finally, we establish a connection between probabilistic values and the
least square regressions used in datamodels, showing that our OFA-A estimator is capable of solving
a family of (regularized) datamodels simultaneously.
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A Proof of Theorem 1

Theorem 1. Assume i) ∥U∥∞ ≤ u and ii) 0 < ϵ ≤
√
2D(m,q)γ(q)2u2. For ϕ̂ in Algorithm 1, it

requires 4nu2D(m,q)
ϵ2 log 8n2

δ evaluations of U to achieve P (∥ϕ̂− ϕ∥2 ≥ ϵ) ≤ δ where

D(m,q) =

n−2∑
s=2

n

qs−1

(
m2

s

s
+

m2
s+1

n− s

)
and γ(q) = min

2≤s≤n−2
min

(
qs−1 · s

n
,
qs−1 · (n− s)

n

)
.

Proof. Following Algorithm 1, let {St}Tt=1 be T independent random subsets. Define

T+
i,s =

T∑
t=1

Ji ∈ St, |St| = sK and T−
i,s =

T∑
t=1

Ji ̸∈ St, |St| = sK

where s = 2, 3, . . . , n− 2. Then, we have

ϕ̂+
i,s =

1

T+
i,s

T∑
i=1

Ji ∈ St, |St| = sK · U(St) and ϕ̂−
i,s =

1

T−
i,s

T∑
i=1

Ji ̸∈ St, |St| = sK · U(St).

Define r+i,s =
T+
i,s

T and r−i,s =
T−
i,s

T . In particular, both Ji ∈ St, |St| = sK and Ji ̸∈ St, |St| = sK are
Bernoulli random variables with

E[r+i,s] = qs−1

(
n− 1

s− 1

)(
n

s

)−1

=
qs−1 · s

n
and E[r−i,s] = qs−1

(
n− 1

s

)(
n

s

)−1

=
qs−1 · (n− s)

n
.

Additionally, R and τ are defined to be vectors in R2n−6 such that R2k−1 = r+i,k+1, R2k = r−i,k+1,

τ2k−1 = qk·(k+1)
n and τ2k = qk·(n−k−1)

n for k ∈ [n − 3]. Note that R is a random vector. By
Hoeffding’s inequality,

P (|Rj − τj | ≥ ω) ≤ 2 exp
(
−2Tω2

)
where ω > 0, and thus

P (∥R− τ∥∞ ≥ ω) ≤ P (
⋃

j∈[2n−6]

|Rj − τj | ≥ ω) ≤ (4n− 12) exp
(
−2Tω2

)
.

Denote the event {
∑n−2

s=2 [ms(ϕ̂
+
i,s − ϕ+

i,s) + ms+1(ϕ
−
i,s − ϕ̂−

i,s)] ≥ ϵ} by Ei where ϵ > 0. Let C
be the set that contains all possible configurations C ∈ {0, 1}(2n−6)×T such that C1T

T = R and
1⊤
TC = 1⊤

2n−6, i.e., Cj,k = 0 indicates that the k-th subset is sampled from {R ⊆ [n] | r =
(j + 3)/2 and i ∈ R} if j is odd and {R ⊆ [n] | r = (j + 2)/2 and i ̸∈ R} otherwise. Then,

P (Ei) =
∑
C∈C

P (Ei ∩C) =
∑
C∈C

P (Ei | C) · P (C).

Observe that C can be divided into two separate groups C<ω and C≥ω such that∑
C<ω∈C<ω

P (C<ω) = P (∥R− τ∥∞ < ω) and
∑

C≥ω∈C≥ω

P (C≥ω) = P (∥R− τ∥∞ ≥ ω).

Therefore,

P (Ei) =
∑

C<ω∈C<ω

P (Ei | C<ω) · P (C<ω) +
∑

C≥ω∈C≥ω

P (Ei | C≥ω) · P (C≥ω)

≤
∑

C<ω∈C<ω

P (Ei | C<ω) · P (C<ω) + (4n− 12) exp
(
−2Tω2

)
.

(8)

For simplicity, we write PC<ω
(Ei) instead of P (Ei | C<ω). Additionally, we assume ω < γ(q)

2

so that neither T+
i,s nor T−

i,s is zero when conditioned on any C<ω. By the Chernoff bound, for any

13



λ > 0, there is

PC<ω
(Ei) ≤ EC<ω

[
exp

(
λ

n−2∑
s=2

(
ms(ϕ̂

+
i,s − ϕ+

i,s) +ms+1(ϕ
−
i,s − ϕ̂−

i,s)
))]

· e−λϵ

= e−λϵ
n−2∏
s=2

EC<ω

[
exp

(
λms(ϕ̂

+
i,s − ϕ+

i,s)
)] n−2∏

s=2

EC<ω

[
exp

(
λms+1(ϕ

−
i,s − ϕ̂−

i,s)
)]

where the equality is due to the independence that stems from the independence of random subsets
and that the configuration is fixed. Moreover,

EC<ω

[
exp

(
λms(ϕ̂

+
i,s − ϕ+

i,s)
)]

= EC<ω

exp
λms

1

T+
i,s

T+
i,s∑

j=1

(U(S+
i,s,j)− ϕ+

i,s)


=

T+
i,s∏

j=1

EC<ω

[
exp

(
λms

T+
i,s

(U(S+
i,s,j)− ϕ+

i,s)

)]
where {S+

i,s,j}1≤j≤T+
i,s

is obtained by ordering {St | |St| = s and i ∈ St}. In a similar fashion, we
have

EC<ω

[
exp

(
λms+1(ϕ

−
i,s − ϕ̂−

i,s)
)]

=

T−
i,s∏

j=1

EC<ω

[
exp

(
λms+1

T−
i,s

(ϕ−
i,s − U(S−

i,s,j))

