
Surprising Deviations from Bayesian View in
In-Context Learning

Madhur Panwar
Microsoft Research India

t-mpanwar@microsoft.com

Kabir Ahuja
University of Washington

kahuja@cs.washington.edu

Navin Goyal
Microsoft Research India
navingo@microsoft.com

Abstract

In-context learning (ICL) is one of the surprising and useful features of large
language models and subject of intense research. Recently, stylized meta-learning-
like ICL setups have been devised that train transformers on sequences of input-
output pairs (x, f(x)) using the language modeling loss. The function f comes
from a function class and generalization is checked by evaluation on sequences
for unseen functions from the same class. One of the main discoveries in this line
of research has been that for several function classes, such as linear regression,
transformers successfully generalize to new functions in the class. However, the
inductive biases of these models resulting in this behavior are not clearly understood.
A model with unlimited training data and compute is a Bayesian predictor: it learns
the pretraining distribution. In this paper we empirically examine how far this
Bayesian perspective can help us understand ICL. To this end, we generalize the
previous meta-ICL setup to hierarchical meta-ICL setup which involve unions
of multiple task families. We instantiate this setup on multiple function families
and find that transformers can do ICL in this setting as well. We make some
surprising observations: Transformers can learn to generalize to new function
classes that were not seen during pretraining. This requires pretraining on a
very small number of function classes and involves deviating from the Bayesian
predictor on the pretraining distribution. Further, we discover the phenomenon
of ‘forgetting’, where over the course of pretraining under hierarchical meta-ICL
setup, the transformer first generalizes to the full distribution of tasks and later
forgets it while fitting the pretraining distribution.

1 Introduction

In-context learning (ICL) is one of the major ingredients behind the astounding performance of large
language models (LLMs) Brown et al. [2020], Touvron et al. [2023]. Unlike traditional supervised
learning, ICL is the ability to learn new functions f without weight updates from input-output
examples (x, f(x)) provided as input at the test time; in other words, learning happens in context.
For instance, given the prompt up -> down, low -> high, small ->, a pretrained LLM will
likely produce output big: it apparently infers that the function in the two examples is the antonym
of the input and applies it on the new input. This behavior often extends to more sophisticated and
novel functions unlikely to have been seen during training and has been the subject of intense study,
e.g., Min et al. [2022b], Webson and Pavlick [2022], Min et al. [2022a], Liu et al. [2023], Dong et al.
[2023]. More broadly than its applications in NLP, ICL can also be viewed as providing a method for
meta-learning Hospedales et al. [2022] where the model learns to learn a class of functions.

Theoretical understanding of ICL is an active area of research. Since the real-world datasets used
for LLM training are difficult to model theoretically and are very large, ICL has also been studied
in stylized setups, e.g., Xie et al. [2022], Chan et al. [2022], Garg et al. [2022], Wang et al. [2023],

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Hahn and Goyal [2023]. These setups study different facets of ICL. In this paper, we focus on
the meta-learning-like framework of Garg et al. [2022]. Unlike in NLP where training is done on
documents for the next-token prediction task, here the training and test data look similar in the sense
that the training data consists of input of the form

(
x 1, f(x 1), . . . ,xk, f(xk),xk+1

)
and output is

f(xk+1), where x i ∈ Rd and are chosen i.i.d. from a distribution, and f : Rd → R is a function
from a family of functions, for example, linear functions or shallow neural networks. We call this
setup MICL. A striking discovery in Garg et al. [2022] was that for several function families,
transformer-based language models during pretraining learn to implicitly implement well-known
algorithms for learning those functions in context. For example, when shown 20 examples of the
form (x ,wTx), where x ,w ∈ R20, the model correctly outputs wT

testx test on test input x test (in
noiseless case). Apart from linear regression, they show that for sparse linear regression and shallow
neural networks the trained model appears to implement well-known algorithms; and for decision
trees, the trained model does better than baselines. Two follow-up works Akyürek et al. [2022] and
von Oswald et al. [2022] largely focused on the case of linear regression. Among other things, they
showed that transformers with one attention layer learn to implement one step of gradient descent on
the linear regression objective with further characterization of the higher number of layers.

Bayesian predictor. An ideal language model (LM) with unlimited training data and compute would
learn the pretraining distribution as that results in the smallest loss. Such an LM produces the output
by simply sampling from the pretraining distribution conditioned on the input prompt. Such an ideal
model is often called Bayesian predictor. Many works make the assumption that trained LMs are
Bayesian predictors, e.g. Saunshi et al. [2021], Xie et al. [2022], Wang et al. [2023]. Most relevant to
the present paper, Akyürek et al. [2022] show that in the MICL setup for linear regression, in the
underdetermined setting, namely when the number of examples is smaller than the dimension of the
input, the model learns to output the least L2-norm solution which is the Bayes-optimal prediction.
In this paper, we empirically examine how generally transformer LMs follow the Bayesian predictor
in the multi-task setting that we introduce.

Prior work has investigated related questions but we are not aware of any extensive empirical
verification. E.g., Xie et al. [2022] study a synthetic setup where the pretraining distribution is given
by a mixture of hidden Markov models and show that the prediction error of ICL approaches Bayes-
optimality as the number of in-context examples approach infinity. In contrast, we test the Bayesian
hypothesis for ICL over a wide class of function families and show evidence for equivalence with
Bayesian predictor at all prompt lengths. Also closely related, Müller et al. [2022], Hollmann et al.
[2023] train transformer models by sampling data from a prior distribution (Prior Fitted Networks),
so it could approximate the posterior predictive distribution at inference time. While these works
focus on training models to approximate posterior distributions for solving practical tasks (tabular
data), our objective is to understand how in-context learning works in transformers and to what extent
we can explain it as performing Bayesian Inference on the pre-training distribution.

Our contributions. In brief, our contributions are

1. A setup for studying ICL for multiple function families: First, we extend the MICL setup from
Garg et al. [2022] to include multiple families of functions. For example, the prompts could be
generated from a mixture of these families where the function f is formed from any of the function
families (with equal probability) defined by distinct sets of degree-2 monomials of the input. (This is
explained in detail in §3.) We call this extended setup HMICL. We experimentally study HMICL and
find that high-capacity transformer models can learn in context when given such task mixtures. (We
use the term “high-capacity” informally; more precisely, it means that for the task at hand there is a
sufficiently large model with the desired property.)

2. Generalization to new tasks not seen during training in HMICL: In HMICL setup, we study
generalization to new tasks that were not seen during pretraining. We find that when there’s sufficient
diversity of tasks in pretraining, transformers generalize to new tasks. Surprisingly, the necessary
task diversity required for this generalization is very small (e.g., for the Monomials problem that
we define, we observe that a pretraining distribution induced by only 100 distinct function classes is
sufficient for the transformer to generalize to the full distribution induced by all possible function
classes (which are about 310 in total). A similar study was made in the concurrent work of Raventós
et al. [2023] for the noisy linear regression problem within MICL.

3. Study of deviations from Bayesian prediction: Finally, we study deviations from the Bayesian
predictor in multitask generalization problems. We study the pretraining inductive bias and find

2

surprising behavior of transformers where they prefer to generalize to a large set of tasks early in
the pretraining and forget this generalization over the course of training, attempting to fit the
pretraining distribution.

