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Abstract

We consider the problem of Sampling Transition
Paths. Given two metastable conformational
states of a molecular system, e.g. a folded and
unfolded protein, we aim to sample the most
likely transition path between the two states. Sam-
pling such a transition path is computationally
expensive due to the existence of high free energy
barriers between the two states. To circumvent
this, previous work has focused on simplifying
the trajectories to occur along specific molecular
descriptors called Collective Variables (CVs).
However, finding CVs is not trivial and requires
chemical intuition. For larger molecules, where
intuition is not sufficient, using these CV-based
methods biases the transition along possibly
irrelevant dimensions. Instead, this work pro-
poses a method for sampling transition paths that
consider the entire geometry of the molecules. To
achieve this, we first relate the problem to recent
work on the Schrodinger bridge problem and
stochastic optimal control. Using this relation,
we construct a method that takes into account
important characteristics of molecular systems
such as second-order dynamics and invariance
to rotations and translations. We demonstrate
our method on the commonly studied Alanine
Dipeptide, but also consider larger proteins such
as Polyproline and Chignolin.

1. Introduction

Modeling non-equilibrium systems in natural sciences
involves analyzing dynamical behaviour that occur with
very low probability known as rare events, i.e. particular
instances of the dynamical system that are atypical. The
kinetics of many important molecular processes, such
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as phase transitions, protein folding, conformational
changes, and chemical reactions, are all dominated by
these rare events. One way to sample these rare events is
to follow the time evolution of the underlying dynamical
system using Molecular Dynamic (MD) simulations until
a reasonable number of events has been observed. However,
this is computationally highly inefficient due to the large
time-scales involved, which are typically related to the
presence of high energy and/or entropy barriers between
the metastable states. Thus, the main problem is: How can
we efficiently sample trajectories that give rise to these rare
but interesting transition events?

Numerous enhanced sampling methods such as steered
MD (Jarzynski, 1997), umbrella sampling (Torrie & Val-
leau, 1977), constrained MD (Carter et al., 1989), transition
path sampling (Dellago & Bolhuis, 2009), and many more,
have been developed to deal with the problem of rare events
in molecular simulation. Most of these methods bias the
dynamical system with well-chosen geometric descriptors
of the transition, so-called collective variables (CVs), that
allow the system to overcome high-energy transition barri-
ers and sample these rare events. The performance of these
enhanced sampling techniques is critically dependent on the
choice of these CVs. However, choosing appropriate CVs
for all but the simplest molecular systems is fraught with
difficulty, as it relies on human intuition, insights about the
molecular system, and trial and error.

A key alternative to sampling these rare transition paths is
to model an alternate dynamical system that allows sam-
pling these rare trajectories in an optimal manner (Ahamed
et al., 2006; Jack, 2020; Todorov, 2009). (Rose et al., 2021)
proposes an RL solution to modelling such a system.

In this paper, we consider the problem of sampling rare
transition paths by developing an alternative dynamical sys-
tem using path integral stochastic optimal control (Kappen,
2005; 2007; Kappen & Ruiz, 2016; Theodorou et al., 2010).
Our method models this alternative dynamics of the system
by applying an external control policy to each of the atoms
in the molecule. In particular, the method learns the external
control policy such that it minimizes the amount of external
work needed to overcome the lowest barrier and transition
the molecular system from an initial meta-stable state to
a final one. The method does not require any knowledge
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of CVs to sample these rare trajectories. Furthermore, we
draw connections between sampling rare transition paths
and the Schrodinger bridge problem (Schrodinger, 1931;
1932). Subsequently, we demonstrate that stochastic op-
timal control is well suited to solving these problems by
extending the work of (Kappen & Ruiz, 2016) for molec-
ular systems by incorporating Hamiltonian dynamics and
equivariance constraints.

Our main contributions in this paper are:

* We demonstrate the equivalence between sampling
transition paths, the Schrodinger bridge problem, and
path integral stochastic optimal control (§2).

* We extend the PICE algorithm (Kappen & Ruiz, 2016)
for molecular dynamics by incorporating inductive bi-
ases in the form of equivariances and Hamiltonian
dynamics (§3).

* Our proposed method does not require any prior knowl-
edge of CVs, which is important for modeling large
and complex molecular transitions for which CVs are
unknown (§2-3).

* We demonstrate the efficacy of our method on confor-
mational transitions in three molecular systems of vary-
ing complexity, namely Alanine Dipeptide, Polyproline
and, Chignolin (§4).

2. Preliminaries and Problem Setup

In the following sections we will first define notations and
provide key definitions, before discussing a mathematical
framework to solve the main problem of sampling rare
events.

Consider a system evolving over time where () is the
distribution of states « and 7;(@;|®;_1) a Markovian tran-
sition kernel. We can define a distribution over trajectories
generated by said evolving system as

T

77(3:(7')) = 7(xo) - Hm(a:i\a:i_l). (1

i=1

Here, x(7) defines a trajectory of states of length 7. While
the evolution of the system is continuous, for convenience
we discretize time and represent the trajectory as an ordered
sequence of states (1) = {xg, 1, - , T+ }.

In our application of interest, we are interested in sampling
trajectories from this distribution with the boundary condi-
tion that the initial &y and terminal state x.- are drawn from
a pre-specified marginal distributions 7y and 7, respec-
tively. In the chemistry context, these marginal distributions
describe stable states of the molecular system located at
local minima of the free energy surface. For example, these

stable states can be reactants and products of chemical reac-
tions, or native and unfolded states of protein. Unfortunately,
these stable states are often separated by high free energy
barriers. Trajectories (7) sampled starting in x( are thus
unlikely to terminate in the target state .