)]
By Hoeffding’s lemma,

EC<ω

[
exp

(
λms

T+
i,s

(U(S+
i,s,j)− ϕ+

i,s)

)]
≤ exp

(
λ2m2

su
2

2T+
i,s · T

+
i,s

)
,

EC<ω

[
exp

(
λms+1

T−
i,s

(ϕ−
i,s − U(S−

i,s,j))

)]
≤ exp

(
λ2m2

s+1u
2

2T−
i,s · T

−
i,s

)
,

which leads to
T+
i,s∏

j=1

EC<ω

[
exp

(
λms

T+
i,s

(U(S+
i,s,j)− ϕ+

i,s)

)]
≤ exp

(
λ2m2

su
2

2T+
i,s

)
,

T−
i,s∏

j=1

EC<ω

[
exp

(
λms+1

T−
i,s

(ϕ−
i,s − U(S−

i,s,j))

)]
≤ exp

(
λ2m2

s+1u
2

2T−
i,s

)
.

Therefore,

PC<ω (Ei) ≤ exp

(
λ2u2

2T
D̂ − λϵ

)
where D̂ =

∑n−2
s=2

(
T

T+
i,s

m2
s +

T
T−
i,s

m2
s+1

)
. Next, we aim to show that |D̂ −D(m,q)| ≤ D(m,q).

Observe that

|D̂ −D(m,q)| ≤
n−2∑
s=2

(∣∣∣∣ 1

r2s−3
− 1

τ2s−3

∣∣∣∣m2
s −

∣∣∣∣ 1

r2s−2
− 1

τ2s−2

∣∣∣∣m2
s+1

)
,

and since |rj − τj | < ω, ∣∣∣∣ 1rj − 1

τj

∣∣∣∣ ≤ ω

(τj − ω)τj
=

1

τj − ω
− 1

τj
.

Since γ(q) ≤ τj and ω ≤ γ(q)
2 ,

1

τj − ω
=

τj
τj − ω

· 1
τj

=
1

1− ω
τj

· 1
τj
≤ 2

τj
.
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As a result, we have |D̂ −D(m,q)| ≤ D(m,q), and thus

PC<ω
(Ei) ≤ exp

(
λ2u2

T
D(m,q)− λϵ

)
. (9)

Combining Eqs. (8) and (9) yields

P (Ei) ≤ exp

(
λ2u2

T
D(m,q)− λϵ

)
+ (4n− 12) exp(−2Tω2).

Choosing λ > 0 that minimizes the upper bound yields

P (Ei) ≤ exp

(
− Tϵ2

4u2D(m,q)

)
+ (4n− 12) exp(−2Tω2).

Solving the equation − Tϵ2

4u2D(m,q) = −2Tω
2 yields ω =

√
ϵ2

8D(m,q)u2 , which gives

−2Tω2 = − Tϵ2

4D(m,q)u2
.

Particularly, to meet the assumption ω ≤ γ(q)
2 , we have to have ϵ ≤

√
2D(m,q)γ(q)2u2. To

conclude, provided that ϵ ≤
√
2D(m,q)γ(q)2u2, we have

P (

n−2∑
s=2

(
ms(ϕ̂

+
i,s − ϕ+

i,s) +ms+1(ϕ
−
i,s − ϕ̂−

i,s)
)
≥ ϵ) ≤ 4n exp(− Tϵ2

4D(m,q)u2
).

Similarly, there is

P (

n−2∑
s=2

(
ms(ϕ

+
i,s − ϕ̂+

i,s) +ms+1(ϕ̂
−
i,s − ϕ−

i,s)
)
≥ ϵ) ≤ 4n exp(− Tϵ2

4D(m,q)u2
),

and thus

P (|ϕ̂i − ϕi| ≥ ϵ) ≤ 8n exp(− Tϵ2

4D(m,q)u2
).

Eventually, we have

P (∥ϕ̂− ϕ∥2 ≥ ϵ) ≤ P (
⋃
i∈[n]

|ϕ̂i − ϕi| ≥
ϵ√
n
) ≤ 8n2 exp(− Tϵ2

4nD(m,q)u2
).

Solving δ ≥ 8n2 exp(− Tϵ2

4nD(m,q)u2 ) yields T ≥ 4nD(m,q)u2

ϵ2 log 8n2

δ . Note the assumption ϵ ≤√
2D(m,q)γ(q)2u2 can be removed if the configuration is fixed with T+

i,s ≈
s·qs−1

n T and T−
i,s ≈

(n−s)qs−1

n T .

B Proofs of Propositions

Proposition 1. qOFA-A
s−1 ∝ 1√

(s)(n−s)
and D(qOFA-A) ∈ O(1). In other words, our OFA-A estimator

achieves the convergence rate of O(n log n) simultaneously for all probabilistic values on average.

Proof. Let Λ = {x ∈ Rn−1 | 0 ≤
∑n−1

j=1 xj ≤ Ln} where Ln = n
1

2(n−1) , and a smooth homeomor-
phism f : Λ→ ∆ is defined by letting

f(x) =
1

Ln
(x1, x2, · · · , xn−1, Ln −

n−1∑
j=1

xj)
⊤.
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In other words, both f and f−1 are C∞. Since the volume of ∆ is n
1
2

(n−1)! , there is

(n− 1)!

n
1
2

∫
x∈Λ

D(f(x),q)
√

det (Df(x)⊤Df(x))dx =

∫
m∈∆

D(m,q)dν(m).

Note that
√

det (Df(x)⊤Df(x)) = 1 for every x ∈ Λ. With Λ = {y ∈ Rn−1 | 0 ≤
∑n−1

j=1 yj ≤
1}, we have

(n− 1)!

n
1
2

∫
x∈Λ

D(f(x),q)dx = (n− 1)!

∫
y∈Λ

D(f(Lny),q)dy.