2 Background
We first discuss the in-context learning setup for learning function classes as introduced in Garg et al.
[2022], which we call Meta-ICL or MICL. Let DX be a probability distribution on Rd. Let F be
a family of functions f : Rd → R and let DF be a distribution on F . For simplicity, we often use
f ∼ F to mean f ∼ DF . We overload the term function class to encompass both function definition
as well as priors on its parameters. (e.g., linear regression with a standard Gaussian prior and a sparse
prior will be considered different function classes based on our notation.)

To construct a prompt P =
(
x 1, f(x 1), · · · ,x p, f(x p),x p+1

)
of length p, we sample inputs x i ∼

DX i.i.d. for i ∈ {1, · · · p}. A transformer-based language model Mθ is trained to predict f(x p+1)

given P , using the objective: minθ Ef,x1:p

[
1

p+1

∑p
i=0 ℓ

(
Mθ(P

i), f(x i+1)
)]

, where P i denotes
the sub-prompt containing the first i input-output examples as well as the (i+ 1)-th input, i.e.(
x 1, f(x 1), · · · ,x i, f(x i),x i+1

)
and x 1:p = (x 1, . . . ,x p). While other choices of the loss function

ℓ
(
·, ·
)

are possible, since we study regression problems we use the squared-error loss (i.e., ℓ(y, y′) =
(y − y′)2) in accordance with Garg et al. [2022].

At test time, we present the model with prompts Ptest that were unseen during training with
high probability and compute the error when provided k in-context examples: loss@k =
Ef,Ptest

[
ℓ
(
Mθ(P

k), f(xk+1)
)]

, for k ∈ {1, · · · , p}.

PME. We mentioned earlier that an ideal model would learn the pretraining distribution. This
happens when using the cross-entropy loss. Since we use the square loss in the objective definition,
the predictions of the model can be computed using the posterior mean estimator (PME) from
Bayesian statistics. For each prompt length i we can compute PME by taking the corresponding
summand in objective definition above, which will be given by Mθ(P

i) = Ef

[
f(x i+1) |P i

]
for all

i ≤ p. This is the optimal solution for prompt P , which we refer to as PME. Please refer to §A.1 for
technical details behind this computation.

2.1 Hierarchical Meta-ICL
We generalize the MICL setup, where instead of training transformers from functions sampled from
a single function class, we sample them from a mixture of function classes. Formally, we define
a mixture of function classes using a set of m function classes F = {F1, · · · ,Fm} and sampling
probabilities α = [α1, · · ·αm]T with

∑m
i=1 αi = 1. We use α to sample a function class for

constructing the training prompt P . We assume the input distribution DX to be same for each class
FTi

. More concretely, the sampling process for P is defined as:

Fi ∼ F s.t. P(F = Fi) = αi

f ∼ Fi

x j ∼ DX ,∀j ∈ {1, · · · , p}
Finally, P =

(
x 1, f(x 1), · · ·x p, f(x p),x p+1

)
We call this setup Hierarchical Meta-ICL or HMICL, as there is an additional first step for sampling
the function class in the sampling procedure. Note that the MICL setup can be viewed as a special
case of HMICL where m = 1. In all of our experiments we use uniform mixtures i.e. αi = 1/|F|
for all i. The HMICL setting presents a more advanced scenario to validate whether the Bayesian
inference can be used to explain the behavior of in-context learning in transformers. Further, our
HMICL setup is also arguably closer to the in-context learning in practical LLMs which can realize
different classes of tasks (sentiment analysis, QA, summarization etc.) depending upon the inputs
provided. The PME for the hierarchical case is given by:

Mθ,F (P) = β1Mθ,F1(P) + . . .+ βmMθ,Fm(P), (1)

where βi = αipi(P)/pF (P) for i ≤ m. Probability density pi(·) is induced by the function class Fi

on the prompts in a natural way, and pF (P) = αipi(P) + · · ·+ αmpm(P). Please refer to §A.1 in
the Appendix for the derivation. The models are trained with the squared error loss mentioned above.

3

2.2 Model and training details

We use the decoder-only transformer (TF) architecture Vaswani et al. [2017] as used in the GPT
models Radford et al. [2019]. Unless specified otherwise, we use 12 layers, 8 heads, and a hidden
size (dh) of 256 in the architecture for all of our experiments. We use a batch size of 64 and train
the model for 500k steps. For encoding the inputs x i’s and f(x i)’s, we use the same scheme as
Garg et al. [2022] which uses a linear map E ∈ Rdh×d to embed the inputs x i’s as Ex i and f(x i)’s
as Efpad(x i), where fpad(x i) = [f(x i),0d−1]

T ∈ Rd. In all of our experiments except the ones
concerning the Fourier series, we choose DX as the standard normal distribution i.e. N (0, 1), unless
specified otherwise. For Fourier series experiments, we choose DX to be the uniform distribution
U(−5, 5).

3 Transformers exhibit multi-task generalization in ICL

As stated above, in this section we formulate ICL problems in our newly introduced HMICL setting
for the purposes of testing multi-task generalization to out-of-distribution prompts. We work with the
degree-2 monomials regression problem, Fmon(2)

S which is given by a function class where the basis
is formed by a feature set S, a subset of degree-2 monomials S ⊂ M = {(i, j)| 1 ≤ i, j ≤ d}. We
can then define the feature map ΦS(x) = (xixj)(i,j)∈S and f(x) = wTΦS(x) is a function of this
class, where w ∼ N|S|(0 , I). We compare the performance of TFs on this class with Ordinary Least
Squares (OLS) performed on the feature set S (OLSS) which is the Bayesian predictor (PME) in this
case. We find that the error curves of the TF trained and evaluated on this class follow OLSS baseline
closely for all prompt lengths, on both in- and out-of-distribution evaluation. Note that the above
formulation is under the MICL setting, where we only have a single function class corresponding
to the feature set S. (The results for this MICL setting are present in §B.2.1 in Appendix, since our
focus is HMICL.)

Extending to HMICL setting. For HMICL, we use multiple feature sets Sk’s to define the mixture.
Each Sk defines a function class Fmon(2)

Sk
. The pretraining distribution is induced by the uniform

distribution U(F) over a collection of such function classes, F = {Fmon(2)
S1

, · · · ,Fmon(2)
SK

}, where
Sk ⊂ M . K feature sets Sk’s, each of size D, are chosen at the start of the training and remain fixed.
K is the task diversity of the pretraining distribution. To sample a training function for the TF, we
first sample a function class Fmon(2)

Sk
with replacement from U(F) and then sample a function from

the chosen class; f(x) = wTSk(x), where w ∼ ND(0 , I). Our aim is to check if TF trained on
U(F) can generalize to the full distribution of all function classes (for feature sets of size D) by
evaluating its performance on function classes corresponding to feature sets S ′ /∈ {S1, · · · ,SK}.

Experimental Setup. We choose D = d = 10, p = 124. Note that the total number of degree-2
monomials = Mtot =

(
d
2

)
+
(
d
1

)
= 45 + 10 = 55; and the total number of distinct feature sets Sk’s

(and hence function classes), Ftot =
(
Mtot

D

)
=

(
55
10

)
≈ 310. We train various models for different task

diversities; K ∈ {10, 20, 40, 100, 500, 1000, 5000}. We evaluate on a batch of B = 1280 functions
in two settings: (a) In-Distribution (ID) – test functions formed using randomly chosen function
classes from the pretraining distribution; (b) Out-of-Distribution (OOD) – Test functions formed
using randomly chosen function classes not in the pretraining distribution.