In this paper, we therefore construct an alternative sam-
pling approach that generates trajectories that are still likely
under the distribution 7 (x(7)) while also adhering to the
boundary conditions by crossing the high free energy barrier.
Formally, we aim to find a alternative Markovian dynamical
system 7 ((7)) with pre-defined marginals 7y and 7 that

is as close to 7 (x(7)) as possible, i.e.
7 (x(7)) = argmin Dy, (ﬁ'(w(T))Hﬂ'(J}(T)))
#(x(1))eD(70,7+)
2

Here, D(mo,m,) is the space of path measures with
marginals 7y and ;.

This problem, of finding the alternative dynamical system,
is also known as the Schrodinger Bridge Problem (SBP)
(Schrodinger, 1931; 1932). To solve the problem of sam-
pling transition paths that cross the high free energy barrier
we can take inspiration from computational methods for
solving the Schrodinger Bridge Problem such as discussed
in (Vargas et al., 2021; De Bortoli et al., 2021).

However, in this work we specifically explore an alterna-
tive approach to solving the SBP that lends itself well to
modelling the chemical nature of our problem by learning a
biased force to be added to the system. In the next section, to
set the stage for this novel approach, we relate the problem
of sampling transition paths as a path integral stochastic op-
timal control problem and establish an equivalence between
learning alternative dynamical systems for sampling rare
events, Schrodinger bridge problem, and stochastic optimal
control.

2.1. Sampling Transition Paths through Stochastic
Optimal Control

The original dynamics of the system, as given in Equa-
tion (1), can be reformulated as a stochastic process:

d:ct :f(:ct,t) dt—i—G(mt,t) 'dEt, te [07’7'] (3)
where £ : R x Rt — R%and G : R x Rt — R%*4 are
deterministic functions representing the drift and volatility

of the system. The stochastic process &; is a Brownian
motion with variance v.

We approximate the system dynamics described in Equa-
tion (3) with another dynamical system by applying an exter-
nal bias potential (or control) u(zx;,t) € RY to the system
that pushes it over the transition state barriers. We write
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these dynamics as follows:
dxy = f(x,t) dt+G (x4, 1)
( (x4, t) dt + d€t> tel0,7]
“4)
The control u(x;, t) does not directly operate on the system
dynamics here but is rather controlled through the same
control matrix G' as the Brownian motion. We will see later

on that this formulation is important when considering the
second order dynamics of the system.

Given a trajectory z(7) = (xo, - ,x,) € R™*? generated
through the SDE in Equation (4), we define the cost of
this trajectory under control u following (Kappen, 2007;
Theodorou et al., 2010) as:

( Tr +Z mtv

+ u(xy, t) Rst) 5)

Cla(r), u, &) = T Ru(zy,t)

where  denotes the terminal cost, A is a constant and R
is the cost of taking action w in the current state and is
generally given as a weight matrix for a quadratic control
cost. The goal then is to find the optimal control w* that
minimizes the expected cost:

u* =argminE,_ ., [C(z(7), u,&)] (6)
u
where the expectation is taken over trajectories 7 sampled
using the SDE under control u.

Note that the last cost term in Equation (5) relating the
Brownian motion and the control is unusual and does not
have a clear intuition. However, as we will see in the next
section, this term plays an important role when relating
the cost to a KL-divergence. Additionally, as discussed
in Thijssen & Kappen (2015), the additional cost vanishes
under expectation (E, ¢, [u(x;,t)T Re;] = 0) and does thus
not influence the optimal control u* given by Equation (6).

Relation to sampling transition paths: Interestingly, the
objective in Equation (6) is exactly related to the problem of
sampling transition paths as given in Equation (2). As (Kap-
pen & Ruiz, 2016) establish, Equation (4) defines a proba-
bility distribution 7, ((7)) over trajectories x(7) through:

mu(2(7)) = [[ N (@esalp, o) (7

t=0

with g, = x5 + f(xs, s)dt + G(xs, s)(u(xs, s) dt) and
Y = Gz, 8)TvG (xs, 5).

For different w, these distributions are related through the
Girsanov Theorem (Cameron & Martin, 1944). As shown

in Appendix A, if we make the common assumption that
control cost R and the variance of the Brownian motion are
inversely correlated as AR = v, we can obtain:

bgu AZ

7T0 T

wt7 TR'LL(SCt, t)
—+ ’U/(SCt, )TR€1§ (8)

Here (ac(T)) denotes the distribution over trajectories
with no control (i.e. w = 0) as o (x(7)). For reference,
the assumption relating the control cost and the variance of
the Brownian motion is a common trait of the set of control
problems referred to as Path Integral Stochastic Optimal
Control (Kappen, 2005).

We observe that the right-hand side of Equation (8) can also
be found in the definition of the control cost in Equation (5),
including the additional cost term related to the Brownian
noise. As Kappen & Ruiz (2016) show, we can thus use
Equation (8) to rewrite the objective in Equation (6) as:

1
Ty = argmin Eg(ryor, [Xgo(wf)]

+ D (ma(@(7) 1m0 (2(7))
9)

This objective is an approximation of the Schrodinger
Bridge formulation in Equation (2) where the constraints on
the marginal distributions are replaced by a regularization
term in the form of the terminal cost. When the expected
terminal cost dominates the KL-divergence the found distri-
bution should be very similar.