For simplicity, assume that n = 4, notice that∫
y∈Λ

y2n−1dy =

∫ 1

0

dy1

∫ 1−y1

0

dy2

∫ 1−y1−y2

0

y23dy3 =
1

3 · 4 · 5
=

1∏n−1
k=1(2 + k)

.

Therefore, ∫
y∈Λ

D(f(Lny),q)dy =

n−2∑
s=2

n

qs−1

∫
y∈Λ

(
y2s
s

+
y2s+1

n− s

)
dy

=
1∏n−1

k=1(2 + k)

n−2∑
s=2

n

qs−1

(
1

s
+

1

n− s

)
,

which leads to

D(q) =
(n− 1)!∏n−1
k=1(2 + k)

n−2∑
s=2

n

qs−1

(
1

s
+

1

n− s

)
.

Since D(q) is convex in q, qOFA-A can be directly obtained using the KKT conditions, which is

qOFA-A
s−1 =

√
n
s + n

n−s∑n−2
s=2

√
n
s + n

n−s

.

Therefore, we have

D(qOFA-A) =
(n− 1)!∏n−1
k=1(2 + k)

(
n−2∑
s=2

√
n

s
+

n

n− s

)2

.

Since limn→∞
(n−1)!(n−1)2∏n−1

k=1 (2+k)
= 2Γ(3), when n is sufficiently large, there is

D(qOFA-A) ≈ 1

n2

(
n−2∑
s=2

√
n

s
+

n

n− s

)2

=

(
1

n

n−2∑
s=2

√
1

s
n (1−

s
n )

)2

<

(∫ 1

0

1

x(1− x)
dx

)2

= π2.

Proposition 2. Our OFA-A estimator achieves the convergence rate of O(n log n) simultaneously
for all semi-values whose probability density functions exist and are bounded. Particularly, Beta
Shapley values with α, β ≥ 1 all satisfy this condition.

Proof. Let ϕ be a semi-value such that ps =
∫ 1

0
ws−1(1 − w)n−sdµ(w) =

∫ 1

0
ws−1(1 −

w)n−spµ(w)dw such that pµ(w) ≤ B for every w ∈ [0, 1]. Particularly, we have

ms =

(
n− 1

s− 1

)
ps ≤ B ·

(
n− 1

s− 1

)∫ 1

0

ws−1(1− w)n−sdw = B ·
(
n− 1

s− 1

)
(s− 1)!(n− s)!

n!
=

B

n
.

Therefore,

D(m,qOFA-A) ≤ B2

n

n−2∑
s=2

1

qOFA-A
s−1

(
1

s
+

1

n− s

)
= B2

(
n−2∑
s=2

1√
s(n− s)

)2

< B2π2.
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Proposition 3. If ps = as−1(1− a)n−s with 0 < a < 1, which corresponds to the weighted Banzhaf
value parameterized by w, then D(m,qOFA-A) ∈ O(n

1
2 ). In other words, the OFA estimator achieves

the convergence rate of O(n
3
2 log n) simultaneously for all WB-a with 0 < a < 1.

Proof. With qOFA-A
s−1 ∝ 1√

s(n−s)
, we have

D(m,qOFA-A) = C · n ·
n−2∑
s=2

(√
n− s

s
m2

s +

√
s

n− s
m2

s+1

)
where C =

n−2∑
s=2

1√
s(n− s)

< π

Then,

D(m,qOFA-A)

= C

n−2∑
s=2

n

(√
n− s

s

(
n− 1

s− 1

)2 (
as−1(1− a)n−s

)2
+

√
s

n− s

(
n− 1

s

)2 (
as(1− a)n−s−1

)2)
.

Specifically, √
n− s

s

(
n− 1

s− 1

)2

=

√
s

n− s

(n− 1)!2

(s− 1)!s!(n− s− 1)!(n− s)!

and
√

s

n− s

(
n− 1

s

)2

=

√
n− s

s

(n− 1)!2

(s− 1)!s!(n− s− 1)!(n− s)!
,

and thus

n ·

(√
n− s

s

(
n− 1

s− 1

)2 (
as−1(1− a)n−s

)2
+

√
s

n− s

(
n− 1

s

)2 (
as(1− a)n−s−1

)2)

= n ·
(
as−1(1− a)n−s−1

)2 (n− 1)!2

(s− 1)!s!(n− s− 1)!(n− s)!

(√
s

n− s
(1− a)2 +

√
n− s

s
a2

)
Since √

s

n− s
(1− a)2 +

√
n− s

s
a2 ≤

√
s

n− s
+

√
n− s

s
=

n√
s(n− s)

,

there is

n ·

(√
n− s

s

(
n− 1

s− 1

)2 (
as−1(1− a)n−s

)2
+

√
s

n− s

(
n− 1

s

)2 (
as(1− a)n−s−1

)2)

≤
√
s(n− s)

((
n
s

)
as(1− a)n−s

)2
a2(1− a)2

≤ n ·
((

n
s

)
as(1− a)n−s

)2
a2(1− a)2

.

Using the identity
∑m

j=0

(
m
j

)2
(x+ y)2j(x− y)2(m−j) =

∑m
j=0

(
2j
j

)(
2(m−j)
m−j

)
x2jy2(m−j), there is

n−2∑
s=2

((
n

s

)
as(1− a)n−s

)2

=

n∑
s=0

(
2s

s

)(
2(n− s)

n− s

)
1

22s

(
2a− 1

2

)2(n−s)

=

(
2n

n

)(
2a− 1

2

)2n

+

n−1∑
s=1

(
2s

s

)(
2(n− s)

n− s

)
1

22s

(
2a− 1

2

)2(n−s)

+

(
2n

n

)
1

22n
.