Baselines. We compare the performance of multi-task transformer models with the following
baselines: 1. OLSS : Here, we perform OLS on the basis formed by the gold feature set S , which was
used to define the function in the prompt that we wish to evaluate. This will correspond to an upper
bound on the performance as at test time the transformer model has no information about the correct
basis. 2. OLSΦM

: Here, OLS is performed on the basis formed by all degree-2 monomials ΦM (x)
for an input x . Hence, this baseline can generalize to any of the feature set S. However, since all
degree-2 monomial features are considered by this baseline, it would require a higher number of
input-output examples (equal to Mtot) for the problem to be fully determined. 3. LassoΦM

: Similar
to OLSΦM

, we operate on all degree-2 monomial features, but instead of OLS we perform Lasso
with α = 0.1. It should also generalize to arbitrary feature sets S , however, Lasso can take advantage
of the fact that |S| = D ≪ Mtot; hence should be more efficient than OLSΦM

. 4. (BPproxy): This
is the TF trained on the full distribution induced by all possible function families. We use it as a
proxy for the Bayesian predictor on the full distribution since the computation of the exact predictor
is expensive in this setting.

4

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 10, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 10, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 100, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 100, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

Figure 1: Multi-task generalization results for Monomials problem. ID and OOD evaluation for
K = 10, 100 is presented. As task diversity (K) increases, the model starts behaving like LassoΦM

and BPproxy and its ID and OOD losses become almost identical, i.e. it generalizes to OOD.

22 24 26 28 210 212

Pretraining Tasks

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

/d

OOD Evaluation
MICL TF
Ridge
dMMSE

Figure 2: Left: Evolution of ID (solid lines) and OOD (dashed lines) losses during pretraining for
representative task diversities. Task diversities {27 · · · 211} represent the Gaussian forgetting region.
The moving average (over 10 training steps) of the losses is plotted for smoothing. Right: OOD
loss given the full prompt length of 15 for the final checkpoint of models trained on various task
diversities. Task diversities {27 · · · 211} represent the transition region.

Results. From the plots in Figure 1, we observe that while for small values of K (viz. K = 10), the
OOD generalization is poor, as we move to higher values of K (viz. K = 100), the models start to
approach the performance of OLSΦM

and eventually LassoΦM
on unseen S ′s. Further, they also start

behaving like BPproxy. This is surprising since 100 ≪ Ftot = 310, i.e. TFs can perform multi-task
generalization even when they are trained only on a sample of the full distribution corresponding to a
small number of function classes! However, this improvement in OOD performance comes at the
cost of ID performance as task diversity (K) increases. Eventually, at larger K, both ID and OOD
performances are identical. These observations are particularly interesting since the models learn to
generalize to function classes out of the pre-training distribution and hence deviate from the Bayesian
predictor of the pretraining distribution which would lack such generalization and fit the pre-training
distribution instead. Plots for more task diversities are in §C.1. We observe similar results for another
family of function classes coming from Fourier series (details of these are in Appendix §C.2).

In a concurrent work Raventós et al. [2023] also present a multi-task setting within MICL where a set
of weight vectors define the pretraining distribution for the Noisy Linear Regression problem. Since
we work with HMICL, our setting is more general; moreover, generalization to new function classes
in our setting happens in a similar way as generalization to new tasks in Raventós et al. [2023]. They
emphasized deviation from the Bayesian predictor. What leads to these deviations? To understand
this, in the next section we study pretraining inductive bias of transformers.

4 ICL Transformer first generalizes then memorizes during pretraining

In the previous section we observed deviations from the Bayesian predictor in multitask generalization.
To investigate this we study the pretraining dynamics of transformers. We observe a very interesting
phenomenon (which we term "forgetting") from multi-task experiments: For certain task diversities,
during pretraining, HMICL Transformer first generalizes (fits the full distribution) and later forgets it
and memorizes (fits the pretraining distribution).

The ‘forgetting’ phenomenon is general and occurs in our HMICL experiments in §3. However, here
we focus on the the Noisy Linear Regression problem from Raventós et al. [2023] since forgetting
is the cleanest in this setting. We briefly mention the problem setup and display the evidence for

5

forgetting during pretraining, followed by its relation to the agreement of HMICL Transformer with
the Bayesian predictors on the pretraining and full distributions.

Problem Setup. We follow the Noisy Linear Regression (NLR) setup from Raventós et al. [2023]:
d = 8, p = 15. (For details, see §C.3.) The pretraining distribution (PTdist.) is induced by the uniform
distribution on a fixed set of tasks (weight vectors). Several models are trained, one per task diversity
K ∈ {21, 22, · · · 220}. The full distribution of weight vectors is standard normal. (Hence we use
the term “Gaussian distribution” to refer to the full distribution (FGdist.).) To form a function f
for training, we randomly choose a weight vector w from the pretraining distribution and define
f(x) = wTx + ϵ, where ϵ ∼ Nd(0, σ

2 = 0.25).

Evidence of forgetting and agreement with Bayesian predictors. As we did in §3, we evaluate
TF on tasks from both in- and out-of-pretraining distribution, where the tasks used to construct the
test function come from pretraining distribution or the standard Gaussian distribution respectively;
corresponding losses are called ID (Pretrain test) loss and OOD (Gaussian) loss. We also plot the
Bayesian predictors for both pretraining (dMMSE) and full (Gaussian) distribution (Ridge regression)
as defined in Raventós et al. [2023]. In Figure 2 (left) we plot the evolution during pretraining of
ID and OOD losses for representative task diversities (more details in §C.3) ID loss ≈ 0 for all task
diversities. We group them into the following 4 categories based on OOD loss and describe the most
interesting one in detail (full classification in §C.3): (1) 21 to 23: no generalization; no forgetting;
(2) 24 to 26: some generalization; no forgetting; (3) 27 to 211: full generalization and forgetting –
OOD loss improves, reaches a minima tmin, at which it is same as ID loss, then it worsens. At tmin,
OOD loss agrees with Ridge, then gradually deviates from it and at tend (end of pretraining), it is in
between dMMSE and Ridge. We refer to this group of task diversities as the “Gaussian forgetting
region” since the model generalizes to the full (Gaussian) distribution over tasks at tmin but forgets it
by tend; (4) 212 to 220: full generalization; no forgetting.

The agreement of TF in OOD evaluation with Ridge or dMMSE (in terms of loss and implied weights)
as mentioned above is shown in §C.3. Figure 2 (right) plots the OOD loss given the full prompt
length of 15 for the final checkpoint of models trained for various task diversities. As can be seen,
smaller task diversities (up to 26) agree with dMMSE (Bayesian predictor on PTdist.), and larger task
diversities (from 212 onwards) agree with Ridge regression (Bayesian predictor on FGdist.). (This
observation was originally made by Raventós et al. [2023] and we present it for completeness.)
Intermediate task diversities (27 to 211) agree with neither of the two and we term them collectively
as the transition region. We note that both the Gaussian forgetting region and the transition
region consist of the same set of task diversities viz. {27, · · · 211}. The phenomenon of forgetting
provides an interesting contrast to grokking literature, e.g. Nanda et al. [2023], where they find that
the model first memorizes and then generalizes (which, on the surface, is the opposite of what we
observe). The extent of forgetting is directly proportional to the input dimension (d) and is robust to
changes in hyperparameters (details, in section §C.3).

