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Abstract

Evaluation of MR reconstruction methods is challenged by the need for image
quality (IQ) metrics which correlate strongly with radiologist-perceived IQ. We
explore Deep Feature Distances (DFDs) as MR reconstruction IQ metrics, whereby
distances between ground truth and reconstructed MR images are computed in
a lower-dimensional feature space encoded by a CNN. In addition to comparing
DFDs to two commonly used pixel-based MR IQ metrics in PSNR and SSIM
via correlations to radiologist reader scores of MR image reconstructions, we
explore the impact of domain shifts between the DFD encoder training data and
the evaluated MR images. In particular, we assess two state-of-the-art but "out-
of-domain" DFDs with encoders trained on natural images, an in-domain DFD
trained on MR images alone, and propose two domain-adjacent DFDs trained on
large medical imaging datasets (not limited to MR data). IQ metric performance is
assessed via their correlations to 5 expert radiologist reader scores of MR image
reconstructions. We make three striking observations: 1) all DFDs out-perform
traditional IQ metrics, 2) DFDs performance approaches that of radiologist inter-
reader variability, and, 3) surprisingly, out-of-domain DFDs perform comparably
as an MR reconstruction IQ metric to in-domain and domain-adjacent DFDs. These
results make it evident that DFDs should be used alongside traditional IQ metrics
in evaluating MR reconstruction IQ, and suggest that general vision encoders are
able to assess visual IQ across image domains.

1 Introduction

Accelerated MR reconstruction is a common inverse in which the goal is to recover an aliasing-free
image from a set of under sampled frequency-domain measurements. Compressed sensing [1] and
Deep Learning (DL) [2, 3, 4, 5, 6] approaches have show great promise, but systematic evaluation is
challenging because diagnostic information is not easily quantified at the pixel-level. Metrics such as
peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) are routinely used
to assess the image quality (IQ) of MR reconstructions [7], but have been shown to correlate poorly
with radiologist review [8, 9, 10]. Thus, there is a pressing need to develop IQ metrics that better
correlate with radiologist perceived diagnostic quality and downstream clinical utility.

The discordance between IQ metrics and human-perceived IQ is a well-known challenge in the
natural image computer vision community. Recently, Zhang et. al. showed that deep feature distances
(DFDs) correlate strongly with human perceived IQ, proposing the DFD Learned Perceptual Image
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Patch Similarity (LPIPS) [11]. Generally, we define a DFD (δ) between the fully-sampled ground
truth image x ∈ RCxHxW and the reconstructed image x̂ as

δl(x, x̂) = G(ϕ
(l)
D (x), ϕ

(l)
D (x̂)) (1)

where G is a distance measure, and ϕ
(l)
D maps from the image space RCxHxW to feature space

RClxHlxWl via a CNN encoder trained on a dataset D with features extracted from convolutional
layer l. LPIPS uses an L2-norm for G, VGG-16 [12] or AlexNet [13] trained on ImageNet [14] for
ϕD, and additionally learns a linear combination of DFDs extracted from five different convolutional
layers l based on perceptual judgement scores.

While LPIPS and other DFDs outperform traditional IQ metrics in terms of correlation with human
perceptual judgments in large scale computer vision studies [15], these studies evaluate DFDs on
natural images belonging to the same domain as the images used for encoder training D. One study
has shown that LPIPS out-performs traditional IQ metrics in an MR image-based reader study, but
does not explore if these out-of-domain DFDs are optimal for MR images [16]. It further evaluates
MR images with artificial corruptions, rather than clinically-feasible accelerated MR reconstruction
corruptions. Building on prior work from the in-domain self-supervised feature distance (SSFD)
trained in a self-supervised manner on MR images [17], we assess the impact of the domain of D on
the correlation of DFDs to radiologist reader scores of DL-based accelerated MR reconstructions. To
this end, we compare traditional IQ metrics to two state-of-the-art out-of-domain DFDs trained on
natural images, the in-domain SSFD trained on MR images, and two novel domain-adjacent DFDs
trained on a large corpora of medical images (not limited to MR images).