For every k ≥ 1,
(
2k
k

)
≈ 22k√

k
using the Stirling’s approximation, and thus(

2n

n

)(
2a− 1

2

)2n

≈ zn√
n
,

(
2n

n

)
1

22n
≈ 1√

n
n−1∑
s=1

(
2s

s

)(
2(n− s)

n− s

)
1

22s

(
2a− 1

2

)2(n−s)

≈
n−1∑
s=1

1√
s(n− s)

zn−s ≤
∑n−1

j=1 zj
√
n− 1

,
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where z = (2a − 1)2 < 1. Therefore, we obtain
∑n−2

s=2

((
n
s

)
as(1− a)n−s

)2 ≤ O(n− 1
2 ), which

eventually leads to

D(m,qOFA-A) ≤ n

a2(1− a)2

n−2∑
s=2

((
n

s

)
as(1− a)n−s

)2

≤ O(n
1
2 ).

Proposition 4. For semi-values, D(m,qOFA-S) ∈ O(1) if i) µ has a bounded probability density
function or ii)

∫
(0,1)

1
w(1−w)dµ(w) <∞. Particularly, this condition covers all weighted Banzhaf

values and Beta Shapley values with α, β ≥ 1.

Proof. If µ({0}) ̸= 0 (µ({1}) ̸= 0, respectively), its induced marginal contributions all reside in ϕ+
i,1

and ϕ−
i,0 (ϕ+

i,n and ϕ−
i,n−1, respectively), which is computed exactly using Algorithm 1. Therefore,

W.L.O.G., we assume that µ((0, 1)) = 1.

Suffice it to show that if
∫ 1

0
1

w(1−w)dµ(w) <∞, there is

n−2∑
s=2

√
n

s
m2

s +
n

n− s
m2

s+1 ∈ O(1).

Specifically,

D(m,qOFA-S) =

n−2∑
s=2

√
n

s
m2

s +
n

n− s
m2

s+1 ≤
n−2∑
s=2

(√
n

s
ms +

√
n

n− s
ms+1

)

=

∫ 1

0

n−2∑
s=2

(√
s

n

(
n

s

)
ws−1(1− w)n−s +

√
n− s

n

(
n

s

)
ws(1− w)n−s−1

)
dµ(w).

Since
√

s
n (1− w) +

√
n−s
n w ≤ 2, we have

∫ 1

0

n−2∑
s=2

(√
s

n

(
n

s

)
ws−1(1− w)n−s +

√
n− s

n

(
n

s

)
ws(1− w)n−s−1

)
dµ(w)

≤
∫ 1

0

n−2∑
s=2

2
(
n
s

)
ws(1− w)n−s

w(1− w)
dµ(w) ≤ 2

∫ 1

0

1

w(1− w)
dµ(w) ∈ O(1).

C Proof of Theorem 2

To prove this theorem, we first state useful definitions and lemmas.

Definition 2 (Semi Inner Product). Let V is a real linear space. A semi inner product ⟨·, ·⟩ on
V satisfies, for every x, y, z ∈ V and every α ∈ R, i) ⟨x, y⟩ = ⟨y, x⟩, ii) ⟨αx, y⟩ = α⟨x, y⟩, iii)
⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩, and iv) ⟨x, x⟩ ≥ 0. In addition, we write ∥x∥ =

√
⟨x, x⟩ for every

x ∈ V .

Lemma 1. Let a semi inner product on a linear space V be given, and A ⊆ V is some affine space.
For the following optimization problem

argmin
x∈A

∥x− p∥2

where p ∈ V , x∗ is optimal if and only if

⟨x∗ − p, y − x∗⟩ = 0, ∀y ∈ A. (10)
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Proof. Suppose x∗ verifies Eq. (10), for every y ∈ A,

∥y − p∥2 = ∥x∗ − p∥2 + ∥y − x∗∥2 + 2⟨x∗ − p, y − x∗⟩ ≥ ∥x∗ − p∥2.

Next, suppose x∗ is optimal, and for the sake of contradiction, assume that there is some y ∈ A such
that ⟨x∗ − p, y − x∗⟩ ≠ 0. Write z = y − x∗, for t ∈ R

∥x∗ + tz − p∥2 = ∥x∗ − p∥2 + t2∥z∥2 + 2t⟨x∗ − p, z⟩.

Since ⟨x∗ − p, z⟩ ≠ 0, there exists some to ∈ R such that t2∥z∥2 + 2t⟨x∗ − p, z⟩ < 0, and thus
∥x∗ + toz − p∥2 < ∥x∗ − p∥2, a contradiction.

Definition 3 (Projection Induced by a Semi Inner Product). Given a semi inner product on a linear
space V , the set of all optimal solutions to the problem

argmin
x∈A

∥x− p∥2,

where A ⊆ V is an affine space and p ∈ V , is denoted by ProjA({p}). To account for the
possibility that there are multiple optimal solutions, we extend the definition by letting ProjA(S) =⋃

p∈S ProjA({p}).
Lemma 2. Let V be a linear space with a semi inner product. Suppose there are two affine spaces
B ⊆ A, for every p ∈ V , there is

ProjB(ProjA({p})) ⊆ ProjB({p}).

Proof. We rephrase Lemma 1 to ease the proof. For each affine space A ⊆ V , define LA = A− q
for some q ∈ A. Note that the resulting LA is independent of the choice of q ∈ A and it is a subspace
in V . Therefore, Eq. (10) is equivalent to

⟨x∗ − p, z⟩ = 0, ∀z ∈ LA.

Suppose x ∈ ProjB(ProjA({p})), by Lemma 1, there exists y ∈ ProjA({p}) such that

⟨y − p, a⟩ = 0, ∀a ∈ LA and ⟨x− y, b− x⟩ = 0, ∀b ∈ B.

Therefore,
⟨x− p, b− x⟩ = ⟨x− y, b− x⟩+ ⟨y − p, b− x⟩ = 0 + 0.