Indeed, this connection between the Schrodinger Bridge
Problem and stochastic optimal control has previously been
established (Chen et al., 2016; Pavon et al., 2021). Here,
through the formulations in Equations (2) and (9), we also
establish the equivalence between sampling transition paths,
Schrodinger bridge problem, and stochastic optimal control.
This allows us to utilize solutions for finding the optimal
control in Equation (9) for the aforementioned problems.

Optimal Control Policy: (Kappen & Ruiz, 2016) intro-
duced the Path Integral Cross Entropy (PICE) method for
solving Equation (9). The PICE method derives an explicit
expression for the optimal policy and distribution 7, when
A = v R given by

1
n(z,t)
where n(x,t) = E;r, [exp(—C(2(7), u)] is the normal-
ization constant. This establishes the optimal distribution

Ty~ as a reweighing of any distribution induced by an arbi-
trary control w. Similar to importance sampling, depending

Tu(x(7)) exp (— C(z(7),u))  (10)

Tu* =
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on the choice of the proposal distribution 7,, the estimator
variance can greatly differ. Thus, the objective is to find the
w that best approximates u*.

PICE, subsequently, achieves this by minimizing the KL-
divergence between the optimal controlled distribution 7,
and a parameterized distribution 7, using gradient descent
as follows:

a]D)KL(ﬂ'u* 7Tu9) -
26 N
1 4 ou
~Eatryom, [exp (= Cla(r) uo)) Y (Rer- )|
t=0
(an

Similar to the optimal control in Equation (10), the gradient
used to minimize the KL-divergence is found by reweigh-
ing for each sampled trajectory the gradient of the control
policy ug by the cost of said trajectory. A full algorithm
for determining this gradient and training the policy uy is
provided in Algorithm 1.

Thus, PICE provides an iterative gradient descent method
to learn a parameterized policy (or control) uy and subse-
quently a distribution over paths x(7). We can then use
this learned control, ug, to approximate the solution for
sampling transition paths as well as the Schrodinger bridge
problem.

In this section, we have set up our main problem of sam-
pling rare transition paths and established its relationship to
both the Schrodinger bridge problem and stochastic optimal
control. Subsequently, we discussed an iterative gradient de-
scent based method for solving the optimal control problem.
In the next section, we will extend this iterative algorithm
to consider the entire geometry of the molecular system by
incorporating Hamiltonian dynamics using an augmented
state space x;, and symmetries by learning a policy ug.

3. Path Integral Optimal Control for Sampling
Transition Paths

We consider a molecule consisting of n atoms with an initial
and final configuration 7o € R**™ and r, € R3*" i.e. we
are given a vector defining the 3D positions of each atom
in the molecule. Thus, a direct method to sample transition
paths 7(7) for this problem is to learn a control uy acting
directly on the positions 7 of the molecule using the iterative
gradient descent method discussed in Section 2. However,
the collective behaviour of the atoms and molecules are
governed by classical molecular dynamics i.e. Newtonian
equations of motion:

dr =v(t)dt, and, dv=al(t)dt

Algorithm 1: Training Policy ug

Input: ro, rr: Initial and target molecular positions,
U(-): Potential Energy function,
@(+): Terminal cost,
ug (-, -): Initial parameterized policy,
N: Number of trajectories sampled per update,
7: Time horizon,
v: Variance of Brownian noise,
R: Control cost matrix,
w: Learning rate,
dt: Time discretization step
while not converged do
> Generate trajectories with current policy ug
A+ Rv;
n<+0;
while n < N do
> Initialize initial trajectory state
(rnyo’ Un,(), t) — (7‘0, 07 0)’
while t < (7/dt) do
> Sample Brownian noise and action
ene ~ N(0,v);
Ut < g (Tn e, 1);
> Update positions and velocity
Tn,t+1 — Tn,t + Un,t * dt’
Un,t+1 <«
Un,t — (vrn,t U("'n,t) + Up,¢+ En,t) -dt;
t+—t+1;

end
> Determine trajectory cost and gradient
Cn +—

%(90(7‘71,7) +> 0 uf,iRun,i + uz:,in'?n,i);
Abp < exp(—Chr) + >.7_ Oun,:06;
n<n+1;

end
> Determine gradient normalization and perform
policy update
4 S exp(—Ci) ;
N .
0 0+2N A

end

where v(t) € R3*™ is the velocity and a(t) € R3*" is
acceleration given by a(t) = %(T) where U (r) is the
potential energy of the system m is the mass. The potential
energy of a system is defined by a heavily parameterized
sum of pairwise empirical potential functions, such as har-
monic bonds, angle potentials, inter-molecular electrostatic
and Van der Waals potentials. Here, we compute this us-
ing the OpenMM framework (Eastman et al., 2017). As
such, we need to adapt the dynamical system defined in
Equation (4) to incorporate these molecular dynamics. Intu-
itively, we achieve this by limiting the control u € R3*" to
act as an additive force on the velocity of the system. This
change in velocity via the control w ultimately changes the
position of the system.