Simplicity bias. Simplicity bias is the tendency of machine learning algorithms to prefer simpler
hypotheses among those consistent with the data, which has been suggested as the basis of the success
of neural networks. There are many notions of simplicity [Mingard et al., 2023, Goldblum et al.,
2023]. The phenomenon of forgetting can possibly be explained via the perspective of simplicity
bias. (details, in section §C.3)

5 Conclusion

In this paper, we extended the MICL setting from the literature to HMICL setting and empirically
showed that it gives rise to interesting and surprising observations depicting deviation from Bayesian
inference on the pretraining distribution. In particular, for the multi-task setting we identified
how transformers generalize to new tasks, deviating from Bayesian predictor on the pretraining
distribution. We also observed that transformers have a pretraining inductive bias in HMICL that
leads to generalization on the full distribution followed by memorization of the pretraining distribution.
There are many interesting directions for future work. Much more remains to be done to determine
how extensively transformers mimic the Bayesian predictor. The intriguing forgetting phenomenon
needs to be better understood. How is it related to pretraining simplicity bias? Finally, we treated
transformers as black boxes: opening the box and uncovering the underlying mechanisms transformers
use to do Bayesian prediction would be very interesting.

6

References
Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning

algorithm is in-context learning? investigations with linear models. CoRR, abs/2211.15661, 2022.
doi: 10.48550/arXiv.2211.15661. URL https://doi.org/10.48550/arXiv.2211.15661.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Stephanie C. Y. Chan, Ishita Dasgupta, Junkyung Kim, Dharshan Kumaran, Andrew K. Lampinen,
and Felix Hill. Transformers generalize differently from information stored in context vs in weights.
CoRR, abs/2210.05675, 2022. doi: 10.48550/arXiv.2210.05675. URL https://doi.org/10.
48550/arXiv.2210.05675.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei
Li, and Zhifang Sui. A survey on in-context learning, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can trans-
formers learn in-context? a case study of simple function classes. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 30583–30598. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf.

Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The no free lunch
theorem, kolmogorov complexity, and the role of inductive biases in machine learning. CoRR,
abs/2304.05366, 2023. doi: 10.48550/arXiv.2304.05366. URL https://doi.org/10.48550/
arXiv.2304.05366.

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. CoRR, abs/2303.07971, 2023. doi: 10.48550/arXiv.2303.07971. URL https://doi.
org/10.48550/arXiv.2303.07971.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
cp5PvcI6w8_.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(09):5149–5169, sep 2022.
ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3079209.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Comput. Surv., 55(9):195:1–195:35, 2023. doi: 10.1145/3560815. URL
https://doi.org/10.1145/3560815.

7

https://doi.org/10.48550/arXiv.2211.15661
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2210.05675
https://doi.org/10.48550/arXiv.2210.05675
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2304.05366
https://doi.org/10.48550/arXiv.2304.05366
https://doi.org/10.48550/arXiv.2303.07971
https://doi.org/10.48550/arXiv.2303.07971
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3560815

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn in
context. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2791–2809, Seattle, United
States, July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
201. URL https://aclanthology.org/2022.naacl-main.201.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages
11048–11064, Abu Dhabi, United Arab Emirates, December 2022b. Association for Computational
Linguistics. URL https://aclanthology.org/2022.emnlp-main.759.

Chris Mingard, Henry Rees, Guillermo Valle Pérez, and Ard A. Louis. Do deep neural networks have
an inbuilt occam’s razor? CoRR, abs/2304.06670, 2023. doi: 10.48550/arXiv.2304.06670. URL
https://doi.org/10.48550/arXiv.2304.06670.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=KSugKcbNf9.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. https: // d4mucfpksywv. cloudfront. net/
better-language-models/ language-models. pdf , 1(8):9, 2019.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression, 2023.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why language
models help solve downstream tasks. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://
openreview.net/forum?id=vVjIW3sEc1s.

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
2022.

8

https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.emnlp-main.759
https://doi.org/10.48550/arXiv.2304.06670
https://openreview.net/forum?id=KSugKcbNf9
https://openreview.net/forum?id=9XFSbDPmdW
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://openreview.net/forum?id=vVjIW3sEc1s
https://openreview.net/forum?id=vVjIW3sEc1s
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic mod-
els: Explaining and finding good demonstrations for in-context learning. CoRR, abs/2301.11916,
2023. doi: 10.48550/arXiv.2301.11916. URL https://doi.org/10.48550/arXiv.2301.
11916.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2300–2344, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
167. URL https://aclanthology.org/2022.naacl-main.167.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations, pages 38–45, Online, October
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL
https://aclanthology.org/2020.emnlp-demos.6.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=RdJVFCHjUMI.

9

https://doi.org/10.48550/arXiv.2301.11916
https://doi.org/10.48550/arXiv.2301.11916
https://aclanthology.org/2022.naacl-main.167
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=RdJVFCHjUMI

Contents

1 Introduction 1

2 Background 3

2.1 Hierarchical Meta-ICL . 3

2.2 Model and training details . 4

3 Transformers exhibit multi-task generalization in ICL 4

4 ICL Transformer first generalizes then memorizes during pretraining 5

5 Conclusion 6

A Technical Details 10

A.1 PME Theoretical Details . 10

A.2 Experimental Setup . 11

B MICL Experiments 12

B.1 Dense Regression (FDR). 12

B.2 Experiments with non-linear function classes . 12

B.2.1 Degree-2 Monomial Basis Regression . 12

B.2.2 Fourier Series . 14

C Details regarding Multi-task generalization experiments 18

C.1 Monomials Multi-task . 18

C.2 Fourier Series Multi-task . 18

C.3 Details on the phenomenon of forgetting . 18

A Technical Details

A.1 PME Theoretical Details

We mentioned earlier that an ideal LM would learn the pretraining distribution. This happens when
using the cross-entropy loss. Since we use the square loss in the ICL training objective, the predictions
of the model can be computed using the posterior mean estimator (PME) from Bayesian statistics.
For each prompt length i we can compute PME by taking the corresponding summand in the ICL
training objective

min
θ

Ef,x1:i ℓ
(
Mθ(P

i), f(x i+1)
)
= min

θ
Ef,P i ℓ

(
Mθ(P

i), f(x i+1)
)

= min
θ

EP i Ef

[
ℓ
(
Mθ(P

i), f(x i+1)
)
|P i

]
= EP i min

θ
Ef

[
ℓ
(
Mθ(P

i), f(x i+1)
)
|P i

]
.

The inner minimization is seen to be achieved by Mθ(P
i) = Ef

[
f(x i+1) |P i

]
. This is the optimal

solution for prompt P i and what we refer to as PME.

PME for a task mixture. We describe the PME for a mixture of function classes. For simplicity we
confine ourselves to mixtures of two function classes; extension to more function classes is analogous.

10

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k Bound

Dense Regression ICL

Transformer

OLS

Ridge (0.01)

(a)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Dense Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wRidge)

(b)

Figure 3: Results on the Dense Regression (FDR) function class.