⟨y − p, b− x⟩ = 0 is due to that b− x ∈ LB ⊆ LA.

Lemma 3 (Ruiz et al. 1998, Theorem 12). Let v∗ be the uniquely optimal solution to

argmin
v∈Rn

∑
S⊆[n]

ηs+1

(
U(S)− U(∅)−

∑
i∈S

vi

)2

s.t.
∑
i∈[n]

vi = U([n])− U(∅) (11)

where ηs = ps−1 + ps for 2 ≤ s ≤ n. Then, there is

v∗i − v∗j = ϕi − ϕj for every i, j ∈ [n].

Recall that the problem (6) is

argmin
θ∈Rn,b∈R

∑
S⊆[n]

ηs+1

(
U(S)− b−

∑
i∈S

θi

)2

,

and our goal is to prove that

θ∗i − θ∗j = v∗i − v∗j for every i, j ∈ [n],

which together with Lemma 3 is sufficient to complete our proof.
Theorem 2. Let (b∗,θ∗) be the uniquely optimal solution to the problem (6) where ηs = ps−1 + ps
for 2 ≤ s ≤ n. Then, there is

θ∗j − θ∗k = ϕj − ϕk for every j, k ∈ [n].
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Proof. The first part of our proof was inspired by (Hammer and Holzman 1992, Lemma 2.9). Let
G = {U : 2[n] → R}, AG = {U ∈ G | U(S) = a0 +

∑
i∈S ai for every S ⊆ [n]} and

AU = {g ∈ AG | U([n]) = g([n]) and U(∅) = g(∅)}. Note that G is a linear space and the other
two are affine spaces with AU ⊆ AG. For clarity, each game in AG is written as [a0,a] where
a ∈ Rn.

A semi inner product on G can be defined by letting ⟨g1, g2⟩ =
∑

S⊆[n] ηs+1 · g1(S)g2(S) for every
g1, g2 ∈ G. Then, [b∗,θ∗] is the projection of U onto AG, whereas [U(∅),v∗] is the projection of U
onto AU where v∗ is the uniquely optimal solution to the problem (11).

By Lemma 2, there is ProjAU
(ProjAG({U})) ⊆ ProjAU

({U}). Moreover, the uniqueness in
problem (11) implies that ProjAU

({U}) = {[U(∅),v∗]}, and thus

ProjAU
(ProjAG({U})) = ProjAU

({U}) = {[U(∅),v∗]}.

Since [b∗,θ∗] ∈ ProjAG({U}), the equality ProjAU
({[b∗,θ∗]}) = {[U(∅),v∗]}means that [U∅,v

∗]
is the uniquely optimal solution to the problem

argmin
[U(∅),v]∈AU

∑
S⊆[n]

ηs+1 ([U(∅),v](S)− [b∗,θ∗](S))
2
. (12)

Pick i, j ∈ [n] such that i ̸= j, and define an additive game ei ∈ AG by letting ei(S) = 1 if i ∈ S
and 0 otherwise, ej is defined similarly. Consider the problem

argmin
t∈R

∑
S⊆[n]

ηs+1

(
[U(∅),v∗](S)− [b∗,θ∗](S) + t(ei(S)− ej(S))

)2
. (13)

Note that [U(∅),v∗] + t(ei − ej) ∈ AU for every t ∈ R, and the uniqueness to the problem (12)
suggests that t∗ = 0 is the uniquely optimal solution to the problem (13). Removing all constant
terms in the problem (13) yields an equivalent problem

argmin
t∈R

∑
S⊆[n] : i∈S,j ̸∈S

ηs+1 ([U(∅),v∗](S)− [b∗,θ∗](S) + t)
2

+
∑

S⊆[n] : i ̸∈S,j∈S

ηs+1 ([U(∅),v∗](S)− [b∗,θ∗](S)− t)
2
.

Write g = [U(∅),v∗]− [b∗,θ∗], since this problem is convex, letting the derivative equal 0 leads to

t∗ =

∑
S⊆[n] : i ̸∈S,j∈S ηs+1 · g(S)−

∑
S⊆[n] : i∈S,j ̸∈S ηs+1 · g(S)

2
∑

S : i∈S,j ̸∈S ηs+1
= 0.

Write g = [g0,g] where g0 = U(∅)− b∗ and g = v∗ − θ∗, there is∑
S⊆[n] : i∈S,j ̸∈S

ηs+1 · g(S) = α(g0 + gi) + β
∑

1≤k≤n : k ̸=i,j

gk

where α =

n−1∑
s=1

(
n− 2

s− 1

)
ηs+1 and β =

n−1∑
s=2

(
n− 3

s− 2

)
ηs+1.

Similarly, we have
∑

S⊆[n] : i ̸∈S,j∈S ηs+1 · g(S) = α(g0 + gj) + β
∑

1≤k≤n : k ̸=i,j gk, and therefore

α(gj − gi) = 0.

Since α > 0, we eventually get gi = gj . In other words, v∗i − θ∗i = v∗j − θ∗j . Because i and j are
chosen arbitrarily, our proof is completed.

To be self-contained, we also prove that the problem (6) has only one optimal solution provided that
ηs = ps−1 + ps for 2 ≤ s ≤ n. W.L.O.G., assume

∑
S⊆[n] ηs+1 = 1. By letting the derivative of the
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problem (6) equal 0, we have Ax = b

A =


1 κ κ · · · κ
κ κ τ · · · τ

κ τ κ
. . .

...
...

...
. . . . . . τ

κ τ · · · τ κ

 ,

κ =

n∑
s=1

(
n− 1

s− 1

)
ηs+1, τ =

n∑
s=2

(
n− 2

s− 2

)
ηs+1, b1 =

∑
S⊆[n]

ηs+1U(S),

bj+1 =
∑

S⊆[n] : j∈S

ηs+1U(S) for every j ∈ [n], x1 = b and xj+1 = θj for every j ∈ [n].