Incorporating second order dynamics: Formally, we
incorporate the second order dynamics of the system de-
fined above by considering an augmented state space: Let
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xo = (1o, vo) € R3*™ x R3*™ be the initial configuration
of the system defining the initial positions and velocities of
each atom and x, := (r,,v,) be the final configuration.
We, thus, model the dynamical system in Equation (4) as:

d’l"t o (o
(dw) - (—vam)) at
—_——— — —

dxz: f(a:t,t)

I <O3n> -(u(a)t,t) dt + dEt), 12)

H?m

G(z,t)

t € [0,7]. We note that due to the choice of G(x¢,t) in
Equation (12) above, the additional bias force, u(xy,t),
applied to the system only influences the acceleration and
velocity of the atoms. dr; is solely influenced by the veloc-
ity vy, thus conforming to the classical molecular dynamics
of the system.

Invariance to rotations and translations: Secondly, the
molecules in consideration are invariant w.r.t. transla-
tions and 3D rotations i.e. the molecular orientations
achieved along a transition path need to incorporate this
equivariance w.r.t. SE(3) group. For this purpose, we
need to make the terminal cost function, ¢(x,), in Equa-
tion (5) to be equivariant. We enforce this by defining
the terminal cost as the exponentiated pairwise distance
between atoms which is commonly used distance metric
(Shi et al., 2021) that is invariant to rotations and transla-

tions i.e. p(r;) = exp ij (dij(re) — dij(rf))2 where
dij(re) = [[(Te)i — (ro);13.

Physics inspired policy network (uy): The main learn-
able component of our path integral stochastic optimal con-
trol method for sampling transition paths is the policy net-
work ug. Following the discussion above and formalized in
Equation (12), we can interpret the control ug as an additive
bias force applied to the system. In this work, we consider
two different design approaches to modelling wg. In our first
approach, we model uy as a neural network that predicts the
bias force on the system in which case the velocity evolves
as dv = (V,, U(r;) + ug ) dt. Alternatively, in our sec-
ond approach, we model ug as a network predicting the
bias potential energy. In this case, the corresponding force,
F(r;) ,applied to the system is calculated by backpropagat-
ing through the network, F(r;) := V,,ug ;. The change
in velocity is then given by dv = (V,. U (ry) + F(r;)) dt.
Additionally, ugy or ug could be implemented using recent
advances in physics inspired equivariant neural networks
(Cohen & Welling, 2016; Satorras et al., 2021) that take into
account the SE(3) symmetry of the system.

4. Experiments

We evaluate our path integral stochastic optimal control
method for sampling transition paths with three different
molecular systems, namely (i) Alanine Dipeptide, a small
amino acid with well-studied transition paths, (ii) Polypro-
line, a small protein with two distinct conformations with
different helix orientations, and (iii) Chignolin, an artificial
mini-protein studied to understand the folding process of
proteins. We begin by detailing the experimental setup.

Molecular Dynamics Simulation: We simulate the molec-
ular dynamics following Equation (12). For the drift func-
tion f(x¢,t), we evaluate the potential function (and subse-
quently the gradient) using the OpenMM engine (Eastman
et al., 2017). We define the forcefield used by OpenMM for
each considered molecular system in their respective follow-
ing sections. Furthermore, we use the Velocity Verlet with
Velocity Randomization (VVVR) integrator (Sivak et al.,
2013) within OpenMM at a temperature of 300 K with a
collision rate of 1.0 ps™! wherein the bias potential, u(x;,t),
given by the policy network is integrated as a custom exter-
nal force.

Policy Network, u(x;,t): We implement the policy net-
work as a 6 layer MLP with ReLU activation for all our
experiments below. The width of the layers of the pol-
icy network is dependent on the number of atoms in the
molecule under consideration. We implement all code in
Pytorch. We ran the experiments on a single GPU (either an
NVIDIA RTX3080 or RTX2080) and our code is available
on GitHub.

4.1. Alanine Dipeptide

Alanine Dipeptide is an extensively studied molecule (To-
bias & Brooks III, 1992; Rossky & Karplus, 1979; Head-
Gordon et al., 1991; Swenson et al., 2018) for developing
and testing enhanced sampling methods due to ready avail-
ability of its two CVs (¢, ). The conformation transition
for Alanine Dipeptide can thus be understood in terms of
these two dihedral angles ¢ and v as displayed in Figure 1
A. Prior work has, thus, focused on transforming from the
initial configuration (see Figure 1.A) to the final configura-
tion (Figure 1.E) by rotating these CVs. As we discussed
previously, a major advantage of our method is that we do
not require the knowledge of CVs to sample a transition
path. However, in our experiment for Alanine Dipeptide, we
will use these CVs to compare the quality of the trajectory
sampled by our method.

OpenMM and policy network setup: We use the amber
99sb-ildn force field (Lindorff-Larsen et al., 2010) without
any solvent, a time-step of 1.0 fs for the VVVR integrator
and a cutoff of 1 nm for the Particle Mesh Ewald (PME)
method (Essmann et al., 1995). For our experiment, we
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T Temp. | EPD () THP (1) ETP ()

fs K nm x 1073 % kJ mol ™!
Force Prediction 500 300 2.07 41.1 % 0.68
Energy Prediction 500 300 1.25 89.2%  -5.21
MD w. fixed timescale | 500 300 7.92 0% -

500 1500 7.47 0% -

500 4500 6.33 0% -

500 9000 6.82 1.7 % 1019.83
MD w/ fixed timescale | 34810 1500 1.88 100% 551.51

48683 4500 2.01 100% 1647.35

Table 1. Benchmark scores for the proposed method and extended MD baselines. From-left-to-right: Time-horizon 7 representing the
trajectory length (note that we take one policy step every 1 fs), simulation temperature, Expected Pairwise distance (EPD), Target Hit
Percentage (THP), and Energy Transition Point (ETP). ETP can only be calculate when a trajectory reaches the target. All metrics are
averaged over 1000 trajectories except for MD w/ fixed timescale which is ran only for 10 trajectories.