Let F1 and F2 be two function classes specified by probability distributions DF1
and DF2

, resp.
As in the single function class case, the inputs x are chosen i.i.d. from a common distribution DX .
For α1, α2 ∈ [0, 1] with α1 + α2 = 1, an (α1, α2)-mixture F of F1 and F2 is the meta-task in
which the prompt P =

(
x 1, f(x i), · · · ,x p, f(x p),x p+1

)
is constructed by first picking task Fi

with probability αi for i ∈ {1, 2} and then picking f ∼ DFi
. Thus pF (f) = α1pF1

(f) + α2pF2
(f),

where pF (·) is the probability density under function class F which defines DF . For conciseness in
the following we use p1(·) for pF1

(·) etc. Now recall that PME for function class F is given by

Mθ,F (P) = Ef∼DF [f(x p+1) |P] =

∫
pF (f |P) f(x) df. (2)

We would like to compute this in terms of PMEs for F1 and F2. To this end, we first compute

pF (f |P) =
pF (P |f)pF (f)

pF (P)
=

p(P |f)pF (f)

pF (P)
=

p(P |f)
pF (P)

[
α1p1(f) + α2p2(f)

]
=

α1p1(P)

pF (P)

p(P |f)p1(f)
p1(P)

+
α2p2(P)

pF (P)

p(P |f)p2(f)
p2(P)

=
α1p1(P)

pF (P)
p1(f |P) +

α2p2(P)

pF (P)
p2(f |P)

= β1 p1(f |P) + β2 p2(f |P),

where β1 = α1p1(P)
pF (P) and β2 = α2p2(P)

pF (P) . Plugging this in equation 2 we get

Mθ,F (P) = β1

∫
p1(f |P) f(x) df + β2

∫
p2(f |P) f(x) df = β1Mθ,F1(P) + β2Mθ,F2(P).

(3)

A.2 Experimental Setup

We use Adam optimizer Kingma and Ba [2015] to train our models. Our experiments were conducted
on a system comprising 32 NVIDIA V100 16GB GPUs. The cumulative training time of all models
for this project was ∼ 15,000 GPU hours. While reporting the results, the error is averaged over 1280
prompts and shaded regions denote a 90% confidence interval over 1000 bootstrap trials.

We adapt Garg et al. [2022] code-base for our experiments. We use PytorchPaszke et al. [2019] and
Huggingface TransformersWolf et al. [2020] libraries to implement the model architecture and training
procedure. For the baselines against which we compare transformers, we use scikit-learn’s 1

implementation of OLS, Ridge and Lasso.

1https://scikit-learn.org/stable/index.html

11

B MICL Experiments

B.1 Dense Regression (FDR).

This represents the simplest case of linear regression as studied in Garg et al. [2022], Akyürek et al.
[2022], von Oswald et al. [2022], where the prior on w is the standard Gaussian i.e. w ∼ N (0d, I).
We are particularly interested in the underdetermined region i.e. k < d. Gaussian prior enables
explicit PME computation: both PME and maximum a posteriori (MAP) solution agree and are equal
to the minimum L2-norm solution of the equations forming the in-context examples, i.e. minw ∥w∥2
s.t. wTx i = f(x i),∀i ≤ k. Standard Ordinary Least Squares (OLS) solver returns the minimum
L2-norm solution, and is thus the PME and MAP.

Experimental Details. We train transformer-based model with d = 20 and p = 40. Additionally,
we also extract the implied weights wprobe from the trained models when given a prompt P following
Akyürek et al. [2022] by generating model’s predictions {y′i} on the test inputs {x ′

i}2di=1 ∼ DX and
then solving the system of equations to recover wprobe. We then compare the implied weights wprobe

with the ground truth weights w as well as the weights extracted from different baselines to better
understand the inductive biases exhibited by these models during in-context learning.

Results. The results for dense regression have been already covered in Akyürek et al. [2022] and
for completeness, we provide them in Figure 3. We observe that Transformer follows the Bayesian
predictor OLS, i.e. the Transformer’s loss as well as implied weights agree with those found by OLS.

B.2 Experiments with non-linear function classes

For multi-task generalization, we experiment with non-linear function classes, i.e. where the output
f(x) is a non-linear function of the input x . Particularly, we consider the function classes of the form
FΦ =

{
f(·; Φ)|f(x ; Φ) = wTΦ(x),w ∈ R∆

}
, where Φ : Rd → R∆ maps the input vector x to an

alternate feature representation. This corresponds to learning the mapping Φ(x) and then performing
linear regression on top of it. Under the assumption of a standard Gaussian prior on w , the PME
for the dense regression can be easily extended for FΦ: minw ∥w∥2, s.t. wTΦ(x i) = f(x i) for
i ∈ {1, · · · , p}.

B.2.1 Degree-2 Monomial Basis Regression

We define degree-2 monomials regression problem, Fmon(2)
S which is given by a function class where

the basis is formed by a feature set S , a subset of degree-2 monomials S ⊂ M = {(i, j)| 1 ≤ i, j ≤
d}. We can then define the feature map ΦS(x) = (xixj)(i,j)∈S and f(x) = wTΦS(x) is a function
of this class, where w ∼ N|S|(0 , I). We compare the performance of TFs on this class with OLS
performed on the feature set S (OLSS) which is the Bayesian predictor (PME) in this case. We find
that the error curves of the TF trained and evaluated on this class follow OLSS baseline closely for
all prompt lengths, on both in- and out-of-distribution evaluation. Note that the above formulation is
under the MICL setting, where we only have a single function class corresponding to the feature set
S. We experiment with d = 20, with the prompt length p = 290 and |S| = 20.

Baselines. We use OLS fitted to the following bases as baselines: feature set S (OLSS), all degree-2
monomials i.e., ΦM (OLSΦM

), and to a basis of all polynomial features up to degree-2 (OLSpoly.(2)).
We also compare Lasso (α = 0.01) fitted to all degree-2 monomials i.e., ΦM (LassoΦM

) as a baseline.

Results. In Figure 4, we show the In-Distribution (ID) evaluation results for the Fmon(2)
S experiments.

Here, the test prompts contain functions formed by S (the same feature set used during training). We
observe that Transformers closely follow OLSS . The increasing order of performance (decreasing
loss@k for k ≥ |S|) of different solvers is: OLSpoly.(2) ≤ OLSΦM

< LassoΦM
< Transformers <

OLSS . Transformer’s squared error takes a little longer than OLSS to converge. LassoΦM
is able to

take the advantage of sparsity of the problem and is hence better than both OLSΦM
and OLSpoly.(2),

which respectively converge at k = 210 and k = 2312. We also conduct an Out-of-Distribution

2210 and 231 are the sizes of the bases to which OLSΦM and OLSpoly.(2) are fitted. Hence, they converge
right when the problem becomes determined in their respective bases.

12

0 50 100 150 200 250 300
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Transformer

OLSΦM

OLSS
OLSpoly.(2)

LassoΦM

Figure 4: In-Distribution evaluation results on Fmon(2)
S sub-family of degree-2 monomial basis

regression. Evaluation of transformer on prompts generated using the same S used during training.