Left multiplying A with some row operation matrix R gives

RA =


1 κ κ · · · κ
0 κ− κ2 τ − κ2 · · · τ − κ2

0 τ − κ2 κ− κ2 . . .
...

...
...

. . . . . . . . .
0 τ − κ2 · · · τ − κ2 κ− κ2

 .

It is sufficient to prove that the bottom-right n× n submatrix of RA is invertible. Suffice it to show
κ− τ ̸= 0 and κ+ (n− 1)τ − nκ2 ̸= 0. Using

(
n
s

)
=
(
n−1
s

)
+
(
n−1
s−1

)
, we have

κ− τ =

n−1∑
s=1

(
n− 2

s− 1

)
ηs+1 > 0.

Using n
(
n−1
s−1

)
= s
(
n
s

)
, we have

κ+ (n− 1)τ =

n∑
s=1

s

(
n− 1

s− 1

)
ηs+1 =

1

n

n∑
s=1

s2
(
n

s

)
ηs+1,

n · κ2 = n ·

(
n∑

s=1

(
n− 1

s− 1

)
ηs+1

)2

=
1

n

(
n∑

s=1

s

(
n

s

)
ηs+1

)2

.

Let γ = 1− η1 and ζs = ηs+1/γ for every s ∈ [n], there is

n · κ2 =
γ2

n

(
n∑

s=1

s

(
n

s

)
ζs

)2

=
γ2

n
E[s]2 ≤ γ2

n
E[s2] = γ(κ+ (n− 1)τ) ≤ κ+ (n− 1)τ.

If η1 > 0, the last inequality is strict as γ < 1. Otherwise, the first inequality is strict as Var[s] =
E[s2]− E[s]2 > 0.

D Overview of Estimators

Recall that each probabilistic value is defined to be, for every i ∈ [n],

ϕi = ϕi(U) =
∑

S⊆[n]\i

ps+1(U(S ∪ i)− U(S)) (14)

where p ∈ Rn is a non-negative vector with
∑n

s=1

(
n−1
s−1

)
ps = 1. If ps =

∫ 1

0
ws−1(1−w)n−sdµ(w)

for some probability measure µ on the closed interval [0, 1], the induced ϕ is referred to as a
semi-value.
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The Sampling Lift Estimator (Moehle et al. 2022) The sampling lift estimator is based on

ϕi = ES⊆[n]\i[U(S ∪ i)− U(S)] where P (S) = ps+1.

The sampling procedure is: i) sample a subset size s ∈ [n] with P (s) =
(
n−1
s−1

)
ps, and then

ii) sample a subset S uniformly from {R ⊆ [n]\i | r = s − 1}. For semi-values such that
ps =

∫ 1

0
ws−1(1− w)n−sdµ(w) where µ is a probability measure on the closed interval [0, 1], there

is an alternative: i) sample a w ∈ [0, 1] according to µ, and then sample a subset S ⊆ [n]\i by
incorporating each player in [n]\i with probability w. With a sequence of sampled subsets {Sj}Tj=1,
the i-th estimate is ϕ̂i =

1
T

∑T
j=1(U(Sj ∪ i)− U(Sj)).

The Weighted Sampling Lift Estimator (Kwon and Zou 2022a) The formula it is built upon is

ϕi = EShap
S⊆[n]\i

[
ps+1

qs+1
(U(S ∪ i)− U(S))

]
where P (S) = qs+1 =

s!(n− 1− s)!

n!
.

Note that setting p = q in Eq. (14) leads to the Shapley value. The sampling procedure is: i) sample
a w uniformly from [0, 1], and then ii) sample a subset S ⊆ [n]\i by incorporating each player in
[n]\i with probability w. Then, the i-th estimate is ϕ̂i =

1
T

∑T
j=1

psj+1

qsj+1
(U(Sj ∪ i)− U(Sj)).

The KernelSHAP Estimator (Lundberg and Lee 2017) This estimator is specific to the Shapley
value. It employs the fact that the Shapley value ϕShap

i is the uniquely optimal solution to

argmin
ϕ∈Rn

∑
∅⊊S⊊[n]

(
n− 2

s− 1

)−1
(
U(S)− U(∅)−

∑
i∈S

ϕi

)2

s.t.
∑
i∈[n]

ϕi = U([n])− U(∅). (15)

Note that the weights can be scaled so that the objective is an expectation. A sequence of subsets
{Sj}Tj=1 where ∅ ⊊ Sj ⊊ [n] is sampled according to P (S) ∝

(
n−2
s−1

)−1
. Then, we have an

approximate problem as

argmin
ϕ∈Rn

1

T

T∑
j=1

U(Sj)− U(∅)−
∑
i∈Sj

ϕi

2

s.t.
∑
i∈[n]

ϕi = U([n])− U(∅),

the uniquely optimal solution of which is treated as the estimates, i.e.,

ϕ̂Shap = Â−1

(
b̂− 1n

1⊤
n Â

−1b̂− U([n]) + U(∅)
1⊤
n Â

−11n

)

where Â =
1

T

T∑
j=1

1Sj
1⊤
Sj

and b̂ =
1

T

T∑
j=1

(U(Sj)− U(∅)) · 1Sj
.

Specifically, 1Sj
∈ {0, 1}n such that its i-th entry is 1 if and only if i ∈ Sj .

The Unbiased KernelSHAP Estimator (Covert and Lee 2021) The uniquely optimal solution
ϕShap to the problem (15) is

ϕShap = A−1

(
b− 1n

1⊤
nA

−1b− U([n]) + U(∅)
1⊤
nA

−11n

)
where A = E[1S1

⊤
S ] and b = E[(U(S)− U(∅)) · 1n].