(kJ/mol)
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Figure 1. Visualization of a trajectory sampled with the proposed method. Left: The sampled trajectory projected on the free energy
landscape of Alanine Dipeptide as a function of two CVs Right: Conformations along the sampled trajectory: A) starting conformation
showing the CV dihedral angles, B-D) intermediate conformations with C being the highest energy point on the trajectory, and E) final
conformation, which closely aligns with the target conformation. Bottom: Potential energy during transition. Letters represent the same

configurations in the transition.

consider both the design choices for the policy network,
ug(xs, ), discussed in Section 3 i.e. directly predicting
the force and predicting the energy. We trained the policy
networks for 15,000 roll-outs with a time horizon of 500 fs
each consisting of 16 samples. A gradient update was made
to the policy network after each roll-out with a learning rate
of 107°. The Brownian motion has 0.1 standard deviation.

Baseline and evaluation metrics: We compare our method
to MD simulations with extended time-horizon and in-
creased system temperatures to sample transition paths. To
our knowledge, there are no fixed quantitative metrics in the
literature to compare different methods that sample transi-
tion paths. Thus, we introduce here three metrics to evaluate
the quality of transition paths: (i) Expected Pairwise Dis-
tance (EPD) measures the euclidean distance between the
final conformation in the trajectory and the target conforma-

tion, reflecting the goal of the transition to end in the target
state, (ii) Target Hit Percentage (THP) assures that the final
configuration is also close in terms of CVs by measuring
the percentage of trajectories correctly transforming these
CVs, and (iii) Energy Transition Point (ETP) which eval-
uates the capacity of each method to find transition paths
that cross the high-energy barrier at a low point by taking
the maximum potential energy of the molecule along the
trajectory. A good trajectory will be one that passes through
the minimal high-energy barrier and ETP aims to measure
this. We provide more details in Appendix B.1.1.

Results: We first visualize the trajectory generated by the
energy prediction policy in Figure 1. The trajectory in
Figure 1 demonstrates that the control policy transforms the
molecule from the initial position (A) to the final position (E)
by transitioning over the barrier with the least energy at (C).



Path Integral Stochastic Optimal Control for Sampling Transition Paths

Potential Energy
(k)/mol)
g

0 1000 2000

i
3000 4000 5000

Figure 2. Visualization of the Polyproline transformation from PP-II to PP-1. From-top-to-bottom 5 stages of the transition, ¢ CVs, ¢ CVs,
w CVs, and Potential Energy. For the CVs multiple instances of the same dihedral angles can be found in a single molecule. Stars indicate
target CV states. Colored bonds represent the bonds involved in the w CV.

Interestingly, the trajectory follows the expected transitions
in the CVs without them being explicitly specified e.g. the
transition path visualized on the left in Figure 1 shows that
the molecule first rotates the dihedral angle associated with
CV ¢ in (A — B), then gradually rotates along both v and
¢ in (B — C — D), and finally rotates ¢ in (D — E) to
reach the final configuration. As expected, we observe that
the potential energy goes up during the transition until it
reaches the top of the energy barrier (C). After this point,
the molecule settles down in its new low-energy state.

Next, we compare the performance of the trajectories sam-
pled using the force and energy predicting policy networks
with MD simulations on the metrics introduced before in
Section 3. We find that the trajectories generated by both
the policy networks outperform the MD baselines, but the
more physics-aligned energy predicting policy performs
best under our metrics. This policy network consistently
reaches the target conformation both in terms of full ge-
ometry and the CVs orientation. Furthermore, our policy
network generates these trajectories in a significantly shorter
time than temperature enhanced MD simulations without
a fixed timescale. When we do limit MD to run for the
same timescale as the proposed method, we found that, in
contrast to the proposed method, temperature enhanced MD
simulations are unable to generate successful trajectories.

4.2. Polyproline Helix

Polyproline is a helix-shaped protein structure that consists
of repeating proline residues. Polyproline helix can form

two different conformations namely Polyproline-1 (PP-I)
and Polyproline-II helix (PP-1I) (Moradi et al., 2009; 2010).
These conformations can be distinguished by their respec-
tive helix rotation. PP-I forms a compact right-handed helix
due to its peptide bonds having cis-isomers while PP-II has
trans-isomer peptide bonds and forms a left-handed helix.
Furthermore, the backbone of the polyproline helix also con-
tains two different dihedral angles. We will refer to these
peptide bonds and dihedral-angles as the w, ¢ and ¢ CVs
respectively. Polyproline can have varying lengths due to
its repeated structure. In our experiment, we consider the
polyproline trimer with 3 proline residues transitioning from
PP-II to PP-1.

OpenMM and policy network setup: We initialize
OpenMM with the amber protein.ff14SBonlysc forcefield
and gbn2 as the implicit solvent forcefield. The VVVR
integrator had a timestep of 2.0 fs and a cutoff of 5 nm for
PME. The proposed method was ran for a total of 10.000 fs
(resulting in 5,000 policy steps). The policy network was
trained over 500 rollouts with 25 samples each using a learn-
ing rate of 3 x 107" and a standard deviation of 0.1 for the
Brownian motion.