2 Methods

2.1 MR Image Reconstructions

We used the fastMRI multi-coil knee dataset with both sparse and fully acquired k-space data for
DL-based accelerated MR reconstructions [18]. Supervised DL-reconstruction models were trained
to reconstruct 2x, 4x and 6x accelerated scans using both a UNet model and an unrolled network
[2]. The UNet models followed the architecture in the fastMRI challenge [18], while the unrolled
models followed the fast iterative shrinkage-thresholding algorithm (FISTA) unrolled architecture
[19] implemented in [2]. Reference images were computed from the fully-sampled k-space data with
the JSENSE method to integrate coil sensitivities [20]. We split the dataset into training, validation,
and testing splits with 27,774 slices (778 3D scans), 6,968 slices (195 scans), and 7,135 slices (199
scans) respectively. Additional architecture and training details are provided in Appendix 6.1.

2.2 Reader Study Criteria

Five radiologists rated the diagnostic quality of the center slice of 366 accelerated MR reconstructions
from 61 patients, each reconstructed with the 6 models described above. The reader study was
blinded such that readers did not have access to the image IDs or reconstruction methods, nor to the
scores provided by other readers. The radiologists provided two scores for the image reconstructions,
one each for aliasing artifacts and for the diagnostic quality of the cartilage and meniscus (the most
commonly evaluated tissues on knee MRI) on the following 1-9 scale: 1- completely non-diagnostic,
3- severe corruptions, 5- diagnostically acceptable, 7- good quality, 9- perfect quality. The mean
radiologist IQ score was compared against various IQ metrics from which the Spearman Rank Order
Correlation Coefficient (SROCC) was computed. SROCC measures the strength of the monotonic
(but not necessarily linear) relationship between the reader scores and IQ metrics.

2.3 Image Quality Metrics

PSNR and SSIM were used as baselines for evaluating IQ in the reader study using implementations
described previously [21, 22].
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2.3.1 Out-of-Domain DFDs

We evaluate several DFDs used in natural domain IQ assessment [15] to serve as benchmarks for
the domain-specific DFDs proposed in this study. We refer to these DFDs as "out-of-domain" in
the sense that natural images belong to a different image domain than the MR images on which the
DFDs were computed and evaluated in the reader study. In addition to LPIPS, we use the Deep Image
Structure and Texture Similarity (DISTS) index [23]. DISTS uses the same ϕ

(l)
Dtr

as LPIPS, but with
a distance function G inspired by the form of SSIM that assesses texture and structure similarity of
the feature maps. Like LPIPS, DISTS combines DFDs from various layers l as a learned weighted
sum. Additional implementation details are provided in Appendix 6.2.1.

2.3.2 In-Domain DFD

We used SSFD [17] as an example "in-domain" DFD, as its encoder ϕ(l)
D is trained in a self-supervised

fashion on the same MR dataset D used to train the reader study DL reconstruction models. Details
on the self-supervised masking task [24, 25] and model training are given in Appendix 6.2.2.

2.3.3 Domain-Adjacent Feature Distances

We propose two additional DFDs in this study leveraging pre-existing DL models trained on large
medical imaging datasets. We refer to these as "domain-adjacent" DFDs since the medical imaging
datasets D are not limited to the fastMRI dataset used in the reader study reconstructions, and contain
medical images from modalities beyond MR.

We leverage the RadImageNet model [26], a ResNet50 pretrained on 1.4 million labeled medical
images (including 670,000 MRI images) trained in a supervised manner, to compute a RadImageNet
Feature Distance (RINFD). To disentangle the model architecture ϕ from the training data D, we
also compared to both a ResNet50 trained with ImageNet, and a ResNet50 with randomly initialized,
untrained weights. Additional RINFD implementation details are provided in Appendix 6.2.3.