This estimator employs the fact that Aij = 1
2 if i = j and 1

n(n−1)

∑n−1
s=2

s−1
n−s∑n−1

s=1
1

s(n−s)

otherwise. In other

words, the estimates of this estimator is

ϕ̂Shap = A−1

(
b̂− 1n

1⊤
nA

−1b̂− U([n]) + U(∅)
1⊤
nA

−11n

)
where b̂ =

1

T

T∑
j=1

(U(Sj)− U(∅)) · 1Sj
.

(16)
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Particularly {Sj}Tj=1 where ∅ ⊊ Sj ⊊ [n] are sampled using P (S) ∝
(
n−2
s−1

)−1
.

Recently, Fumagalli et al. (2024) proved that Eq. (16) can be simplified as

ϕ̂Shap
i =

U([n])− U(∅)
n

+
2
∑n−1

s=1
1
s

T

T∑
j=1

U(Sj)
(
1i∈Sj −

sj
n
.
)

The ARM Estimator (Kolpaczki et al. 2024) This estimator is designed according to

ϕi = ES∼P+|i∈S [U(S)]− ES∼P−|i ̸∈S [U(S)]

where P+(S) ∝ ps for every ∅ ⊊ S ⊆ [n] and P−(S) ∝ ps+1 for every S ⊊ [n] (Li and Yu
2024, Proposition 8). A sequence of subsets {Sj}Tj=1 are sampled using P+ and P− alternatively,

i.e., {S2k−1}
T
2

k=1 are sampled independently according to P+, whereas {S2k}
T
2

k=1 are sampled
independently using P−. Then, the i-th estimate is

ϕ̂i =
1

T+
i

T
2∑

k=1

U(S2k−1)1i∈S2k−1
− 1

T−
i

T
2∑

k=1

U(S2k)1i ̸∈S2k

where T+
i =

∑T
2

k=1 1i∈S2k−1
and T−

i =
∑T

2

k=1 1i ̸∈S2k
.

The AME Estimator (Lin et al. 2022) This estimator is restricted to a sub-family of semi-values
that satisfy

∫ 1

0
1

w(1−w)dµ(w) < ∞. For such a semi-value ϕ, it can be cast as a uniquely optimal
solution to

argmin
v∈Rn

E[(Y −X⊤v)2]

where X ∈ Rn and Y are random variables. The sampling procedure is: i) sample a w ∈ (0, 1) using
µ, ii) sample a subset S by incorporating each player with probability w, and then iii) Y = U(S) and
X = X(S) such that Xi =

1
w·C if i ∈ S and − 1

(1−w)C otherwise where C =
∫ 1

0
1

w(1−w)dµ(w).
With a sequence of subsets {(wj , Sj)}Tj=1, the uniquely optimal solution to the approximate problem

argmin
v∈Rn

1

T

T∑
j=1

(
U(Sj)−X(Sj)

⊤v
)2

is taken as the induced estimates, which is ϕ̂ = (A⊤A)−1A⊤b where the j-th row of A is X(Sj)
⊤

and bj = U(Sj).

One Way to Improve the AME Estimator The limitation of the AME estimator is that it only
applies to semi-values that satisfy

∫ 1

0
1

w(1−w)dµ(w) <∞. Meanwhile, another potential drawback is
its need to compute the inverse of A⊤A, though it can be circumvented by solving the approximate
problem using gradients. In this work, we make a small improvement to the AME estimator by
extending its applicability to all semi-values, removing (A⊤A)−1 in the approximate formula and
providing a more direct analysis of its convergence rate in terms of (ϵ, δ)-approximation.

Our improvement begins with the observation that E[XX⊤] = I, suggesting that
(
1
T A

⊤A
)−1 → I

by the law of large numbers and thus (A⊤A)−1 is redundant. Its removal leads to a simplified
formula:

ϕ̂i =
1

T

T∑
j=1

(
Ji ∈ SjK

wj
U(Sj)−

Ji ̸∈ SjK
1− wj

U(Sj)

)
.

We comment that the following proposition is complementary to (Lin et al. 2022, Proposition 3.3)
that claims a similar result.
Proposition 6. Assume that i) ∥U∥∞ ≤ u and ii) µ([A,B]) = 1 for some 0 < A < B < 1, the
improved AME estimator requires 2nu2C2

ϵ2 log 2n
δ utility evaluations of U to achieve P (∥ϕ̂− ϕ∥2 ≥

ϵ) ≤ δ where C = 1
min(A,1−B) .
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Proof. Notice that ϕ̂i =
1
T

∑T
j=1 Zj where {Zj}Tj=1 are i.i.d. random variables with E[Zj ] = ϕi.

By the Hoeffding’s inequality, there is

P (|ϕ̂i − ϕi| ≥ ϵ) ≤ 2 exp

(
− Tϵ2

2u2C2

)
where C = 1

min(A,1−B) . Then,

P (∥ϕ̂− ϕ∥2 ≥ ϵ) ≤ P (
⋃

1≤i≤n

|ϕ̂i − ϕi| ≥
ϵ√
n
) ≤ 2n exp

(
− Tϵ2

2nu2C2

)
.

Solving 2n exp
(
− Tϵ2

2nu2C2

)
≤ δ leads to T ≥ 2nu2C2

ϵ2 log 2n
δ .

Remark 1. Notice that the improved AME estimator requires that µ({0, 1}) = 0. Nevertheless,
semi-values are additively decomposable on µ and the part related to µ({0, 1}) can be computed
exactly in linear time. Therefore, it is fair to conclude that the improved AME estimator applies to all
semi-values.