Results: We visualize the transformation of the three col-
lective variables (w, ¢, 1) as well as the corresponding po-
tential energy of the conformation in Figure 2 for a sampled
transition path from our trained policy network. The w CV
admits the biggest change for the transition from PP-I go-
ing from 180° to 0°. We observe that the transition path
sampled by our method aligns with the expected changes in
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Figure 3. Visualization of the Chignolin folding process. Top: 5 stages of the folding process, Middle: Pairwise distance wrt to the target

conformation of the molecule, Bottom: Potential Energy.

CVs in spite of our method not containing any knowledge
about these CVs. Figure 2 shows that the peptide bonds
transition from a trans-isomer to a cis-isomer state at steps
450 and 3,000. We notice the biggest changes in CVs at
these steps in Figure 2. We also note that in addition to the
change in the peptide bonds, the final conformation differs
from the initial in one of the -dihedral angles. Technically,
PP-I has v-dihedral angles similar to PP-II, but as a result
of the inherent noise of MD our target conformation was
sampled with a slight rotation here as well. Interestingly,
our method successfully learned to sample transition paths
terminating in a similar perturbed state. This indicates that
our proposed method is resilient to target states not having
a minimal-energy configuration.

4.3. Chignolin

Chignolin is a small S-hairpin protein constructed artifi-
cially to study protein folding mechanisms (Honda et al.,
2004; Seibert et al., 2005). Due to its small size, its folding
process is easier to study than larger scale proteins while
being similar enough to shed light on this complex process.
In contrast to Alanine Dipeptide and Polyproline, there is
no agreement on the transition mechanism describing the
folding of Chignolin. Both the CVs involved (Satoh et al.,
2006; Paissoni & Camilloni, 2021), as well as the sequence
of steps (Harada & Kitao, 2011; Satoh et al., 2006; Suenaga
etal., 2007; Enemark et al., 2012) describing the folding pro-
cess have multiple different interpretations. Thus, methods
that do not require prior knowledge of CVs are particularly
useful to study this protein.

OpenMM and policy network setup: To sample transition
paths between the folded and unfolded state of the Chignolin
protein, we initialize OpenMM using the same forcefield
and VVVR integrator as for Polyproline with the exception
that we sample a new force from our policy network every

1.0fs. We do this 5000 times for each rollout for a total
time horizon of 5000 fs. Note that the typical folding time
of Chignolin is recorded to be 0.6 us (Lindorff-Larsen et al.,
2011). The policy network is trained over 500 rollouts of
16 samples with a learning rate of 1 x 10~* and standard
deviation of 0.05 for the Brownian motion.

Results: In Figure 3, we visualize the transition of Chigno-
lin at 5 different timesteps during the transition path. We
observe that to transition the protein from its low energy
unfolded state to the folded conformation, the proposed
method guides the protein into a region of higher energy.
This increase is initially more steep (0— 1500) than in the
later stages. Additionally, most of the finer-grained folding
(2500—4000) occurs with a high potential energy before
settling into the lower-energy folded state. We notice that
for the restricted folding time we use in our experiments
(5000 fs vs 0.6 ps), the molecule does not end at the final
configuration but reaches close to it as shown by the plot
on pairwise distance. Furthermore, the learned policy net-
work is able to transition through the high energy transition
barrier in this restricted time. We do not encounter this
for molecules with a shorter natural transition time (as il-
lustrated by the potential energy of Alanine Dipeptide in
Figure 1).

5. Discussion, Limitations, and Future Work

In this work, we proposed a path integral stochastic optimal
control method for the problem of sampling rare transition
paths for molecular systems that incorporates the Hamilto-
nian dynamics and equivariance of the system. In passing,
we showed an equivalence between the problem of sam-
pling transition paths, stochastic optimal control, and the
Schrodinger bridge problem. We empirically tested our
method on three different molecular systems of varying
sizes and demonstrated that it was able to sample transition
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paths on the full geometry of the system without biasing
along CVs.

One observed limitation of the proposed method is that for
molecules with long natural transition times, we observe the
transitions to not converge to the configuration of minimal
energy after crossing the high-energy transition barrier. We
hypothesize that this is due to the method operating on
a reduced time horizon (e.g. 5000 fs instead of 0.6 ps in
the case of Chignolin), or due to the terminal control cost
function not requiring the velocity to be zero at the end
of the transition. Nevertheless, we note that the method
is successful in transitioning the molecules over the high
energy barriers as exemplified by the known CVs changing
appropriately.

There are many exciting directions for future work. Our
experiments showed that the molecules transitioned along
with the CVs correctly in spite of not having any informa-
tion about the CVs. It will be interesting to see if we can
infer these CVs from the learned policy and dynamics of
the systems. Secondly, our method can have implications
for training diffusion models within a fixed time-scale by
additionally learning the control policy to transform one
distribution into another.
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A. Stochastic Optimal Control

In this section we expand on Section 2.1. Specifically, we expand on the derivation of the Stochastic Optimal Control
(SOC) objective in terms of a KL-divergence (Appendix A.1) and the derivation of the iterative gradient descent procedure
(Appendix A.2). Note that the derivations presented here are primarily a rephrasing of those given in (Kappen & Ruiz, 2016)
using notation similar to the remainder of the paper.