0 50 100 150 200 250 300
k

(# in-context examples)

0

50

100

150

200

250

300

l
o
s
s
@
k

|S ′ − S| = 1

Transformer

OLSS
OLSS ′

(a)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 1

Transformer

OLSS
OLSS ′

(b)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 2

Transformer

OLSS
OLSS ′

(c)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 3

Transformer

OLSS
OLSS ′

(d)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 4

Transformer

OLSS
OLSS ′

(e)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 5

Transformer

OLSS
OLSS ′

(f)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

l
o
s
s
@
k

|S ′ − S| = 10

Transformer

OLSS
OLSS ′

(g)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

l
o
s
s
@
k

|S ′ − S| = 15

Transformer

OLSS
OLSS ′

(h)

0 50 100 150 200 250 300
k

(# in-context examples)

0

1

2

3

4

l
o
s
s
@
k

|S ′ − S| = 20 = |S| = |S ′|
Transformer

OLSS
OLSS ′

(i)

Figure 5: Out-of-Distribution evaluation results on Fmon(2)
S sub-family of degree-2 monomial

basis regression. Evaluation of transformer trained on prompts generated using S ′, where S ′ contains
n degree-2 monomials not present in S that was used during training. We show results for different
values of n.

13

(OOD) evaluation for Fmon(2)
S , whose results are shown in Figure 5. Here, we generate prompts from a

feature set S ′ ⊂ ΦM of the same size as S but differing from S in n degree-2 terms, i.e. |S ′−S| = n.
We show the results for different values of n. Figure 5a shows the OLSS undergoes a steep rise
in errors momentarily at k = |S| (double descent). Figure 5b zooms into the lower error region
of Figure 5a where we notice that Transformer mimics OLSS , while OLSS′ is the best-performing
baseline (since it fits to the S ′ basis used to construct the prompts). Transformer does not undergo
double descent (for n = 1) and is hence momentarily better than OLSS at k = |S|. Similar plots
are shown for n ∈ {2, 3, 4, 5, 10, 15, 20}. As n increases, the height of OLSS peak increases and
the Transformer also starts to have a rise in errors at k = |S|. For n = 20, S ′ and S have nothing
in common, and Transformer still follows OLSS (OLS fitted to the training basis S). As mentioned
under §B.2, when the prior on weights w is Gaussian, the PME is the minimum L2-norm solution.
For Fmon(2)

S , that solution is given by OLSS . Therefore, the results suggest that the transformer is
computing PME. In summary, transformers closely follow OLSS in this set-up, and more so on the
OOD data, where they even surpass OLSS ’s performance when it experiences double descent.

B.2.2 Fourier Series

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. One
can represent the Fourier series using the sine-cosine form given by:

f(x) = a0 +

N∑
n=1

an cos (nπx/L) +

N∑
n=1

bn sin (nπx/L)

where, x ∈ [−L,L], and a0, an’s and bn’s are known as Fourier coefficients and
cosnπ/L and sinnπ/L define the frequency n components. We can define the func-
tion class F fourier

ΦN
by considering Φ as the Fourier feature map i.e. ΦN (x) =

[1, cos (πx/L), · · · , cos (Nπx/L), sin (πx/L), · · · , sin (Nπx/L)]T , and w as Fourier coefficients:
w = [a0, a1, · · · , aN , b1, · · · , bN]. Hence, ΦN (x) ∈ Rd and w ∈ Rd, where d = 2N + 1.

For training transformers to in-context-learn F fourier
ΦN

, we fix a value of N and sample functions f ∈
F fourier

ΦN
by sampling the Fourier coefficients from the standard normal distribution i.e. w ∼ N (0d, I).

(Since we only have a single function class, viz. F fourier
ΦN

, this is the MICL setting.) We consider the
inputs to be scalars, i.e. xi ∈ [−L,L] and we sample them i.i.d. from the uniform distribution on the
domain: xi ∼ U(−L,L). In all of our experiments, we consider N = 10 and L = 5. At test time we
evaluate on F fourier

ΦM
for M ∈ [1, 10], i.e. during evaluation we also prompt the model with functions

with different maximum frequency as seen during training. As a baseline, we use OLS on the Fourier
features (denoted as OLS Fourier Basis) which is the PME.

Measuring inductive biases. Once we train a transformer-based model to in-context learn F fourier
ΦN

,
how can we investigate the inductive biases that the model learns to solve the problem? We would like
to answer questions such as, when prompted with k input-output examples what are the prominent
frequencies in the function simulated by the model, or, how do these exhibited frequencies change
as we change the value of k? We start by sampling in-context examples (x1, f(x1), · · ·xk, f(xk)),
and given the context obtain the model’s predictions on a set of m test inputs {x′

i}mi=1, i.e. y′i =
Mθ

((
x1, f(x1), · · ·xk, f(xk), x

′
i

))
. We can then perform Discrete Fourier Transform (DFT) on

{y′1, · · · , y′m} to obtain the Fourier coefficients of the function output by M , which we can analyze
to understand the dominant frequencies.

Results. The results of our experiments concerning the Fourier series are provided in Figure 6.
Transformers obtain loss@k values close to the OLS Fourier Basis baseline (Figure 6a) indicating at
least for the smaller prompt lengths the model is able to simulate the behavior of the ideal predictor
(PME). These plots use 12-layer transformers to obtain results, but we also investigate if bigger
models help. Figure 7 plots bigger models with 18 and 21 layers where the agreement with PME is
much better. Since the inputs xi, in this case, are scalars, we can visualize the functions learned in
context by transformers. We show one such example for a randomly selected function f ∼ F fourier

ΦM

for prompting the model in Figure 6b. As can be observed, the functions predicted by both the
transformer and baseline have a close alignment, and both approach the ground truth function f as
more examples are provided. Finally, we visualize the distribution of the frequencies for the predicted
functions in Figure 6c. For a value of M , we sample 10 different functions and provide k in-context

14

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

l
o
s
s
@
k

Fourier ICL
M = 10

Transformer

OLS Fourier Basis

(a)

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 21

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

Function Predicted M = 10 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

(b)

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 21

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 21

Inductive Biases M = 4

(c)

Figure 6: Effectiveness of ICL in transformers for Fourier series family of functions. Top left:
loss@k values for transformer and OLS Fourier Basis baseline. Top Right: Visualizing the functions
simulated by the transformer and the OLS Fourier Basis. Bottom: Measuring the frequencies of the
simulated function by the transformer and the baseline.

examples to the model to extract the frequencies of the predicted functions using the DFT method. As
can be observed, when provided with fewer in-context examples (k = 2) both Transformer and the
baseline predict functions with all the 10 frequencies (indicated by the values of a2n + b2n in a similar
range for n ∈ [1, 10]), but as more examples are provided they begin to recognize the gold maximum
frequency (i.e. M = 4). The function visualizations for the transformer and Fourier OLS baseline for
different combinations of M and k are provided in Figure 9. We have observations consistent with
Figure 6b, where the function outputs of the transformer and the baseline align closely. Similarly, in
Figure 8, we present the distribution of frequencies in the predicted functions for the two methods
and again observe consistent findings. This suggests that the transformers are following the Bayesian
predictor - OLS Fourier Basis.