The MSR Estimator (Wang and Jia 2023b) The methodology of this estimator is limited to
weighted Banzhaf values parameterized with 0 < a < 1 (Wang and Jia 2023b, Appendix C.2).
Precisely, ps = as−1(1−a)n−s. Each subset is sampled by incorporating each player with probability
a, and then the i-th estimate is

ϕ̂i =
1

T+
i

T∑
j=1

U(Sj)1i∈Sj −
1

T−
i

T∑
j=1

U(Sj)1i ̸∈Sj

where T+
i =

∑T
j=1 1i∈Sj

and T−
i =

∑T
j=1 1i ̸∈Sj

.

The GELS Estimator (Li and Yu 2024) This estimator is established using the fact that ϕi =
v∗i − v∗n+1 where v∗ ∈ Rn+1 is the uniquely optimal solution to

argmin
v∈Rn+1

∑
∅⊊S⊊[n+1]

ps

(
U(S ∩ [n])−

∑
i∈S

vi

)2

.

The subsets {Sj}Tj=1 where ∅ ⊊ Sj ⊊ [n + 1] are sampled using P (S) ∝ ps, and then the i-th
estimate is

ϕ̂i =

(
n∑

s=1

(
n

s− 1

)
ps

)
(v̂i − v̂n+1)

where v̂k = 1
Tk

∑T
j=1 U(Sj ∩ [n])1k∈Sj

and Tk =
∑T

j=1 1k∈Sj
.

The Complement Estimator (Zhang et al. 2023) The complement estimator is specific to the
Shapley value using the fact that

ϕShap
i =

1

n

∑
S⊆[n]\i

(
n− 1

s

)−1

(U(S ∪ i)− U([n]\(S ∪ i))) .

The sequence of subsets {Sj}Tj=1 is sampled using i) sample a subset size s ∈ [n] uniformly, and
then sample a subset S uniformly from {R ⊆ [n] | r = s}. Then, the i-th estimate is

ϕ̂Shap
i =

1

n

n∑
s=1

ϕ̂i,s where ϕ̂i,s =
1

Ti,s

n∑
j=1

(vjJi ∈ Sj , sj = sK− vjJi ̸∈ Sj , n− sj = sK)

vj = U(Sj)− U([n]\Sj) and Ti,s =

T∑
j=1

(Ji ∈ Sj , sj = sK + Ji ̸∈ Sj , n− sj = sK) .
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The Group Testing Estimator (Jia et al. 2019) We introduce the improved version presented
by Wang and Jia (2023a). Note that this estimator is specific to the Shapley value. A sequence
of subsets {Sj}Tj=1 are independently sampled according to: i) sample a subset size s ∈ [n] using
P (s) ∝ 1

s(n+1−s) , and then ii) sample a subset S uniformly from {R ⊆ [n+ 1] | r = s}. Then, the
i-th estimate is

ϕ̂Shap
i =

2
∑n

s=1
1
s

T

T∑
j=1

U(Sj ∩ [n]) (Ji ∈ Sj , n+ 1 ̸∈ SjK− Ji ̸∈ Sj , n+ 1 ∈ SjK) .

The Permutation Estimator (Castro et al. 2009) This estimator is specific to the Shapley value,
using the formula

ϕShap
i =

1

n!

∑
π∈Π

(U(Pi(π) ∪ i)− U(Pi(π)))

where Π contains all permutations of [n] and Pi(π) is the subset that contains all players preceding i
in π . Thus, it samples a sequence of permutations {πj}Tj=1 from Π uniformly with replacement, and
then the i-th estimate is ϕ̂Shap

i = 1
T

∑T
j=1

(
U(Pi(πj) ∪ i)− U(Pi(πj))

)
.

The WeightedSHAP Estimator (Kwon and Zou 2022b) As mentioned in the main paper, it is
based on

ϕi =

n∑
s=1

ms · ER⊆[n]\i
r=s−1

[U(R ∪ i)− U(R)]

where ms =
(
n−1
s−1

)
ps. For each player i ∈ [n], it samples a sequence of permutations

{πj}Tj=1 of [n]\i. Then, the corresponding estimate is ϕ̂i =
∑n

s=1 msϕ̂i,s where ϕ̂i,k =
1
T

∑T
j=1

(
U(Sk(πj) ∪ i)− U(Sk(πj))

)
and Sk(πj) is the subset that contains the first k−1 players

in πj .

The SHAP-IQ Estimator (Fumagalli et al. 2024) Recall that its underlying formula is

ϕi = pn · (U([n])− U(∅)) + 2H · E∅⊊S⊊[n][((n− s)ms1i∈S − sms+11i ̸∈S) · (U(S)− U(∅))]

where ms =
(
n−1
s−1

)
ps, H =

∑n−1
j=1

1
j , and P (S) ∝

(
n−2
s−1

)−1
. Therefore, a sequence of subsets

{Sj}Tj=1 where ∅ ⊊ Sj ⊊ [n] is sampled using P (S) ∝
(
n−2
s−1

)−1
, and the i-th estimate is

ϕ̂i = pn · (U([n])− U(∅)) + 2H

T

T∑
j=1

(U(Sj)− U(∅)) ·
(
(n− s)ms1i∈Sj

− sms+11i̸∈Sj

)
.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claimed theories are presented in Section 4 and are empirically verified in
Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Proposition 3 demonstrates that our OFA-A estimator does not rival the
previously best estimator for weighted Banzhaf values in terms of convergence rate, which
is a price to pay for using a fixed sampling scheme for all probabilistic values.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have provided detailed proofs in the Appendices A, B and C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experiment settings are stated in Section 5, and our method is presented in
Algorithm 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets we used are from open resources, and our code will be released
on a github repo.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our experiment settings are stated in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experiment results in Section 5 are all reported with standard deviation
using 30 random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It is stated in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have complied with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses on the convergence rate of estimators for probabilistic values
that do not appear to have any significant societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work focuses on the convergence rate of estimators for probabilistic values
that do not appear to pose any risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: It is stated in Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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