Let us start by restating the objective of Path Integral Stochastic Optimal Control. Given a control uw and the Brownian
motion &; with variance v, Equation (4) defines a trajectory z(7) = (x, ..., x,) € R™*?. We can define the cost for said
trajectory as

T

Cla(r) u,ee) = 5 (pl@n) + Y Sulw ) Rulw,t) + u(@,,t)" Re,) (13)

t

> =

1
:02

where ¢ denotes the terminal cost, X is a constant and R defines a weighted control cost.

This is a restatement of Equation (5), included here to make future reference easier. We note a number of important
observations.

1. Following Equation (4), we observe that the control w acts linearly on the dynamics of the system.
2. The cost of the control itself is quadratic, weighted by the matrix R.
3. Under expectation the final term vanished; E[u(z;,t)T Re;] = 0

The first two observations are what classify the current control problem in the family of Path Integral Stochastic Optimal
Control (Kappen, 2005) and are a requirement to be able to derive the explicit expression for the optimal control policy
given in Equation (10). The third observation, while unusual in the context of SOC, is needed to rewrite the SOC objective
in terms of the KL-divergence as we will see next. Additionally, if we restate the SOC-objective

u* =argminE, ., [C(z(7), u, et)] (14)

u

we observe that observation 3 shows that the additional cost does not change the optimal control w*.

Lastly, we note that the family of Path Integral Stochastic Optimal Control problems assumes that A = Rv. This assumption
is needed both for rewriting the SOC objective as a KL-divergence and to find an explicit expression for the solution.

A.1. SOC objective as a KL-divergence

As noted in the main body of the paper, Equation (4) defines a probability distribution 7,, (w (T)) over trajectories (7) as

mu(2(7)) = [ [N (@esalp, S (15)

t=0

with p, = x4 + f(xs, s) dt + G(zs, s)(u(xs, s) dt) and X, = G(xs, s)'vG(xs, s). Similarly, Equation (3) defines a
probability distribution 7o (@ (7)), where now u = 0:

T

mo(2(r)) = [ [NV (@141]f2, 30) (16)

t=0
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with i, = x5 + f(xs, s)dt and XA]S = 5. These distributions are related through the Girsanov Theorem (Cameron &
Martin, 1944), giving:

rul@() = mo(e(r) exp (3"~ UG Crre | Gunlfi w1 = i)

2 >y I

Z _1 u?GtTGtut n Gtut(Gt (Ut + Et)))
2 Et Et

EU’ZGZGY"U’?‘ U?G?GtEt)

(
(
= (ot (Y s GG | G
(
(

t=0
= 7o (x(7)) exp gutTu_lut + u;‘ru_lst)
t=0
11, T
= mo(x(7)) exp (X Z Jut Ru; + u; Rst), (17)

t=0

where we use the assumption A = Rv in the last step. We use shorthand notation to simplify u; = u(x,t), G = G(x,t),
and f; = f(x¢,t). From here we can obtain the relation in Equation (8).

Now, as again show in (Kappen & Ruiz, 2016), we can use this relation to rewrite the cost in Equation (13) as

Cla(r), u,e0) = yolws) +log ::((jj(())))

and thus, the distribution over trajectories under optimal control ©* can now be defined as

(18)

Ty+ = argmin Ew(‘r)wﬂ'u [C(ﬂf(T),’u,,Et)]

T

u(w(f))}

. 1 7T
= arg min Em(T)NTru [730(:137) +log ) (iL'(T))

Tu A
1
= arg min Em(‘r)wﬂu {X@(wT)] + Em(T)Nﬂ'u {log

T

’/Tu(CC(T))}
o (2(7))

= argmin Egr)or, [%90(337)] + Dy (7Tu (w(T)) 7o (‘1:(7'))) (19)

T

This objective is an approximation of the Schrodinger Bridge formulation in Equation (2) where the constraints on the
marginal distributions are replaced by a regularization term in the form of the terminal cost. When the expected terminal
cost dominates the KL-divergence the found distribution should be similar.

A.2. Iterative Gradient Descent

As mentioned earlier, the specific control problem we are considering here (linear acting control and weighted quadratic
control cost) is known as Path Integral Stochastic Optimal Control. Work on this control problem has established that under
the additional assumption that A = Ruv there exists an explicit solution describing the optimal control w*. While there are a
number of different papers establishing this result (Kappen, 2005; Theodorou et al., 2010; Kappen, 2007), we note that
(Kappen & Ruiz, 2016) is most in line with our work. As such, we refer the interested reader to this work to find the proof
for the following statement that defines the distribution over optimal trajectories as a reweighing of the distributions over
trajectories under no control:

Tr = %’/To (z(7)) exp(figa(mT)), (20)
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where 1 = Eq(7)r, [exp(—1 ¢ ()] is the normalization constant. Given the previously established relation (Equation (8))
between 7 and 7,,, we can equivalently express the optimal control w* in terms of any control w using importance sampling

= EMW (7)) ex 21 T
Ty* = 777Tu($(7')) U( ( )) p( )\9‘7( 7))
1 1 1
_ ;]exp (% BT quet) 7w (2(7)) eXp(—Xsﬁ(ocT))
= %TFU (x(7)) exp(—%gp(:m) - % ; %utTRut — ul Re;)
= %ﬂ'u (x(7)) exp(—=C(2(1), u, ) (21)

With an explicit expression for the optimal control policy given, the PICE method aims to find a parameterized distribution
T, thatis close to the optimal control in terms of KL-divergence

oy = argmin Dy (e (2(7) [, ((7) ). (22)