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

l
o
s
s
@
k

Fourier ICL
M = 10

TF (L = 12, E = 256; Figure 2a)

TF (L = 18, E = 384)

TF (L = 21, E = 512)

OLS Fourier Basis

Figure 7: Bigger models achieve better results on the Fourier Series task. Plotting the squared
error (averaged over 1280 prompts) for bigger transformer (TF) models trained for 500k steps on the
Fourier Series task. Training setup is the same as used for the model plotted in Figure 2a (Section
3.2.1), which is also plotted here for comparison. L and E denote the number of layers and embedding
size for TF models respectively.

15

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 1

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

0.15

0.20
a

2 n
+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 3

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 4

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 5

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4
a

2 n
+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 6

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 7

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 8

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 9

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

0.15

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4
a

2 n
+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 10

Figure 8: Measuring the frequencies of the simulated function by the transformer and the baseline for
different values of M (maximum frequency) and k (number of in-context examples)

Table 1: Multi-task generalization results for Monomials problem. The first row is ID evaluation,
second row is OOD evaluation. As task diversity (K) increases, the model starts behaving like
LassoΦM

and BPproxy, and its ID and OOD losses become almost identical, i.e. it generalizes to OOD.

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 10, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 40, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 500, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 5000, ID Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 10, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 40, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 500, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

0 20 40 60 80 100 120
k (# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

lo
ss

@
k

K = 5000, OOD Evaluation
HMICL TF
OLS
OLS M

Lasso M

BPproxy

16

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 1.0

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 2

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 6

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 10

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 14

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 18

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 22

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 26

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 30

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 34

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 38

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 40

M = 1 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 2 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 1.0

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 2

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 6

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 10

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 14

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 18

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 22

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 26

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 30

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 34

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 38

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 40

M = 3 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 1.0

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 2

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 6

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)
k = 10

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 14

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 18

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 22

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 26

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 30

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 34

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 38

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 40

M = 4 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 5 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 6 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 1.0

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 2

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 6

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 10

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 14

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 18

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 22

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 26

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 30

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 34

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 38

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 40

M = 7 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 8 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 34

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 38

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

M = 9 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 34

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 38

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

M = 10 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

Figure 9: Visualizing the functions simulated by the transformer and the OLS Fourier Basis, for
different values of M (maximum frequency) and k (number of in-context examples)

Table 2: Multi-task generalization results for Fourier Series problem. The first row is ID
evaluation, second row is OOD evaluation. As task diversity (K) increases, the model starts behaving
like LassoΦN

and BPproxy, and its ID and OOD losses become almost identical, i.e. it generalizes to
OOD.

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 1, ID Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 10, ID Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 100, ID Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 1140, ID Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 1, OOD Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 10, OOD Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 100, OOD Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

0 20 40 60 80
k (# in-context examples)

0.0

0.5

1.0

1.5

2.0

lo
ss

@
k

K = 1140, OOD Evaluation
HMICL TF
OLS
OLS N

Lasso N

BPproxy

17

C Details regarding Multi-task generalization experiments

C.1 Monomials Multi-task

Plots for various task diversities that we experiment with are shown in Table 1.

C.2 Fourier Series Multi-task

Fourier Series problem – MICL setting. Please refer to the setup defined in §B.2.2, which comes
under the MICL setting as it corresponds to a single function class, F fourier

ΦN
.

Extending Fourier Series problem to HMICL setting. For extension to HMICL, we use multiple
subsets of frequencies Sk’s to define the mixture. Each Sk defines a function class F fourier

Sk
. The

pretraining distribution is induced by the uniform distribution U(F) over a collection of such function
classes, F = {F fourier

S1
, · · · ,F fourier

SK
}, where Sk ⊂ ΦN (x), the full basis. For example, Sk could

be [1, cos (2πx/L), cos (6πx/L), cos (9πx/L), sin (2πx/L), sin (6πx/L), sin (9πx/L)]T , consist-
ing of sine and cosine frequencies corresponding to integers 2, 6 and 9. (Note that 1, the intercept
term, is a part of every Sk). K feature sets Sk’s, each of size D, are chosen at the start of the
training and remain fixed. K is the task diversity of the pretraining distribution. To sample a training
function for the TF, we first sample a function class F fourier

Sk
with replacement from U(F) and then

sample a function from the chosen class; f(x) = wTSk(x), where w ∼ ND(0 , I). Similar to the
Monomials problem, our aim is to check if TF trained on U(F) can generalize to the full distribution
of all function classes (for feature sets of size D) by evaluating its performance on function classes
corresponding to feature sets S ′ /∈ {S1, · · · ,SK}.

Training Setup. d = 1, p = 82, N = 20. So, the full basis, ΦN (x), had 20 frequencies. D = 3.
We experiment with K ∈ {1, 10, 100, 200, 400, 800, 1140}.

Evaluation Setup. The baselines we consider are OLSS , OLSΦN
, and LassoΦN

For Lasso, we use
α = 0.1. We again evaluate in two settings: (a) ID: On functions from the pretraining distribution.
(b) OOD: On functions not in the pretraining distribution by sampling from a function family not
corresponding to any of the S ′

ks used to define the pretraining distribution.

Results. Plots for various task diversities that we experiment with are in Table 2. The trend is
the same as it was for Monomials problem, i.e. ID performance degrades and OOD performance
improves as K increases. As K increases, TF’s performance on ID and OOD becomes identical
(from K = 100 onwards) and similar to the LassoΦN

and BPproxy baselines.

C.3 Details on the phenomenon of forgetting

Problem Setup. We follow the Noisy Linear Regression (NLR) setup from Raventós et al. [2023]:
d = 8, p = 15 (without curriculum learning). The noise variance σ2 = 0.25. For this problem, the
transformer has 8 layers, 128-dimensional embeddings, and 2 attention heads, and is trained with a
batch size of 256 for 500k steps. One-cycle triangle learning rate schedule Smith and Topin [2018]
is used with 50% warmup. Detailed plots for the four groups of task diversities mentioned in §4
are in Figure 10. OOD loss curves with Bayesian predictors for various checkpoints for task div 28

are in Figure 11. For other representative task diversities, the OOD loss curves of TF and Bayesian
predictors are in Table 3. Plots showing mean squared errors of implied weights of TF (found as per
§B.1) with Bayesian predictors are in Table 4.

Classification of task diversities. ID loss ≈ 0 for all task diversities during pretraining. We group
them into the following 4 categories based on OOD loss:

1. 21 to 23 (no generalization; no forgetting) – OOD loss never decreases, converges to a value worse
than or same as at the start of the training (t0), agrees with dMMSE at the end of the training (tend).
[Figure 10a]

18

2. 24 to 26 (some generalization and forgetting) – OOD loss improves, reaches a minima tmin, then
worsens. OOD loss is worse than ID loss throughout pretraining and agrees with dMMSE at tend
(i.e., any generalization to Gaussian distribution is forgotten by tend). [Figure 10b]

3. 27 to 211 (full generalization and forgetting) – OOD loss improves, reaches a minima tmin, at
which it is same as ID loss, then it worsens. At tmin, OOD loss agrees with Ridge (Figure 11a), then
gradually deviates from it and at tend, it is in between dMMSE and Ridge (e.g., Figure 11c). We refer
to this group of task diversities as the “Gaussian forgetting region” since the model generalizes to
the full (Gaussian) distribution over tasks at tmin but forgets it by tend. [Figures 10c, 11]