We also propose a Medical Variational Autoencoder Feature Distance (Med-VAEFD) using a medical
variational autoencoder (Med-VAE) designed for neural compression trained on dataset D with 1
million radiograph and mammography images [27, 28]. Med-VAE is a convolutional VAE trained
with a combination of a perceptual loss, a patch-based adversarial objective, and a penalty based on
the Kullback-Leibler (KL) divergence [27, 28]. We use the VAE bottleneck latent embeddings (their
compressed representations) for ϕ(l)

Dtr
. Additional Med-VAEDF implementation details are provided

in Appendix 6.2.3.

3 Experimental Results and Discussion

All IQ metrics versus mean reader score SROCC values are shown in Figure 1. Reader score
versus IQ metric correlation plots for an example traditional IQ metric (PSNR), out-of-domain DFD
(LPIPS), in-domain DFD (SSFD) and domain-adjacent DFD (RINFD) are shown in Figure 2. All
DFDs substantially outperform traditional IQ metrics, and even approach or exceed human-level
performance in terms of inter-reader variability (SROCC of 0.85). More details on IRV can be found
in Appendix 6.4).

Interestingly, we find that out-of-domain DFDs perform comparably to in-domain and domain-
adjacent DFDs. In the fixed-encoder architecture case for example, training the ResNet50 encoder
with the out-of-domain ImageNet dataset (Aliasing SROCC 0.86, Cartilage/Meniscus SROCC 0.85)
performs comparably to training with the domain-adjacent RadImageNet dataset (Aliasing SROCC
0.85, Cartilage/Meniscus SROCC 0.83). This is a surprising finding considering the importance of
domain-specific pretraining in comparable transfer learning studies [26, 25]. One potential explanation
for this finding is that transfer learning benefits from task-specific pretraining for eventually solving
specific downstream tasks, while general vision encoders are strong enough feature extractors for
assessing visual IQ, regardless of the image domain.
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Figure 1: Mean reader score correlations to traditional and DFD IQ metrics based on encoder training
data domain D. Aliasing reader score SROCC values are shown on left with cartilage and meniscus
reader score SROCCs on the right. DFDs out-perform tradition IQ metrics and are comparable to
inter-reader variability (IRV), but out-of-domain DFDs perform comparably as an MR reconstruction
IQ metric to in-domain and domain-adjacent DFDs.

Figure 2: Example traditional (PSNR), out-of-domain (LPIPS), in-domain (SSFD) and domain-
adjacent (RINFD) IQ metric values versus mean reader scores for aliasing (top) and carti-
lage/mensiscus assessment (bottom). Each point corresponds to a single image taken from the
center slice from 61 MR reconstruction images, each with 2x (blue), 4x (black) and 6x (orange)
accelerations with a UNet (circle) and unrolled (X’s) networks. Higher reader score values correspond
to better radiologist perceived IQ.
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4 Conclusion

In this study, we explore the utility of DFDs as an improved IQ metric over pixel-vased metrics
for MR image reconstruction. We find that all DFDs out-perform traditional IQ metrics for MR
reconstruction in terms of correlation with the gold-standard radiologist perceived diagnostic IQ.
Remarkably, we find that DFDs perform as well or better than radiologist IRV. We also make the
surprising finding that DFDs perform comparably as an MR reconstruction IQ metric across all
encoder training dataset domains, indicating that general vision encoders are sufficient for visual IQ
assessment across image domains.
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6 Appendix

6.1 DL Reconstruction Models

All DL MR reconstruction models were trained in meddlr, a PyTorch based ML framework for
medical image reconstruction problems [22]. The DL reconstruction models for the reader study
were trained with a 54 image subset of the fastMRI training dataset described in Section 6.2.2. This
was to reduce computation costs of training reconstruction models as the aim of the reader study was
to generate a range of realistic image qualities, rather than achieve the best possible reconstructions
in each setting.