Tug
Using the explicit expression for the optimal control, the KL-divergence is given as follows:

D (ma (2(7) 7 (2(7)) )

< —Er, . [log Wug]

- T 1 ug(t)TGfGtue(t) Gtug(t)(ft +x — wtfl)
=—E,,. [log mo(x(T)) exp (tz_% —5 s, + 5, )]
i 1 g (t)TGTGt’LLQ (t) G{LLQ (t)(Gt(u* (t) + Et))
x ~Er,. {g "2 Xt)t + >, }
= Er,. [ D qus()" Rua(t) — us(t)" Ru* (1) — ug(1)" e
t=0
= %EM [B*CW%"@)% Z %ug(t)TRue (t) — ug(t) Ru(t) — ue(t)TRet] (23)
t=0

We use shorthand notation to simplify u(t) = u(x:,t), Gy = G(x4,t), and f; = f(x¢,t). Line 1 we discard the constant
term E, . [log Wu*]- Line 2 we make use of the established relation between 7,, and 7y for any control w. Line 3 we
discard the constant term E,_. [log 7r0] and note that the expectation is over trajectories sampled from 7. Line 4 we
rewrite using the assumption that A = Ruv. Line 5 we use Equation (21) to rewrite the distribution over an arbitrary control
u using.

We can minimize this explicit expression using Gradient Descent, to do this, we derive the gradient of the KL-divergence

0D (e (@(7)) I ((7)))
00

T

g [e—cwm,u,ea
1

u

(Ruo(t) — Ru(t) — Re) 8“9(”]

t=0

(24)

>

Finally, we note that the expectation is over trajectories of any distribution ,,, and as such, this distribution can also be
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chosen to be equal to the parameterized distribution ,, = m,,,. This gives us the final gradient

0D (- (2(7)) 7, (2(7)) )
00

= lEﬂ'u |:e*C(£l:(T),’u,,et)l (Rua(t) _ Rug(t) _ Rst)aua(t) (25)
o A — o0

_ 1 —C(a(r)ug,ee) L g Oug(t)

= HEWW [e 3 ;Rst 20 } (26)

B. Extension Experimental section
B.1. Alanine Dipeptide
B.1.1. DISCUSSION BASELINES AND EVALUATION METRICS

Metrics Three different metrics are used for the comparison covering multiple desiderata for the sampled transition
trajectories. For each metric we report the score over 1000 trajectories with the exception of the Molecular Dynamics
without fixed timescale baseline which is only ran until 10 trajectories are successfully generated.

Expected Pairwise Distance (EPD) The EPD measures the similarity between the final conformation in the trajectory and
the target conformation taking into account the full 3D geometry of the molecule. Note that the expected pairwise distance
for uncontrolled MD with the target as the starting conformation has a EPD of 2.25 x 1073, All trajectories with an EPD of
less than this can thus be considered to transition the molecule within one standard deviation of the target distribution.

Target Hit Percentage (THP): The second metric under which we evaluate the proposed Transition Path Sampler measures
the similarity of the final and target conformation in terms of the collective variables. The THP measures the percentage
of generated trajectories/paths that reach the target state. As such, higher hit percentages are preferred. We determine a
trajectory to have hit the target in CV space when ¢ and v are both within 0.75 of the target.

Energy Transition Point (ETP): The final metric looks at the potential energy of the transition point—the conformation in
the trajectory with the highest potential energy. This directly evaluates the capability of the method to find the transition
path that crosses the boundary at the lowest saddle point.

Baselines We compare the proposed Transition Path Sampling method with extended Molecular Dynamics simulation
using different time-scales and temperature points. As discussed earlier, there are currently no other methods available for
Transition Path Sampling using the full 3D geometry of the molecules.

Molecular Dynamics with fixed timescale: This set of baselines is limited to the same timescale as the proposed Transition
Path Sampler, 500 femtoseconds, but uses varying temperatures. With higher temperatures we should have a higher
probability of crossing the barrier and hitting the target configuration.

Molecule Dynamics without fixed timescales: In contrast to the other set of baselines, the MD simulation for this set is not
limited to 500 femtoseconds, but is instead ran until the target conformation is reached. We consider a trajectory to have
reached its target if the following two conditions have been met: 1) the current conformation classifies as having hit the
target under the conditions of the metric described above and 2) the current conformation is within one standard deviation of
the target distributions mean.

By running the MD simulations until the target is reached we aim to gain intuition into the speed-up that it achieved by the
fixed timescale of the proposed Transition Path Sampler.

B.1.2. ADDITIONAL RESULTS: VISUALIZATION FORCE PREDICTION

We observe that the force predicting policy has learned a different trajectory then the energy predicting model presented
in the main body of the paper. While different, both of the trajectories pass the high energy barrier in a locally low point.
Previous work on finding transition path has also observed that multiple viable paths can be found for Alanine Dipeptide
(Hooft et al., 2021).
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Figure 4. Visualization of a trajectory sampled with the proposed force prediction method. Left: The sampled trajectory projected on the
free energy landscape of Alanine Dipeptide as a function of two CVs Right: Conformations along the sampled trajectory: A) starting
conformation showing the CV dihedral angles, B-D) intermediate conformations with D being the highest energy point on the trajectory,
and E) final conformation, which closely aligns with the target conformation. Boftom: Potential energy during transition. Letters represent
the same configurations in the transition.