4. 212 to 220 (full generalization; no forgetting) – Throughout pretraining, OOD and ID losses are
identical and OOD loss agrees with Ridge. [Figure 10d]

Relation to Simplicity bias? The phenomenon of forgetting (displayed by task diversity groups
2 and 3 above) is an interesting contrast to the grokking literature and in particular to Nanda et al.
[2023], where they find that the model first memorizes and then generalizes (which, on the surface, is
the opposite of what we observe). We can explain forgetting from the perspective of simplicity bias.
Since PTdist. is discrete and perhaps contains lots of unnecessary details, the model instead finds it
easier to generalize to the ’simpler’ Gaussian distribution which is continuous and much more nicely
behaved. Hence, we speculate that the simplicity of the PTdist. is inversely proportional to the
number of tasks it contains. Very small task diversities (group 1) are exceptions to this rule since
their PTdist. is arguably much simpler than FGdist.. So, we do not see forgetting in those cases as the
model prefers to only learn PTdist.. Thus, we hypothesize that the simplicities of the distributions
have the following order (Gi denotes group i): PTdist.(G2) ≈ PTdist.(G3) < PTdist.(G4) < FGdist. ≪
PTdist.(G1).

Robustness and effect of the number of dimensions. The phenomenon of forgetting is robust to
changes in learning rate and its schedule (Figure 12), and to model sizes and position encodings
(Monomials and Fourier Series multi-task setups use a 12-layer transformer that does not have
position encodings). We also experimented with NLR problems having dimensions d = 3 and d = 16
(Figure 13) and found that the extent of forgetting (denoted by the disagreement between ID and
OOD losses) is directly proportional to the input dimension (d). Note that following Raventós et al.
[2023] we keep the signal-to-noise ratio (d/σ2) constant across these experiments by adjusting the
noise scale to ensure that noise has a proportional effect and the observations are due to change in
dimension alone.

19

(a) No generalization; no forgetting)

(b) Some generalization and forgetting

(c) Full generalization and forgetting

(d) Full generalization; no forgetting

Figure 10: Evolution of ID and OOD losses during pretraining for different task diversity groups
for the Noisy Linear Regression problem. The forgetting phenomenon is depicted by groups in
Figures (b) and (c). The moving average (over 10 train steps) of ID (*eval) and OOD (*eval_ood)
losses are plotted, with the original (non-averaged) curves shown in a lighter shade. A checkpoint
towards the end of the training is highlighted. We see that as we increase task diversity (i.e. go from
group (a) towards (d)), the difference between ID and OOD losses decreases. Groups (b) and (c) are
noteworthy as they display the phenomenon of forgetting, where the models’ OOD loss at an earlier
checkpoint is the same as ID loss, but it increases later.

20

Table 3: OOD loss curves of TF and Bayesian predictors for various checkpoints of models cor-
responding to task diversities (K) 23, 25, 28, 216 respectively in rows. Each plot presents the loss
across different prompt lengths. For task diversities 25 and 28, plots in the first column represent the
point of minima (tmin). For task diversities 23 and 216, plots in the first column represent an earlier
checkpoint.
K minima (tmin) or an earlier

checkpoint
checkpoint after 100k train
steps

checkpoint after 500k train
steps

23
0 2 4 6 8 10 12 14

k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 8; Ckpt: 37000

TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

/d

Num tasks: 8; Ckpt: 100000

TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 8; Ckpt: 500000

TF
Ridge
dMMSE

25
0 2 4 6 8 10 12 14

k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 32; Ckpt: 23000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2
M

SE
/d

Num tasks: 32; Ckpt: 100000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

/d

Num tasks: 32; Ckpt: 500000

TF
Ridge
dMMSE

28
0 2 4 6 8 10 12 14

k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 31000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 100000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 500000
TF
Ridge
dMMSE

216
0 2 4 6 8 10 12 14

k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 65536; Ckpt: 31000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 65536; Ckpt: 100000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 65536; Ckpt: 500000
TF
Ridge
dMMSE

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 31000
TF
Ridge
dMMSE

(a) after 31k train steps (tmin)

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 100000
TF
Ridge
dMMSE

(b) after 100k train steps

0 2 4 6 8 10 12 14
k (# in-context examples)

0.2

0.4

0.6

0.8

1.0

M
SE

/d

Num tasks: 256; Ckpt: 500000
TF
Ridge
dMMSE

(c) after 500k train steps

Figure 11: Plotting the OOD loss for various checkpoints during training for task diversity 28, along
with the Bayesian predictors. At tmin, the model agrees with Ridge regression for all prompt lengths
but later deviates and converges to somewhere in the middle of two Bayesian predictors.

21

Table 4: Mean squared errors of implied weights of TF with Bayesian predictors during OOD
evaluation for various checkpoints of models corresponding to task diversities (K) 23, 25, 28, 216
respectively in rows. Each plot presents the implied difference of weights across different prompt
lengths. For task diversities 25 and 28, plots in the first column represent the point of minima (tmin).
For task diversities 23 and 216, plots in the first column represent an earlier checkpoint.
K minima (tmin) or an earlier

checkpoint
checkpoint after 100k train
steps

checkpoint after 500k train
steps

23
2 4 6 8 10 12 14

in-context examples

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

K = 8; Ckpt = 37000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

K = 8; Ckpt = 100000

(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

K = 8; Ckpt = 500000

(TF, Ridge)
(TF, dMMSE)
(TF, GT)

25
2 4 6 8 10 12 14

in-context examples

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

K = 32; Ckpt = 23000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

K = 32; Ckpt = 100000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
sq

ua
re

d
er

ro
r

K = 32; Ckpt = 500000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

28
2 4 6 8 10 12 14

in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 256; Ckpt = 31000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 256; Ckpt = 100000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 256; Ckpt = 500000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

216
2 4 6 8 10 12 14

in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 65536; Ckpt = 31000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 65536; Ckpt = 100000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

2 4 6 8 10 12 14
in-context examples

0.0

0.2

0.4

0.6

0.8

m
ea

n
sq

ua
re

d
er

ro
r

K = 65536; Ckpt = 500000
(TF, Ridge)
(TF, dMMSE)
(TF, GT)

22

Figure 12: The moving average (over 10 train steps) of ID (solid lines) and OOD (dashed lines) losses
for task diversity 27 for different learning rates, with & without learning rate schedule are plotted.
While the nature and extent of forgetting changes, the phenomenon itself is robust and is observed
across all settings.

Figure 13: The moving average (over 10 train steps) of ID (solid lines) and OOD (dashed lines) losses
for task diversity 27 for different input dimensions (3 (green), 8 (yellow), 16 (red)) are plotted. The
extent of forgetting is directly proportional to the input dimension (d).

23

	Introduction
	Background
	Hierarchical Meta-ICL
	Model and training details

	Transformers exhibit multi-task generalization in ICL
	ICL Transformer first generalizes then memorizes during pretraining
	Conclusion
	Technical Details
	PME Theoretical Details
	Experimental Setup

	MICL Experiments
	Dense Regression (FDR).
	Experiments with non-linear function classes
	Degree-2 Monomial Basis Regression
	Fourier Series

	Details regarding Multi-task generalization experiments
	Monomials Multi-task
	Fourier Series Multi-task
	Details on the phenomenon of forgetting