6.1.1 UNet

The UNet models were trained with complex inputs and outputs, 2 convolutions per layer and 4
levels with 32-256 quadratically increasing filters as per the fastMRI paper implementation [18].
Each model was trained for 129,000 iterations using the Adam optimizer with a learning rate of 1e-4,
weight decay of 1e-4, and a complex L1 image loss function.

6.1.2 Unrolled

The unrolled models follow the fast iterative shrinkage-thresholding algorithm (FISTA) unrolled
architecture [19] implemented in [2]. The network was unrolled for 8 steps, and a ResNet with two
residual blocks (2 convolutional layers and 128 filters each) was used to model the proximal update
operation at each step. Each model was trained for 129,000 iterations using the Adam optimizer with
a learning rate of 1e-4, weight decay of 1e-4, and a complex L1 k-space loss function.

6.2 DFD Implementation Details

All DFDs were implemented in meddlr [22].

6.2.1 Out-of-Domain DFDs

LPIPS and DISTS were both implemented in meddlr using their respective Python packages. For
both LPIPS and DISTS pre-processing, the magnitude of the complex MR reconstruction was taken,
followed by replicating the image 3x channel wise to create a pseudo-rgb image. The images were
then preprocessed to values between -1 and 1 for LPIPS and between 0 and 1 for DISTS, per their
respective Github documentations [11, 23]. Three configurations of LPIPS were tested - one with
a VGG-16 backbone, one with the AlexNet backbone, and third with the VGG-16 backbone but
without the linear layer fine-tuned on reader scores from the LPIPS study.

6.2.2 In-Domain DFD

The self-supervised model was trained using the full training dataset described in Section with a
masked inpainting pre-text task. Image corruptions for the context prediction task were generated
dynamically during training by placing zero-filled image patches of size 16x16 pixels over 50%
of the image area via Poisson variable density sampling (to ensure non-overlapping patches). A
self-supervised UNet model (with 2 convolutions per level and 5 levels with 20-320 quadratically
increasing filters) was trained to in-paint the zero-filled patches and restore the original image
subject to an L2 loss. Parameters were initialized based on a prior transfer learning study for knee
cartilage segmentation [25] and modified empirically to maximize SROCC. We use SSFD with the
7th convolutional layer for l and the MSE distance function for G, determined empirically.

8



6.2.3 Domain-Adjacent DFDs

RINFD uses a ResNet50 pretrained on the RIN dataset ϕ(l)
D , convolutional layer l = 23 (chosen

empirically), and the MSE distance function for G. The DFDs using ResNet50 models trained on
ImageNet and with randomly initialized, untrained weights use the same l and G as RINFD. Note
that these parameter choices maximized SROCC for all 3 choices of D. Images were preprocessed
by first taking the magnitude of the complex MR reconstruction, followed by replicating the image
3x channel wise to create a pseudo-rgb image, followed by normalization between 0 and 1 per the
RadImageNet Github documentation [26].

Med-VAEFD specifically uses the neural compressor with an in-plane compression factor of 8, and 4
latent channels from [28]. Images were pre-processed by first taking the magnitude of the complex
MR reconstruction, followed by replicating the image 3x channel wise to create a pseudo-rgb image.
Images were then normalized to 0.5 mean, 0.5 variance.

6.3 Reader Study MR Reconstruction Examples

Example images of each reconstruction type used in the reader study for a single MR slice along with
several IQ metrics and mean reader scores are shown in Figure 3.

Figure 3: Example of the six reconstruction techniques (left), and plots of their IQ metrics versus
mean radiologist IQ score (right). Reader scores decrease for higher accelerations (blue to orange)
and are higher for the unrolled (X) versus UNet (circle) generated images.

6.4 Inter-reader Variability

Per-reader inter-reader correlations are shown in Figure 4. The reader score of each reader is plotted
against the mean reader score of the other four readers for each image in the reader study. The mean
correlation across all readers is the inter-reader variability (IRV), an SROCC of 0.85.

9



Figure 4: Per-reader correlations with the mean of the withheld readers. The reader score of each
reader is plotted against the mean reader score of the other four readers for each image in the reader
study.
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